KR20150131418A - Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant - Google Patents

Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant Download PDF

Info

Publication number
KR20150131418A
KR20150131418A KR1020140057539A KR20140057539A KR20150131418A KR 20150131418 A KR20150131418 A KR 20150131418A KR 1020140057539 A KR1020140057539 A KR 1020140057539A KR 20140057539 A KR20140057539 A KR 20140057539A KR 20150131418 A KR20150131418 A KR 20150131418A
Authority
KR
South Korea
Prior art keywords
heat treatment
nickel alloy
corrosion cracking
stress corrosion
nuclear power
Prior art date
Application number
KR1020140057539A
Other languages
Korean (ko)
Inventor
이경수
원세열
오승진
이재곤
장훈
장창희
오영진
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to KR1020140057539A priority Critical patent/KR20150131418A/en
Publication of KR20150131418A publication Critical patent/KR20150131418A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)

Abstract

The present invention relates to a local heat treatment method to prevent primary water stress corrosion cracking of a weld zone welded with Alloy 82 or Alloy 182 as a nickel alloy, which welds a dissimilar metal material of carbon steel and stainless steel in a nuclear power plant. To achieve this, the local heat treatment method comprises: a heating process of heating the perimeter of a weld zone (1) at specific temperatures by a heater to prevent primary water stress corrosion cracking of the weld zone (1) welding a pipe A (2a) and a pipe B (2b) having a pipe thickness (t) with an Alloy 82/182 welding material as a nickel alloy; a maintaining process of maintaining the perimeter of the weld zone (1) in a heated state for a specific time; and a cooling process of cooling the weld zone (1) at a proper speed using a cooler.

Description

원자력발전소에 있어서 니켈합금 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법{Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant}[0001] The present invention relates to a local heat treatment method for preventing stress corrosion cracking in a nickel alloy welded part of a nuclear power plant,

본 발명은 원자력발전소에서 탄소강과 스테인리스강의 이종 금속재료를 용접하는 니켈합금인 Alloy 82 또는 Alloy 182로 용접된 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법에 관한 것이다.The present invention relates to a local heat treatment method for preventing stress corrosion cracking at a welded portion welded with Alloy 82 or Alloy 182, which is a nickel alloy for welding dissimilar metal materials of carbon steel and stainless steel in a nuclear power plant.

원자력발전소의 배관구조 재료 중 탄소강과 스테인리스강의 2개 이종금속을 용접하는 부분에는 니켈합금인 Alloy 82 또는 Alloy 182 용접 사용되어 왔으며, Alloy 82/182로 용접된 이종금속의 용접부에서 일차수 응력부식균열이 발생하고 있는바, 이러한 용접부의 일차수 응력부식균열 발생을 예방하는 종래 기술로는 오버레이 용접(Overlay welding)과 기계적 응력 개선공정(Mechanical stress improvement process; MSIP) 및 피닝(Peening) 등이 있다.Alloy 82 or Alloy 182 welding has been used for the welding of two dissimilar metals of carbon steel and stainless steel among piping structural materials of nuclear power plants. In the welds of dissimilar metals welded with Alloy 82/182, the primary water stress cracking crack Overlay welding, mechanical stress improvement process (MSIP), and peening are examples of conventional techniques for preventing the generation of stress corrosion cracking in the primary portion of such welds.

여기서 공지된 바와 같이 상기 오버레이 용접은 노즐 용접부 둘레를 덧씌운 방식으로 용접하는 것이며, 상기 기계적 응력 개선공정은 용접부 주변에 기계적 소성하중을 가하는 것이고, 상기 피닝은 재료표면에 레이저, 워터 젯트(Water jet), 수격작용 등을 이용하여 압축 응력을 부가하는 것인데, 이들의 공통점은 배관 또는 노즐에서 일차수 응력부식 균열발생 가능성이 높은 부위의 인장 잔류응력을 낮추어 주는 것이다.As is known in the art, the overlay welding is to weld around the nozzle weld, the mechanical stress improvement process is to apply a mechanical firing load around the weld, and the peening is performed with a laser, water jet ), Water hammer action, etc. The common feature of these is to lower the tensile residual stress at the portion where the primary water stress cracking is likely to occur in the pipe or nozzle.

그러나 종래 상기와 같은 기술들은 배관구조의 이종 금속재료를 용접한 Alloy 82/182 용접부에서 일차수 응력 부식균열 발생 가능성이 높은 부위의 잔류응력을 낮추거나 개선하는 효과를 갖추고 있으나, 적용공정이 복잡하고 많은 작업시간이 소요되는 단점이 있었다.However, the above-mentioned technologies have the effect of lowering or improving the residual stress in the portion where the primary water stress corrosion cracking is likely to occur in the Alloy 82/182 welded portion where the piping structure dissimilar metal material is welded. However, There is a disadvantage that it takes a lot of work time.

이에 본 발명은 상기와 같은 종래 문제점을 해결하기 위해 발명된 것으로, 종래 방식에 비해 작업시간과 비용을 획기적으로 절감할 수 있으면서 이종금속의 용접부에 인장 잔류응력 크기를 낮추는 열처리를 수행하는 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력 부식균열 예방을 위한 국부 열처리 방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a nuclear power plant capable of drastically reducing work time and cost, The present invention provides a local heat treatment method for preventing stress corrosion cracking at a primary welded portion of a nickel alloy welded portion.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 국부 열처리 방법은 이종금속 용접부의 응력 부식균열에 대한 예민화(Sensitization)을 발생시키지 않으면서 용접 잔류응력 특성을 개선하기 위해 용접부 주위를 가열기로 특정온도로 가열하는 가열공정과, 상기 용접부 주위가 가열된 상태에서 특성시간을 유지하는 유지공정 및, 냉각기를 이용하여 상기 용접부를 적절한 속도로 냉각시키는 냉각공정을 포함하고 있다.In order to achieve the above object, a local heat treatment method according to the present invention is characterized in that, in order to improve weld residual stress characteristics without causing sensitization to stress corrosion cracking of dissimilar metal welds, A holding step of holding a characteristic time in a state where the periphery of the welding part is heated, and a cooling step of cooling the welding part at a proper speed by using a cooler.

상기와 같은 본 발명에 따른 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력 부식균열 예방을 위한 국부 열처리 방법은 종래 오버레이 용접, 기계적 응력 개선공정 및 피닝 등에 비해서 작업시간과 비용을 획기적으로 절감할 수 있다.In the nuclear power plant according to the present invention, the local heat treatment method for preventing the primary water stress corrosion cracking of the nickel alloy welded part can remarkably reduce the working time and the cost compared to the conventional overlay welding, mechanical stress improving process and pinning .

또한, 이러한 이종금속 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법은 원자력발전소의 수명 연장시 안정성을 기대하면서 비용절감과 관리의 유용성을 확보할 수 있다.In addition, the local heat treatment method for prevention of stress cracking cracks in primary metal of these dissimilar metal welds can secure cost savings and manageability in expectation of stability in the life extension of nuclear power plants.

도 1은 본 발명에 따른 원자력발전소에 있어서 이종금속 용접부의 일례를 보여주는 도면,
도 2는 본 발명에서 제안한 해석과정을 이용하여 SB(Soaking band; 열침영역)과 GCB(Gradient Control Band; 구배 제어영역)의 변화를 보여주는 해석도,
도 3은 본 발명에서 용접부 특성별 최적 공정인자를 보여주는 해석 흐름도,
도 4는 본 발명에서 제안한 국부열처리 방법으로 용접 후 열처리에 따른 예민화 정도 측정결과 그래프,
도 5는 본 발명에서 제안한 국부 열처리 방법으로 용접 후 열처리 조건(SR-에서 균열 성장속도가 용접조건(AW)의 관계를 보여주는 측정결과 그래프이다.
1 is a view showing an example of a dissimilar metal weld in a nuclear power plant according to the present invention,
FIG. 2 is an explanatory view showing changes in the SB (soaking band) and the GCB (gradient control band) using the analysis process proposed in the present invention.
FIG. 3 is a flow chart showing an optimum process factor for each welding characteristic according to the present invention,
FIG. 4 is a graph showing the results of measurement of the degree of sensitization according to post-welding heat treatment in the local heat treatment method proposed in the present invention,
FIG. 5 is a graph showing a measurement result showing the relationship between the crack growth rate and the welding condition (AW) in the post-weld heat treatment condition (SR-) according to the local heat treatment method proposed in the present invention.

이하, 본 발명의 바람직한 실시예를 첨부도면에 의거 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 원자력발전소에서 탄소강과 스테인리스강의 2개 이종금속 배관을 용접할 때 용접재료로 니켈합금인 Alloy 82/182를 이용하는데, 일차수 응력부식균열이 발생하기 쉬운 Alloy 82/182 용접부의 일차수 응력부식균열 발생 저항성을 증가시키기 위해 용접부 주위에 열처리를 수행하는 방법이다.The present invention utilizes a nickel alloy Alloy 82/182 as a welding material when welding two different metal pipes of carbon steel and stainless steel in a nuclear power plant. The primary number of Alloy 82/182 welds, which is susceptible to primary stress corrosion cracking And a heat treatment is performed around the welded portion in order to increase resistance to stress corrosion cracking.

본 발명은 도 1에 도시된 바와 같이 이종금속인 A배관(2a)과 B배관(2b)을 용접부(1)로 연결하고 배관두께(t)를 가진 배관 파이프에서 니켈합금인 Alloy 82/182 용접재료로 용접된 용접부(1)의 일차수 응력부식균열을 예방하기 위해 상기 용접부(1) 주위를 가열기로 특정온도로 가열하는 가열공정과, 상기 용접부(1) 주위가 가열된 상태에서 특정시간을 유지하는 유지공정 및, 냉각기를 이용하여 상기 용접부(1)를 적절한 속도로 냉각시키는 냉각공정을 포함하고 있다.As shown in FIG. 1, a piping pipe A and a B pipe 2b, which are dissimilar metals, are connected to each other by a weld 1 and a pipe pipe having a pipe thickness t is welded with a nickel alloy Alloy 82/182 A heating step of heating the periphery of the welding part (1) to a specific temperature by a heater to prevent stress corrosion cracking in the primary part of the welding part (1) welded with the material; And a cooling step of cooling the welding part 1 at a proper speed by using a cooler.

한편, 도 1에서 SB는 Soaking Band(열침영역), HB는 Heating Band(가열영역), GCB는 Gradient Control Band(구배제어영역) 및, HAZ는 Affected Zone(열영향부)이다.In FIG. 1, SB denotes a soaking band, HB denotes a heating band, GCB denotes a gradient control band, and HAZ denotes an affected zone.

본 발명에는 오스테나이트 스테인리스강으로 이루어진 이종 금속배관의 용접부(1)에서 예민화를 발생시키지 않으면서 용접 잔류응력 특성과 재료물성을 개선하는 열처리 방법으로서, 도 1의 SB, HB, GCB의 영역에서 온도제어는 열해석과 응력해석을 통하여 일차수 응력부식균열 발생 민감지역의 용접 잔류응력을 최소화할 수 있는 온도범위를 선정하게 된다.The present invention is a heat treatment method for improving weld residual stress characteristics and material properties without causing sensitization in a welded portion 1 of a heterogeneous metal pipe made of austenitic stainless steel, Temperature control is performed by thermal analysis and stress analysis to select the temperature range that minimizes the welding residual stress in the primary water stress corrosion cracking sensitive area.

여기서 열해석과 응력해석은 본 발명의 열처리 공정과 이에 대한 최적공정을 산출할 수 있도록 도 3과 같이 해석 알고리즘에 의해 수행된다.Here, the thermal analysis and the stress analysis are performed by the analysis algorithm as shown in FIG. 3 so as to calculate the heat treatment process of the present invention and the optimum process therefor.

한편, 도 2는 본 발명에서 제안하는 해석과정을 이용하여 SB와 GCB의 변화를 통해서 일차수 응력부식균열 민감지역[용접부(1) 내면]의 잔류응력을 저감시킨 결과를 보여주는 도면이다.FIG. 2 is a graph showing the result of reducing the residual stress in the primary water stress corrosion cracking sensitive area (the inner surface of the weld zone 1) through the changes of SB and GCB using the analysis process proposed in the present invention.

본 발명의 가열공정에서는 용접부(1) 및 주변재료의 직경(R)과 두께(t)가 변화하면 가열기의 가열시간 및 가열위치를 조정을 통해 SB, HB, GCB 영역의 온도를 제어하여 목표로 하는 부위의 인장 잔류응력을 선택적으로 저감할 수 있다.In the heating process of the present invention, when the diameter (R) and thickness (t) of the welded portion (1) and the peripheral material change, the temperature of the SB, HB, GCB region is controlled by adjusting the heating time and heating position of the heater It is possible to selectively reduce the tensile residual stress.

통상적으로 산업계의 표준에서는 배관의 두께(인치)당 1시간의 열처리를 요구하고 있으나, 원자력발전소의 이종금속으로 이루어진 오스테나이트 스테인리스강과 니켈합금인 Alloy 82/182 용접부(1)에 대해서는 열처리 시간 및 열처리 온도를 제시하지 않고 있다.Normally, industry standards require one hour of heat treatment per inch (inch) of pipe, but for austenitic stainless steels made of dissimilar metals and Alloy 82/182 welds (1), a nickel alloy, heat treatment time and heat treatment It does not present the temperature.

따라서 본 발명에서는 Alloy 82/182 이종금속 용접부의 재료물성 특성과 용접부 형상 특성을 반영하여 앞서 설명한 가열공정과 유지공정 및 냉각공정을 통해 용접부(1)에서 일차수 응력부식균열 취약부위의 잔류응력을 효과적으로 감소시킨다.Accordingly, in the present invention, the residual stress of the primary water stress corrosion cracking weak region in the welded portion (1) is measured through the heating process, the holding process and the cooling process described above by reflecting the material property characteristic and the welded shape characteristic of the Alloy 82/182 dissimilar metal weld Effectively.

또한, 본 발명에서는 용접부(1)에 특성별 최적 공정인자가 제공되는데, 여기서 상기 최적 공정인자는 열전달 및 용접 잔류응력 이완에 대한 유한요소 해석을 통해 신뢰성이 입증되며, 상기 유한요소 해석절차도 도 3에 도시되어 있는바, 이러한 유한요소 해석에는 열처리 잔류응력 이완해석에 최적화된 크리프 물성 모델링이 포함된다.In addition, in the present invention, the optimum process parameters are provided for each characteristic in the weld zone 1, wherein the optimal process parameters are proven to be reliable through finite element analysis for heat transfer and weld residual stress relaxation, As shown in Fig. 3, this finite element analysis includes creep property modeling optimized for annealing residual stress relaxation analysis.

그리고 상기 크리프 물성 모델링은 1차 크리프가 포함하고 2차/3차 그리프가 배제된다.The above creep property modeling includes the first creep and the second / third griff.

한편, 도 4는 본 발명에서 제안한 열처리 방법으로 열처리를 수행하였을 경우 재료의 예민화가 발생하지 않는 측정시험결과 그래프로서, DoS(Degree of Sensitization)는 예민화 민감도, PWHT(Post Weld Head Treatment)는 후열처리를 말한다.Meanwhile, FIG. 4 is a graph showing a measurement test result in which the material is not sensitized when heat treatment is performed according to the heat treatment method proposed in the present invention. The Degree of Sensitization (DoS) and the Post Weld Head Treatment (PWHT) Heat treatment.

그리고 도 5는 일차수 응력부식균열 성장에 대한 저항성이 증가함을 보여주는 실험결과 그래프로서, AW(As Weld)는 용접상태이고, SR(Stress Relief)는 후열처리에 의해 응력이 풀려 있는 상태, CGR(Grack Growth Rate)는 일차수 응력부식균열 성장속도를 나타낸다.
FIG. 5 is a graph showing an increase in resistance to primary water stress corrosion crack growth. As shown in FIG. 5, AW (As Weld) is a weld state, SR (stress relief) is a state in which stress is released by post- (Grack Growth Rate) represents the primary water stress corrosion crack growth rate.

1 : 용접부, 2a : A배관,
2b : B배관.
1: welding part, 2a: A pipe,
2b: B piping.

Claims (4)

배관두께(t)를 가진 A배관(2a)과 B배관(2b)을 니켈합금인 Alloy 82/182 용접재료로 용접한 용접부(1)의 일차수 응력부식균열을 예방하기 위해 상기 용접부(1) 주위를 가열기로 특정온도로 가열하는 가열공정과, 상기 용접부(1) 주위가 가열된 상태에서 특정시간을 유지하는 유지공정 및, 냉각기를 이용하여 상기 용접부(1)를 적절한 속도로 냉각시키는 냉각공정을 포함한 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법.In order to prevent stress corrosion cracking at the welded portion 1 of the welded portion 1 welded with Alloy 82/182 welded material of the nickel alloy, the A pipe 2a and the B pipe 2b having the pipe thickness t, A holding step of holding a specified time in a state where the periphery of the welding part 1 is heated and a cooling step of cooling the welding part 1 at a proper speed by using a cooler A Local Heat Treatment Method for Prevention of Stress Corrosion Cracking in Primary Welds of Nickel Alloy Weldment in Nuclear Power Plant. 제 1항에 있어서,
상기 가열공정에서는 용접부(1) 및 주변재료의 직경(R)과 두께(t)가 변화하면 가열기의 가열시간 및 가열위치를 조정을 통해 SB, HB, GCB 영역의 온도를 제어하여 목표로 하는 부위의 인장 잔류응력을 선택적으로 저감할 수 있도록 된 것을 특징으로 하는 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법.
여기서, SB는 열침영역(Soaking Band), HB는 가열영역(Heating Band), GCB는 구배 제어영역(Gradient Control Band)이다.
The method according to claim 1,
In the heating process, when the diameter (R) and thickness (t) of the welded portion (1) and the peripheral material are changed, the temperature of the SB, HB, GCB region is controlled by adjusting the heating time and heating position of the heater, Wherein the tensile residual stress of the nickel alloy welded portion is selectively reduced. A method for local heat treatment for preventing stress corrosion cracking in a primary welded portion of a nickel alloy weld in a nuclear power plant.
Here, SB is a soaking band, HB is a heating band, and GCB is a gradient control band.
제 1항에 있어서,
상기 용접부(1)에 제공되는 최적 공정인자는 열전달 및 용접 잔류응력 이완에 대한 유한요소 해석이 적용되는 것을 특징으로 하는 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법.
The method according to claim 1,
Wherein a finite element analysis for heat transfer and welding residual stress relaxation is applied to an optimum process parameter provided to the welded part (1).
제 3항에 있어서,
상기 유한요소 해석에는 열처리 잔류응력 이완해석에 최적화된 크리프 물성 모델링이 포함되는 것을 특징으로 하는 원자력발전소에 있어서 니켈합금 용접부의 일차수 응력부식균열 예방을 위한 국부 열처리 방법.
The method of claim 3,
Wherein the finite element analysis includes creep property modeling optimized for heat treatment residual stress relaxation analysis. A method of localized heat treatment for preventing stress corrosion cracking at the primary weld of a nickel alloy weld in a nuclear power plant.
KR1020140057539A 2014-05-14 2014-05-14 Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant KR20150131418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140057539A KR20150131418A (en) 2014-05-14 2014-05-14 Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140057539A KR20150131418A (en) 2014-05-14 2014-05-14 Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant

Publications (1)

Publication Number Publication Date
KR20150131418A true KR20150131418A (en) 2015-11-25

Family

ID=54845259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140057539A KR20150131418A (en) 2014-05-14 2014-05-14 Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant

Country Status (1)

Country Link
KR (1) KR20150131418A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070769A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for post-heat treatment for reducing primary water stress corrosion cracking in dissimilar weld so as to improve microstructure of material
WO2018070770A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for reducing residual stress in dissimilar weld by using post-heat treatment
CN111334658A (en) * 2020-04-07 2020-06-26 西南交通大学 Method for reducing welding residual stress of orthotropic steel bridge deck

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070769A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for post-heat treatment for reducing primary water stress corrosion cracking in dissimilar weld so as to improve microstructure of material
WO2018070770A1 (en) * 2016-10-14 2018-04-19 한국수력원자력 주식회사 Method for reducing residual stress in dissimilar weld by using post-heat treatment
CN111334658A (en) * 2020-04-07 2020-06-26 西南交通大学 Method for reducing welding residual stress of orthotropic steel bridge deck
CN111334658B (en) * 2020-04-07 2020-12-01 西南交通大学 Method for reducing welding residual stress of orthotropic steel bridge deck

Similar Documents

Publication Publication Date Title
Kiaee et al. Optimization of gas tungsten arc welding process by response surface methodology
JP6730927B2 (en) Products for welded joints with step design
CN105200224B (en) A kind of local post weld heat treatment method of quenched material very large vessels
CN109865955B (en) Welding method combining manual tungsten electrode argon arc welding and shielded metal arc welding for G115 large-diameter pipe
WO2008107660A1 (en) Method of relieving residual stress in a welded structure
KR20150131418A (en) Local heat treatment method to prevent primary water stress corrosion cracking of nickel alloy weld zone in a nuclear power plant
Yang et al. Weld failure analysis of 2205 duplex stainless steel nozzle
Vahiddastjerdi et al. Optimizing pulsed Nd: YAG laser welding of high-Mn TWIP steel using response surface methodology technique
Suman et al. Thermo-mechanical study of single and multi-pass welding of CSEF steel for residual stresses and deformations considering solid state phase transformation
KR20180041313A (en) Heat treatment method for improving residual stress of heterojunction in nuclear power plant
Sule et al. Effect of high-pressure rolling followed by laser processing on mechanical properties, microstructure and residual stress distribution in multi-pass welds of 304L stainless steel
Li et al. Creep rates of heat-affected zone of grade 91 pipe welds as determined by stress-relaxation test
Suman et al. Numerical Study of Welding Distortion in SAW Welded Creep Strength Enhanced Ferrite Steel Joint
Blatnická et al. Comparison of residual stress in high strength steel sample before and after laser welding
Amirian et al. Experimental Study of the Effects of Welding Depth and Heat Treatment on Residual Stresses in a Cracked Rotor
KR20180111729A (en) Heat treatment method for improving residual stress of heterojunction in nuclear power plant
Moradi et al. Investigation of residual stresses on post weld heat treated A106-GRB steel pipe by holedrilling and FEM
KR101830532B1 (en) Heat treatment method for improving resistivity of heterojunction in nuclear power plant
Ohlsson Effects of different heat treatments on hardness of Grade 91 steel
Odebiyi et al. Effect of parallel heating on properties of a welded AISI 8438 steel
JPS5832594A (en) Welding method
Woollin Understanding and avoiding intergranular stress corrosion cracking of welded supermartensitic stainless steel
JP6736941B2 (en) Welding method of steel member and welding material
Li et al. Influence of post-welding heat treatment on microstructure and peculiarity of 10Cr9Mo1VNb boiler steel welded by hot wire TIG
Ranjbarnodeh Grain size distribution after similar and dissimilar gas tungsten arc welding of a ferritic stainless steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application