KR20150141408A - Light emitting device - Google Patents
Light emitting device Download PDFInfo
- Publication number
- KR20150141408A KR20150141408A KR1020140070089A KR20140070089A KR20150141408A KR 20150141408 A KR20150141408 A KR 20150141408A KR 1020140070089 A KR1020140070089 A KR 1020140070089A KR 20140070089 A KR20140070089 A KR 20140070089A KR 20150141408 A KR20150141408 A KR 20150141408A
- Authority
- KR
- South Korea
- Prior art keywords
- buffer layer
- layer
- light emitting
- emitting device
- semiconductor layer
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 64
- 229910002704 AlGaN Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 13
- 229910052738 indium Inorganic materials 0.000 claims description 12
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 12
- 239000010410 layer Substances 0.000 description 181
- 239000000463 material Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 8
- 239000004973 liquid crystal related substance Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002356 single layer Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- -1 polyethylene terephthalate Polymers 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 4
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229910005540 GaP Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- QDHLJDJDCBRUOC-UHFFFAOYSA-N C(CCC)[Mg]C1C=CC=C1 Chemical compound C(CCC)[Mg]C1C=CC=C1 QDHLJDJDCBRUOC-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000071 blow moulding Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/12—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
Description
실시예는 발광소자에 관한 것으로, 보다 상세하게는 발광소자의 품질 향상과 발광효율 향상에 관한 것이다.BACKGROUND OF THE
GaN, AlGaN 등의 3-5 족 화합물 반도체는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점으로 인해 광 전자 공학 분야(optoelectronics)와 전자 소자를 위해 등에 널리 사용된다.GaN, and AlGaN are widely used for optoelectronics and electronic devices due to their advantages such as wide and easy bandgap energy.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Ligit Emitting Diode)나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.Particularly, a light emitting device such as a light emitting diode (Ligit Emitting Diode) or a laser diode using a semiconductor material of a 3-5 group or a 2-6 group compound semiconductor has been widely used in various fields such as red, green, blue and ultraviolet It can realize various colors, and it can realize efficient white light by using fluorescent material or color combination. It has low power consumption, semi-permanent lifetime, fast response speed, safety, and environment compared to conventional light sources such as fluorescent lamps and incandescent lamps Affinity.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다.Therefore, a transmission module of the optical communication means, a light emitting diode backlight replacing a cold cathode fluorescent lamp (CCFL) constituting a backlight of an LCD (Liquid Crystal Display) display device, a white light emitting element capable of replacing a fluorescent lamp or an incandescent lamp Diode lighting, automotive headlights, and traffic lights.
발광소자는 제1 도전형 반도체층을 통해서 주입되는 전자와 제2 도전형 반도체층을 통해서 주입되는 정공이 서로 만나서 활성층을 이루는 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출한다. 활성층에서 방출되는 빛은 활성층을 이루는 물질의 조성에 따라 다를 수 있으며, 청색광이나 자외선(UV) 또는 심자외선(Deep UV) 또는 다른 파장 영역의 광일 수 있다.In the light emitting device, electrons injected through the first conductive type semiconductor layer and holes injected through the second conductive type semiconductor layer meet with each other to emit light having an energy determined by an energy band inherent to the active layer. The light emitted from the active layer may be different depending on the composition of the material forming the active layer, and may be blue light, ultraviolet (UV) light, deep UV or other wavelength light.
질화물계 반도체층인 발광 구조물은 각층의 격자 상수의 차이에 의한 스트레인(strain)으로 인하여 결함이 발생하거나, 양자 우물 구조의 활성층에서 전자와 정공의 분리로 인한 재결합율의 저하나, 에너지 장벽의 높이 증가에 따른 동작 전압의 증가 등의 문제점이 발생할 수 있다.The nitride-based semiconductor light-emitting structure has a problem that a defect occurs due to a strain due to a difference in lattice constant of each layer or a recombination rate is lowered due to the separation of electrons and holes in the active layer of the quantum well structure, And an increase in the operating voltage due to an increase in the voltage.
도 1은 종래의 발광소자의 에너지 밴드 갭을 나타낸 도면이다.1 is a view showing an energy band gap of a conventional light emitting device.
상술한 문제점을 개선하고자 활성층(MWQ)과 제1 도전형 반도체층(n-GaN)의 사이에 스트레인을 완화시켜주는 완충층으로 InGaN/GaN 구조의 초격자(Superlattices, SLs)를 형성시키려는 시도가 있다.There has been an attempt to form superlattices (SLs) of InGaN / GaN structure as a buffer layer which relaxes strain between the active layer (MWQ) and the first conductivity type semiconductor layer (n-GaN) .
그러나, 초격자 구조의 완충층을 제1 도전형 반도체층과 활성층의 사이에 성장시켜도, 여전히 발광 구조물 내의 각 층의 격자 상수 차이에 기인한 스트레인의 발생에 따른 품질 저하가 발생하고 있다. 또한, SLs는 통상 20쌍(pair) 정도가 배치되는데, SLs의 두께 증가에 따라 구동 전압이나 동작 전압이 높아지는 문제점이 있다.However, even when a buffer layer of a superlattice structure is grown between the first conductivity type semiconductor layer and the active layer, quality deterioration due to generation of strain due to difference in lattice constant of each layer in the light emitting structure still occurs. In addition, about 20 pairs of SLs are usually arranged. However, there is a problem that the driving voltage and the operating voltage increase with an increase in the thickness of the SLs.
실시예는 발광소자에서 발광 구조물 내의 각 층의 격자 상수 차이에 의한 품질 저하를 방지하면서도, SLs의 두께 증가에 따른 구동 전압이나 동작 전압의 증가를 방지하고자 한다.The embodiment attempts to prevent an increase in the driving voltage and the operating voltage due to the increase in the thickness of the SLs while preventing deterioration in quality due to the difference in lattice constant of each layer in the light emitting structure of the light emitting device.
실시예는 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 제1 완충층; 상기 제1 완충층 상에 배치되고 초격자(superlattice) 구조를 가지는 제2 완충층; 및 상기 제2 완충층 상에 활성층; 및 상기 활성층 상에 제2 도전형 반도체층을 포함하는 발광 소자를 제공한다.The embodiment includes a first conductivity type semiconductor layer; A first buffer layer on the first conductive semiconductor layer; A second buffer layer disposed on the first buffer layer and having a superlattice structure; And an active layer on the second buffer layer; And a second conductive semiconductor layer on the active layer.
제1 완충층은 InGaN 또는 AlGaN을 포함할 수 있다.The first buffer layer may comprise InGaN or AlGaN.
제1 완충충은 In을 포함하고, 상기 제1 완충층의 인듐 함량은 1% 이상이고 상기 제2 완충층의 인듐 함량보다 작을 수 있다.The first buffer layer may contain In, and the indium content of the first buffer layer may be 1% or more and less than the indium content of the second buffer layer.
제2 완충층은 InGaN/GaN 페어(pair)를 포함하고, 상기 제2 완충층 내의 InGaN/GaN 페어는 12쌍 이하일 수 있다.The second buffer layer includes an InGaN / GaN pair, and the InGaN / GaN pair in the second buffer layer may be 12 pairs or less.
제1 완충층은 상기 제2 완충층보다 고온에서 성장될 수 있다.The first buffer layer can be grown at a higher temperature than the second buffer layer.
제1 완충층은 900℃ 내지 1000℃의 온도에서 성장될 수 있다.The first buffer layer can be grown at a temperature of 900 캜 to 1000 캜.
제2 완충층은 800℃ 내지 900℃의 온도에서 성장될 수 있다.The second buffer layer can be grown at a temperature of 800 ° C to 900 ° C.
활성층은 700℃ 내지 800℃의 온도에서 성장될 수 있다.The active layer can be grown at a temperature of 700 ° C to 800 ° C.
제1 완충층의 두께는 100 나노미터 내지 1000 나노미터일 수 있다.The thickness of the first buffer layer may be between 100 nanometers and 1000 nanometers.
제1 완충층은 In이 도핑되고, 상기 인듐의 도핑 농도는 1×1019/cm3 이하일 수 있다.The first buffer layer may be doped with In, and the doping concentration of the indium may be 1 x 10 19 / cm 3 or less.
제2 완충층과 인접한 영역에서, 상기 제1 완충층의 In 도핑 농도는 5×1017/cm3 이상일 수 있다.In the region adjacent to the second buffer layer, the In doping concentration of the first buffer layer may be 5 × 10 17 / cm 3 or more.
제2 완충층과 인접한 영역은, 상기 제1 완충층 중 상기 제2 완충층으로부터 50 나노미터 이내의 영역일 수 있다.The region adjacent to the second buffer layer may be a region within 50 nanometers from the second buffer layer in the first buffer layer.
실시예에 따른 발광소자는 단층 구조의 제1 완충층과 SLs 형태의 제2 완충층이 구비되어, 제1 도전형 반도체층과 활성층 사이에서의 스트레인을 완화시킬 수 있으며 또한 SLs의 두께가 줄어들어서 구동 전압(Vf)이나 동작 전압이 높아지는 것을 방지할 수 있다.The light emitting device according to the embodiment includes a first buffer layer having a single layer structure and a second buffer layer having an SLs shape to relax strain between the first conductivity type semiconductor layer and the active layer and also to reduce the thickness of the SLs, It is possible to prevent the voltage Vf and the operating voltage from increasing.
도 1은 종래의 발광소자의 에너지 밴드 갭을 나타낸 도면이고,
도 2는 발광소자의 일실시예의 단면도이고,
도 3a는 도 2의 발광소자의 에너지 밴드 갭을 일실시예를 나타낸 도면이고,
도 3b는 도 2의 발광소자의 에너지 밴드 갭의 다른 실시예를 나타낸 도면이고,
도 4는 도 2에서 제1 완충층과 제2 완충층의 두께 등을 나타낸 도면이고,
도 5a 내지 도 5e는 발광소자의 제조방법의 일실시예를 나타낸 도면이고,
도 6은 발광소자를 포함하는 발광소자 패키지의 일실시예를 나타낸 도면이고,
도 7은 발광소자를 포함하는 영상표시장치의 일실시예를 나타낸 도면이고,
도 8은 발광소자를 포함하는 조명장치의 일실시예를 나타낸 도면이다.1 is a view showing an energy band gap of a conventional light emitting device,
2 is a sectional view of an embodiment of a light emitting device,
FIG. 3A is a view showing an embodiment of the energy bandgap of the light emitting device of FIG. 2,
FIG. 3B is a view showing another embodiment of the energy bandgap of the light emitting device of FIG. 2,
FIG. 4 is a view showing the thickness of the first buffer layer and the second buffer layer in FIG. 2,
5A to 5E are views showing an embodiment of a method of manufacturing a light emitting device,
6 is a view illustrating an embodiment of a light emitting device package including a light emitting device,
7 is a view illustrating an embodiment of a video display device including a light emitting device,
8 is a view showing an embodiment of a lighting apparatus including a light emitting element.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 실시예를 첨부한 도면을 참조하여 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG.
본 발명에 따른 실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)(on or under)”으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향 뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.In the description of embodiments according to the present invention, in the case of being described as being formed "on or under" of each element, the upper (upper) or lower (lower) or under are all such that two elements are in direct contact with each other or one or more other elements are indirectly formed between the two elements. Also, when expressed as "on or under", it may include not only an upward direction but also a downward direction with respect to one element.
도 2는 발광소자의 일실시예의 단면도이다.2 is a cross-sectional view of an embodiment of a light emitting device.
실시예에 따른 발광소자(100)는, 기판(110)과, 버퍼층(115)과, 제1 도전형 반도체층(122)과 활성층(124)과 제2 도전형 반도체층(126)을 포함하는 발광 구조물(130)과, 제1 도전형 반도체층(122)과 활성층(124) 사이의 완충층(130)과, 활성층(124)과 제2 도전형 반도체층(126) 사이의 전자 차단층(140)과, 투광성 도전층(150)과, 제1 전극(162) 및 제2 전극(166)를 포함할 수 있다.The
기판(110)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼로 형성될 수 있으며, 열 전도성이 뛰어난 물질로 형성될 수 있고, 전도성 기판 또는 절연성 기판을 포함할 수 있다. 예컨대, 사파이어(Al2O3), SiO2, SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, Ga203 중 적어도 하나를 사용할 수 있다.The
사파이어 등으로 기판(110)을 형성하고, 기판(110) 상에 GaN이나 AlGaN 등을 포함하는 발광구조물(120)이 배치될 때, GaN이나 AlGaN과 사파이어 사이의 격자 부정합(lattice mismatch)이 매우 크고 이들 사이에 열 팽창 계수 차이도 매우 크기 때문에, 결정성을 악화시키는 전위(dislocation), 멜트 백(melt-back), 크랙(crack), 피트(pit), 표면 모폴로지(surface morphology) 불량 등이 발생할 수 있으므로, AlN 등으로 버퍼층(115)을 형성하거나 언도프드 반도체층(미도시)을 형성할 수 있다.When the
도시되지는 않았으나 기판(110)의 표면에는 요철 구조가 형성되어, 발광 구조물(120)에서 방출되어 기판(110)으로 진행하는 빛을 굴절시킬 수도 있다.Although not shown, a concavo-convex structure may be formed on the surface of the
발광 구조물(120)은 제1 도전형 반도체층(122)과 활성층(124)과 제2 도전형 반도체층(126)으로 이루어질 수 있다.The
제1 도전형 반도체층(122)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제1 도전형 도펀트가 도핑되어 제1 도전형의 반도체층일 수 있다. 제1 도전형 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어질 수 있고, 예를 들어 AlGaN, GaN, InAlGaN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나 이상으로 형성될 수 있다.The first
제1 도전형 반도체층(122)이 n형 반도체층인 경우, 제1 도전형 도펀트는 Si, Ge, Sn, Se, Te 등과 같은 n형 도펀트를 포함할 수 있다. 제1 도전형 반도체층(122)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.When the first
활성층(124)은 제1 도전형 반도체층(122)의 상부면에 배치되며, 단일 우물 구조(Double Hetero Structure), 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(MQW:Multi Quantum Well) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나를 포함할 수 있다.The
활성층(124)은 Ⅲ-Ⅴ족 원소의 화합물 반도체 재료를 이용하여 우물층과 장벽층, 예를 들면 AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, AlGaN/GaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지는 않는다. 우물층은 장벽층의 에너지 밴드 갭보다 작은 에너지 밴드 갭을 갖는 물질로 형성될 수 있다.InGaN / InGaN, InGaN / InGaN, AlGaN / GaN, InAlGaN / GaN, GaAs (InGaAs), and AlGaN / AlGaN / InGaN / / AlGaAs, GaP (InGaP) / AlGaP, but is not limited thereto. The well layer may be formed of a material having an energy band gap smaller than the energy band gap of the barrier layer.
제2 도전형 반도체층(126)은 활성층(124)의 표면에 반도체 화합물로 형성될 수 있다. 제2 도전형 반도체층(126)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(126)은 예컨대, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질로 이루어질 수 있고, AlGaN, GaN AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 어느 하나 이상으로 형성될 수 있다.The second
제2 도전형 반도체층(126)은 제2 도전형 도펀트가 도핑되어 제2 도전형의 반도체층일 수 있는데, 제2 도전형 반도체층(126)이 p형 반도체층일 경우 제2 도전형 도펀트는 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트일 수 있다. 제2 도전형 반도체층(126)은 단층 또는 다층으로 형성될 수 있으며, 이에 대해 한정하지는 않는다.The second conductive
완충은(130)은 제1 완충층과 제2 완충층으로 이루어질 수 있다. The
도 3a는 도 2의 발광소자의 에너지 밴드 갭을 일실시예를 나타낸 도면이고, 도 3b는 도 2의 발광소자의 에너지 밴드 갭의 다른 실시예를 나타낸 도면이다.FIG. 3A is a view showing one embodiment of the energy band gap of the light emitting device of FIG. 2, and FIG. 3B is a view showing another embodiment of the energy band gap of the light emitting device of FIG.
도 3a에서 완충층은 InGaN으로 이루어진 제1 완충층과 InGaN/GaN 초격자(SLs)로 이루어진 제2 완충층을 포함하여 이루어지고, 제1 완충층은 GaN에 In이 도핑되어 에너지 밴드 갭이 제1 도전형 반도체층보다 작을 수 있다. 제2 완충층은 InGaN/GaN으로 이루어져서 에너지 밴드 갭이 제1 완충층보다 작고 활성층(MQW) 내의 양자 우물보다 클 수 있다.3A, the buffer layer includes a first buffer layer made of InGaN and a second buffer layer made of InGaN / GaN superlattice (SLs). In the first buffer layer, In is doped in GaN, Layer. The second buffer layer may be made of InGaN / GaN, and the energy bandgap may be smaller than the first buffer layer and larger than the quantum well in the active layer (MQW).
제1 완충층 내의 인듐(In) 도핑량은 1% 이상이되, 제2 완충층 중 InGaN 내의 인듐 함량보다 작아야 제2 완충층과 제1 도전형 반도체층 사이에서 제1 완충층이 완충층으로 작용할 수 있다.The amount of indium (In) doping in the first buffer layer is 1% or more, and the indium content in the second buffer layer must be smaller than the indium content in InGaN so that the first buffer layer acts as a buffer layer between the second buffer layer and the first conductivity type semiconductor layer.
통상 SLs 구조의 완충층은 InGaN/GaN이 20 쌍(pair) 이상이 구비될 수 있으나, 제1 완충층이 사용되면 제2 완충층 내의 InGaN/GaN은 12쌍 이하로 조절될 수 있다.In general, the buffer layer of the SLs structure may be provided with 20 or more pairs of InGaN / GaN. However, if the first buffer layer is used, the number of pairs of InGaN / GaN in the second buffer layer can be adjusted to 12 or less.
도 3b는 제1 완충층이 AlGaN으로 이루어진 점에서 도 3a에 도시된 실시예와 동일하고, 제1 완충층은 GaN에 Al이 도핑되어 에너지 밴드 갭이 제1 도전형 반도체층보다 클 수 있다.3B is the same as the embodiment shown in FIG. 3A in that the first buffer layer is made of AlGaN, and the first buffer layer is doped with Al to GaN, so that the energy band gap can be larger than that of the first conductivity type semiconductor layer.
도 4는 도 2에서 제1 완충층과 제2 완충층의 두께 등을 나타낸 도면이다.4 is a view showing the thicknesses of the first buffer layer and the second buffer layer in FIG.
제1 완충층의 두께(t1)은 100 나노미터 내지 1000 나노미터일 수 있고, 제1 완충층이 상술한 두께(t1)로 구비됨에 따라 InGaN/GaN SLs 구조인 제2 완충층의 두께(t2)는 종래보다 작아질 수 있다.The thickness t 1 of the first buffer layer may be between 100 nanometers and 1000 nanometers and the thickness t 2 of the second buffer layer as the InGaN / GaN SLs structure as the first buffer layer is provided with the thickness t 1 described above. ) Can be made smaller than the conventional one.
제1 완충층 내에는 인듐(In)이 도핑되고, 인듐의 도핑 농도는 1×1019/cm3이하일 수 있다. 특히, 제1 완충층 중 제2 완충층과 인접한 영역에서 제1 완충층의 In 도핑 농도는 5×1017/cm3이상일 수 있는데, 도 4에서 제1 완충층 중 제2 완충층과 인접한 영역(A)의 두께(t3)는 50 나노미터 이내일 수 있다.The first buffer layer may be doped with indium (In), and the doping concentration of indium may be less than or equal to 1 x 10 19 / cm 3 . In particular, the In doping concentration of the first buffer layer in the first buffer layer adjacent to the second buffer layer may be 5 × 10 17 / cm 3 or more. In FIG. 4, the thickness of the region A adjacent to the second buffer layer in the first buffer layer (t 3 ) may be within 50 nanometers.
활성층(124)과 제2 도전형 반도체층(126)의 사이에는 전자 차단층(140)이 배치될 수 있고, 제2 도전형 반도체층(126) 상에는 투광성 도전층(150)이 배치될 수 있는데, 투광성 도전층(150)은 ITO(Indium-Tin-Oxide) 등으로 이루어질 수 있는데, 제2 도전형 반도체층(126)의 전류 스프레딩(spreading) 특성이 좋지 않아 투광성 도전층(150)이 제2 전극(166)으로부터 전류를 공급받을 수 있다.An
노출된 제1 도전형 반도체층(122)의 표면과 투광성 도전층(150) 상에는 각각 제1 전극(162)과 제2 전극(166)이 배치되는데, 제1 전극(162)과 제2 전극(166)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), 니켈(Ni), 구리(Cu), 금(Au) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.The
도시되지는 않았으나, 발광 구조물(120)의 둘레에는 패시베이션층이 형성될 수 있는데, 패시베이션층은 절연성 물질로 이루어질 수 있고, 상세하게는 산화물이나 질화물로 이루어질 수 있고, 보다 상세하게는 실리콘 산화물(SiO2)층, 산화 질화물층, 산화 알루미늄층으로 이루어질 수 있다.Although not shown, a passivation layer may be formed around the
실시예에 따른 발광소자들은 단층 구조의 제1 완충층과 SLs 형태의 제2 완충층이 구비되어, 제1 도전형 반도체층과 활성층 사이에서의 스트레인을 완화시킬 수 있으며 또한 SLs의 두께가 줄어들어서 구동 전압(Vf)이나 동작 전압이 높아지는 것을 방지할 수 있다.The light emitting devices according to the embodiments may include a first buffer layer having a single layer structure and a second buffer layer having a shape of SLs to relieve strain between the first conductivity type semiconductor layer and the active layer and reduce the thickness of the SLs, It is possible to prevent the voltage Vf and the operating voltage from increasing.
도 5a 내지 도 5e는 발광소자의 제조방법의 일실시예를 나타낸 도면이다.5A to 5E are views showing an embodiment of a method of manufacturing a light emitting device.
도 5a에 도시된 바와 같이 기판(110) 위에 버퍼층(115)과 제1 도전형 반도체층(122)과 제1 완충층(130a)을 성장시킨다. 예를 들어, 버퍼층(115)이 AlN으로 성장될 경우, 섭씨 1100 도 내지 1500 도의 온도 또는 섭씨 1200 도 이하의 온도와 10 밀리바(mbar) 내지 100 밀리바 또는 300 밀리바의 압력에서 TMAl(Tri-methyl Aluminum)과 NH3를 각각 10 내지 100 마이크로 몰/분(umol/min)과 50 내지 500 마이크로 몰/분을 공급할 수 있고 3족 원소에 대한 5족 원소의 몰비율은 100이하일 수 있다.The
제1 도전형 반도체층(122)은, 화학증착방법(CVD) 혹은 분자선 에피택시 (MBE) 혹은 스퍼터링 혹은 수산화물 증기상 에피택시(HVPE) 등의 방법을 사용하여 n형 도펀트가 도핑된 GaN층을 형성할 수 있다. 상기 제1 도전형 반도체층(122)은 챔버에 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 실리콘(Si)와 같은 n형 불순물을 포함하는 실란 가스(SiH4)가 주입되어 형성될 수 있다.The first
제1 완충층(130a)은 예를 들어 InGaN으로 이루어질 경우, 상기 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자우물구조가 형성될 수 있다. 제1 완충층(130a)의 성장 온도는 후술하는 제2 완충층(130b)의 성장 온도보다 고온일 수 있는데, 예를 들면 900℃ 내지 1000℃의 온도에서 성장될 수 있다.For example, when the
그리고, 도 5b에 도시된 바와 같이 제1 완충층(130a) 상에 제2 완충층(130b)을 성장시킨다. 제2 완충층은 상술한 바와 같이 InGaN/GaN SLs 구조로 성장될 수 있다. 제2 완충층(130b)은 800℃ 내지 900℃의 온도에서 성장될 수 있다.Then, as shown in FIG. 5B, the
그리고, 도 5c에 도시된 바와 같이 제2 완충층(130b) 상에 활성층(124)과 전자 차단층(140) 및 제2 도전형 반도체층(126)을 성장시킬 수 있다.The
활성층(124)은, 예를 들어 상기 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자우물구조가 형성될 수 있으나 이에 한정되는 것은 아니며, 700℃ 내지 800℃의 온도에서 성장될 수 있다.The
전자 차단층(Electron blocking layer, 140)은 SLs 구조로 이루어질 수 있는데, 예를 들어 제2 도전형 도펀트로 도핑된 AlGaN이 배치될 수 있고, 예를 들어 알루미늄이 15% 도핑된 AlGaN이 30 나노미터의 두께로 배치될 수 있고, 알루미늄의 조성비를 달리하는 GaN이 층(layer)을 이루어 복수 개 서로 교번하여 배치될 수도 있다.The
제2 도전형 반도체층(126)의 조성은 상술한 바와 동일하며, 챔버에 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 마그네슘(Mg)과 같은 p 형 불순물을 포함하는 비세틸 사이클로 펜타디에닐 마그네슘(EtCp2Mg){Mg(C2H5C5H4)2}가 주입되어 p형 GaN층이 형성될 수 있으나 이에 한정되는 것은 아니다.Second conductive composition of the
그리고, 도 5d에 도시된 바와 같이 투광성 도전층(150)을 발광 구조물(120) 위에 ITO(Intium tin Oxide) 등으로 형성한 후, 투광성 도전층(150)으로부터 제2 도전형 반도체층(126)과 전자 차단층(140)과 활성층(124)과 완충층(130) 및 제1 도전형 반도체층(122)의 일부까지 메사 식각하여, 제1 도전형 반도체층(122)을 노출시켜서 전극이 형성될 수 있도록 한다.5D, the light-transmissive
그리고, 도 5e에 도시된 바와 같이 노출된 제1 도전형 반도체층(122)과 투광성 도전층(150)에 제1 전극(162)과 제2 전극(166)을 형성할 수 있다.The
도 6은 발광소자를 포함하는 발광소자 패키지의 일실시예를 나타낸 도면이다.6 is a view illustrating an embodiment of a light emitting device package including a light emitting device.
실시예에 따른 발광소자 패키지(400)는 캐비티를 포함하는 몸체(410)와, 상기 몸체(410)에 설치된 제1 리드 프레임(Lead Frame, 421) 및 제2 리드 프레임(422)과, 상기 몸체(410)에 설치되어 상기 제1 리드 프레임(421) 및 제2 리드 프레임(422)과 전기적으로 연결되는 상술한 실시예들에 따른 발광소자(200a)와, 상기 캐비티에 형성된 몰딩부(470)를 포함한다.The light emitting
몸체(410)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 상기 몸체(410)가 금속 재질 등 도전성 물질로 이루어지면, 도시되지는 않았으나 상기 몸체(410)의 표면에 절연층이 코팅되어 상기 제1,2 리드 프레임(421, 422) 간의 전기적 단락을 방지할 수 있다.The body 410 may be formed of a silicon material, a synthetic resin material, or a metal material. If the body 410 is made of a conductive material such as a metal material, an insulating layer may be coated on the surface of the body 410 to prevent an electrical short between the first and second lead frames 421 and 422 .
제1 리드 프레임(421) 및 제2 리드 프레임(422)은 서로 전기적으로 분리되며, 상기 발광소자(200a)에 전류를 공급한다. 또한, 제1 리드 프레임(421) 및 제2 리드 프레임(422)은 발광소자(200a)에서 발생된 광을 반사시켜 광 효율을 증가시킬 수 있으며, 발광소자(200a)에서 발생된 열을 외부로 배출시킬 수도 있다.The
발광소자(200a)는 상술한 실시예들에 따른 발광소자일 수 있다.The
발광소자(200a)는 제1 리드 프레임(421)에 도전성 페이스트(미도시) 등으로 고정될 수 있고, 전극(430)은 제2 리드 프레임에 와이어(450)로 본딩될 수 있다.The
상기 몰딩부(470)는 상기 발광소자(200a)를 포위하여 보호할 수 있다. 또한, 상기 몰딩부(470) 상에는 형광체(480)가 포함될 수 있다. 이러한 구조는 형광체(480)가 분포되어, 발광소자(200a)로부터 방출되는 빛의 파장을 발광소자 패키지(400)의 빛이 출사되는 전 영역에서 변환시킬 수 있다.The
발광소자 패키지(400)는 상술한 실시예들에 따른 발광소자 중 하나 또는 복수 개로 탑재할 수 있으며, 이에 대해 한정하지는 않는다.The light emitting
이하에서는 상술한 발광소자 패키지가 배치된 조명 시스템의 일실시예로서, 영상표시장치와 조명장치를 설명한다.Hereinafter, an image display apparatus and a lighting apparatus will be described as an embodiment of an illumination system in which the above-described light emitting device package is disposed.
도 7은 발광소자가 배치된 영상표시장치의 일실시예를 나타낸 도면이다.7 is a view showing an embodiment of a video display device in which a light emitting device is disposed.
도시된 바와 같이, 본 실시예에 따른 영상표시장치(500)는 광원 모듈과, 바텀 커버(510) 상의 반사판(520)과, 상기 반사판(520)의 전방에 배치되며 상기 광원모듈에서 방출되는 빛을 영상표시장치 전방으로 가이드하는 도광판(540)과, 상기 도광판(540)의 전방에 배치되는 제1 프리즘시트(550)와 제2 프리즘시트(560)와, 상기 제2 프리즘시트(560)의 전방에 배치되는 패널(570)과 상기 패널(570)의 전반에 배치되는 컬러필터(580)를 포함하여 이루어진다.As shown in the drawing, the
광원 모듈은 회로 기판(530) 상의 발광소자 패키지(535)를 포함하여 이루어진다. 여기서, 회로 기판(530)은 PCB 등이 사용될 수 있고, 발광소자 패키지(535)의 발광소자는 상술한 바와 같다.The light source module comprises a light emitting
바텀 커버(510)는 영상표시장치(500) 내의 구성 요소들을 수납할 수 있다. 반사판(520)은 본 도면처럼 별도의 구성요소로 마련될 수도 있고, 도광판(540)의 후면이나, 상기 바텀 커버(510)의 전면에 반사도가 높은 물질로 코팅되는 형태로 마련되는 것도 가능하다.The
반사판(520)은 반사율이 높고 초박형으로 사용 가능한 소재를 사용할 수 있고, 폴리에틸렌 테레프탈레이트(PolyEthylene Terephtalate; PET)를 사용할 수 있다.The
도광판(540)은 발광소자 패키지 모듈에서 방출되는 빛을 산란시켜 그 빛이 액정 표시 장치의 화면 전영역에 걸쳐 균일하게 분포되도록 한다. 따라서, 도광판(530)은 굴절률과 투과율이 좋은 재료로 이루어지는데, 폴리메틸메타크릴레이트(PolyMethylMethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 또는 폴리에틸렌(PolyEthylene; PE) 등으로 형성될 수 있다. 또한, 도광판(540)이 생략되면 에어 가이드 방식의 표시장치가 구현될 수 있다.The
상기 제1 프리즘 시트(550)는 지지필름의 일면에, 투광성이면서 탄성을 갖는 중합체 재료로 형성되는데, 상기 중합체는 복수 개의 입체구조가 반복적으로 형성된 프리즘층을 가질 수 있다. 여기서, 상기 복수 개의 패턴은 도시된 바와 같이 마루와 골이 반복적으로 스트라이프 타입으로 구비될 수 있다.The
상기 제2 프리즘 시트(560)에서 지지필름 일면의 마루와 골의 방향은, 상기 제1 프리즘 시트(550) 내의 지지필름 일면의 마루와 골의 방향과 수직할 수 있다. 이는 광원 모듈과 반사시트로부터 전달된 빛을 상기 패널(570)의 전방향으로 고르게 분산하기 위함이다.In the
본 실시예에서 상기 제1 프리즘시트(550)과 제2 프리즘시트(560)가 광학시트를 이루는데, 상기 광학시트는 다른 조합 예를 들어, 마이크로 렌즈 어레이로 이루어지거나 확산시트와 마이크로 렌즈 어레이의 조합 또는 하나의 프리즘 시트와 마이크로 렌즈 어레이의 조합 등으로 이루어질 수 있다.In this embodiment, the
상기 패널(570)은 액정 표시 패널(Liquid crystal display)가 배치될 수 있는데, 액정 표시 패널(560) 외에 광원을 필요로 하는 다른 종류의 디스플레이 장치가 구비될 수 있다.A liquid crystal display (LCD) panel may be disposed on the
상기 패널(570)은, 유리 바디 사이에 액정이 위치하고 빛의 편광성을 이용하기 위해 편광판을 양 유리바디에 올린 상태로 되어있다. 여기서, 액정은 액체와 고체의 중간적인 특성을 가지는데, 액체처럼 유동성을 갖는 유기분자인 액정이 결정처럼 규칙적으로 배열된 상태를 갖는 것으로, 상기 분자 배열이 외부 전계에 의해 변화되는 성질을 이용하여 화상을 표시한다.In the
표시장치에 사용되는 액정 표시 패널은, 액티브 매트릭스(Active Matrix) 방식으로서, 각 화소에 공급되는 전압을 조절하는 스위치로서 트랜지스터를 사용한다.A liquid crystal display panel used in a display device is an active matrix type, and a transistor is used as a switch for controlling a voltage supplied to each pixel.
상기 패널(570)의 전면에는 컬러 필터(580)가 구비되어 상기 패널(570)에서 투사된 빛을, 각각의 화소마다 적색과 녹색 및 청색의 빛만을 투과하므로 화상을 표현할 수 있다.A
도 8은 발광소자가 배치된 조명장치의 일실시예를 나타낸 도면이다.8 is a diagram showing an embodiment of a lighting apparatus in which a light emitting element is disposed.
본 실시예에 따른 조명 장치는 커버(1100), 광원 모듈(1200), 방열체(1200), 전원 제공부(1600), 내부 케이스(1700), 소켓(1800)을 포함할 수 있다. 또한, 실시 예에 따른 조명 장치는 부재(1300)와 홀더(1500) 중 어느 하나 이상을 더 포함할 수 있고, 광원 모듈(1200)은 상술한 실시예들에 따른 발광소자 패키지를 포함할 수 있다.The lighting apparatus according to the present embodiment may include a
커버(1100)는 벌브(bulb) 또는 반구의 형상을 가지며, 속이 비어 있고, 일 부분이 개구된 형상으로 제공될 수 있다. 상기 커버(1100)는 상기 광원 모듈(1200)과 광학적으로 결합될 수 있다. 예를 들어, 상기 커버(1100)는 상기 광원 모듈(1200)로부터 제공되는 빛을 확산, 산란 또는 여기 시킬 수 있다. 상기 커버(1100)는 일종의 광학 부재일 수 있다. 상기 커버(1100)는 상기 방열체(1200)와 결합될 수 있다. 상기 커버(1100)는 상기 방열체(1200)와 결합하는 결합부를 가질 수 있다.The
커버(1100)의 내면에는 유백색 도료가 코팅될 수 있다. 유백색의 도료는 빛을 확산시키는 확산재를 포함할 수 있다. 상기 커버(1100)의 내면의 표면 거칠기는 상기 커버(1100)의 외면의 표면 거칠기보다 크게 형성될 수 있다. 이는 상기 광원 모듈(1200)로부터의 빛이 충분히 산란 및 확산되어 외부로 방출시키기 위함이다.The inner surface of the
커버(1100)의 재질은 유리(glass), 플라스틱, 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리카보네이트(PC) 등일 수 있다. 여기서, 폴리카보네이트는내광성, 내열성, 강도가 뛰어나다. 상기 커버(1100)는 외부에서 상기 광원 모듈(1200)이 보이도록 투명할 수 있고, 불투명할 수 있다. 상기 커버(1100)는 블로우(blow) 성형을 통해 형성될 수 있다.The
광원 모듈(1200)은 상기 방열체(1200)의 일 면에 배치될 수 있다. 따라서, 광원 모듈(1200)로부터의 열은 상기 방열체(1200)로 전도된다. 상기 광원 모듈(1200)은 발광소자 패키지(1210), 연결 플레이트(1230), 커넥터(1250)를 포함할 수 있다.The
부재(1300)는 상기 방열체(1200)의 상면 위에 배치되고, 복수의 발광소자 패키지(1210)들과 커넥터(1250)이 삽입되는 가이드홈(1310)들을 갖는다. 가이드홈(1310)은 상기 발광소자 패키지(1210)의 기판 및 커넥터(1250)와 대응된다.The
부재(1300)의 표면은 빛 반사 물질로 도포 또는 코팅된 것일 수 있다. 예를 들면, 부재(1300)의 표면은 백색의 도료로 도포 또는 코팅된 것일 수 있다. 이러한 상기 부재(1300)는 상기 커버(1100)의 내면에 반사되어 상기 광원 모듈(1200)측 방향으로 되돌아오는 빛을 다시 상기 커버(1100) 방향으로 반사한다. 따라서, 실시 예에 따른 조명 장치의 광 효율을 향상시킬 수 있다.The surface of the
부재(1300)는 예로서 절연 물질로 이루어질 수 있다. 상기 광원 모듈(1200)의 연결 플레이트(1230)는 전기 전도성의 물질을 포함할 수 있다. 따라서, 상기 방열체(1200)와 상기 연결 플레이트(1230) 사이에 전기적인 접촉이 이루어질 수 있다. 상기 부재(1300)는 절연 물질로 구성되어 상기 연결 플레이트(1230)와 상기 방열체(1200)의 전기적 단락을 차단할 수 있다. 상기 방열체(1200)는 상기 광원 모듈(1200)로부터의 열과 상기 전원 제공부(1600)로부터의 열을 전달받아 방열한다.The
홀더(1500)는 내부 케이스(1700)의 절연부(1710)의 수납홈(1719)을 막는다. 따라서, 상기 내부 케이스(1700)의 상기 절연부(1710)에 수납되는 상기 전원 제공부(1600)는 밀폐된다. 홀더(1500)는 가이드 돌출부(1510)를 갖는다. 가이드 돌출부(1510)는 상기 전원 제공부(1600)의 돌출부(1610)가 관통하는 홀을 갖는다.The
전원 제공부(1600)는 외부로부터 제공받은 전기적 신호를 처리 또는 변환하여 상기 광원 모듈(1200)로 제공한다. 전원 제공부(1600)는 상기 내부 케이스(1700)의 수납홈(1719)에 수납되고, 상기 홀더(1500)에 의해 상기 내부 케이스(1700)의 내부에 밀폐된다. 상기 전원 제공부(1600)는 돌출부(1610), 가이드부(1630), 베이스(1650), 연장부(1670)를 포함할 수 있다.The
상기 가이드부(1630)는 상기 베이스(1650)의 일 측에서 외부로 돌출된 형상을 갖는다. 상기 가이드부(1630)는 상기 홀더(1500)에 삽입될 수 있다. 상기 베이스(1650)의 일 면 위에 다수의 부품이 배치될 수 있다. 다수의 부품은 예를 들어, 외부 전원으로부터 제공되는 교류 전원을 직류 전원으로 변환하는 직류변환장치, 상기 광원 모듈(1200)의 구동을 제어하는 구동칩, 상기 광원 모듈(1200)을 보호하기 위한 ESD(ElectroStatic discharge) 보호 소자 등을 포함할 수 있으나 이에 대해 한정하지는 않는다.The
상기 연장부(1670)는 상기 베이스(1650)의 다른 일 측에서 외부로 돌출된 형상을 갖는다. 상기 연장부(1670)는 상기 내부 케이스(1700)의 연결부(1750) 내부에 삽입되고, 외부로부터의 전기적 신호를 제공받는다. 예컨대, 상기 연장부(1670)는 상기 내부 케이스(1700)의 연결부(1750)의 폭과 같거나 작게 제공될 수 있다. 상기 연장부(1670)에는 "+ 전선"과 "- 전선"의 각 일 단이 전기적으로 연결되고, "+ 전선"과 "- 전선"의 다른 일 단은 소켓(1800)에 전기적으로 연결될 수 있다.The
내부 케이스(1700)는 내부에 상기 전원 제공부(1600)와 함께 몰딩부를 포함할 수 있다. 몰딩부는몰딩 액체가 굳어진 부분으로서, 상기 전원 제공부(1600)가 상기 내부 케이스(1700) 내부에 고정될 수 있도록 한다.The
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. It is to be understood that all changes and modifications that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
100, 200a: 발광소자 110: 기판
115: 버퍼층 120: 발광 구조물
122: 제1 도전형 반도체층 124: 활성층
126: 제2 도전형 반도체층 130: 완충층
130a: 제1 완충층 130b: 제2 완충층
140: 전자 차단층 150: 투광성 도전층
162 : 제1 전극 168: 제2 전극
400: 발광소자 패키지 500: 영상표시장치100, 200a: Light emitting device 110:
115: buffer layer 120: light emitting structure
122: first conductivity type semiconductor layer 124: active layer
126: second conductivity type semiconductor layer 130: buffer layer
130a:
140: Electron barrier layer 150: Transparent conductive layer
162: first electrode 168: second electrode
400: light emitting device package 500: video display device
Claims (12)
상기 제1 도전형 반도체층 상에 제1 완충층;
상기 제1 완충층 상에 배치되고 초격자(superlattice) 구조를 가지는 제2 완충층; 및
상기 제2 완충층 상에 활성층; 및
상기 활성층 상에 제2 도전형 반도체층을 포함하는 발광소자.A first conductive semiconductor layer;
A first buffer layer on the first conductive semiconductor layer;
A second buffer layer disposed on the first buffer layer and having a superlattice structure; And
An active layer on the second buffer layer; And
And a second conductive semiconductor layer on the active layer.
상기 제1 완충층은 InGaN 또는 AlGaN을 포함하는 발광소자.The method according to claim 1,
Wherein the first buffer layer comprises InGaN or AlGaN.
상기 제1 완충충은 In을 포함하고, 상기 제1 완충층의 인듐 함량은 1% 이상이고 상기 제2 완충층의 인듐 함량보다 작은 발광소자.The method according to claim 1,
Wherein the first buffer layer contains In, the indium content of the first buffer layer is 1% or more, and the indium content of the second buffer layer is smaller than the indium content of the second buffer layer.
상기 제2 완충층은 InGaN/GaN 페어(pair)를 포함하고, 상기 제2 완충층 내의 InGaN/GaN 페어는 12쌍 이하인 발광소자.The method according to claim 1,
Wherein the second buffer layer comprises an InGaN / GaN pair and the InGaN / GaN pair in the second buffer layer is 12 pairs or less.
상기 제1 완충층은 상기 제2 완충층보다 고온에서 성장된 발광소자.The method according to claim 1,
Wherein the first buffer layer is grown at a higher temperature than the second buffer layer.
상기 제1 완충층은 900℃ 내지 1000℃의 온도에서 성장된 발광소자.The method according to claim 1,
Wherein the first buffer layer is grown at a temperature of 900 ° C to 1000 ° C.
상기 제2 완충층은 800℃ 내지 900℃의 온도에서 성장된 발광소자.The method according to claim 1,
And the second buffer layer is grown at a temperature of 800 ° C to 900 ° C.
상기 활성층은 700℃ 내지 800℃의 온도에서 성장된 발광소자.The method according to claim 1,
Wherein the active layer is grown at a temperature of 700 ° C to 800 ° C.
상기 제1 완충층의 두께는 100 나노미터 내지 1000 나노미터인 발광소자.The method according to claim 1,
Wherein the thickness of the first buffer layer is 100 nanometers to 1000 nanometers.
상기 제1 완충층은 In이 도핑되고, 상기 인듐의 도핑 농도는 1×1019/cm3 이하인 발광소자.The method according to claim 1,
Wherein the first buffer layer is doped with In, and the doping concentration of the indium is 1 x 10 19 / cm 3 or less.
상기 제2 완충층과 인접한 영역에서, 상기 제1 완충층의 In 도핑 농도는 5×1017/cm3 이상인 발광소자.11. The method of claim 10,
In the region adjacent to the second buffer layer, the In doping concentration of the first buffer layer is 5 × 10 17 / cm 3 Or more.
상기 제2 완충층과 인접한 영역은, 상기 제1 완충층 중 상기 제2 완충층으로부터 50 나노미터 이내의 영역인 발광소자.12. The method of claim 11,
And a region adjacent to the second buffer layer is a region within 50 nm from the second buffer layer in the first buffer layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140070089A KR102189131B1 (en) | 2014-06-10 | 2014-06-10 | Light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140070089A KR102189131B1 (en) | 2014-06-10 | 2014-06-10 | Light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150141408A true KR20150141408A (en) | 2015-12-18 |
KR102189131B1 KR102189131B1 (en) | 2020-12-09 |
Family
ID=55081311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140070089A KR102189131B1 (en) | 2014-06-10 | 2014-06-10 | Light emitting device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102189131B1 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019279A (en) * | 2011-08-16 | 2013-02-26 | 엘지이노텍 주식회사 | Light emitting device |
-
2014
- 2014-06-10 KR KR1020140070089A patent/KR102189131B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130019279A (en) * | 2011-08-16 | 2013-02-26 | 엘지이노텍 주식회사 | Light emitting device |
Also Published As
Publication number | Publication date |
---|---|
KR102189131B1 (en) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102239625B1 (en) | Light emitting device | |
KR101804408B1 (en) | Light emitting device | |
KR101908657B1 (en) | Light emitting device | |
KR101998763B1 (en) | Light emittng device | |
KR101827973B1 (en) | Light emitting device | |
KR102016515B1 (en) | Light emittng device and light emitting device including the same | |
KR20150039926A (en) | Light emitting device | |
KR20150087623A (en) | Light emitting device and light emitting device package including the same | |
KR20150142481A (en) | Light emitting device and light emitting device package including the same | |
KR102140274B1 (en) | Light emitting device | |
KR20150102443A (en) | Light emitting device package and light emitting device array | |
KR20150101669A (en) | Light emitting device | |
KR102182018B1 (en) | Light emittng device | |
KR102170212B1 (en) | Light emittng device | |
KR102189131B1 (en) | Light emitting device | |
KR102114937B1 (en) | Light emitting device and light emitting device package including the same | |
KR20140080992A (en) | Light emitting device | |
KR20130061341A (en) | Light emitting device | |
KR102007408B1 (en) | Light emittng device | |
KR20160047192A (en) | Light emittng device | |
KR20150141407A (en) | Light emitting device | |
KR102182021B1 (en) | Light emitting device | |
KR20150097952A (en) | Light emitting device | |
KR101977276B1 (en) | Light emitting device package and lighting system including the same | |
KR20150073468A (en) | Light emittng device and light emitting device package including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |