KR20150119181A - Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil - Google Patents

Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil Download PDF

Info

Publication number
KR20150119181A
KR20150119181A KR1020157024845A KR20157024845A KR20150119181A KR 20150119181 A KR20150119181 A KR 20150119181A KR 1020157024845 A KR1020157024845 A KR 1020157024845A KR 20157024845 A KR20157024845 A KR 20157024845A KR 20150119181 A KR20150119181 A KR 20150119181A
Authority
KR
South Korea
Prior art keywords
tic
carbide
roll
nbc
satisfies
Prior art date
Application number
KR1020157024845A
Other languages
Korean (ko)
Other versions
KR101642901B1 (en
Inventor
코이치 시조
히로키 카쯔키
Original Assignee
닛테츠스미킨하드 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛테츠스미킨하드 가부시키가이샤 filed Critical 닛테츠스미킨하드 가부시키가이샤
Publication of KR20150119181A publication Critical patent/KR20150119181A/en
Application granted granted Critical
Publication of KR101642901B1 publication Critical patent/KR101642901B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • B21B27/03Sleeved rolls
    • B21B27/035Rolls for bars, rods, rounds, tubes, wire or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/327Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C comprising refractory compounds, e.g. carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • B23K9/042Built-up welding on planar surfaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/10Pipe-lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Geometry (AREA)
  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

소정의 Ni계 합금에, 내마모성이 뛰어난 WC, CrC 및 NbC 중 적어도 1종의 탄화물을 첨가하면서, 내열균열성의 저하도 억제할 수 있는 덧붙임 용접재료를 제공하는 것을 목적으로 한다. 본원발명의 덧붙임 용접재료는, Ni계 합금과 혼합탄화물로 이루어지고, 상기 Ni계 합금은, 질량%로 C:0.1% 이하, Cr:10~15%, Mo:8~15%, W:5% 이하, Co:15% 이하, Al:1~5%, Ti:1~5%, N:0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하고 있고, 상기 혼합탄화물은, WC, NbC, VC 및 CrC 중 1종 또는 2종 이상의 제1 탄화물과, TiC의 제2 탄화물로 이루어지며, 질량%로 상기 Ni계 합금 및 상기 혼합탄화물의 총합량을 100%로 하였을 때, 상기 제1 탄화물은 5~50%이고, 상기 제2 탄화물은 3~30%이며, 상기 제1 및 제2 탄화물의 총합량은 10~60%이다. It is an object of the present invention to provide an additional welding material capable of suppressing deterioration of heat resistant cracking property while adding at least one kind of carbide selected from WC, CrC and NbC having excellent abrasion resistance to a predetermined Ni-based alloy. The welding material of the present invention is composed of a Ni-based alloy and a mixed carbide. The Ni-based alloy contains 0.1% or less of C, 10 to 15% of Cr, 8 to 15% of Mo, % Or less of Co, 15% or less of Co, 1 to 5% of Al, 1 to 5% of Ti and 0.01 to 0.1% of N and the balance Ni and inevitable impurities. % / 25 + W% / 31? 1, and the mixed carbide is composed of at least one of a first carbide of WC, NbC, VC and CrC and a second carbide of TiC, Wherein the first carbide is 5 to 50% and the second carbide is 3 to 30%, wherein the total amount of the Ni-based alloy and the mixed carbide is 100%, and the sum of the first and second carbides The amount is 10 to 60%.

Description

덧붙임용 용접재료, 교정롤, 가이드롤, 반송롤 및 앤빌{Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil}[0001] The present invention relates to a welding material, a correction roll, a guide roll, a conveying roll, and an anvil,

본 발명은, 고온역에서의 내열균열성, 내마모성이 뛰어난 덧붙임용 용접재료 등에 관한 것이다.The present invention relates to a welding material for superimposing which has excellent heat-resistant cracking resistance and wear resistance at high temperature.

제철소에는, 예를 들어 연속주조롤과 같은 고온역에서의 내열균열성, 내마모성을 요구하는 다양한 부재가 설치되어 있다. 특허문헌 1은, C:0.1% 이하, Cr:10~15%, Mo:8~15%, Co:15% 이하, W:5% 이하, Al:1~5%, Ti:1~5%, 잔부 Ni로 이루어지는 것을 특징으로 하는 연속주조 덧붙임용 용접재료를 개시한다.The steelworks is provided with various members requiring heat-resisting cracking and abrasion resistance at a high temperature region such as a continuous casting roll. Patent Document 1 discloses a ferritic stainless steel comprising 0.1% or less of C, 10-15% of Cr, 8-15% of Mo, 15% or less of Co, 5% or less of W, , And the remainder Ni, is disclosed.

특허문헌 1의 연속주조 덧붙임용 용접재료를 이용함으로써, 연속주조롤로서 뛰어난 내열균열성을 나타내는데, 더욱 가혹한 사용환경에서는, 기지성분의 내열균열성이 높기 때문에, 롤 표면에 발생하는 내열균열의 수가 적고, 그 때문에, 그 후에 가해지는 열응력이 적은 열균열부에 집중해 버려서, 결과적으로 열균열의 개수는 적지만, 깊은 균열로 되어 버리는 경우가 있다. 이와 같은 깊은 균열은 덧붙임층의 박리 등으로 이어지므로, 조기의 보수가 필요하게 되는 문제가 있다.The use of the welding material for continuous casting addition of Patent Document 1 shows excellent heat-resistant cracking property as a continuous casting roll. In a severe use environment, the heat-resistant cracking property of the base component is high, So that it is concentrated in the heat cracked portion where there is little thermal stress to be applied thereafter, and as a result, the number of thermal cracks is small, but it may become a deep crack. Such deep cracks lead to delamination of the overlapped layer, and thus there is a problem that early repair is required.

상술한 바와 같은 문제를 해소하기 위하여, 특허문헌 2에는, 질량%로 C:0.1% 이하, Cr:10~15%, Mo:8~15%, W:5% 이하, Co:15% 이하, Al:1~5%, Ti:1~5%, N:0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하는 것을 특징으로 하는 연속주조롤 덧붙임용 용접재료를 개시한다.In order to solve the above-mentioned problems, Patent Document 2 discloses a ferritic stainless steel which contains 0.1% or less of C, 10 to 15% of Cr, 8 to 15% of Mo, 5% or less of W, 15% 33% + Mo% / 25 + W% / 31%, and the balance of Ni and inevitable impurities, and contains Al: 1 to 5%, Ti: 1 to 5% 1 < / RTI > for a continuous casting roll.

특허문헌 2에는, 소정량의 Ti와 N을 포함함으로써, 덧붙임층 내에 TiN을 분산시키고, 이 TiN이 응력 집중원이 되어 연속주조롤 사용 중에 발생하는 열균열의 기점이 됨으로써, 열균열을 미세하게 분산한 것으로 할 수 있어, 결과적으로 열응력이 미세균열에 의하여 완화됨으로써, 연속주조롤 파손의 원인이 되는 표면층의 큰 갈라짐이나 박리를 억제할 수 있다고 기재되어 있다.Patent Document 2 discloses that TiN is dispersed in the additional layer by containing a predetermined amount of Ti and N and this TiN becomes a starting point of thermal cracks generated during use of the continuous casting roll as a stress concentration source, And as a result, the thermal stress is relaxed by the microcracks, whereby it is described that large cracking and peeling of the surface layer, which is a cause of breakage of the continuous casting roll, can be suppressed.

선행기술문헌Prior art literature

(특허문헌)(Patent Literature)

특허문헌 1: 일본공개특허공보 2005-144488호Patent Document 1: JP-A-2005-144488

특허문헌 2: 일본공개특허공보 2007-136509호Patent Document 2: JP-A-2007-136509

최근, 연속주조롤 등에 있어서, 내마모성이 더욱 향상될 것이 요구되고 있다. 일반적으로 내마모성을 향상시키는 수법으로서, WC, CrC 및 NbC 중 적어도 1종의 탄화물을 덧붙임용 용접재료에 첨가하는 방법이 알려져 있다. 하지만, 상술한 특허문헌 2의 구성에 있어서, WC 등의 탄화물을 첨가하면, Ni계 합금에 포함되는 Ti와 첨가한 WC 등의 C가 덧붙임 용접시에 반응하여 TiC를 형성하여서, Ni계 합금에 포함되는 Ti함유량이 저하해 버린다. Ti함유량이 저하하면, 'TiN을 열응력 집중원으로 하여서, 열균열을 미세화한다'는 효과를 얻을 수 없게 될 우려가 있다(특허문헌 2의 명세서 단락 0019를 참조). 한편, WC 등을 없애면, 내마모성의 향상을 얻을 수 없게 될 우려가 있다.In recent years, it has been demanded that the abrasion resistance is further improved in a continuous casting roll or the like. In general, as a method for improving wear resistance, a method of adding at least one kind of carbide among WC, CrC and NbC to a welding material for addition is known. However, when the carbide such as WC is added in the constitution of the above-mentioned Patent Document 2, Ti contained in the Ni-based alloy and C such as added WC are added thereto. In response to the welding, TiC is formed, The contained Ti content is lowered. When the Ti content is lowered, there is a possibility that the effect of making the thermal cracking finer by making the TiN a thermal stress concentration source may not be obtained (see paragraph 0019 of the specification of Patent Document 2). On the other hand, if the WC or the like is removed, there is a possibility that the improvement of the wear resistance may not be obtained.

그래서, 본원발명은, 특허문헌 2에 기재된 Ni계 합금에, 내마모성이 뛰어난 WC, CrC 및 NbC 중 적어도 1종의 탄화물을 첨가하면서, 내열균열성의 저하도 억제할 수 있는 덧붙임용 용접재료를 제공하는 것을 목적으로 한다.Therefore, the present invention provides a welding material for an overlay which can suppress the deterioration of heat-resistant cracking property while adding at least one kind of carbide selected from WC, CrC and NbC excellent in wear resistance to the Ni-based alloy described in Patent Document 2 .

상기 과제를 해결하기 위하여, 본원발명은, 일 관점으로서, (1) Ni계 합금과, 혼합탄화물로 이루어지는 덧붙임용 용접재료로서, 상기 Ni계 합금은, 질량%로 C:0.1% 이하, Cr:10~15%, Mo:8~15%, W:5% 이하, Co:15% 이하, Al:1~5%, Ti:1~5%, N:0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하고 있고, 상기 혼합탄화물은, WC, NbC, VC 및 CrC 중 1종 또는 2종 이상의 제1 탄화물과, TiC의 제2 탄화물로 이루어지며, 질량%로 상기 Ni계 합금 및 상기 혼합탄화물의 총합량을 100%로 하였을 때, 상기 제1 탄화물은 5~50%이고, 상기 제2 탄화물은 3~30%이며, 상기 제1 및 제2 탄화물의 총합량은 10~60%인 것을 특징으로 하는 고온역에서의 내열균열성 및 내마모성이 뛰어난 덧붙임용 용접재료이다.In order to solve the above problems, the present invention provides, as one aspect, (1) a welding material comprising Ni-based alloy and mixed carbide, wherein the Ni-based alloy contains 0.1% or less of C, 10 to 15% of Mo, 8 to 15% of W, 5% or less of W, 15% or less of Co, 1 to 5% of Al, 1 to 5% of Ti and 0.01 to 0.1% of N, 33 + Mo% / 25 + W% / 31 1, and the mixed carbide is at least one of WC, NbC, VC, and CrC, 1 carbide and a second carbide of TiC, wherein the first carbide is 5 to 50%, and the second carbide is 5 to 50%, when the total amount of the Ni-based alloy and the mixed carbide is 100% 3 to 30%, and the total amount of the first and second carbides is 10 to 60%. The welding material is excellent in heat resistance and wear resistance at high temperature.

본원발명은, 다른 관점으로서, (2) Ni계 합금과, 복탄화물로 이루어지는 덧붙임용 용접재료로서, 상기 Ni계 합금은, 질량%로 C:0.1% 이하, Cr:10~15%, Mo:8~15%, W:5% 이하, Co:15% 이하, Al:1~5%, Ti:1~5%, N:0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하고 있고, 상기 복소화물은, (W,Ti)C, (Nb,Ti)C, (V,Ti)C, (Cr,Ti)C, (W,Nb,Ti)C, (W,V,Ti)C, (W,Cr,Ti)C, (Nb,V,Ti)C, (Nb,Cr,Ti)C, (V,Cr,Ti)C, (W,Nb,V,Ti)C, (W,Nb,Cr,Ti)C, (Nb,V,Cr,Ti)C, (W,Nb,V,Cr,Ti)C 중 어느 하나이며, 질량%로 (W,Ti)C는, WC/TiC=30/70~70/30에 상당하는 조성비율을 만족하고, (Nb,Ti)C는, NbC/TiC=30/70~70/30에 상당하는 조성비율을 만족하며, (V,Ti)C는, VC/TiC=30/70~70/30에 상당하는 조성비율을 만족하고, (Cr,Ti)C는, Cr3C2/TiC=30/70~70/30에 상당하는 조성비율을 만족하며, (W,Nb,Ti)C는, WC/NbC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (W,V,Ti)C는, WC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (W,Cr,Ti)C는, WC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (Nb,V,Ti)C는, NbC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (Nb,Cr,Ti)C는, NbC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (V,Cr,Ti)C는, VC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (W,Nb,V,Ti)C는, WC/NbC/VC/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하고, (W,Nb,Cr,Ti)C는, WC/NbC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하며, (Nb,V,Cr,Ti)C는, NbC/VC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하고, (W,Nb,V,Cr,Ti)C는, WC/NbC/VC/Cr3C2/TiC=10/10/10/10/60~15/15/15/15/40에 상당하는 조성비율을 만족하고 있으며, 질량%로 상기 Ni계 합금 및 상기 복탄화물의 총합량을 100%로 하였을 때, 상기 복탄화물은 10%~60%인 것을 특징으로 하는 고온역에서의 내열균열성 및 내마모성이 뛰어난 덧붙임용 용접재료이다.(2) A welding material comprising a Ni-based alloy and a composite carbide, wherein the Ni-based alloy contains 0.1% or less of C, 10 to 15% of Cr, And the balance Ni and inevitable impurities are contained in an amount of from 8 to 15%, W to 5%, Co to 15%, Al to 1 to 5%, Ti to 1 to 5% and N to 0.01 to 0.1% (V, Ti) C, (V, Ti) C, (V, Ti) C, (Nb, Cr, Ti) C, (W, Nb, Ti) C, (W, V, Ti) C, (W, Nb, V, Ti) C, (W, Nb, Cr, Ti) C, (Nb, V, Cr, Ti) C, (W, Ti) C satisfies a composition ratio corresponding to WC / TiC = 30/70 to 70/30, and (Nb, Ti) C is NbC (TiC) satisfies a composition ratio corresponding to VC / TiC = 30/70 to 70/30, and (V, Ti) Ti) C is, Cr 3 C 2 / TiC = 30/70 ~ satisfies the composition ratio corresponding to 70/30, (W, Nb , Ti) C is, WC / NbC / TiC = 15 /15/70 ~ Composition equivalent to 40/30/30 (W, Cr, Ti) C satisfies a composition ratio corresponding to WC / VC / TiC = 15/15/70/40/30/30 and (W, V, Ti) , WC / Cr 3 C 2 / TiC = 15/15/70 ~ 40/30 / satisfy the composition ratio equal to 30 and, (Nb, V, Ti) C is, NbC / VC / TiC = 15 /15 / and 70 to satisfy the composition ratio corresponding to 40/30/30, the composition corresponding to the (Nb, Cr, Ti) C is, NbC / Cr 3 C 2 / TiC = 15/15/70 ~ 40/30/30 (V, Cr, Ti) C satisfies a composition ratio corresponding to VC / Cr 3 C 2 / TiC = 15/15/70/40/30/30, and (W, Nb, V , Ti) C satisfies a composition ratio corresponding to WC / NbC / VC / TiC = 10/10/10 / 70-30 / 20/20/30, WC / NbC / Cr 3 C 2 / TiC = satisfies 10/10/10 / 70-30 / 20/20/30 composition ratio corresponding to the, and, (Nb, V, Cr, Ti) C is, NbC / VC / Cr 3 C 2 / TiC = 10/10/10/70 ~ 30/20/20 / satisfy the composition ratio equal to 30, and (W, Nb, V, Cr, Ti) C is, WC / NbC / the VC / Cr 3 C 2 / TiC = 10/10/10/10/60 ~ 15/15/15/15 / , and satisfy the composition ratio corresponding to 40, wherein the Ni-based alloy, in weight percent, and the repeat carbide When the total amount is 100%, the clothing carbide is a welding heat cracking resistance and an excellent wear resistance at high temperatures redundancy station, characterized in that 10% to 60%.

상가 (1)의 발명에 따르면, 제1 탄화물 및 제2 탄화물을 첨가함으로써, 제1 탄화물의 첨가량이 줄기 때문에, Ni계 합금에 포함되는 Ti가 제1 탄화물에서의 C와 반응함으로써, Ni계 합금 내의 Ti가 감소하는 것을 억제할 수 있다. 이에 따라, TiN을 열응렵 집중원으로 하여, 열균열을 미세화한다는 효과를 얻을 수 있다. 제2 탄화물을 첨가함으로써, 제1 탄화물의 첨가량의 감소에 따르는 내마모성의 저하를 억제할 수 있다. 또한, 상기 (2)의 발명에 따르면, 상기 (1)의 발명과 마찬가지로, 내열균열성 및 내마모성을 양립시킬 수 있다.According to the invention of the commercial value (1), since the addition amount of the first carbide decreases by adding the first carbide and the second carbide, Ti contained in the Ni-based alloy reacts with C in the first carbide, It is possible to suppress the decrease of Ti in the film. As a result, the effect of making the thermal cracking finer by using TiN as a heat sink concentrating source can be obtained. By adding the second carbide, it is possible to suppress the deterioration of the wear resistance due to the decrease in the amount of the first carbide added. Further, according to the invention (2), heat-resisting cracking resistance and wear resistance can be achieved at the same time as in the invention of (1).

도 1은 열간마모시험의 시험장치의 개략도이다.
도 2는 교정롤을 포함하는 교정기의 개략도이다.
도 3은 압연설비(B) 및 권취설비(C)의 개략구성도이다.
도 4는 권취설비(C)의 평면도이다.
도 5는 앤빌(Anvil)의 개략도이다.
1 is a schematic view of a test apparatus for a hot wear test.
2 is a schematic view of a calibrator including a calibrating roll;
Fig. 3 is a schematic configuration diagram of a rolling facility B and a winding facility C; Fig.
4 is a plan view of the winding facility C;
Figure 5 is a schematic view of an anvil.

본원발명의 덧붙임 용접재료는, 고온에서 사용되는 교정롤, 가이드롤, 반송롤의 롤 표면을 피복하기 위하여 사용할 수 있다. 본원발명의 덧붙임 용접재료는, 단조(鍛造)에서 사용되는 앤빌에 사용할 수 있다.The welding material of the present invention can be used for coating the roll surface of a calibrating roll, a guide roll, and a conveying roll used at a high temperature. The over-welding material of the present invention can be used in an anvil used in forging (forging).

도 2는, 교정롤을 포함하는 교정기의 개략도이다. 교정기(A)는, 상부 교정롤(11) 및 하부 교정롤(12)을 포함한다. 교정기(A)는 강철관 등(P)의 압연설비 뒤에 설치되고, 압연설비로부터 보내지는 가열상태에 있는 강철관 등(P)의 구부러짐을 강제하여 다음 공정으로 보내는 것이다. 상부 교정롤(11) 및 하부 교정롤(12)은 상하방향에 있어서 마주보고 있고, 이들 교정롤(11, 12) 사이에서 강철관 등(P)을 압착하면서 통과시킴으로써, 강철관 등(P)의 구부러짐을 교정할 수 있다. 본원발명의 덧붙임 용접재료는, 교정롤(11, 12)의 롤 표면을 피복하기 위하여 사용할 수 있다.Figure 2 is a schematic view of a calibrator including a calibrating roll; The calibrator A includes an upper calibrating roll 11 and a lower calibrating roll 12. The calibrator A is installed behind the rolling equipment of the steel pipe P and forcibly bends the steel pipe P in a heated state and is sent from the rolling facility to the next process. The upper calibrating roll 11 and the lower calibrating roll 12 are opposed to each other in the vertical direction so that the steel pipe P and the like P are passed between the calibrating rolls 11 and 12, Can be calibrated. The overlay welding material of the present invention can be used to coat the roll surfaces of the calibration rolls 11,

도 3은, 압연설비(B) 및 권취설비(C)의 개략구성도이다. 압연설비(B)는, 복수의 롤 그룹(21)을 강판의 반송경로를 사이에 끼운 상하에 배치하는 동시에, 이들을 반송경로를 따라서 나열함으로써 구성되어 있다. 롤 그룹(21)은, 워크롤(21a), 중간롤(21b), 백업롤(21c)로 구성된다. 워크롤(21a)은, 가열된 강판을 사이에 끼우고 압연한다. 중간롤(21b)은, 압연시의 워크롤(21a)의 변형을 억제한다. 가이드롤(22)은 강판의 반송경로를 따라서 배치되어 있고, 강판의 폭방향에서의 양단부에 설치됨으로써, 반송경로를 따라서 진행되는 강판을 가이드한다. 본원발명의 덧붙임 용접재료는, 가이드롤(22)의 롤 표면을 피복하기 위하여 사용할 수 있다.Fig. 3 is a schematic configuration diagram of the rolling facility B and the winding facility C. The rolling facility B is constituted by arranging a plurality of roll groups 21 on the upper and lower sides sandwiching the conveying path of the steel sheet and arranging them in the conveying path. The roll group 21 is constituted by a work roll 21a, an intermediate roll 21b, and a backup roll 21c. The work roll 21a is sandwiched between the heated steel plates and rolled. The intermediate roll 21b suppresses deformation of the work roll 21a at the time of rolling. The guide rolls 22 are arranged along the conveying path of the steel sheet, and are provided at both ends in the width direction of the steel sheet, thereby guiding the steel sheet proceeding along the conveying path. The overlay welding material of the present invention can be used to cover the roll surface of the guide roll 22.

압연설비(B)에 있어서 압연된 강판(이하, 압연강판이라고 함)은, 반송롤(41)에 의하여 권취설비(C)로 반송된다. 본원발명의 덧붙임 용접재료는, 반송롤(41)의 롤 표면을 피복하기 위하여 사용할 수 있다.The rolled steel sheet (hereinafter referred to as rolled steel sheet) in the rolling facility B is conveyed to the winding facility C by the conveying roll 41. [ The additional welding material of the present invention can be used to coat the roll surface of the transport roll 41. [

도 4는, 권취설비(C)의 평면도이다. 권취설비(C)는, 압연설비(B)로부터 송출된 압연강판을 롤형상으로 권취하는 설비이다. 권취설비(C)에는, 가이드라이너(31), 가이드롤(32)이 설치되어 있다. 가이드라이너(31) 및 가이드롤(32)은, 강판의 폭방향에서의 양단부에 배치됨으로써, 반송경로를 따라서 진행되는 압연강판을 가이드한다. 본원발명의 덧붙임 용접재료는, 가이드롤(32)의 롤 표면을 피복하기 위하여 사용할 수 있다.Fig. 4 is a plan view of the winding facility C. Fig. The winding facility C is a device for rolling the rolled steel sheet fed from the rolling facility B into a roll shape. In the winding facility C, a guide liner 31 and a guide roll 32 are provided. The guide liner 31 and the guide roll 32 are disposed at both ends in the width direction of the steel sheet, thereby guiding the rolled steel sheet proceeding along the conveying path. The overlay welding material of the present invention can be used to coat the roll surface of the guide roll 32. [

도 5는, 앤빌의 개략도이다. 본원발명의 덧붙임 용접재료는, 자유단조에 사용되는 앤빌의 표면을 피복하기 위하여 사용할 수 있다. 자유단조란, 가열된 금속재료를 상하 한 쌍의 앤빌(51, 52) 사이에 개재시키고, 프레스함으로써 단조를 행하는 가공방법 중 하나이다.Figure 5 is a schematic view of an anvil. The overlay welding material of the present invention can be used to coat the surface of an anvil used for free forging. Free forging is one of the processing methods for performing forging by interposing a heated metal material between upper and lower pairs of anvils 51 and 52 and pressing it.

이하, 본 발명에 따른 Ni계 합금의 한정 이유에 대하여 설명한다. 한편, 이하의 %는 질량%를 의미한다.The reasons for limiting the Ni-based alloy according to the present invention will be described below. On the other hand, the following% means mass%.

C:0.1% 이하C: not more than 0.1%

C는, 결정입계에 Ti, Cr, Mo, W 등과 탄화물을 형성하여 입계강화한다. 하지만, 0.1%를 넘으면 입자 내의 Ti, Cr, Mo, W 농도가 저하하여, 내력, 내산화성에 악영향을 미치기 때문에, 상한을 0.1%로 하였다.C forms a carbide with Ti, Cr, Mo, W and the like in the crystal grain boundaries to strengthen the grain boundaries. However, when the content exceeds 0.1%, the Ti, Cr, Mo, and W concentrations in the particles are lowered and adversely affecting the proof stress and oxidation resistance, so the upper limit is set to 0.1%.

Cr: 10~15%Cr: 10 to 15%

Cr은, 고온에서의 내산화성을 확보하기 위하여 10% 이상 필요하다. 하지만, 15%를 넘으면 취성(脆性)의 금속간 화합물이 석출하여 연성이 저하한다. 따라서, 그 범위를 10~15%로 하였다.Cr is required at least 10% in order to ensure oxidation resistance at high temperature. However, if it exceeds 15%, a brittle intermetallic compound precipitates and the ductility decreases. Therefore, the range was set at 10 to 15%.

Mo: 8~15%Mo: 8 to 15%

Mo는, γ상 내에 고용되어, 고온내력을 향상시키는 효과, 열팽창계수를 낮게 하는 효과가 있다. 또한, 몰드파우더에 포함되는 불소에 대한 내식성을 높이는 효과가 있는 원소이다. 하지만, 8% 미만에서는, 그 효과가 충분하지 않다. 또한, 15%를 넘으면 취성의 금속간 화합물이 석출하여 연성이 저하한다. 따라서, 그 범위를 8~15%로 하였다.Mo is dissolved in the? -Phase and has the effect of improving the high-temperature proof stress and the effect of lowering the thermal expansion coefficient. In addition, it is an element having an effect of enhancing the corrosion resistance to fluorine contained in the mold powder. However, if it is less than 8%, the effect is not sufficient. On the other hand, if it exceeds 15%, a brittle intermetallic compound precipitates and the ductility decreases. Therefore, the range is set to 8 to 15%.

W: 5% 이하W: 5% or less

W는, γ상 내에 고용되어, 고온내력을 향상시키는 효과, 열팽창계수를 낮게 하는 효과가 있는 원소이다. 하지만, 5%를 넘으면 취성의 금속간 화합물이 석출하여 연성이 저하하므로, 그 상한을 5%로 하였다.W is an element which is dissolved in the? -Phase and has the effect of improving the high-temperature proof stress and the effect of lowering the thermal expansion coefficient. However, if it exceeds 5%, a brittle intermetallic compound precipitates and the ductility decreases, so that the upper limit is set to 5%.

Co: 15% 이하Co: 15% or less

Co는, 연성을 개선하는 효과가 있는 원소이다. 하지만, 15%를 넘으면 비용상승이 되므로, 그 상한을 15%로 하였다.Co is an element having an effect of improving ductility. However, if it exceeds 15%, the cost increases, and the upper limit is set to 15%.

Al: 1~5%Al: 1 to 5%

Al은, γ'상을 형성하여, 고욘내력을 향상시키는 원소이다. 하지만, 1% 미만에서는 그 효과가 없고, 또한 5%를 넘으면 연성이 저하하므로, 그 범위를 1~5%로 하였다.Al is an element that forms a γ 'phase and improves the ocular resistance. However, if it is less than 1%, the effect is not obtained, and if it exceeds 5%, the ductility deteriorates, so that the range is set to 1 to 5%.

Ti: 1~5%Ti: 1-5%

Ti는, TiN을 생성하며, 열응력 집중원이 되어, 열균열을 미세화한다. 또한, γ'상 내의 Al과 치환하여 γ'상을 강화한다. 하지만, 1% 미만에서는 그 효과가 충분하지 않고, 또한 5%를 넘으면 연성이 저하하므로, 그 범위를 1~5%로 하였다. 즉, Ni계 합금에서의 Ti의 함유량은 5%가 상한이고, 5%를 넘으면 연성이 저하해 버린다.Ti produces TiN, becomes a source of thermal stress concentration, and makes thermal cracks finer. In addition, it replaces Al in the? 'Phase to strengthen the?' Phase. However, if the effect is less than 1%, the effect is not sufficient. If it exceeds 5%, the ductility decreases. Therefore, the range is set to 1 to 5%. That is, the content of Ti in the Ni-based alloy is 5% upper limit, and when it exceeds 5%, the ductility is lowered.

N: 0.01~0.1%N: 0.01 to 0.1%

N은, TiN을 생성하며, 열응력 집중원이 되어, 열균열을 미세화한다. 하지만, 0.01% 미만에서는 그 효과가 충분하지 않고, 또한 0.1%를 넘으면 용접시에 블로우홀이 발생하기 쉬워지므로, 그 범위를 0.01~0.1%로 하였다.N produces TiN, becomes a source of thermal stress concentration, and makes thermal cracks finer. However, when the content is less than 0.01%, the effect is insufficient. When the content exceeds 0.1%, blow holes are liable to be generated at the time of welding.

Cr%/33+Mo%/25+W%/31≤1Cr% / 33 + Mo% / 25 + W% / 31 1

Cr%/33+Mo%/25+W%/31이 1을 넘으면 취성의 금속간 화합물이 생성되어, 연성이 저하한다. 따라서, 그 상한을 1로 하였다.If the ratio of Cr% / 33 + Mo% / 25 + W% / 31 exceeds 1, a brittle intermetallic compound is produced and the ductility is lowered. Therefore, the upper limit was set to 1.

Ni계 합금에 첨가되는 혼합탄화물에 대하여 설명한다. 혼합탄화물은, WC, NbC, VC 및 CrC 중 1종 또는 2종 이상의 제1 탄화물과, TiC(제2 탄화물)로 이루어진다. 즉, 혼합탄화물은, WC, TiC로 이루어지는 혼합탄화물, NbC, TiC로 이루어지는 혼합탄화물, VC, TiC로 이루어지는 혼합탄화물, CrC, TiC로 이루어지는 혼합탄화물, WC, NbC, TiC로 이루어지는 혼합탄화물, WC, CrC, TiC로 이루어지는 혼합탄화물, WC, VC, TiC로 이루어지는 혼합탄화물, NbC, VC, TiC로 이루어지는 혼합탄화물, CrC, VC, TiC로 이루어지는 혼합탄화물, WC, NbC, CrC, TiC로 이루어지는 혼합탄화물, WC, NbC, VC, TiC로 이루어지는 혼합탄화물, WC, CrC, VC, TiC로 이루어지는 혼합탄화물, WC, NbC, CrC, VC, TiC로 이루어지는 혼합탄화물 중 어느 하나이다.The mixed carbide added to the Ni-based alloy will be described. The mixed carbide is composed of one or more of a first carbide of WC, NbC, VC and CrC, and TiC (second carbide). Namely, the mixed carbide is composed of mixed carbide composed of WC and TiC, mixed carbide composed of NbC and TiC, mixed carbide composed of VC and TiC, mixed carbide composed of CrC and TiC, mixed carbide composed of WC, NbC and TiC, Mixed carbides made of CrC and TiC, mixed carbides made of WC, VC and TiC, mixed carbides made of NbC, VC and TiC, mixed carbides made of CrC, VC and TiC, mixed carbides made of WC, NbC, CrC and TiC, Mixed carbides composed of WC, NbC, VC and TiC, mixed carbides composed of WC, CrC, VC and TiC, and mixed carbides composed of WC, NbC, CrC, VC and TiC.

또한, 질량%로 Ni계 합금 및 혼합탄화물의 총합량을 100%로 하였을 때, 제1 탄화물은 5~50%이고, 제2 탄화물은 3~30%이며, 제1 및 제2 탄화물의 총합량은 10~60%이다. 여기에서, 혼합탄화물이란, 제1 탄화물로 이루어지는 입자 및 제2 탄화물로 이루어지는 입자를 조립(造粒) 및 소결하여, 표면만을 서로 접착한 탄화물을 말한다.The first carbide is 5 to 50%, the second carbide is 3 to 30%, and the total amount of the first and second carbides is 5 to 50% when the total amount of the Ni-based alloy and the mixed carbide is 100% Is 10 to 60%. Here, the mixed carbide refers to a carbide obtained by granulating and sintering particles composed of a first carbide and particles composed of a second carbide, and bonding only surfaces to each other.

제1 탄화물 및 제2 탄화물을 상술한 비율로 Ni계 합금에 첨가함으로써, 후술하는 실시예에서 증명하는 바와 같이, 덧붙임 용접층의 연성 저하(내열균열성의 저하)와 내마모성의 저하를 억제할 수 있다. 일반적으로, 제1 탄화물만을 다량으로 Ni계 합금에 첨가하여 덧붙임 용접하면, 탄화물 입자의 외주부분이 열용융하고, 이 열용융한 원소가 과다하게 Ni계 합금에 포함되며, Ni계 합금에 포함되는 Ti와 제1 탄화물의 C가 반응하여 TiC를 형성한다. 그 때문에, Ni계 합금에서의 Ti의 함유량이 줄어버려, TiN의 생성량이 불충분해지므로, TiN을 열응력 집중원으로 하는 것에 의한 열균열의 미세화라고 하는 효과를 얻을 수 없다.By adding the first carbide and the second carbide to the Ni-based alloy in the above-mentioned ratio, it is possible to suppress deterioration of ductility (lowering of heat-resistant cracking resistance) and deterioration of wear resistance of the overburden welding layer . Generally, when only a first carbide is added to a Ni-based alloy in a superimposed manner, the outer circumferential portion of the carbide particles is thermally melted and the hot melted element is contained in the Ni-based alloy excessively, Ti and C of the first carbide react to form TiC. As a result, the content of Ti in the Ni-based alloy is reduced and the amount of TiN produced becomes insufficient, so that an effect of making the thermal cracking finer by making TiN a thermal stress concentration source can not be obtained.

본 실시형태와 같이, 제2 탄화물로서의 TiC를 Ni계 합금에 첨가한 경우에는, 덧붙임 용접시의 열을 수열함으로서 TiC의 일부가 열용융하여, 그 열용융한 TiC의 일부가 Ni계 합금의 C와 결합하여서, 내마모성이 뛰어난 TiC가 석출된다. 또한, 덧붙임 용접시에 열용융되지 않았던 나머지 TiC는, Ni계 합금과 화학반응하지 않고, 그대로 석출된다. 따라서, 제1 탄화물의 첨가량을 줄이는 것에 의한 부작용, 즉 내마모성의 저하를 억제할 수 있다. 또한, 열용융한 TiC의 일부가 Ni계 합금 내의 N과 결합하여, TiN이 생성되고, 이 TiN은 상술한 바와 같이 열응력 집중원이 되어 내열균열성을 높인다.When TiC as the second carbide is added to the Ni-based alloy as in the present embodiment, a part of the TiC is thermally melted by heat-receiving the heat at the time of welding, and a part of the thermally melted TiC is mixed with C And TiC having excellent wear resistance is precipitated. In addition, the remaining TiC that has not been thermally melted at the time of over welding is not chemically reacted with the Ni-based alloy, but is precipitated as it is. Therefore, it is possible to suppress side effects, that is, deterioration of wear resistance, by reducing the addition amount of the first carbide. Further, a part of the thermally melted TiC binds with N in the Ni-based alloy to form TiN, which becomes a heat stress concentration source as described above, thereby enhancing heat resistance cracking resistance.

또한, 제1 탄화물의 첨가량을 줄임으로써, Ni계 합금 내의 Ti와 제1 탄화물에 포함되는 C의 반응에 의하여 생성되는 TiC의 생성량이 감소하므로, Ti를 Ni계 합금 내에 충분히 남길 수 있다. 이에 따라, 응력 집중원으로서의 TiN의 생성량이 증대하므로, 열균열의 미세화에 따른 내열균열성을 만족시킬 수 있다.Further, by reducing the amount of the first carbide added, the amount of TiC produced by the reaction of Ti in the Ni-based alloy and C contained in the first carbide is reduced, so that Ti can be sufficiently left in the Ni-based alloy. As a result, the amount of TiN generated as a stress concentration source is increased, so that heat resistance cracking due to miniaturization of thermal cracking can be satisfied.

여기에서, 제1 탄화물의 첨가량이 5% 미만이 되면, 덧붙임 용접층의 내마모성이 불충분해진다. 또한, 제1 탄화물의 첨가량이 50% 초과가 되면, Ni계 합금 내의 Ti가 감소하여, 내열균열성을 만족시킬 수 없다. 또한, Ni계 합금 내의 W양 등이 너무 증가하여, 연성이 저하한다.Here, if the amount of the first carbide added is less than 5%, the wear resistance of the overlapped welding layer becomes insufficient. If the addition amount of the first carbide exceeds 50%, Ti in the Ni-based alloy decreases and the heat-resistant cracking property can not be satisfied. Also, the amount of W or the like in the Ni-based alloy is excessively increased and the ductility is lowered.

제2 탄화물의 첨가량이 3% 미만이 되면, Ni계 합금에 포함되는 Ti양 저하의 억제효과가 불충분해진다. 제2 탄화물의 첨가량이 30%를 넘으면, 탄화물이 성장하여 균열이 발생한다. 즉, 제2 탄화물의 비중은 제1 탄화물에 비하여 약 1/2~1/4이고, 체적률로 하면 2배에서 4배가 되어 균열이 발생한다. 제1 및 제2 탄화물의 총합량은 10~60%이다. 제1 및 제2 탄화물의 총합량이 60%를 넘으면, Ni계 합금 내의 Ti, N이 너무 적어, 애초에 응력 집중원으로서의 TiN을 충분히 생성할 수 없다.If the addition amount of the second carbide is less than 3%, the effect of suppressing the decrease in the amount of Ti contained in the Ni-based alloy becomes insufficient. When the added amount of the second carbide exceeds 30%, the carbide grows and cracks are generated. That is, the specific gravity of the second carbide is about 1/2 to 1/4 of that of the first carbide, and when the volume ratio is 2 to 4 times, the cracks are generated. The total amount of the first and second carbides is 10 to 60%. When the total amount of the first and second carbides exceeds 60%, Ti and N in the Ni-based alloy are so small that TiN as a stress concentration source can not be sufficiently generated in the beginning.

Ni계 합금에 첨가되는 복탄화물에 대하여 설명한다. 복탄화물은, (W,Ti)C, (Nb,Ti)C, (V,Ti)C, (Cr,Ti)C, (W,Nb,Ti)C, (W,V,Ti)C, (W,Cr,Ti)C, (Nb,V,Ti)C, (Nb,Cr,Ti)C, (V,Cr,Ti)C, (W,Nb,V,Ti)C, (W,Nb,Cr,Ti)C, (Nb,V,Cr,Ti)C, (W,Nb,V,Cr,Ti)C 중 어느 하나로 이루어지는 금속간 화합물이다.The double-carbide added to the Ni-based alloy will be described. (W, Ti) C, (Nb, Ti) C, (V, Ti) C, (Cr, Ti) C, (W, Cr, Ti) C, (Nb, V, Ti) C, (Nb, Cr, Ti) C, N, Cr, Ti) C, (Nb, V, Cr, Ti) C and (W, Nb, V, Cr, Ti) C.

이들 복탄화물은, 맨스트램법에 의하여 제조할 수 있다. 맨스트램법은, Fe-탄화물 생성금속(또는, Fe+탄화물 생성금속)+C로 이루어지는 원료를 고온(예를 들어, 2000℃ 이상)의 용융금속배스(용융금속배스는, Fe 이외의 Mn, Co, Ni, Cu, Al 등을 포함하고 있어도 좋다)로 이루어지는 열처리로 내에서 탄화물을 합성하고, 이어서 산처리하며, Fe 이외에 목적물 이외의 탄화물을 분해하고, 이어서 선광(選鑛)공정에서 물세정·체분석·비중선광을 행하며, 고품질 목적 탄화물을 얻는 동시에 불순물을 분리제거하고, 그 후에 더욱이 건조·체분석을 행하여, 원하는 탄화물을 얻는 제조법이다.These polycarbonates can be produced by the martram process. The martram method is a method in which a raw material composed of an Fe-carbide-forming metal (or Fe + carbide-forming metal) + C is mixed with a molten metal bath at a high temperature (for example, , Ni, Cu, Al, and the like), followed by acid treatment, followed by decomposition of carbides other than Fe in addition to Fe, followed by water washing / Sieve analysis and non-gravity casting to obtain a high-quality target carbide and at the same time to separate and remove impurities, followed by further drying and sieving analysis to obtain a desired carbide.

상술한 맨스트램법을 이용하여, 배합원료의 종류·조성을 다양하게 변경한 결과, 질량%로 WC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (W,Ti)C, NbC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (Nb,Ti)C, VC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (V,Ti)C, Cr3C2/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (Cr,Ti)C, WC/NbC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,Nb,Ti)C, WC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,V,Ti)C, WC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,Cr,Ti)C, NbC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (Nb,V,Ti)C, NbC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (Nb,Cr,Ti)C, VC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (V,Cr,Ti)C, WC/NbC/VC/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (W,Nb,V,Ti)C, WC/NbC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (W,Nb,Cr,Ti)C, NbC/VC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (Nb,V,Cr,Ti)C, WC/NbC/VC/Cr3C2/TiC=10/10/10/10/60~15/15/15/15/40에 상당하는 조성비율을 만족하는 (W,Nb,V,Cr,Ti)C를 제조할 수 있었다.(W, Ti) C, which satisfies the composition ratio corresponding to WC / TiC = 30/70 to 70/30 in mass% as a result of variously changing the kind and composition of the blended raw materials by the above- (Nb, Ti) C satisfying a composition ratio corresponding to NbC / TiC = 30 / 70-70 / 30 and (V, Ti) satisfying a composition ratio corresponding to VC / TiC = 30 / 70-70 / corresponding to C, Cr 3 C 2 / TiC = 30/70 ~ 70 / satisfying the composition ratio corresponding to 30 (Cr, Ti) C, WC / NbC / TiC = 15/15/70 ~ 40/30/30 (W, V, Ti) C, WC (W, V, Ti) C satisfying the composition ratio satisfying the composition ratio of WC / VC / TiC = 15/15/70/40/30/30 satisfying the composition ratio (W, Cr, Ti) C, NbC / VC / TiC = 15/15/70/40/30/30 satisfying the composition ratios corresponding to Cr 3 C 2 / TiC = satisfying a composition ratio equivalent to 30/30 (Nb, V, Ti) C, NbC / Cr 3 C 2 / TiC = 15/15/70 ~ 40/30 / that satisfies the composition ratio corresponding to 30 (Nb , Cr, Ti) C, VC / Cr 3 C 2 / TiC = 15/15/70 ~ 40/30 / that satisfies the mole fraction corresponding to the 30 (V, Cr, Ti) C, WC / NbC / VC / TiC = 10/10/10/70 ~ 30/20/20/30 (W, Nb, V, Ti ) satisfying the composition ratio of C, WC / NbC / Cr satisfying a composition ratio equivalent to 3 C 2 / TiC = 10/ 10/10/70 ~ 30/20/20/30 for (W, Nb, Cr, Ti ) C, NbC / VC / Cr 3 C 2 / TiC = 10/10/10/70 ~ 30/20/20 / that satisfies the composition ratio corresponding to 30 (Nb, V (W, Cr, Ti) C and WC / NbC / VC / Cr 3 C 2 / TiC = 10/10/10/10 / 60-15 / 15/15 / Nb, V, Cr, Ti) C could be produced.

질량%로 Ni계 합금 및 복탄화물의 총합량을 100%로 하였을 때, 복탄화물의 함유량은 10~60%이다. 복탄화물을 이 비율로 Ni계 합금에 첨가함으로써, 후술하는 실시예에서 증명하는 바와 같이, 덧붙임 용접층의 연성 저하(내열균열성의 저하)와 내마모성의 저하를 억제할 수 있다. 일반적으로, W, Nb, V, Cr로 이루어지는 탄화물만을 다량으로 Ni계 합금에 첨가하여 덧붙임 용접하면, 탄화물 입자의 외주부분이 열용융하고, 이 열용융한 원소가 과다하게 Ni계 합금에 포함되며, Ni계 합금에 포함되는 Ti와 W, Nb, V, Cr로 이루어지는 탄화물의 C가 반응하여 TiC가 형성된다. 그 때문에, Ni계 합금에 포함되는 Ti의 함유량이 감소하여, TiN의 생성량이 불충분해지므로, TiN을 열응력 집중원으로 하는 것에 의한 열균열의 미세화라고 하는 효과를 얻을 수 없다.When the total amount of the Ni-based alloy and the composite carbide is 100% by mass, the content of the composite carbide is 10 to 60%. By adding the composite carbide to the Ni-based alloy at this ratio, it is possible to suppress the deterioration of the ductility (lowering of the heat-resistant cracking resistance) and the deterioration of the wear resistance of the overlapped welded layer, as demonstrated in Examples to be described later. Generally, when only a large amount of carbides composed of W, Nb, V and Cr is added to a Ni-based alloy and are welded together, the outer circumferential portion of the carbide particles is thermally melted and the hot melted element is excessively contained in the Ni- , Ti contained in the Ni-based alloy reacts with C of carbide composed of W, Nb, V, and Cr to form TiC. As a result, the content of Ti contained in the Ni-based alloy decreases, and the amount of TiN generated becomes insufficient. Thus, the effect of making the thermal cracking source by making TiN a thermal stress concentration source is not obtained.

본 실시형태와 같이, Ti를 포함하는 복탄화물을 Ni계 합금에 첨가한 경우에는, 덧붙임 용접시의 열을 수열함으로써 Ti와 C가 열용융하고, 이 열용융한 Ti의 일부가 Ni계 합금의 C와 결합하여, 내마모성이 뛰어난 TiC가 석출된다. 또한, 덧붙임 용접시에 열용융되지 않았던 나머지 Ti와 C는, Ni계 합금과 화학반응하지 않고, 내마모성이 뛰어난 TiC로서 석출된다. 따라서, W, Nb, V, Cr로 이루어지는 탄화물의 첨가량을 줄이는 것에 따른 부작용, 즉 내마모성의 저하를 억제할 수 있다. 또한, 열용융한 Ti의 일부가 Ni계 합금 내의 N과 결합하여, TiN이 생성되며, 이러한 TiN은 상술한 바와 같이 열응력 집중원이 되므로 내열균열성이 높아진다.When a double-carbide containing Ti is added to a Ni-based alloy as in the present embodiment, Ti and C are thermally melted by heat treatment at the time of welding, and a part of the thermally melted Ti is mixed with the Ni- C, TiC having excellent abrasion resistance is precipitated. In addition, the remaining Ti and C, which have not been thermally melted at the time of over welding, do not chemically react with the Ni-based alloy and precipitate as TiC excellent in abrasion resistance. Therefore, it is possible to suppress a side effect, that is, a deterioration in wear resistance, caused by reducing the amount of carbide formed of W, Nb, V and Cr. In addition, a part of the thermally melted Ti bonds with N in the Ni-based alloy to generate TiN. Such TiN becomes a heat stress concentration source as described above, so that the heat resistance cracking property becomes high.

또한, W, Nb, V, Cr로 이루어지는 탄화물의 첨가량을 줄임으로써, Ni계 합금 내의 Ti와, W, Nb, V, Cr로 이루어지는 탄화물에 포함되는 C와의 반응에 따라서 생성되는 TiC의 생성량이 감소하므로, Ti를 Ni계 합금 내에 충분히 남길 수 있다. 이에 따라, 응력 집중원으로서의 TiN의 생성량이 증대하므로, 열균열의 미세화에 따른 내열균열성을 만족시킬 수 있다.Further, by decreasing the addition amount of carbide consisting of W, Nb, V and Cr, the amount of TiC generated in response to the reaction of Ti in the Ni-based alloy and C contained in the carbide composed of W, Nb, V and Cr decreases Therefore, Ti can be sufficiently left in the Ni-based alloy. As a result, the amount of TiN generated as a stress concentration source is increased, so that heat resistance cracking due to miniaturization of thermal cracking can be satisfied.

다음으로, 실시예를 나타내고, 본 발명에 대하여 보다 구체적으로 설명한다. 각종 실시예 및 비교예를 준비하고, 덧붙임 용접층의 내마모성 및 매열균열성을 평가하였다. 내마모성은, SS400 소재 상에 표 1 및 표 2에 나타내는 각종 실시예 및 비교예 재료를 덧붙임 용접한 후, 이 소재로부터 취출한 시험조각을 상대재료로 하여, 도 1에 나타내는 장치에서 열간마모시험을 실시함으로써 평가하였다. 보다 구체적으로는, 상기 시험조각을 SKD-11(φ30-40L/경도(Hs) 80~85)에 대하여 일정하중, 일정시간 프레스, 시험조각의 마모량을 측정함으로써 내마모성을 평가하였다. 마모감량이 100mg을 넘은 경우에는, 내마모성이 불량으로서 ×로 평가하였다. 마모감량이 50mg 이상 100mg 미만인 경우에는, 내마모성이 양호로서 ○로 평가하였다. 마모감량이 50mg 미만인 경우에는, 내마모성이 매우 양호로서 ◎로 평가하였다.Examples Next, the present invention will be described in more detail with reference to Examples. Various examples and comparative examples were prepared and the abrasion resistance and the heat cracking resistance of the overlapped welding layer were evaluated. The abrasion resistance is determined by welding the SS400 material in various examples and comparative examples shown in Tables 1 and 2, and using the test pieces taken out from the material as a counterpart, the hot wear test is performed in the apparatus shown in Fig. 1 . More specifically, the abrasion resistance of the test piece was evaluated by measuring the amount of abrasion of the test piece under a constant load, constant time press, and SKD-11 (φ30-40L / hardness (Hs) 80 to 85). When the wear loss was over 100 mg, the abrasion resistance was evaluated as " poor ". When the weight loss was less than 50 mg and less than 100 mg, the abrasion resistance was evaluated as good. When the wear loss was less than 50 mg, the abrasion resistance was evaluated to be very good and rated as?.

내열균열성은, 히트체크 시험에 의하여 평가하였다. 표 1 및 표 2에 나타내는 실시예 재료 및 비교예 재료에 의하여 덧붙임 용접된 롤을 1.44rpm의 회전속도로 회전시키고, 위쪽으로부터 가스버너로 가열하며, 아래쪽부터 냉각수를 분사하여 400℃ 가열과 200℃ 냉각의 열사이클을 5000회 부여하였다. 그 후, 롤 표면부의 단면(150mm×40mm를 4단면)을 미크로 관찰하고, 최대균열 깊이로 평가하였다. 최대 균열 깊이가 6mm 이상인 경우, 내열균열성이 불량으로서 ×로 평가하였다. 최대 균열 깊이가 5mm 이상 6mm 미만인 경우, 내열균열성이 양호로서 ○로 평가하였다. 최대 균열 깊이가 5mm 미만인 경우, 내열균열성이 매우 양호로서 ◎로 평가하였다.The heat-cracking resistance was evaluated by a heat-check test. The rolled welded roll was rotated at a rotational speed of 1.44 rpm and heated by a gas burner from above, cooling water was sprayed from the bottom, and heated at 400 DEG C and 200 DEG C The thermal cycle of cooling was applied 5,000 times. Thereafter, the cross section (150 mm x 40 mm, four cross sections) of the roll surface portion was microscopically observed and evaluated by the maximum crack depth. When the maximum crack depth was 6 mm or more, the heat cracking resistance was evaluated as "poor". When the maximum crack depth was 5 mm or more and less than 6 mm, the heat-resistant cracking resistance was evaluated as good. When the maximum crack depth was less than 5 mm, the heat-resisting cracking property was evaluated as " Excellent "

표 1은 Ni계 합금 및 혼합탄화물로 이루어지는 덧붙임 용접재료를 이용하여 용접한 경우의 시험결과이고, 표 2는 Ni계 합금 및 복탄화물로 이루어지는 덧붙임 용접재료를 이용하여 용접한 경우의 시험결과이다. 표 3은 열간마모시험의 시험조건이다. Ni계 합금으로서 질량%로 C: 0.05%, Cr: 13%, Mo: 11%, W: 2%, Co: 10%, A;: 2%, Ti: 2%, N: 0.02%로 잔부가 Ni 및 불가피적 불순물로 이루어지는 합금을 사용하였다.Table 1 shows the test results when welding is performed using an Ni-based alloy and an additive welding material composed of mixed carbides. Table 2 shows test results when Ni-based alloys and double-carbide welding materials are used. Table 3 shows the test conditions for the hot wear test. Ni alloy containing 0.05% of C, 13% of Cr, 11% of Mo, 2% of W, 10% of Co, 2% of A, 2% of Ti and 0.02% Ni and inevitable impurities were used.

[표 1A][Table 1A]

Figure pct00001
Figure pct00001

[표1B][Table 1B]

Figure pct00002
Figure pct00002

[표1C][Table 1C]

Figure pct00003
Figure pct00003

[표1D][Table 1D]

Figure pct00004
Figure pct00004

[표1E][Table 1E]

Figure pct00005
Figure pct00005

[표2A][Table 2A]

Figure pct00006
Figure pct00006

[표2B][Table 2B]

Figure pct00007
Figure pct00007

[표2C][Table 2C]

Figure pct00008
Figure pct00008

[표2D][Table 2D]

Figure pct00009
Figure pct00009

[표2E][Table 2E]

Figure pct00010
Figure pct00010

[표2F][Table 2F]

Figure pct00011
Figure pct00011

[표2G][Table 2G]

Figure pct00012
Figure pct00012

[표2H][Table 2H]

Figure pct00013
Figure pct00013

[표2I][Table 2I]

Figure pct00014
Figure pct00014

[표2J][Table 2J]

Figure pct00015
Figure pct00015

[표2K][Table 2K]

Figure pct00016
Figure pct00016

[표2L][Table 2L]

Figure pct00017
Figure pct00017

[표2M][Table 2M]

Figure pct00018
Figure pct00018

[표2N][Table 2N]

Figure pct00019
Figure pct00019

[표3][Table 3]

Figure pct00020
Figure pct00020

표 1A 내지 표 1E에 나타내는 바와 같이, 제1 탄화물(WC, NbC, CrC, VC)의 첨가량을 줄이는 것에 따른 내마모성의 저하를 제2 탄화물(TiC)를 첨가함으로써 억제할 수 있다는 것을 알 수 있었다. 즉, 제1 탄화물(WC, NbC, CrC, VC)이 5질량% 이상 포함되어 있는 경우에는, 제2 탄화물(TiC)을 첨가함으로써, 마모감량을 합격기준인 100mg 이하로 억제할 수 있다는 것을 알 수 있었다.As shown in Tables 1A to 1E, it was found that the deterioration of the abrasion resistance due to the reduction of the amount of the first carbides (WC, NbC, CrC and VC) can be suppressed by adding the second carbide (TiC). That is, when the first carbide (WC, NbC, CrC, VC) is contained in an amount of 5 mass% or more, by adding the second carbide (TiC), it is possible to suppress the wear loss to 100 mg or less I could.

표 2A 내지 표 2E에 나타내는 바와 같이, WC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (W,Ti)C, NbC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (Nb,Ti)C, VC/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (V,Ti)C, Cr3C2/TiC=30/70~70/30에 상당하는 조성비율을 만족하는 (Cr,Ti)C, WC/NbC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,Nb,Ti)C, WC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,V,Ti)C, WC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (W,Cr,Ti)C, NbC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (Nb,V,Ti)C, NbC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (Nb,Cr,Ti)C, VC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하는 (V,Cr,Ti)C, WC/NbC/VC/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (W,Nb,V,Ti)C, WC/NbC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (W,Nb,Cr,Ti)C, NbC/VC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하는 (Nb,V,Cr,Ti)C, WC/NbC/VC/Cr3C2/TiC=10/10/10/10/60~15/15/15/15/40에 상당하는 조성비율을 만족하는 (W,Nb,V,Cr,Ti)C 중 어느 하나의 복탄화물을 Ni계 합금에 대하여 10질량% 이상 첨가함으로써, 마모감량을 합격기준인 100mg 이하로 억제할 수 있다는 것을 알 수 있었다.(W, Ti) C and NbC / TiC = 30/70 to 70/30 satisfying the composition ratio corresponding to WC / TiC = 30/70 to 70/30 as shown in Tables 2A to 2E (V, Ti) C, Cr 3 C 2 / TiC = 30/70 to 70 (Nb, Ti) C satisfying the composition ratios corresponding to VC / TiC = 30/70 to 70/30 (W, Nb, Ti) C (Cr, Ti) C satisfying the composition ratio corresponding to WC / NbC / TiC = 15/15/70/40/30/30, (W, V, Ti) C, WC / Cr 3 C 2 / TiC = 15/15/70 to 30/30 satisfying the composition ratios corresponding to WC / VC / TiC = 15/15/70/40/30/30. (W, Cr, Ti) C satisfying the composition ratio corresponding to 40/30/30 and NbC / VC / TiC = 15/15/70/40/30/30 satisfying the composition ratio corresponding to NbC / (Nb, Cr, Ti) C, VC / Cr 3 C 2 / TiC which satisfy the composition ratios corresponding to NbC / Cr 3 C 2 / TiC = 15/15/70/40/30/30. (V, Cr, Ti) C and WC / NbC / VC / TiC = 10/10/10/70/30/20/30, (W, Nb, V, Ti) C, WC / NbC / Cr 3 C 2 (W, Nb, Cr, Ti) C, NbC / VC / Cr 3 C 2 / TiC = 10/30/20/30/30, 10/10 / 70-30 / 20/20 / that satisfies the composition ratio corresponding to 30 (Nb, V, Cr, Ti) C, WC / NbC / VC / Cr 3 C 2 / TiC = 10/10/10 (W, Nb, V, Cr, and Ti) C satisfying a compositional ratio corresponding to 10/60 to 15/15/15/15/40 in an amount of 10 mass% or more , It was found that the weight loss can be suppressed to 100 mg or less, which is a passing criterion.

여기에서, 조성비율이 상기 범위를 초과한 복탄화물에 대하여는, 애초에 만들 수가 없었다. 본원의 청구항 2에 기재된 복탄화물은, 원하는 내마모성 및 내열균열성을 만족하는 제조 가능한 복탄화물만을 규정하고 있다.Here, it was impossible to make a polycarbonate having a composition ratio exceeding the above range in the beginning. The double-carbide according to Claim 2 of the present application only defines a manufacturable polycarbonate that satisfies desired wear resistance and heat-resisting cracking property.

표 1A에 나타내는 바와 같이, Ni계 합금에 제1 탄화물만을 첨가한 비교예 2는, 매트릭스 금속 내의 Ti양이 저하되어, 균열 깊이가 커졌다. 이에 대하여, 본 실시예는, 매트릭스 금속 내의 Ti양이 저하되기 어려워, 비교재에 비하여 균열 깊이가 작아졌다. 예를 들어, 표 1A의 실시예 1~8에 나타내는 바와 같이, 비교예 2와 비교하여 제1 탄화물의 첨가량을 적게 함으로써, 내열균열성이 향상되었다. 즉, 제1 탄화물의 첨가량을 줄임으로써, Ni계 합금 내의 Ti와 제1 탄화물에 포함되는 C와의 반응에 의하여 생성되는 TiC의 생성량이 줄어들기 때문에, Ti를 Ni계 합금 내에 충분히 남길 수 있게 되어, 응력 집중원으로서의 TiN의 생성량이 증대하였다고 생각된다. 표 1A의 실시예 14~16, 표 1A의 실시예 19~22, 표 1A의 실시예 25~28, 표 1B의 실시예 31~37, 표 1B의 실시예 43~49, 표 1B의 실시예 55~61, 표 1C의 실시예 67~73, 표 1C의 실시예 79~85, 표 1C의 실시예 91~97, 표 1D의 실시예 103~109, 표 1D의 실시예 115~121, 표 1D의 실시예 127~133, 표 1E의 139~145에서도 마찬가지의 결과가 얻어졌다.As shown in Table 1A, in Comparative Example 2 in which only the first carbide was added to the Ni-based alloy, the amount of Ti in the matrix metal decreased and the depth of cracks increased. On the other hand, in the present embodiment, the amount of Ti in the matrix metal is hardly lowered, and the crack depth is smaller than that of the comparative material. For example, as shown in Examples 1 to 8 of Table 1A, when the amount of the first carbide added is smaller than that of Comparative Example 2, the heat-resistant cracking property is improved. That is, since the amount of TiC generated by the reaction between Ti in the Ni-based alloy and C contained in the first carbide is reduced by reducing the amount of the first carbide added, Ti can be sufficiently left in the Ni-based alloy, It is considered that the amount of TiN as a stress concentration source is increased. Examples 14 to 16 of Table 1A, Examples 19 to 22 of Table 1A, Examples 25 to 28 of Table 1A, Examples 31 to 37 of Table 1B, Examples 43 to 49 of Table 1B, Examples 55 to 61, Examples 67 to 73 of Table 1C, Examples 79 to 85 of Table 1C, Examples 91 to 97 of Table 1C, Examples 103 to 109 of Table 1D, Examples 115 to 121 of Table 1D, Similar results were obtained in Examples 127 to 133 of Table 1E and 139 to 145 of Table 1E.

또한, 표 1A의 실시예 9~13에 나타내는 바와 같이, 제1 탄화물을 다량(단, 제1 탄화물의 첨가량은 50% 이하임)으로 첨가한 경우에도, 제2 탄화물로서의 TiC를 첨가함으로써 응력 집중원으로서의 TiN이 생성되었다고 생각된다. 표 1A의 실시예 17~18, 표 1A의 23~24, 표 1A의 29~30, 표 1B의 실시예 38~42, 표 1B의 실시예 50~54, 표 1B의 실시예 62~66, 표 1C의 실시예 74~78, 표 1C의 실시예 86~90, 표 1C의 실시예 98~102, 표 1D의 실시예 110~114, 표 1D의 실시예 122~126, 표 1D의 실시예 134~138, 표 1E의 실시예 146~150에서도 마찬가지의 결과가 얻어졌다.Also, as shown in Examples 9 to 13 in Table 1A, even when a large amount of the first carbide is added (the addition amount of the first carbide is 50% or less), by adding TiC as the second carbide, It is considered that TiN as a circle is generated. Examples 17 to 18 of Table 1A, 23 to 24 of Table 1A, 29 to 30 of Table 1A, Examples 38 to 42 of Table 1B, Examples 50 to 54 of Table 1B, Examples 62 to 66 of Table 1B, Examples 74 to 78 of Table 1C, Examples 86 to 90 of Table 1C, Examples 98 to 102 of Table 1C, Examples 110 to 114 of Table 1D, Examples 122 to 126 of Table 1D, Examples of Table 1D 134 to 138, and Examples 146 to 150 of Table 1E, the same results were obtained.

그리고, 표 1A의 비교예 5를 참조하여, 제1 탄화물로서 WC가 50%를 초과함으로써, 최대균열깊이가 6.3mm로 증대하였다. 표 1A의 비교예 8을 참조하여, 제1 탄화물로서의 NbC가 50%를 초과함으로써, 최대균일깊이가 6.5mm로 증대하였다. 표 1A의 비교예 11을 참조하여, 제1 탄화물로서의 CrC가 50%를 초과함으로써, 최대균열깊이가 6.6mm로 증대하였다. 표 1A의 비교예 14를 참조하여, 제1 탄화물로서의 VC가 50%를 초과함으로써, 최대균열깊이가 7.0mm로 증대하였다. 표 1B의 비교예 17을 참조하여, 제1 탄화물로서의 WC 및 NbC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.6mm로 증대하였다. 표 1B의 비교예 19를 참조하여, 제1 탄화물로서의 WC 및 CrC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.5mm로 증대하였다. 표 1B의 비교예 21을 참조하여, 제1 탄화물로서의 WC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.7mm로 증대하였다. 표 1C의 비교예 23을 참조하여, 제1 탄화물로서의 NbC 및 CrC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.4mm로 증대하였다. 표 1C의 비교예 25를 참조하여, 제1 탄화물로서의 NbC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.7mm로 증대하였다. 표 1C의 비교예 27를 참조하여, 제1 탄화물로서의 CrC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.8mm로 증대하였다. 표 1D의 비교예 29를 참조하여, 제1 탄화물로서의 WC, NbC 및 CrC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.5mm로 증대하였다. 표 1D의 비교예 31을 참조하여, 제1 탄화물로서의 WC, NbC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.4mm 증대하였다. 표 1D의 비교예 33을 참조하여, 제1 탄화물로서의 WC, CrC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.9mm로 증대하였다. 표 1E의 비교예 35를 참조하여, 제1 탄화물로서의 WC, NbC, CrC 및 VC의 총량이 50%를 초과함으로써, 최대균열깊이가 6.9mm로 증대하였다. 이러한 것으로부터, 제1 탄화물의 첨가량이 50% 초과가 되면, Ni계 함금 내의 Ti가 과도하게 감소하여, 내열균열성이 현저하게 저하한다고 생각된다. 또한, 소정의 복탄화물의 첨가량을 60질량% 이하로 제한함으로써, 내열균열성을 합격기준인 6mm 이하로 억제할 수 있었다.With reference to Comparative Example 5 in Table 1A, when the WC as the first carbide exceeded 50%, the maximum crack depth increased to 6.3 mm. Referring to Comparative Example 8 in Table 1A, the maximum uniform depth increased to 6.5 mm when NbC as the first carbide exceeded 50%. Referring to Comparative Example 11 in Table 1A, when the CrC as the first carbide exceeded 50%, the maximum crack depth increased to 6.6 mm. Referring to Comparative Example 14 in Table 1A, when the VC as the first carbide exceeds 50%, the maximum crack depth increases to 7.0 mm. Referring to Comparative Example 17 of Table 1B, when the total amount of WC and NbC as the first carbide exceeded 50%, the maximum crack depth increased to 6.6 mm. Referring to Comparative Example 19 in Table 1B, when the total amount of WC and CrC as the first carbide exceeded 50%, the maximum crack depth increased to 6.5 mm. Referring to Comparative Example 21 in Table 1B, when the total amount of WC and VC as the first carbide exceeded 50%, the maximum crack depth increased to 6.7 mm. Referring to Comparative Example 23 in Table 1C, when the total amount of NbC and CrC as the first carbide exceeded 50%, the maximum crack depth increased to 6.4 mm. With reference to Comparative Example 25 in Table 1C, when the total amount of NbC and VC as the first carbide exceeded 50%, the maximum crack depth increased to 6.7 mm. Referring to Comparative Example 27 in Table 1C, when the total amount of CrC and VC as the first carbide exceeded 50%, the maximum crack depth increased to 6.8 mm. Referring to Comparative Example 29 in Table 1D, the maximum crack depth increased to 6.5 mm as the total amount of WC, NbC, and CrC as the first carbide exceeded 50%. Referring to Comparative Example 31 of Table 1D, the maximum crack depth was increased by 6.4 mm when the total amount of WC, NbC and VC as the first carbides exceeded 50%. Referring to Comparative Example 33 in Table 1D, the maximum crack depth increased to 6.9 mm when the total amount of WC, CrC, and VC as the first carbides exceeded 50%. Referring to Comparative Example 35 of Table 1E, when the total amount of WC, NbC, CrC, and VC as the first carbides exceeded 50%, the maximum crack depth increased to 6.9 mm. From this, it is considered that when the amount of the first carbide added exceeds 50%, Ti in the Ni-based alloy excessively decreases and the heat-resistant cracking property is remarkably lowered. Further, by limiting the addition amount of the predetermined polycarbonate to 60 mass% or less, the heat resistance cracking resistance can be suppressed to 6 mm or less, which is the acceptance criterion.

Claims (7)

Ni계 합금과, 혼합탄화물로 이루어지는 덧붙임용 용접재료로서,
상기 Ni계 합금은, 질량%로 C:0.1% 이하, Cr:10~15%, Mo:8~15%, W:5% 이하, Co:15% 이하, Al:1~5%, Ti:1~5%, N:0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하고 있고,
상기 혼합탄화물은, WC, NbC, VC 및 CrC 중 1종 또는 2종 이상의 제1 탄화물과, TiC의 제2 탄화물로 이루어지며,
질량%로 상기 Ni계 합금 및 상기 혼합탄화물의 총합량을 100%로 하였을 때, 상기 제1 탄화물은 5~50%이고, 상기 제2 탄화물은 3~30%이며, 상기 제1 및 제2 탄화물의 총합량은 10~60%인 것을 특징으로 하는 고온역에서의 내열균열성 및 내마모성이 뛰어난 덧붙임용 용접재료.
Ni alloy, and a mixed carbide,
Wherein the Ni-based alloy contains 0.1 to 10% of C, 10 to 15% of Cr, 8 to 15% of Mo, 5% or less of W, 15% or less of Co, 33% + Mo% / 25 + W% / 31? 1, and the balance of Ni and inevitable impurities.
Wherein the mixed carbide is composed of at least one of a first carbide of WC, NbC, VC, and CrC, and a second carbide of TiC,
Wherein the first carbide is 5 to 50% and the second carbide is 3 to 30% when the total amount of the Ni-based alloy and the mixed carbide is 100% by mass%, the first and second carbides Is 10 to 60%. The weld material for superimposing is excellent in heat-resistant cracking resistance and wear resistance at high temperature.
Ni계 합금과, 복탄화물로 이루어지는 덧붙임용 용접재료로서,
상기 Ni계 합금은, 질량%로 C:0.1% 이하, Cr: 10~15%, Mo: 8~15%, W: 5% 이하, Co: 15% 이하, Al: 1~5%, Ti: 1~5%, N: 0.01~0.1%를 포함하고, 잔부 Ni 및 불가피적 불순물로 이루어지며, 또한 Cr%/33+Mo%/25+W%/31≤1을 만족하고 있고,
상기 복탄화물은, (W,Ti)C, (Nb, Ti)C, (V,Ti)C, (Cr,Ti)C, (W,Nb,Ti)C, (W,V,Ti)C, (W,Cr,Ti)C, (Nb,V,Ti)C, (Nb,Cr,Ti)C, (V,Cr,Ti)C, (W,Nb,V,Ti)C, (W,Nb,Cr,Ti)C, (Nb,V,Cr,Ti)C, (W,Nb,V,Cr,Ti)C 중 어느 하나이며,
질량%로 (W,Ti)C는 WC/TiC=30/70~70/30에 상당하는 조성비율을 만족하고, (Nb,Ti)C는 NbC/TiC=30/70~70/30에 상당하는 조성비율을 만족하며, (V,Ti)C는 VC/TiC=30/70~70/30에 상당하는 조성비율을 만족하고, (Cr,Ti)C는 Cr3C2/TiC=30/70~70/30에 상당하는 조성비율을 만족하며, (W,Nb,Ti)C는 WC/NbC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (W,V,Ti)C는 WC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (W,Cr,Ti)C는 WC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (Nb,V,Ti)C는 NbC/VC/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (Nb,Cr,Ti)C는 NbC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하고, (V,Cr,Ti)C는 VC/Cr3C2/TiC=15/15/70~40/30/30에 상당하는 조성비율을 만족하며, (W,Nb,V,Ti)C는 WC/NbC/VC/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하고, (W,Nb,Cr,Ti)C는 WC/NbC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하며, (Nb,V,Cr,Ti)C는 NbC/VC/Cr3C2/TiC=10/10/10/70~30/20/20/30에 상당하는 조성비율을 만족하고, (W,Nb,V,Cr,Ti)C는 WC/NbC/VC/Cr3C2/TiC=10/10/10/10/60~15/15/15/15/40에 상당하는 조성비율을 만족하고 있으며,
질량%로 상기 Ni계 합금 및 상기 복탄화물의 총합량을 100%로 하였을 때, 상기 복탄화물은 10%~60%인 것을 특징으로 하는 고온역에서의 내열균열성 및 내마모성이 뛰어난 덧붙임용 용접재료.
Ni-based alloy, and a composite carbide,
Wherein the Ni-based alloy contains 0.1 to 10% of C, 10 to 15% of Cr, 8 to 15% of Mo, 5% or less of W, 15% or less of Co, 33% + Mo% / 25 + W% / 31? 1, and the balance of Ni and inevitable impurities.
(W, Ti) C, (Nb, Ti) C, (V, Ti) C, (Cr, Ti) C, (W, Cr, Ti) C, (Nb, V, Ti) C, (Nb, Cr, Ti) C, (Nb, Cr, Ti) C, (Nb, V, Cr, Ti) C,
(W, Ti) C satisfies a composition ratio corresponding to WC / TiC = 30/70 to 70/30 in terms of mass%, and (Nb, Ti) C satisfies NbC / TiC = 30/70 to 70/30 (V, Ti) C satisfies a composition ratio corresponding to VC / TiC = 30/70 to 70/30 and (Cr, Ti) C satisfies a composition ratio of Cr 3 C 2 / TiC = (W, Nb, Ti) C satisfies a composition ratio corresponding to WC / NbC / TiC = 15/15/70 to 40/30/30, W, V, Ti) C is WC / VC / TiC = 15/ 15/70 ~ 40/30 / satisfy the composition ratio equal to 30 and, (W, Cr, Ti) C is WC / Cr 3 C 2 / (Nb, V, Ti) C satisfies NbC / VC / TiC = 15/15/70/40/30/30 and satisfies the mole fraction of, (Nb, Cr, Ti) C satisfies the mole fraction corresponding to the NbC / Cr 3 C 2 / TiC = 15/15/70 ~ 40/30/30, and (V, Cr, (W, Nb, V, Ti) C satisfies a composition ratio corresponding to VC / Cr 3 C 2 / TiC = 15/15/70/40/30/30, and WC / NbC / VC / (W, Nb, Cr, Ti) C satisfies a composition ratio corresponding to TiC = 10/10/10 / 70-30 / 20/20/30 and WC / NbC / Cr 3 C 2 / TiC = 10/10/10/70 ~ 30/20/20 / , and satisfies the mole fraction equal to 30, (Nb, V, Cr , Ti) C is NbC / VC / Cr 3 C 2 / TiC = 10/10/ 10/70 ~ 30/20/20 / satisfy the composition ratio equal to 30, and (W, Nb, V, Cr, Ti) C is WC / NbC / VC / Cr 3 C 2 / TiC = 10/10/10/10 / 60-15 / 15/15/15/40,
Wherein the composite carbide is 10% to 60% by mass when the total amount of the Ni-based alloy and the composite carbide is taken as 100%, wherein the composite carbide has a heat-resisting cracking property and an abrasion resistance at high temperature, .
가열된 강철관의 구부러짐을 교정하는 교정롤로서,
그 교정롤의 롤 표면은, 제 1 항 또는 제 2 항에 기재된 덧붙임 용접재료에 의하여 덧붙임 용접되어 있는 것을 특징으로 하는 교정롤.
A calibrating roll for calibrating a bending of a heated steel tube,
Wherein the roll surface of the calibrating roll is welded in an overlapping manner by the overlap welding material according to claim 1 or 2.
가열된 강판을 압연하는 압연설비에 이용되는 가이드롤로서,
그 가이드롤의 롤 표면은, 제 1 항 또는 제 2 항에 기재된 덧붙임 용접재료에 의하여 덧붙임 용접되어 있는 것을 특징으로 하는 가이드롤.
As a guide roll used in a rolling facility for rolling a heated steel sheet,
Wherein the roll surface of the guide roll is welded in an overlapping manner by the overlap welding material according to claim 1 or 2.
압연설비에 있어서 압연된 압연강판을 권취하는 권취설비에 이용되는 가이드롤로서,
그 가이드롤의 롤 표면은, 제 1 항 또는 제 2 항에 기재된 덧붙임 용접재료에 의하여 덧붙임 용접되어 있는 것을 특징으로 하는 가이드롤.
As a guide roll used in a winding apparatus for winding a rolled rolled steel sheet in a rolling facility,
Wherein the roll surface of the guide roll is welded in an overlapping manner by the overlap welding material according to claim 1 or 2.
압연설비에 있어서 압연된 압연강판을 권취설비로 반송하는 반송롤로서,
그 반송롤의 롤 표면은, 제 1 항 또는 제 2 항에 기재된 덧붙임 용접재료에 의하여 덧붙임 용접되어 있는 것을 특징으로 하는 반송롤.
As a conveying roll for conveying rolled rolled steel sheets to a winding facility in a rolling facility,
And the roll surface of the conveying roll is welded in an overlapping manner by the overlap welding material according to claim 1 or 2.
자유단조에 있어서 이용되는 앤빌로서,
그 앤빌의 표면은, 제 1 항 또는 제 2 항에 기재된 덧붙임 용접재료에 의하여 덧붙임 용접되어 있는 것을 특징으로 하는 앤빌.
As an anvil used in free forging,
Characterized in that the surface of the anvil is over-welded by the over-welding material according to claim 1 or 2.
KR1020157024845A 2013-08-07 2014-08-05 Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil KR101642901B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2013-164255 2013-08-07
JP2013164255 2013-08-07
PCT/JP2014/000759 WO2015019518A1 (en) 2013-08-07 2014-02-14 Welding material for building-up, straightening roll, guide roll, conveyance roll and anvil
JPPCT/JP2014/000759 2014-02-14
PCT/JP2014/004083 WO2015019603A1 (en) 2013-08-07 2014-08-05 Buildup welding material, straightening roll, guide roll, transporting roll, and anvil

Publications (2)

Publication Number Publication Date
KR20150119181A true KR20150119181A (en) 2015-10-23
KR101642901B1 KR101642901B1 (en) 2016-07-26

Family

ID=52460882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157024845A KR101642901B1 (en) 2013-08-07 2014-08-05 Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil

Country Status (5)

Country Link
JP (1) JP5859175B2 (en)
KR (1) KR101642901B1 (en)
BR (1) BR112015023614A2 (en)
TW (1) TW201527031A (en)
WO (2) WO2015019518A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6468873B2 (en) * 2015-02-05 2019-02-13 新日鐵住金株式会社 Split drive roll for continuous casting
CN105014260B (en) * 2015-07-30 2017-04-19 鞍钢集团工程技术有限公司 Welding rod and welding method for repair welding of high-strength steel wheel
CN108913953B (en) * 2018-07-31 2019-07-05 成都工业学院 A kind of VC particle enhanced nickel base high temperature alloy and preparation method thereof
CN113385851B (en) * 2021-05-28 2022-11-11 中国科学院上海硅酸盐研究所苏州研究院 High-temperature-resistant corrosion-resistant solder for silicon carbide ceramic connection and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285675A (en) * 1993-03-31 1994-10-11 Kobe Steel Ltd Compound powder material for powder plasma welding
JPH0732189A (en) * 1993-07-14 1995-02-03 Kobe Steel Ltd Composite power material for powder plasma welding
JP2006255767A (en) * 2005-03-18 2006-09-28 Sanyo Special Steel Co Ltd Ni-RADICAL BUILDING UP POWDER FOR DIE USED IN HOT WORKING AND DIE FOR HOT WORKING
JP2007136509A (en) * 2005-11-18 2007-06-07 Sanyo Special Steel Co Ltd Build-up welding material for continuous casting roll, and roll

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131172A (en) * 1997-08-26 1999-05-18 Topy Ind Ltd Wear resistant alloy
JPH11217610A (en) * 1998-01-28 1999-08-10 Tobata Seisakusho:Kk Hard padded tuyere
JPH11347787A (en) * 1998-06-08 1999-12-21 Ofic Co Ni-c welding material
JP4170273B2 (en) * 2003-08-28 2008-10-22 本田技研工業株式会社 Die casting mold repair powder and die casting mold repair method using the same
JP4551201B2 (en) * 2004-12-03 2010-09-22 三菱重工業株式会社 Powder plasma welding material and high temperature wear resistant member
JP4696795B2 (en) * 2005-09-06 2011-06-08 三菱マテリアル株式会社 Welding material for overlaying, excavation tool hardened using the same, and plate for wear prevention
WO2007114524A1 (en) * 2006-03-30 2007-10-11 Komatsu Ltd. Wear-resistant particle and wear-resistant structural member
JP4901324B2 (en) * 2006-06-20 2012-03-21 株式会社小松製作所 Method of forming hardfacing layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285675A (en) * 1993-03-31 1994-10-11 Kobe Steel Ltd Compound powder material for powder plasma welding
JPH0732189A (en) * 1993-07-14 1995-02-03 Kobe Steel Ltd Composite power material for powder plasma welding
JP2006255767A (en) * 2005-03-18 2006-09-28 Sanyo Special Steel Co Ltd Ni-RADICAL BUILDING UP POWDER FOR DIE USED IN HOT WORKING AND DIE FOR HOT WORKING
JP2007136509A (en) * 2005-11-18 2007-06-07 Sanyo Special Steel Co Ltd Build-up welding material for continuous casting roll, and roll

Also Published As

Publication number Publication date
WO2015019603A1 (en) 2015-02-12
KR101642901B1 (en) 2016-07-26
WO2015019518A1 (en) 2015-02-12
JPWO2015019603A1 (en) 2017-03-02
BR112015023614A2 (en) 2017-07-18
JP5859175B2 (en) 2016-02-10
TW201527031A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
EP3112081B1 (en) Welded joint
US20220339688A1 (en) Tube and a method of manufacturing a tube
JP4761993B2 (en) Manufacturing method of ferritic stainless steel welded pipe for spinning
KR101830561B1 (en) Ferritic stainless steel and production method therefor
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
JP6870749B2 (en) Austenitic Stainless Steel Welded Metals and Welded Structures
KR101642901B1 (en) Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil
CN108026623B (en) Ferritic stainless steel
JP6093210B2 (en) Heat-resistant ferritic stainless steel sheet with excellent low-temperature toughness and method for producing the same
JP2020105572A (en) Austenitic heat resistant steel
JP5005395B2 (en) Welding wire for high strength and toughness steel
CN113718135B (en) Ni-based alloy pipe and welded joint
JP6870748B2 (en) Austenitic stainless steel
WO2015190574A1 (en) Buildup welded body
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP5362825B2 (en) Ferritic stainless steel excellent in workability of welded portion, welded steel pipe using the same, and manufacturing method thereof
JP2007023346A (en) Method for producing high strength welded steel tube excellent in strain-aging characteristic
CN113718133B (en) Ni-based alloy pipe and welded joint
JP6468873B2 (en) Split drive roll for continuous casting
CN115210399B (en) Clad steel plate, method for producing same, and welded structure
JP2010235990A (en) High strength steel sheet for sliding bearing
JP2019111573A (en) Die repair weld material
WO2012133879A1 (en) Thick steel sheet having superior fatigue resistance properties in direction of sheet thickness, method for producing same, and fillet welded joint using said thick steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190703

Year of fee payment: 4