KR20160044621A - 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법 - Google Patents

증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법 Download PDF

Info

Publication number
KR20160044621A
KR20160044621A KR1020140138818A KR20140138818A KR20160044621A KR 20160044621 A KR20160044621 A KR 20160044621A KR 1020140138818 A KR1020140138818 A KR 1020140138818A KR 20140138818 A KR20140138818 A KR 20140138818A KR 20160044621 A KR20160044621 A KR 20160044621A
Authority
KR
South Korea
Prior art keywords
coolant
reactor
pipe
steam
vessel
Prior art date
Application number
KR1020140138818A
Other languages
English (en)
Other versions
KR101617161B1 (ko
Inventor
이성재
송철화
박현식
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020140138818A priority Critical patent/KR101617161B1/ko
Publication of KR20160044621A publication Critical patent/KR20160044621A/ko
Application granted granted Critical
Publication of KR101617161B1 publication Critical patent/KR101617161B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

본 발명은 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법에 관한 것으로, 본 발명의 목적은 원자로에서 이상 발생 시 작동되는 안전계통에 있어서 기존에 비해 간략화된 구조로 이루어지면서도 증기압만을 이용하여 신속하고 용이하며 또한 운전원의 별도 조작을 전혀 필요로 하지 않고 완전 피동식으로 안전 동작이 이루어질 수 있도록 하는, 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법을 제공함에 있다.

Description

증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법 {Reactor with safety system using steam pressure and operating method for the reactor}
본 발명은 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법에 관한 것으로, 보다 상세하게는 원자로에서 이상 발생 시 작동되는 안전계통에 있어서 기존에 비해 간략화된 구조로 이루어지면서도 증기압을 이용하여 신속하고 용이하며 또한 운전원의 별도 조작을 전혀 필요로 하지 않고 완전 피동식으로 안전 동작이 이루어질 수 있도록 하는, 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법에 관한 것이다.
원자력 발전은 핵분열 시 발생되는 에너지를 이용해 터빈을 돌려 전기 에너지를 생산하는 방식으로 이루어진다. 도 1은 일반적인 원자력 발전의 원리를 간략하게 도시하고 있다. 압력 용기(또는 원자로용기라고 칭함)내의 핵연료가 핵분열함에 의하여 엄청난 열에너지가 발생되는데, 이 열에너지는 압력 용기 내의 냉각재로 전달되며, 냉각재는 도 1에 진한 화살표로 표시된 바와 같이 압력 용기로부터 배출되어 열교환기를 거쳐 다시 압력 용기로 유입되는 방향으로 순환된다. 냉각재가 가지고 있는 열에너지는 열교환기를 통과하면서 증기발생기로 전달되며, 증기발생기 내의 물은 열에너지에 의하여 고온 고압의 증기로 상변화를 일으킨다. 이와 같이 발생된 고온 고압의 증기는 도 1의 연한 화살표로 표시된 바와 같이 터빈으로 공급되며, 이 증기의 힘에 의하여 터빈이 회전하며, 터빈과 연결되어 있는 발전기도 함께 회전함으로써 발전이 이루어진다. 터빈을 회전시킴으로써 에너지를 상실한 증기는 다시 상변화를 일으켜 물이 되는데, 이 물은 도 1의 연한 화살표로 표시된 바와 같이 증기발생기로 재유입됨으로써 역시 순환이 이루어지게 된다.
도 1은 원자력 발전의 주체가 되는 계통들만이 도시되었으나, 실제로는 원자로에는 필수적으로 안전계통이 구비된다. 앞서 설명한 바와 같이 원자로가 작동할 때에는 매우 높은 열이 발생하게 되는데, 이러한 고열 환경은 매우 높은 위험성을 내포하여 원자로 손상 발생 시 대형 사고를 유발할 수도 있기 때문이다. 따라서 원자로의 손상이 발생했을 경우 원자로를 급속히 냉각해 주기 위한 안전계통이 필수적으로 구비되어야만 하는 것이다.
이에 따라 종래에는 원자로 사고 발생 시 원자로를 안전하게 냉각할 수 있도록 하는 다양한 형태의 안전계통이 구비된다. 보다 구체적으로 설명하자면, 기존의 원자로에 적용되는 안전계통 구성으로서, 원자로용기 내에 수용된 냉각재를 외부로 순환시키는 구성(ex. 피동잔열제거(PRHR) 계통 등), 외부에 별도 수용되어 있던 냉각재를 용기 내로 공급해 주는 구성(ex. 안전주입탱크, 노심보충수탱크(CMT), 안전주입펌프(SI pump) 등) 등이 있으며, 그 예시가 도 2에 도시되어 있다.
이 중에서도 냉각재를 주입하는 안전계통은 냉각재 상실사고(loss-of-coolant accident, LOCA, 원자로용기에서 냉각재가 누출되는 사고)의 대처에 직접적으로 작용하는 것이다. 도 1에 나타난 바와 같이 원자로는 압력 용기 내의 냉각재를 순환시켜 발전을 수행하는 바, 압력 용기 - 외부의 발전기 사이를 순환하는 냉각재는 발전을 수행하는 역할을 함과 동시에 원자로 노심에서 발생되는 고열을 흡수하는 역할을 한다. 그런데 냉각재 상실사고가 발생하는 경우 원자로 노심에서 발생되는 고열을 흡수하는 냉각재의 절대량이 부족해지기 때문에, 원자로 노심이 용융되어 압력 용기를 뚫고 나오는 등의 심각한 사고 상황으로 발전할 위험성이 매우 크다. 따라서 냉각재 상실사고 시 신속하고 효과적으로 냉각재를 주입해 주는 동작이 반드시 이루어져야 하는 것이다. 이러한 냉각재 보충 구조에 대한 기술들이 한국특허공개 제2002-0037105호("원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과 장치") 등에 다양하게 개시되어 있다.
그런데, 종래에는 냉각재 상실사고 발생 시와 같이 냉각재의 보충 주입이 필요한 경우, 운전원의 작동에 의하여 전기적 제어 신호가 보내지면 비로소 냉각재 보충 주입 동작이 시작되는 방식으로 이루어져 있었다. 즉, 도 2에 도시된 안전주입탱크 또는 안전주입펌프(SI pump)는 운전원의 제어 신호 입력에 의해 작동되었던 것이다. 따라서 운전원이 신속하게 사고 상황을 인지하지 못하거나 불의의 사고 등으로 인하여 운전원이 제어 신호 입력을 하지 못하는 불능 상태에 빠지는 등의 문제가 발생할 경우, 제시간에 제어 지시를 내리지 못하여 노심 용융 등의 엄청난 사고로 발전할 위험성이 커진다.
뿐만 아니라, 종래의 원자로 구조의 경우 설비를 구축하는데 있어서 고려해야 할 설계 요소가 너무 많아 설계 및 실제 공사가 매우 어려워질 뿐만 아니라, 설비 구축이 완료된 후에도 안전한 운용을 위하여 검사하거나 감시해야 할 것들이 많아 운용 및 제어가 어렵다는 문제가 있었다. 특히 원자로의 냉각재를 보충해 주는 역할을 하는 도 2의 안전주입탱크의 경우, 압력을 맞추기 위해서 안전주입탱크 내에 질소(N2) 가스를 주입하여 두는데, 오랜 시간 원자로를 운용하다 보면 안전주입탱크에 손상이 생겨 질소 가스가 새어나감으로써 원하는 압력을 유지하지 못하게 되고, 이러한 문제를 막기 위해 안전주입탱크의 압력 수준을 꾸준히 모니터링하고 원하는 압력치가 아닐 경우 질소 가스를 계속 보충해 주어야 하는 등, 운용 상의 불편함이 가중되었다.
따라서 기존의 안전계통보다 더욱 냉각 효율을 향상시킬 수 있고, 안전계통의 동작이 운전원의 별도 제어 조작을 필요로 하지 않고 완전 피동식으로 이루어지며, 더불어 기존의 원자로 안전계통에 비하여 좀더 간소한 구조로 이루어지는, 원자로 안전계통에 대한 요구가 꾸준히 있어 왔다.
1. 한국특허공개 제 2002-0037105호("원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과 장치")
따라서, 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 원자로에서 이상 발생 시 작동되는 안전계통에 있어서 기존에 비해 간략화된 구조로 이루어지면서도 증기압만을 이용하여 신속하고 용이하며 또한 운전원의 별도 조작을 전혀 필요로 하지 않고 완전 피동식으로써 안전 동작이 이루어질 수 있도록 하는, 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법을 제공함에 있다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 증기압을 이용하는 안전계통을 가지는 원자로는, 원자로노심 및 냉각재를 수용하는 원자로용기(110), 연결관(125)에 의해 상기 원자로용기(110)와 연결되며 증기관(130) 및 급수관(140)이 구비되는 증기발생기(120)를 포함하여 이루어지는 원자로 구동계통(100); 상기 원자로 구동계통(110)을 수용하는 격납용기(210), 안전주입관(225)에 의해 상기 원자로용기(110)와 연결되며 내부에 냉각재를 수용하는 안전주입용기(220), 일단이 상기 증기관(130)에 연결되며 상기 안전주입용기(220)를 통과하며 상기 안전주입용기(220) 내 냉각재로 열을 전달하는 증기우회관(230), 일단이 상기 안전주입관(225)에 연결되고 타단이 상기 급수관(140)에 연결되는 급수우회관(235)을 포함하여 이루어지는 원자로 안전계통(200); 일단이 상기 증기관(130)에 연결되고 타단이 상기 급수관(140)에 연결되며 중간에 잔열냉각 열교환기(310)가 구비되는 잔열냉각관(315), 상기 격납용기(210) 외부에 구비되며 상기 잔열냉각 열교환기(310) 및 냉각재를 수용하는 히트싱크(320)를 포함하여 이루어지는 원자로 잔열제거계통(300); 을 포함하여 이루어질 수 있다.
이 때 상기 원자로 안전계통(200)은, 상기 격납용기(210) 내부 일측에 격리된 공간을 형성하여 내부에 냉각재를 수용하는 냉각재 저장탱크(240), 일단이 상기 증기관(130)에 연결되고 타단이 상기 냉각재 저장탱크(240)에 연결되는 압력배출관(245), 상기 냉각재 저장탱크(240)로부터 냉각재를 공급받아 상기 격납용기(210) 상측으로부터 냉각재를 분사하는 격납용기 스프레이(250)를 더 포함하여 이루어질 수 있다.
또한 상기 원자로 안전계통(200)은, 상측이 개방된 용기 형태로 형성되어 상기 격납용기(210) 상측 벽면 상에 구비되며 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내리는 냉각재를 받아 수용하는 냉각재 획득용기(260), 상기 냉각재 획득용기(260)로부터 냉각재를 공급받아 상기 원자로용기(110) 하측으로부터 냉각재를 배출하는 원자로 하부냉각기(270)를 더 포함하여 이루어질 수 있다.
또한 본 발명의 증기압을 이용하는 안전계통을 가지는 원자로의 작동 방법은, 상술한 바와 같이 구성된 원자로를 동작하는 방법으로서, 상기 원자로 구동계통(100)이 정지되는 단계; 상기 증기관(130)에 구비된 증기관 격리밸브(130a) 및 상기 급수관(140)에 구비된 급수관 격리밸브(140a)가 폐쇄되는 단계; 를 포함하여 이루어지는 격리단계와, 상기 증기관(130) 내 압력 상승에 의하여 상기 증기우회관(230)에 구비된 증기우회밸브(230a)가 개방되는 단계; 상기 증기관(130) 및 상기 증기우회관(230)을 순차적으로 통과한 증기가 상기 안전주입용기(220) 내 냉각재로 열을 전달하여 상기 안전주입용기(220) 내 압력이 상승하는 단계; 상기 안전주입용기(220) 내 압력 상승에 의하여 상기 안전주입관(225)에 구비된 안전주입밸브(225a)가 개방되는 단계; 상기 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)로 주입되어 상기 원자로용기(110) 내 냉각재가 보충되는 단계; 를 포함하여 이루어지는 안전주입단계와, 상기 증기관(130) 내 압력 상승에 의하여 상기 잔열냉각관(315)에 구비된 잔열냉각밸브(315a)가 개방되는 단계; 상기 증기관(130) 및 상기 잔열냉각관(315)을 순차적으로 통과한 증기가 상기 잔열냉각 열교환기(310)로 유입되는 단계; 증기가 상기 잔열냉각 열교환기(310)를 통과하며 상기 히트싱크(320) 내 냉각재와 열교환하여 액체 상태의 냉각재로 응축되어 배출되는 단계; 냉각재가 상기 잔열냉각관(315), 상기 급수우회관(235), 상기 안전주입관(225)을 순차적으로 통과하여 상기 원자로용기(110)로 재유입되어 순환되는 단계; 를 포함하여 이루어지는 순환냉각단계를 포함하여 이루어질 수 있다.
이 때 상기 원자로 안전계통(200)은, 상기 격납용기(210) 내부 일측에 격리된 공간을 형성하여 내부에 냉각재를 수용하는 냉각재 저장탱크(240), 일단이 상기 증기관(130)에 연결되고 타단이 상기 냉각재 저장탱크(240)에 연결되는 압력배출관(245), 상기 냉각재 저장탱크(240)로부터 냉각재를 공급받아 상기 격납용기(210) 상측으로부터 냉각재를 분사하는 격납용기 스프레이(250)를 더 포함하여 이루어질 수 있으며, 이 경우 상기 원자로의 작동 방법은, 상기 증기관(130) 내 증기가 상기 압력배출관(245)을 통해 상기 냉각재 저장탱크(240)로 유입되어 상기 냉각재 저장탱크(240) 내 압력을 상승시키는 단계; 상기 냉각재 저장탱크(240) 내 냉각재가 상기 격납용기 스프레이(250)로 공급되는 단계; 상기 격납용기 스프레이(250)에서 분사된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어지는 단계; 를 포함하여 이루어지는 냉각재분사 냉각단계를 더 포함하여 이루어질 수 있다.
또한 상기 원자로 안전계통(200)은, 상측이 개방된 용기 형태로 형성되어 상기 격납용기(210) 상측 벽면 상에 구비되며 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내리는 냉각재를 받아 수용하는 냉각재 획득용기(260), 상기 냉각재 획득용기(260)로부터 냉각재를 공급받아 상기 원자로용기(110) 하측으로부터 냉각재를 배출하는 원자로 하부냉각기(270)를 더 포함하여 이루어질 수 있으며, 이 경우 상기 원자로의 작동 방법은, 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내린 냉각재가 상기 냉각재 획득용기(260)로 획득되어 수용되는 단계; 상기 냉각재 획득용기(260) 내 냉각재가 상기 원자로 하부냉각기(270)로 공급되는 단계; 상기 원자로 하부냉각기(270)에서 배출된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어지는 단계; 를 포함하여 이루어지는 원자로하부 냉각단계; 를 더 포함하여 이루어질 수 있다.
본 발명에 의하면, 안전계통이 완전 피동식으로 이루어짐으로써 원자로 손상 발생 시 별도의 제어 지시가 필요 없이 신속한 냉각이 이루어질 수 있도록 하여 사고 위험성을 최소화시켜 줄 수 있는 효과가 있다. 보다 구체적으로는, 본 발명에서는 원자로에서 냉각재 상실사고 발생 시 자연적으로 발생되는 증기압을 이용하여 냉각재 보충 동작이 개시되도록 함으로써, 완전 피동식으로 안전계통의 작동이 이루어질 수 있게 하여 사고에 즉각적인 대처가 가능하며 사고 확산의 위험성을 효과적으로 막을 수 있다.
또한 본 발명의 원자로 안전계통 구성은 기존의 원자로 안전계통 구성과 비교하였을 때 보다 단순화된 구조를 가지기 때문에, 이에 따라 기존에 비해 원자로를 설계하고 구축하는데 있어서 난해함을 훨씬 낮출 수 있으며, 구축 완료된 원자로를 운영함에 있어서도 용이성 및 편의성이 향상되는 효과가 있다. 물론 이에 따라 설계, 구축, 운용, 제어 등에 드는 시간, 인력, 비용 등의 자원들을 절약하는 효과도 매우 크다.
도 1은 일반적인 원자력 발전 원리.
도 2는 종래의 안전계통의 다양한 예시.
도 3은 본 발명의 원자로.
도 4는 본 발명의 원자로에서의 정상 운영 시 냉각재 흐름.
도 5는 본 발명의 원자로에서의 정상 정지 후 냉각재 흐름.
도 6은 본 발명의 원자로에서의 LOCA 발생 후 냉각재 흐름.
도 7은 본 발명의 원자로에서의 LOCA 발생 후 냉각재 흐름의 다른 실시예.
도 8은 LOCA 발생 시 각 계통 압력 변화.
이하, 상기한 바와 같은 구성을 가지는 본 발명에 의한 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법을 첨부된 도면을 참고하여 상세하게 설명한다.
도 3은 본 발명의 원자로를 간략하게 도시한 것이다. 본 발명의 원자로는 크게는, 전력 발전을 위해 동작하는 원자로 구동계통(100), 상기 원자로 구동계통(100)이 정지하면 동작이 개시되어 냉각을 수행하는 원자로 안전계통(200), 상기 원자로 안전계통(200)과 연계되어 상기 원자로 구동계통(100)에서 발생되는 잔열을 지속적으로 제거하는 원자로 잔열제거계통(300)을 포함하여 이루어진다.
먼저 본 발명의 원자로에서의 원자로 구동계통(100)에 대하여 설명한다. 본 발명의 원자로에서 상기 원자로 구동계통(100)은, 도 3에 도시되어 있는 바와 같이, 원자로노심 및 냉각재를 수용하는 원자로용기(110), 연결관(125)에 의해 상기 원자로용기(110)와 연결되며 증기관(130) 및 급수관(140)이 구비되는 증기발생기(120)를 포함하여 이루어진다. 본 발명의 원자로 구동계통(100)은 상기 원자로용기(110)와 상기 증기발생기(120)가 별개로 분리되어 형성되는 형태로서, 일반적으로 많은 발전 용량을 요하는 대형 원자로에 많이 적용되는 형태이다. 최근에는, 원자로용기 및 증기발생기가 하나의 밀폐된 원자로 보호용기 내에 구비되도록 하는 형태의 일체형 원자로 형태의 적용도 확대되어가고 있는데, 이러한 일체형 원자로 형태는 상대적으로 적은 발전 용량을 요하는 소형 원자로에 적용되기에 적합한 것이다. 따라서 이러한 일체형 및 소형 원자로는 인구밀도가 낮은 지역에서라면 보다 경제적일 수 있겠으나, 인구 밀집도가 높은 지역의 경우 대형 원자로가 훨씬 경제적이기 때문에, 현재 전세계적으로 볼 때 도 3에 도시된 바와 같이 원자로가 원자로용기 및 증기발생기가 별개로 분리되어 있는 형태로 형성되는 것이 보다 일반적이다.
다음으로 본 발명의 원자로에서의 원자로 안전계통(200)에 대하여 설명한다. 상기 원자로 안전계통(200)은, 기본적으로는 상기 원자로 구동계통(110)을 수용하는 격납용기(210), 안전주입관(225)에 의해 상기 원자로용기(110)와 연결되며 내부에 냉각재를 수용하는 안전주입용기(220), 일단이 상기 증기관(130)에 연결되며 상기 안전주입용기(220)를 통과하며 상기 안전주입용기(220) 내 냉각재로 열을 전달하는 증기우회관(230), 일단이 상기 안전주입관(225)에 연결되고 타단이 상기 급수관(140)에 연결되는 급수우회관(235)을 포함하여 이루어진다. 여기에 부가적으로 장치들이 더 추가될 수 있는데, 이는 이후 본 발명의 원자로에서의 원자로 안전계통(200)의 동작 방법을 설명하면서 보다 상세히 설명한다.
마지막으로 본 발명의 원자로에서의 원자로 잔열제거계통(300)에 대하여 설명한다. 상기 원자로 잔열제거계통(300)은, 일단이 상기 증기관(130)에 연결되고 타단이 상기 급수관(140)에 연결되며 중간에 잔열냉각 열교환기(310)가 구비되는 잔열냉각관(315), 상기 격납용기(210) 외부에 구비되며 상기 잔열냉각 열교환기(310) 및 냉각재를 수용하는 히트싱크(320)를 포함하여 이루어진다.
여기에서, 상기 원자로 구동계통(100)이나 원자로 잔열제거계통(300)은 일반적인 원자로의 구동계통 및 잔열제거계통과 거의 유사한 구성이며, 상기 원자로 안전계통(200)에서의 상기 안전주입용기(220)는 도 2에 개시된 기존의 안전주입탱크와 유사하게 보일 수 있다. 그러나 본 발명의 원자로가 기존의 원자로와 가장 크게 상이한 점은, 바로 상기 증기우회관(230)에 의하여, 상기 원자로 안전계통(200)의 작동이 별도의 제어 지시 동작 없이 상기 원자로용기(110)에서의 증기압 크기에 따라 완전 피동적으로 이루어질 수 있다는 점이다. 이와 같이 할 수 있는 것은 본 발명의 원자로에서 기존의 원자로와는 유로 구성을 달리하였기 때문으로, 이러한 유로 구성 및 원자로 각부 압력 변화에 따른 동작 구성이 바로 기존의 원자로와 본 발명의 원자로를 차별화시켜 주는 구성이 된다.
앞서 설명한 바와 같이, 기존의 안전주입탱크의 경우 외부의 제어에 의해 동작된다. 보다 구체적으로는, 기존에는 상기 안전주입용기(220)에 해당하는 안전주입탱크 내에 질소 가스를 충전하여 둠으로써 압력을 유지하였으며, 또한 냉각재 상실사고 발생 시 질소 가스를 더 충전함으로써 압력을 높이는 방식으로 냉각재의 주입이 시작되었다. 이 때 운전원이 미처 사고 발생 사실을 인식하지 못하거나, 또는 불의의 사고 또는 경험 미숙으로 인한 판단 실수로 인하여 운전원이 제때 제어 지시를 내리지 못함으로써, 냉각재 상실 상태가 지나치게 오래 지속되어 급기야 원자로노심이 용융되어 원자로용기로부터 빠져나와 버리는 엄청난 대형 사고로 이어질 위험성이 있었던 것이다.
본 발명의 경우, (기존의 안전주입탱크에 대응되는) 안전주입용기(220)로부터 원자로용기(110)로 냉각재가 주입되는 동작이, 본 발명의 원자로 안전계통(200)의 유로 구성에 의하여, 냉각재 상실 시 필연적으로 발생되는 원자로용기(110) 내 압력 증가에 따라 완전 피동적으로 이루어지게 된다. 즉 본 발명의 경우 운전원이 별도의 제어 지시를 내릴 필요가 없으며, 따라서 냉각재가 얼마나 상실되었는지를 가늠하거나 제어 지시를 내려야 하는 시점이 적절한지 등을 판단해야 할 필요도 없이 실제 원자로 각부의 환경 조건(압력)에 따라 자연스럽게 안전 동작이 이루어지게 되어, 안전성을 극대화시킬 수 있을 뿐 아니라 운전원의 원자로 운전 편의성 또한 크게 향상시켜 준다. 뿐만 아니라 상술한 바와 같이 본 발명의 원자로 구성은 기존의 원자로에서 유로 구성을 변경시켜 줌으로써 쉽게 적용이 가능하여, 원자로를 새로 구축하지 않고도 널리 적용할 수 있는 호환성 또한 매우 뛰어나다.
이하에서, 본 발명의 원자로에서의 정상 운영 시 냉각재 흐름, 정상 정지 후 냉각재 흐름, 그리고 냉각재 상실 사고 발생 시의 냉각재 흐름을 설명하면서, 본 발명의 원자로의 동작 방법에 대하여 보다 상세히 설명한다.
도 4는 본 발명의 원자로에서의 정상 운영 시 냉각재 흐름을 나타내고 있다. 정상 운영 시에는, 상기 증기관(130) 및 상기 급수관(140) 각각에 구비되어 있는 증기관 격리밸브(130a) 및 급수관 격리밸브(140a)는 개방(open)된 상태를 유지한다. 먼저 원자로용기(110) 내 원자로노심에서는 핵반응에 의하여 열이 발생되는데, 상기 원자로용기(110) 내 냉각재가 이 열을 흡수함으로써 원자로노심 자체는 냉각된다. 이렇게 가열된 냉각재는 상기 연결관(125)을 통해 상기 증기발생기(120)로 흘러가는데, 상기 증기발생기(120)에는 도시된 바와 같이 증기관(130) 및 급수관(140)이 연결되어 있어, 상기 급수관(140)을 통해 흘러들어온 열교환매체가 (상기 원자로용기(110)로부터 흘러들어온) 가열된 냉각재로부터 열을 흡수함으로써 증발되어 증기 상태로서 상기 증기관(130)을 통해 배출된다. 이렇게 배출된 증기는 터빈을 돌려 전력을 발생시키는데 사용된다.
첨언하자면, 상기 증기관(130) - 상기 증기발생기(120) - 상기 급수관(140)을 통과하는 열교환매체는 상술한 바와 같이 원자로를 빠져나가 외부의 터빈을 돌리는데 사용되는 바, 상기 원자로용기(110) 내에서 원자로노심과 직접 접촉함으로써 방사능물질을 함유하게 된 냉각재와 혼합되지 않도록 격리되어 흐르게 된다. 일반적으로는 상기 증기발생기(120) 내에는 상기 증기관(130) 및 상기 급수관(140)과 연결된 열교환기가 구비되며, 상기 증기발생기(120) 내로 흘러들어온 가열된 냉각재가 상기 열교환기 주변에 채워짐으로써, 가열된 냉각재 및 상기 열교환기 내를 흐르는 열교환매체 간의 열교환이 이루어지도록 형성된다. 한편, 추후 보다 상세히 설명하겠으나, 냉각재 상실사고 발생 시 상기 증기관(130) 및 상기 급수관(140)에 채워져 있던 열교환매체도 원자로 냉각에 활용되도록 하고, 또한 상기 증기관(130) 및 상기 급수관(140)을 냉각 동작을 위한 유로 구성에 포함되도록 할 수 있다. 이러한 경우 (외부와는 격리된 상태에서) 상기 증기관(130) 및 상기 급수관(140) 내에 있는 열교환매체와 상기 원자로용기(110) 내에 있던 냉각재가 혼합될 수도 있다. 이러한 다양한 점을 고려하여, 일반적으로 상기 증기관(130) 및 상기 급수관(140)을 통해 흐르는 열교환매체는 냉각재와 동일한 물질(구체적으로는 물)을 사용하는 것이 대부분이다.
도 5는 본 발명의 원자로에서의 정상 정지 후 냉각재 흐름을 나타내고 있다. 원자로가 정상적으로 정지된다는 것은, 냉각재의 상실 등과 같은 문제가 없이 단지 원자로 출력 제어봉을 조절하여 원자로노심에서의 핵반응을 의도적으로 멈춘다는 것으로, 이 경우 원자로노심에서 열이 더 발생하지 않기 때문에 잔열을 제거하기만 하면 된다. 원자로 잔열냉각계통(300)이 바로 이러한 경우에 동작한다.
정상 정지 시에는, 먼저 상기 증기관(130) 및 상기 급수관(140) 각각에 구비되어 있는 증기관 격리밸브(130a) 및 급수관 격리밸브(140a)가 폐쇄(closed)된다. 상기 원자로용기(110) 내의 냉각재는 원자로노심의 잔열을 흡수하여 증발해서 증기가 되는데, 증기관(130) 및 급수관(140)이 폐쇄되어 있으므로 증기는 상기 잔열냉각관(315)을 통해 흘러간다. 상기 잔열냉각관(315)에는 도시된 바와 같이 잔열냉각밸브(315a)가 구비되는데, 증기 압력이 어느 이상으로 높아지면 상기 잔열냉각밸브(315a)가 개방되어, 증기가 상기 잔열냉각 열교환기(310)로 흘러들어갈 수 있게 된다. 상기 잔열냉각 열교환기(310)를 흘러가는 증기는 상기 히트싱크(320) 내에 수용된 냉각재와 열교환함으로써 냉각되어 액체 상태의 냉각재로 다시 응축되며, 상기 급수관(140)을 따라 상기 증기발생기(120)로 재유입됨으로써 순환냉각이 이루어진다.
도 6은 본 발명의 원자로에서의 LOCA 발생 후 냉각재 흐름을 나타내고 있다. 앞서 설명했던 바와 같이, 원자로에서 냉각재가 상실되는 사고는 원자로노심의 충분한 냉각을 달성하지 못함으로써 원자로노심의 용융, 나아가 원자로용기 파손 및 원자로노심 노출에 이르는 대형 사고를 야기할 수 있는 위험성을 가지고 있어, 신속하고 빠르게 대처하는 것이 매우 중요하다. 본 발명에서는, 냉각재 상실사고 발생 시 원자로노심의 과열에 의하여 상기 원자로용기(110) 내 증기압이 과도하게 높아지는 것을 이용하여, 증기압 상승만을 이용하여 냉각재 보충 주입 및 그 외 다양한 냉각 동작들이 완전 피동으로 이루어지게 한다. 냉각재 상실사고 발생 시 본 발명의 원자로 동작은, 크게는 격리단계, 안전주입단계, 잔열제거단계로 이루어진다. 이하 각 단계에 대하여 보다 구체적으로 상세히 설명한다.
격리단계에서는, 먼저 상기 원자로 구동계통(100)이 정지된 이후, 상기 증기관(130)에 구비된 증기관 격리밸브(130a) 및 상기 급수관(140)에 구비된 급수관 격리밸브(140a)가 폐쇄된다. 원자로 구동계통(100)이 정지되었으므로 원자로노심에서 더 열이 발생되지는 않으나, 냉각재가 상실된 상태이기 때문에 원자로노심이 충분히 냉각되지 못하며, 이에 따라 냉각재의 증발은 더 많이 일어나 상기 원자로용기(110)( 및 격리된 상기 증기관(130)) 내 압력은 원자로 정상 정지 시보다 더욱 높아진다. 그러면 이하 안전주입단계가 비로소 시작되게 된다.
안전주입단계에서는, 먼저 상기 증기관(130) 내 압력 상승에 의하여 상기 증기우회관(230)에 구비된 증기우회밸브(230a)가 개방된다. 그러면 상기 원자로용기(110) 내 증기는 상기 증기관(130) 및 상기 증기우회관(230)을 순차적으로 통과하며, 이 증기가 상기 안전주입용기(220) 내 냉각재로 열을 전달하여 상기 안전주입용기(220) 내 압력이 상승하게 된다. 도 8은 LOCA 발생 시 각 계통 압력 변화를 나타낸 그래프로서, 상기 원자로용기(110) 내 압력보다 상기 안전주입용기(220) 내 압력이 더 커지게 되는 시점이 되면, 상기 안전주입용기(220) 내 압력 상승에 의하여 상기 안전주입관(225)에 구비된 안전주입밸브(225a)가 개방되어, 상기 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)로 주입됨으로써 (냉각재가 상실되었던) 상기 원자로용기(110) 내 냉각재가 보충되는 것이다. 도 8의 그래프에 나타나 있는 바와 같이, 이처럼 상기 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)로 주입되어 보충되더라도 상기 안전주입용기(220) 내 압력이 상기 원자로용기(110) 내 압력보다 계속 조금 더 높은 상태가 유지되며, 따라서 상기 안전주입용기(220) 내 냉각재는 상기 원자로용기(110)로 완전히 주입될 수 있다.
기존에는 앞서 설명한 바와 같이 상기 안전주입용기(220)에 해당하는 안전주입탱크 내에 질소 가스를 충전하여 둠으로써 압력을 유지하였으며, 또한 상기 안전주입단계는 질소 가스를 더 충전함으로써 압력을 높이는 방식으로 시작되었다. 그러나 이와 같은 종래의 안전주입탱크 구성 및 동작 방법은, 안전주입탱크 상 미세 틈새로 질소 가스가 새어나감으로써 압력 유지가 확보되지 못하여 수시로 압력 체크 및 질소 충전을 수행해 주어야 하는 불편함이 있었으며, 또한 안전주입단계의 시작 역시 별도의 질소 가스 공급을 시작해 주어야만 하여 운용상의 불편함 및 신속한 대응이 어려워지는 문제가 있었다.
그러나 본 발명에서는, 상술한 바와 같이 증기발생기(120)에서 발생되는 증기(보다 구체적으로는, 이 증기가 가지는 열에너지)에 의해 상기 안전주입용기(220) 내 압력이 증가하고, 이에 따라 안전주입단계의 시작이 이루어진다. 즉 본 발명에서는 외부로부터의 질소 충전 등과 같은 별도의 단계가 전혀 필요치 않고 단지 원자로 안전계통 각부의 압력 상태에 의해 단계의 시작이 이루어지기 때문에, 앞서 설명한 운용상의 불편함이나 신속한 대처 불능 등의 문제가 원천적으로 해결된다. 뿐만 아니라 상술한 바와 같이 증기압에 의하여 상기 안전주입용기(220) 내 압력을 조절하여 안전주입단계가 시작되도록 하기 때문에, 평상시에 상기 안전주입용기(220) 내에 질소 가스를 충전하여 압력을 유지하거나 하는 수고를 생략할 수 있어, 운용상의 편리함을 보다 향상시킬 수 있다.
상기 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)로 주입됨과 함께, 상기 원자로 잔열제거계통(300)의 동작에 의해 순환냉각이 이루어짐으로써 원자로노심의 잔열이 제거된다. 이러한 순환냉각단계는 원자로 정상 정지 시에 이루어지는 잔열냉각단계와 유사하게 이루어지는 것으로, 앞서도 간략히 설명하였지만 다시 한 번 보다 상세히 설명하면 다음과 같다.
순환냉각단계에서는, 먼저 상기 증기관(130) 내 압력 상승에 의하여 상기 잔열냉각관(315)에 구비된 잔열냉각밸브(315a)가 개방된다. 앞서 설명한 바와 같이 원자로 정상 정지 시에도 이러한 과정이 이루어지는데, 다만 원자로 정상 정지 시에는 상기 증기우회밸브(230a)가 개방되지 않아 순환냉각에 의한 잔열제거만이 이루어지는 반면, 냉각재 상실사고 시에는 잔열냉각밸브(315a)만 개방되는 것이 아니라 증기우회밸브(230a)도 함께 개방됨으로써 안전주입단계가 더 이루어지게 되는 것이다. 이와 같이 잔열냉각밸브(315a)가 개방되면, 증기는 상기 증기관(130) 및 상기 잔열냉각관(315)을 순차적으로 통과한 증기가 상기 잔열냉각 열교환기(310)로 유입된다. 이 증기는 상기 잔열냉각 열교환기(310)를 통과하며 상기 히트싱크(320) 내 냉각재와 열교환하여 액체 상태의 냉각재로 응축되어 배출되게 된다. 이처럼 상기 잔열냉각 열교환기(310)로부터 배출된 냉각재는, 상기 잔열냉각관(315), 상기 급수우회관(235), 상기 안전주입관(225)을 순차적으로 통과하여 상기 원자로용기(110)로 재유입되어 순환이 이루어진다.
상술한 것은 상기 안전주입단계가 시작되어 가장 최고 효율의 냉각이 이루어지는 과정을 설명한 것으로, 실제로는 상기 안전주입단계가 시작될 때까지, 즉 상기 안전주입용기(220) 내의 압력이 충분히 올라가기 전까지 약간의 시간 지연이 있을 수 있다. 이 시점에서 아무런 냉각 작용이 일어나지 않는 것은 전혀 아니며, 상기 안전주입단계가 시작되기 전 즉 상기 안전주입용기(220) 내 기압이 충분히 올라가기 전에도, 앞서의 정상 정지 시의 잔열냉각단계와 같은 순환 경로를 따라 냉각재가 순환됨으로써 냉각이 이루어지고 있게 된다. 즉 증기발생기(120) - 증기우회관(230)을 순차적으로 통과해 나온 증기가 잔열냉각관(315) - 잔열냉각 열교환기(310) - 잔열냉각관(315)을 순차적으로 거쳐, 도 6 상에서 점선으로 표시된 급수관(140)을 따라 다시 증기발생기(120)로 재유입(흐린 화살표로 표시)됨으로써 순환이 이루어지게 되는 것이다.
이와 같이 원자로 잔열냉각계통(300)에 의한 냉각은 정상 정지 시에는 충분한 냉각 성능을 발휘할 수 있으나, LOCA 발생 시에는 냉각재의 상실로 인하여 냉각재의 절대량이 부족해지므로 충분한 냉각이 이루어지지 못하며, 따라서 상기 증기발생기(120)에서 발생되는 증기의 양은 계속 많아지게 된다. 이에 따라 상기 안전주입용기(220) 내 압력이 점점 증가하게 되며, 어느 기준 이상이 되면 상기 안전주입단계가 비로소 시작되게 됨으로써 보다 효과적인 냉각이 이루어지게 된다.
도 7은 본 발명의 원자로에서의 LOCA 발생 후 냉각재 흐름의 다른 실시예를 나타내고 있다. 도 7에는, 상술한 바와 같은 안전주입단계 및 순환냉각단계와 더불어, 원자로를 더 신속히 냉각시키기 위한 부수적인 장치들 및 그들의 동작이 나타나 있다.
먼저, 본 발명의 원자로 안전계통(200)은, 상기 격납용기(210) 내부 일측에 격리된 공간을 형성하여 내부에 냉각재를 수용하는 냉각재 저장탱크(240), 일단이 상기 증기관(130)에 연결되고 타단이 상기 냉각재 저장탱크(240)에 연결되는 압력배출관(245), 상기 냉각재 저장탱크(240)로부터 냉각재를 공급받아 상기 격납용기(210) 상측으로부터 냉각재를 분사하는 격납용기 스프레이(250)를 더 포함하여 이루어질 수 있다. 이와 같이 구성되는 경우, 상기 원자로 안전계통(200)에서는 냉각재분사 냉각단계가 더 이루어진다.
냉각재분사 냉각단계에서는, 먼저 상기 증기관(130) 내 증기가 상기 압력배출관(245)을 통해 상기 냉각재 저장탱크(240)로 유입되어 상기 냉각재 저장탱크(240) 내 압력을 상승시킨다. 그러면 상기 냉각재 저장탱크(240) 내 냉각재가 (도 7에 도시된 화살표 방향을 따라 이동하여) 상기 격납용기 스프레이(250)로 공급되어, 상기 격납용기 스프레이(250)를 통해 상기 격납용기(210) 상측으로부터 분사된다. 이처럼 상기 격납용기 스프레이(250)에서 분사된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어짐으로써, 추가적인 냉각이 이루어져 원자로의 보다 신속한 냉각이 가능하다.
또한, 본 발명의 원자로 안전계통(200)은, 상측이 개방된 용기 형태로 형성되어 상기 격납용기(210) 상측 벽면 상에 구비되며 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내리는 냉각재를 받아 수용하는 냉각재 획득용기(260), 상기 냉각재 획득용기(260)로부터 냉각재를 공급받아 상기 원자로용기(110) 하측으로부터 냉각재를 배출하는 원자로 하부냉각기(270)를 더 포함하여 이루어질 수 있다. 이와 같이 구성되는 경우, 상기 원자로 안전계통(200)에서는 원자로하부 냉각단계가 더 이루어진다.
원자로하부 냉각단계에서는, 먼저 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내린 냉각재가 상기 냉각재 획득용기(260)로 획득되어 수용된다. 상기 냉각재 획득용기(260) 내 냉각재는 자연히 중력에 의하여 도 7에 도시된 화살표 방향을 따라 이동함으로써 상기 원자로 하부냉각기(270)로 공급되며, 상기 원자로 하부냉각기(270)에서 배출된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어지게 된다.
더불어, 부가적으로 상기 원자로 잔열냉각계통(300)에는, 도시된 바와 같이 보조보충유로(330)가 더 구비될 수 있다. 상기 보조보충유로(330)의 일측은 상기 잔열냉각 열교환기(310) 하부의 상기 잔열냉각관(315) 상에 연결되고, 타측은 상기 히트싱크(320) 내와 연통되도록 개방되어 있다. 또한 상기 보조보충유로(330) 상에는 보조보충밸브(335)가 구비되어 있다. 앞서 설명한 바와 같이 냉각재 상실사고가 발생하였을 경우 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)에 보충되도록 하여 신속하고 효과적인 냉각이 수행되도록 하는데, 시간이 흐를수록 상기 안전주입용기(220) 내 냉각재도 다 주입되어 더 이상 남아있지 않게 된 시점에서 충분한 냉각이 덜 이루어져 있을 수 있다. 이러한 경우 압력 분포에 따라 상기 보조보충밸브(335)가 개방되도록 설계하면, 상기 히트싱크(320) 내에 수용되어 있는 냉각재가 상기 보조보충유로(330)를 통해 상기 잔열냉각관(315)으로 유입될 수 있게 된다. 이와 같이 상기 잔열냉각관(315)으로 유입된 냉각재는 앞서의 도 6에서 설명된 순환냉각단계에서 순환하는 냉각재와 동일 순환 경로를 순환하면서 냉각을 수행한다. 즉 상기 보조보충유로(330)를 구비할 경우, 상기 안전주입용기(220) 내 냉각재가 다 사용된 후에도 냉각재의 보충이 더 이루어질 수 있게 된다.
본 발명은 상기한 실시예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.
100: 원자로 구동계통 110: 원자로용기
120: 증기발생기 125: 연결관
130: 증기관 130a: 증기관 격리밸브
140: 급수관 140a: 급수관 격리밸브
200: 원자로 안전계통
210: 격납용기 220: 안전주입용기
225: 안전주입관 225a: 안전주입밸브
230: 증기우회관 230a: 증기우회밸브
235: 급수우회관 235a: 급수우회밸브
240: 냉각수 저장탱크 250: 격납용기 스프레이
260: 냉각재 획득용기 270: 원자로 하부냉각기
300: 원자로 잔열제거계통
310: 잔열냉각 열교환기 315: 잔열냉각관
315a: 잔열냉각밸브 320: 히트싱크
330: 보조보충유로 335: 보조보충밸브

Claims (6)

  1. 원자로노심 및 냉각재를 수용하는 원자로용기(110), 연결관(125)에 의해 상기 원자로용기(110)와 연결되며 증기관(130) 및 급수관(140)이 구비되는 증기발생기(120)를 포함하여 이루어지는 원자로 구동계통(100);
    상기 원자로 구동계통(110)을 수용하는 격납용기(210), 안전주입관(225)에 의해 상기 원자로용기(110)와 연결되며 내부에 냉각재를 수용하는 안전주입용기(220), 일단이 상기 증기관(130)에 연결되며 상기 안전주입용기(220)를 통과하며 상기 안전주입용기(220) 내 냉각재로 열을 전달하는 증기우회관(230), 일단이 상기 안전주입관(225)에 연결되고 타단이 상기 급수관(140)에 연결되는 급수우회관(235)을 포함하여 이루어지는 원자로 안전계통(200);
    일단이 상기 증기관(130)에 연결되고 타단이 상기 급수관(140)에 연결되며 중간에 잔열냉각 열교환기(310)가 구비되는 잔열냉각관(315), 상기 격납용기(210) 외부에 구비되며 상기 잔열냉각 열교환기(310) 및 냉각재를 수용하는 히트싱크(320)를 포함하여 이루어지는 원자로 잔열제거계통(300);
    을 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로.
  2. 제 1항에 있어서, 상기 원자로 안전계통(200)은
    상기 격납용기(210) 내부 일측에 격리된 공간을 형성하여 내부에 냉각재를 수용하는 냉각재 저장탱크(240), 일단이 상기 증기관(130)에 연결되고 타단이 상기 냉각재 저장탱크(240)에 연결되는 압력배출관(245), 상기 냉각재 저장탱크(240)로부터 냉각재를 공급받아 상기 격납용기(210) 상측으로부터 냉각재를 분사하는 격납용기 스프레이(250)를 더 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로.
  3. 제 1항에 있어서, 상기 원자로 안전계통(200)은
    상측이 개방된 용기 형태로 형성되어 상기 격납용기(210) 상측 벽면 상에 구비되며 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내리는 냉각재를 받아 수용하는 냉각재 획득용기(260), 상기 냉각재 획득용기(260)로부터 냉각재를 공급받아 상기 원자로용기(110) 하측으로부터 냉각재를 배출하는 원자로 하부냉각기(270)를 더 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로.
  4. 제 1항에 따른 원자로를 동작하는 방법으로서,
    상기 원자로 구동계통(100)이 정지되는 단계; 상기 증기관(130)에 구비된 증기관 격리밸브(130a) 및 상기 급수관(140)에 구비된 급수관 격리밸브(140a)가 폐쇄되는 단계; 를 포함하여 이루어지는 격리단계와,
    상기 증기관(130) 내 압력 상승에 의하여 상기 증기우회관(230)에 구비된 증기우회밸브(230a)가 개방되는 단계; 상기 증기관(130) 및 상기 증기우회관(230)을 순차적으로 통과한 증기가 상기 안전주입용기(220) 내 냉각재로 열을 전달하여 상기 안전주입용기(220) 내 압력이 상승하는 단계; 상기 안전주입용기(220) 내 압력 상승에 의하여 상기 안전주입관(225)에 구비된 안전주입밸브(225a)가 개방되는 단계; 상기 안전주입용기(220) 내 냉각재가 상기 원자로용기(110)로 주입되어 상기 원자로용기(110) 내 냉각재가 보충되는 단계; 를 포함하여 이루어지는 안전주입단계와,
    상기 증기관(130) 내 압력 상승에 의하여 상기 잔열냉각관(315)에 구비된 잔열냉각밸브(315a)가 개방되는 단계; 상기 증기관(130) 및 상기 잔열냉각관(315)을 순차적으로 통과한 증기가 상기 잔열냉각 열교환기(310)로 유입되는 단계; 증기가 상기 잔열냉각 열교환기(310)를 통과하며 상기 히트싱크(320) 내 냉각재와 열교환하여 액체 상태의 냉각재로 응축되어 배출되는 단계; 냉각재가 상기 잔열냉각관(315), 상기 급수우회관(235), 상기 안전주입관(225)을 순차적으로 통과하여 상기 원자로용기(110)로 재유입되어 순환되는 단계; 를 포함하여 이루어지는 순환냉각단계
    를 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로의 작동 방법.
  5. 제 4항에 있어서,
    상기 원자로 안전계통(200)은
    상기 격납용기(210) 내부 일측에 격리된 공간을 형성하여 내부에 냉각재를 수용하는 냉각재 저장탱크(240), 일단이 상기 증기관(130)에 연결되고 타단이 상기 냉각재 저장탱크(240)에 연결되는 압력배출관(245), 상기 냉각재 저장탱크(240)로부터 냉각재를 공급받아 상기 격납용기(210) 상측으로부터 냉각재를 분사하는 격납용기 스프레이(250)를 더 포함하여 이루어지며,
    상기 원자로의 작동 방법은
    상기 증기관(130) 내 증기가 상기 압력배출관(245)을 통해 상기 냉각재 저장탱크(240)로 유입되어 상기 냉각재 저장탱크(240) 내 압력을 상승시키는 단계; 상기 냉각재 저장탱크(240) 내 냉각재가 상기 격납용기 스프레이(250)로 공급되는 단계; 상기 격납용기 스프레이(250)에서 분사된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어지는 단계; 를 포함하여 이루어지는 냉각재분사 냉각단계
    를 더 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로의 작동 방법.
  6. 제 4항에 있어서,
    상기 원자로 안전계통(200)은
    상측이 개방된 용기 형태로 형성되어 상기 격납용기(210) 상측 벽면 상에 구비되며 상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내리는 냉각재를 받아 수용하는 냉각재 획득용기(260), 상기 냉각재 획득용기(260)로부터 냉각재를 공급받아 상기 원자로용기(110) 하측으로부터 냉각재를 배출하는 원자로 하부냉각기(270)를 더 포함하여 이루어지며,
    상기 원자로의 작동 방법은
    상기 격납용기(210) 내부 벽면 상에서 응축되어 흘러내린 냉각재가 상기 냉각재 획득용기(260)로 획득되어 수용되는 단계; 상기 냉각재 획득용기(260) 내 냉각재가 상기 원자로 하부냉각기(270)로 공급되는 단계; 상기 원자로 하부냉각기(270)에서 배출된 냉각재가 상기 원자로용기(110)에 직접 접촉하여 냉각이 이루어지는 단계; 를 포함하여 이루어지는 원자로하부 냉각단계
    를 더 포함하여 이루어지는 것을 특징으로 하는 증기압을 이용하는 안전계통을 가지는 원자로의 작동 방법.
KR1020140138818A 2014-10-15 2014-10-15 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법 KR101617161B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140138818A KR101617161B1 (ko) 2014-10-15 2014-10-15 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140138818A KR101617161B1 (ko) 2014-10-15 2014-10-15 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법

Publications (2)

Publication Number Publication Date
KR20160044621A true KR20160044621A (ko) 2016-04-26
KR101617161B1 KR101617161B1 (ko) 2016-05-03

Family

ID=55919009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140138818A KR101617161B1 (ko) 2014-10-15 2014-10-15 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법

Country Status (1)

Country Link
KR (1) KR101617161B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135463A1 (en) * 2018-01-04 2019-07-11 Korea Atomic Energy Research Institute Safety injection device and nuclear power plant having the same
CN110010255A (zh) * 2019-04-08 2019-07-12 南华大学 一种铅冷快堆余热排出系统及排出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102107746B1 (ko) 2018-05-15 2020-05-07 한국원자력연구원 펌핑 구조가 구비된 열 전달 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813939B1 (ko) 2007-03-29 2008-03-17 한국원자력연구원 안전보호용기를 구비한 일체형원자로의 피동형비상노심냉각설비
KR101058430B1 (ko) * 2010-12-28 2011-08-24 임주혁 증기압력을 이용한 발전소용 급수 펌핑장치
KR101441488B1 (ko) * 2013-08-14 2014-09-17 한국원자력연구원 피동안전설비 및 이를 구비하는 원전

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135463A1 (en) * 2018-01-04 2019-07-11 Korea Atomic Energy Research Institute Safety injection device and nuclear power plant having the same
KR20190083563A (ko) * 2018-01-04 2019-07-12 킹 압둘라 시티 포 어토믹 앤드 리뉴어블 에너지 안전주입 장치 및 이를 구비하는 원전
US11348699B2 (en) 2018-01-04 2022-05-31 Korea Atomic Energy Research Institute Cooling water safety injection device powered by steam discharged during an accident and nuclear power plant having the same
CN110010255A (zh) * 2019-04-08 2019-07-12 南华大学 一种铅冷快堆余热排出系统及排出方法
CN110010255B (zh) * 2019-04-08 2023-12-15 南华大学 一种铅冷快堆余热排出系统及排出方法

Also Published As

Publication number Publication date
KR101617161B1 (ko) 2016-05-03

Similar Documents

Publication Publication Date Title
KR101242746B1 (ko) 원자력 발전소의 격납건물 외부 통합피동안전계통 시스템
KR102111813B1 (ko) 소형 모듈식 원자로 안전 시스템
KR101551744B1 (ko) 원자로 및 그 동작 방법
KR101215323B1 (ko) 원자로를 포함하는 원자로 조립체, 원자로용 비상 냉각 시스템, 및 원자로의 비상 냉각 방법
WO2016078421A1 (zh) 非能动安全冷却系统
KR101463440B1 (ko) 피동안전설비 및 이를 구비하는 원전
KR101665059B1 (ko) 코어캐쳐를 구비한 원자로용기 내외 노심용융물 냉각 시스템 및 방법
US20130070887A1 (en) Reactor adapted for mitigating loss-of-coolant accident and mitigation method thereof
US8045671B2 (en) Injection system and associated operating method
KR100419194B1 (ko) 원자로보호용기와 압축탱크를 이용한 비상노심냉각 방법과장치
KR101654096B1 (ko) 자가진단 사고대처 무인 원자로
JP6429585B2 (ja) 原子力発電プラント及び運転方法
KR101250479B1 (ko) 안전보호용기를 구비한 피동형 비상노심냉각설비 및 이를 이용한 열 전달량 증가 방법
KR101617161B1 (ko) 증기압을 이용하는 안전계통을 가지는 원자로 및 그 동작 방법
JP6657734B2 (ja) 非常用炉心冷却系の代替循環冷却方法および原子力発電所
KR101559017B1 (ko) 중대사고방지 무인사고대처 원자로 및 그 동작 방법
KR102214119B1 (ko) 원자로냉각재 재순환 시스템
KR101629657B1 (ko) 초소형 발전 모듈
KR20060020756A (ko) 다양한 비상냉각설비를 갖춘 일체형 가압 경수로 및 그운전방법
KR20130099561A (ko) 가압경수로의 증기발생기 비상보충계통
KR101925704B1 (ko) 발전소 정전시 피동 노심냉각 기능을 구비한 원자력 발전소
KR102072689B1 (ko) 원자로
KR20160097157A (ko) 초소형 발전 모듈
KR101404955B1 (ko) 액체금속을 이용한 원자로 외벽 냉각방법 및 이를 이용한 원자로 외벽 냉각시스템
JPH04109197A (ja) 加圧水型原子炉の炉心崩壊熱除去装置

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant