KR20150102745A - A surface enhanced transparent substrate and method for manufacturing thereof - Google Patents

A surface enhanced transparent substrate and method for manufacturing thereof Download PDF

Info

Publication number
KR20150102745A
KR20150102745A KR1020150028601A KR20150028601A KR20150102745A KR 20150102745 A KR20150102745 A KR 20150102745A KR 1020150028601 A KR1020150028601 A KR 1020150028601A KR 20150028601 A KR20150028601 A KR 20150028601A KR 20150102745 A KR20150102745 A KR 20150102745A
Authority
KR
South Korea
Prior art keywords
methyl
pomma
phenyl
glyp
eche
Prior art date
Application number
KR1020150028601A
Other languages
Korean (ko)
Other versions
KR102367120B9 (en
KR102367120B1 (en
Inventor
정희정
유재원
최승석
남동진
최지식
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to PCT/KR2015/001971 priority Critical patent/WO2015130146A1/en
Priority to TW104106518A priority patent/TWI656028B/en
Publication of KR20150102745A publication Critical patent/KR20150102745A/en
Application granted granted Critical
Publication of KR102367120B1 publication Critical patent/KR102367120B1/en
Publication of KR102367120B9 publication Critical patent/KR102367120B9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Silicon Polymers (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)

Abstract

The present invention relates to a surface-enhanced transparent substrate and a manufacturing method thereof and, particularly, to a surface-enhanced transparent substrate and a manufacturing method thereof, with significantly improved surface hardness, and with improved fingerprint resistance, scratch resistance, pollution resistance, heat resistance, permeability, and haze properties at the same time, by treating the surface using a silsesquioxane composite polymer comprising a linear silsesquioxane chain and a cage-type silsesquioxane with a specific structure inside one polymer.

Description

표면강화 투명기판 및 이의 제조방법{A SURFACE ENHANCED TRANSPARENT SUBSTRATE AND METHOD FOR MANUFACTURING THEREOF}TECHNICAL FIELD [0001] The present invention relates to a surface-enhanced transparent substrate and a method of manufacturing the same. BACKGROUND OF THE INVENTION < RTI ID = 0.0 >

본 발명은 표면강화 투명기판 및 이의 제조방법에 관한 것으로, 하나의 고분자 내에 특정 구조의 선형 실세스퀴옥산 사슬 및 케이지형 실세스퀴옥산을 포함하는 실세스퀴옥산 복합 고분자를 이용하여 표면을 처리함으로써 표면경도가 현저히 개선되고, 동시에 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 향상된 표면강화 투명기판 및 이의 제조방법에 관한 것이다.
The present invention relates to a surface-enhanced transparent substrate and a method for producing the same, and more particularly, to a surface-enhanced transparent substrate and a method for producing the same, which comprises treating a surface with a silsesquioxane complex polymer comprising a linear silsesquioxane chain having a specific structure and a cage silsesquioxane To a surface-reinforced transparent substrate having improved surface hardness and at the same time improving surface smoothness, scratch resistance, stain resistance, heat resistance, transparency and haze characteristics, and a method for producing the same.

투명기판은 다양한 용도로 사용되고 있다. 특히 스마트폰, 테블릿 PC, 노트북 PC, AIO(All-In-One) PC, LCD 모니터, TV, 광고판, 터치패널 등 전자제품을 포함하여 다양한 분야에 윈도우 커버 기판 또는 보호필름으로 적용되며, 또는 내부 물품을 보호하는 보호판의 용도로 투명기판이 사용되고 있다.The transparent substrate is used for various purposes. Especially, it is applied as window cover substrate or protective film to various fields including electronic products such as smart phone, tablet PC, notebook PC, all-in-one PC, LCD monitor, TV, billboard and touch panel. A transparent substrate is used as a protective plate for protecting an internal product.

투명기판의 일예로는 유리가 대표적이나 취성(잘 깨지는 성질)이 강하여 플라스틱 재질의 투명기판들이 널리 사용되고 있다.As an example of a transparent substrate, glass is typical, but a transparent substrate made of a plastic is widely used because of its strong brittleness.

플라스틱 재질의 투명기판으로는 PC(폴리카보네이트), PET. PE 또는 PMMA가 사용되고 있으나, 일반적으로 플라스틱 재질의 투명기판은 표면경도가 낮고, 내구성이 떨어지며, 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 낮은 문제점이 있다.As transparent plastic substrates, PC (polycarbonate), PET, PE or PMMA is generally used. However, a transparent substrate made of a plastic generally has a low surface hardness, low durability, and low crystallinity, scratch resistance, stain resistance, heat resistance, transparency and haze characteristics.

이를 해결하기 위하여 대한민국특허출원 제2009-7009932호에서는 폴리카보네이트에 아크릴수지를 코팅하여 표면경도를 향상시킨 폴리카보네이트 적층체를 개시하고 있으나, 개선된 표면경도가 연필경도로 4H 이하로 여전히 부족한 실정이다.In order to solve this problem, Korean Patent Application No. 2009-7009932 discloses a polycarbonate laminate in which polycarbonate is coated with acrylic resin to improve the surface hardness, but the surface hardness is still poor and the pencil hardness is less than 4H .

또한 스마트폰과 같은 터치기능이 접목된 경우 프로텍트엠(주)에서는 휴대폰의 보호필름으로 하드코팅층-자체복원층-충격확산층-셀프클리닝층-지문방지층-외부충격흡수층 등 다양한 층을 형성하여 투명기판의 표면특성을 향상시키고자 하였으나 공정이 너무 복잡하고, 생산성이 떨어지는 문제점이 있었다.
In addition, when a touch function such as a smart phone is applied, Protect M Co., Ltd. forms various layers such as hard coat layer-self restoration layer-shock diffusion layer-self cleaning layer-fingerprint prevention layer-external impact absorption layer, However, the process is too complicated and the productivity is low.

상기와 같은 문제점을 해결하기 위해, 본 발명은 투명기판위에 형성되는 하나의 단일층 만으로도 투명기판의 표면경도가 현저히 개선되고, 동시에 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 향상된 표면강화 투명기판 및 이의 제조방법을 제공하는 것을 목적으로 한다.
In order to solve the above-described problems, the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a transparent substrate having a surface hardness remarkably improved even with only one single layer formed on a transparent substrate, An object of the present invention is to provide an improved surface-enhanced transparent substrate and a method of manufacturing the same.

또한 본 발명은 투명기판 위에 특정구조의 실세스퀴옥산 복합 고분자를 포함하는 코팅조성물을 코팅하고 경화시키는 것을 특징으로 하는 투명기판의 표면강화방법을 제공한다.
The present invention also provides a method of strengthening a surface of a transparent substrate, characterized in that a coating composition comprising a silsesquioxane complex polymer having a specific structure is coated and cured on a transparent substrate.

또한 본 발명은 상기 표면강화 투명기판을 포함하는 전자제품을 제공하는 것을 목적으로 한다.
Another object of the present invention is to provide an electronic product including the surface-enhanced transparent substrate.

또한 본 발명은 상기 표면강화 투명기판을 포함하는 보호판을 제공하는 것을 목적으로 한다.
It is another object of the present invention to provide a protective plate comprising the surface-enhanced transparent substrate.

상기 목적을 달성하기 위해 본 발명은 투명기판 위에 하기 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자의 경화물이 적층된 것을 특징으로 하는 표면강화 투명기판을 제공한다:In order to achieve the above object, the present invention provides a surface-enhanced transparent substrate, wherein a cured product of a silsesquioxane complex polymer represented by any one of the following Chemical Formulas 1 to 9 is laminated on a transparent substrate:

[화학식 1] [Chemical Formula 1]

Figure pat00001
Figure pat00001

[화학식 2] (2)

Figure pat00002
Figure pat00002

[화학식 3] (3)

Figure pat00003
Figure pat00003

[화학식 4] [Chemical Formula 4]

Figure pat00004
Figure pat00004

[화학식 5] [Chemical Formula 5]

Figure pat00005
Figure pat00005

[화학식 6] [Chemical Formula 6]

Figure pat00006
Figure pat00006

[화학식 7] (7)

Figure pat00007
Figure pat00007

[화학식 8] [Chemical Formula 8]

Figure pat00008
Figure pat00008

[화학식 9] [Chemical Formula 9]

Figure pat00009
Figure pat00009

상기 화학식 1 내지 9에서, In the above Chemical Formulas 1 to 9,

A는

Figure pat00010
이고, B는
Figure pat00011
이고, D는
Figure pat00012
이고, E는
Figure pat00013
이며,A is
Figure pat00010
And B is
Figure pat00011
And D is
Figure pat00012
And E is
Figure pat00013
Lt;

Y는 각각 독립적으로 O, NR21 또는 [(SiO3/2R)4+2nO]이며, 적어도 하나는 [(SiO3/2R)4+2nO]이며, Y is independently 0, NR 21 or [(SiO 3/2 R) 4 + 2n O], at least one is [(SiO 3/2 R) 4 + 2n O]

X는 각각 독립적으로 R22 또는 [(SiO3/2R)4+2nR]이고, 적어도 하나는 [(SiO3/2R)4+2nR]이고,X is independently R 22 or [(SiO 3/2 R) 4 + 2n R], at least one is [(SiO 3/2 R) 4 + 2n R]

R, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22는 각각 독립적으로 수소; 중수소; 할로겐; 아민기; 에폭시기; 사이클로헥실에폭시기; (메타)아크릴기; 사이올기; 이소시아네이트기; 니트릴기; 니트로기; 페닐기; 중수소, 할로겐, 아민기, 에폭시기, (메타)아크릴기, 사이올기, 이소시아네이트기, 니트릴기, 니트로기, 페닐기로 치환되거나 치환되지 않은 C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C3~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C3~C40의 헤테로아릴기; C3~C40의 아르알킬기; C3~C40의 아릴옥시기; 또는 C3~C40의 아릴사이올기이며, 바람직하기로는 중수소, 할로겐, 아민기, (메타)아크릴기, 사이올기, 이소시아네이트기, 니트릴기, 니트로기, 페닐기, 사이클로헥실 에폭시기로 치환되거나 치환되지 않은 C1~C40의 알킬기, C2~C40의 알케닐기, 아민기, 에폭시기, 사이클로헥실 에폭시기, (메타)아크릴기, 사이올기, 페닐기 또는 이소시아네이트기를 포함하며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 and R 22 are each independently hydrogen; heavy hydrogen; halogen; An amine group; An epoxy group; Cyclohexyl epoxy group; (Meth) acrylic group; A diazo group; Isocyanate group; A nitrile group; A nitro group; A phenyl group; A C 1 to C 40 alkyl group which is unsubstituted or substituted with a halogen atom, an amino group, an epoxy group, a (meth) acrylic group, a silyl group, an isocyanate group, a nitrile group, a nitro group or a phenyl group; A C 2 to C 40 alkenyl group; A C 1 to C 40 alkoxy group; A C 3 to C 40 cycloalkyl group; A C 3 to C 40 heterocycloalkyl group; A C 6 to C 40 aryl group; A C 3 to C 40 heteroaryl group; A C 3 to C 40 aralkyl group; A C 3 to C 40 aryloxy group; Or a C 3 to C 40 aryl radical which is optionally substituted by a substituent selected from the group consisting of deuterium, halogen, an amine group, a (meth) acrylic group, a silyl group, an isocyanate group, a nitrile group, a nitro group, a phenyl group, a cyclohexyl epoxy group It is included, and C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, an amine group, an epoxy group, cyclohexyl epoxy groups, (meth) acrylic group, between olgi, a phenyl group or isocyanate,

a 및 d는 각각 독립적으로 1 내지 100,000의 정수이고, 바람직하기로는 a는 3 내지 1000이고, d는 1 내지 500이며, 더욱 바람직하기로는 a는 5 내지 300이고, d는 2 내지 100이며,a and d are each independently an integer of 1 to 100,000, preferably a is 3 to 1000, d is 1 to 500, more preferably a is 5 to 300, d is 2 to 100,

b는 각각 독립적으로 1 내지 500의 정수이며,b is independently an integer of 1 to 500,

e는 각각 독립적으로 1 또는 2이며, 바람직하기로 1이며,e is independently 1 or 2, preferably 1,

n은 각각 독립적으로 1 내지 20의 정수이며, 바람직하기로는 3 내지 10이다.
n is independently an integer of 1 to 20, preferably 3 to 10.

또한 본 발명은 투명기판 위에 상기 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자를 포함하는 코팅조성물을 코팅하고 경화시키는 것을 특징으로 하는 투명기판의 표면강화방법을 제공한다.
The present invention also provides a method for enhancing the surface of a transparent substrate, wherein a coating composition comprising a silsesquioxane complex polymer represented by any one of Chemical Formulas 1 to 9 is coated on a transparent substrate and cured.

또한 본 발명은 상기 표면강화 투명기판을 포함하는 것을 특징으로 하는 전자제품을 제공한다.
The present invention also provides an electronic product comprising the surface-enhanced transparent substrate.

또한 본 발명은 상기 표면강화 투명기판을 포함하는 보호판을 제공한다.
The present invention also provides a protective plate comprising the surface-enhanced transparent substrate.

본 발명에 따른 표면강화 투명기판은 특정구조의 실세스퀴옥산 복합 고분자의 경화체를 코팅층으로 포함함으로써 투명기판의 표면경도를 현저히 개선하고, 동시에 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 향상되어 전자제품의 윈도우 커버기판, 보호필름 또는 보호판에 매우 유용하게 사용할 수 있다.
The surface-enhanced transparent substrate according to the present invention significantly improves the surface hardness of a transparent substrate by including a cured body of a silsesquioxane complex polymer having a specific structure as a coating layer, and at the same time enhances the surface hardness, scratch resistance, stain resistance, heat resistance, The haze characteristic is improved and can be very usefully used for a window cover substrate, a protective film or a protective plate of an electronic product.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명의 표면강화 투명기판은 투명기판 위에 하기 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자의 경화물이 적층된 것을 특징으로 한다:The surface-enhanced transparent substrate of the present invention is characterized in that a cured product of a silsesquioxane complex polymer represented by any one of the following Chemical Formulas 1 to 9 is laminated on a transparent substrate:

[화학식 1] [Chemical Formula 1]

Figure pat00014
Figure pat00014

[화학식 2] (2)

Figure pat00015
Figure pat00015

[화학식 3] (3)

Figure pat00016
Figure pat00016

[화학식 4] [Chemical Formula 4]

Figure pat00017
Figure pat00017

[화학식 5] [Chemical Formula 5]

Figure pat00018
Figure pat00018

[화학식 6] [Chemical Formula 6]

Figure pat00019
Figure pat00019

[화학식 7] (7)

Figure pat00020
Figure pat00020

[화학식 8] [Chemical Formula 8]

Figure pat00021
Figure pat00021

[화학식 9] [Chemical Formula 9]

Figure pat00022
Figure pat00022

상기 화학식 1 내지 9에서, In the above Chemical Formulas 1 to 9,

A는

Figure pat00023
이고, B는
Figure pat00024
이고, D는 이고, E는
Figure pat00026
이며,A is
Figure pat00023
And B is
Figure pat00024
And D is And E is
Figure pat00026
Lt;

Y는 각각 독립적으로 O, NR21 또는 [(SiO3/2R)4+2nO]이며, 적어도 하나는 [(SiO3/2R)4+2nO]이며, Y is independently 0, NR 21 or [(SiO 3/2 R) 4 + 2n O], at least one is [(SiO 3/2 R) 4 + 2n O]

X는 각각 독립적으로 R22 또는 [(SiO3/2R)4+2nR]이고, 적어도 하나는 [(SiO3/2R)4+2nR]이고,X is independently R 22 or [(SiO 3/2 R) 4 + 2n R], at least one is [(SiO 3/2 R) 4 + 2n R]

R, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22는 각각 독립적으로 수소; 중수소; 할로겐; 아민기; 에폭시기; 사이클로헥실에폭시기; (메타)아크릴기; 사이올기; 이소시아네이트기; 니트릴기; 니트로기; 페닐기; 중수소, 할로겐, 아민기, 에폭시기, (메타)아크릴기, 사이올기, 이소시아네이트기, 니트릴기, 니트로기, 페닐기로 치환되거나 치환되지 않은 C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C3~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C3~C40의 헤테로아릴기; C3~C40의 아르알킬기; C3~C40의 아릴옥시기; 또는 C3~C40의 아릴사이올기이며, 바람직하기로는 중수소, 할로겐, 아민기, (메타)아크릴기, 사이올기, 이소시아네이트기, 니트릴기, 니트로기, 페닐기, 사이클로헥실 에폭시기로 치환되거나 치환되지 않은 C1~C40의 알킬기, C2~C40의 알케닐기, 아민기, 에폭시기, 사이클로헥실 에폭시기, (메타)아크릴기, 사이올기, 페닐기 또는 이소시아네이트기를 포함하며,R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 and R 22 are each independently hydrogen; heavy hydrogen; halogen; An amine group; An epoxy group; Cyclohexyl epoxy group; (Meth) acrylic group; A diazo group; Isocyanate group; A nitrile group; A nitro group; A phenyl group; A C 1 to C 40 alkyl group which is unsubstituted or substituted with a halogen atom, an amino group, an epoxy group, a (meth) acrylic group, a silyl group, an isocyanate group, a nitrile group, a nitro group or a phenyl group; A C 2 to C 40 alkenyl group; A C 1 to C 40 alkoxy group; A C 3 to C 40 cycloalkyl group; A C 3 to C 40 heterocycloalkyl group; A C 6 to C 40 aryl group; A C 3 to C 40 heteroaryl group; A C 3 to C 40 aralkyl group; A C 3 to C 40 aryloxy group; Or a C 3 to C 40 aryl radical which is optionally substituted by a substituent selected from the group consisting of deuterium, halogen, an amine group, a (meth) acrylic group, a silyl group, an isocyanate group, a nitrile group, a nitro group, a phenyl group, a cyclohexyl epoxy group It is included, and C 1 ~ C 40 alkyl group, C 2 ~ C 40 alkenyl group, an amine group, an epoxy group, cyclohexyl epoxy groups, (meth) acrylic group, between olgi, a phenyl group or isocyanate,

a 및 d는 각각 독립적으로 1 내지 100,000의 정수이고, 바람직하기로는 a는 3 내지 1000이고, d는 1 내지 500이며, 더욱 바람직하기로는 a는 5 내지 300이고, d는 2 내지 100이며,a and d are each independently an integer of 1 to 100,000, preferably a is 3 to 1000, d is 1 to 500, more preferably a is 5 to 300, d is 2 to 100,

b는 각각 독립적으로 1 내지 500의 정수이며,b is independently an integer of 1 to 500,

e는 각각 독립적으로 1 또는 2이며, 바람직하기로 1이며,e is independently 1 or 2, preferably 1,

n은 각각 독립적으로 1 내지 20의 정수이며, 바람직하기로는 3 내지 10이다.
n is independently an integer of 1 to 20, preferably 3 to 10.

본 발명의 표면강화 투명기판은 [A]a와 [D]d 반복단위를 가지며, 선택적으로 [B]b 또는 [E]e 반복단위를 가지는 특정 구조의 실세스퀴옥산 고분자를 투명기판의 표면처리제로 사용함으로써 전자제품의 윈도우 커버 기판, 보호필름에 적합하며, 내부물품 보호용의 보호판으로 적용하기에 적합한 투명기판을 제공하는 것이다.
The surface-enhanced transparent substrate of the present invention comprises a silsesquioxane polymer having a repeating unit of [A] a and [D] d and having a repeating unit of [B] b or [E] The present invention provides a transparent substrate suitable for use as a protective cover for protecting an internal product, which is suitable for a window cover substrate and a protective film of an electronic product.

본 발명의 상기 화학식 1로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (1)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합하여 하기 화학식 10를 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [D]d(OR2)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 및 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계를 포함하여 제조될 수 있다.Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound and condensing the mixture, And an acidic catalyst is added to the reactor to introduce the [D] d (OR 2 ) 2 structure into the formula (10) after the first step, the reaction liquid is adjusted to be acidic and then the organosilane compound is added, step; And a third step of adding a basic catalyst to the reactor after the second step and converting the reaction solution to basicity to carry out a condensation reaction.

[화학식 10] [Chemical formula 10]

Figure pat00027
Figure pat00027

상기 식에서 R1, R2, R16, D, a 및 d는 화학식 1 내지 9에서 정의한 바와 같다.
Wherein R 1 , R 2 , R 16 , D, a and d are as defined in the general formulas (1) to (9).

본 발명의 상기 화학식 2로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (2)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합하여 상기 화학식 10을 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [D]d(OR3)2 및 [D]d(OR4)2 구조를 화학식 2와 같이 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 과량의 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 및 제3단계 반응을 거쳐, 단독으로 생성되는 부산물인 cage 구조를 재결정으로 제거하여주는 정제단계를 진행하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound and condensing the organosilane compound to produce the compound of Formula 10; After the first step, an acidic catalyst is added to the reactor to introduce the [D] d (OR 3 ) 2 and [D] d (OR 4 ) 2 structures into the general formula ( 10 ) A second step of adding and stirring an excess of the organosilane compound after the adjustment; A third step of adding a basic catalyst to the reactor after the second step to convert the reaction solution to basicity to effect a condensation reaction; A third step of adding a basic catalyst to the reactor after the second step to convert the reaction solution to basicity to effect a condensation reaction; And a third stage reaction, and then performing a purification step of removing the cage structure as a by-product, which is a by-product, by recrystallization.

본 발명의 상기 화학식 3으로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (3)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합하여 상기 화학식 10을 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [D]d(OR5)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 및 상기 제3단계 이후에 복합고분자의 말단에 [E]eX2 구조를 도입하여 위하여 반응기에 산성 촉매를 투입하여 반응액을 산성 분위기로 변환하고 유기실란 화합물을 혼합하여 교반하는 제4단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound and condensing the organosilane compound to produce the compound of Formula 10; And an acidic catalyst is added to the reactor to introduce the [D] d (OR 5 ) 2 structure into the chemical formula 10 after the first step, the reaction solution is adjusted to be acidic, and then the organosilane compound is added, step; A third step of adding a basic catalyst to the reactor after the second step to convert the reaction solution to basicity to effect a condensation reaction; And a fourth step of introducing the [E] eX 2 structure to the end of the composite polymer after the third step, by introducing an acidic catalyst into the reactor to convert the reaction solution into an acidic atmosphere and mixing and stirring the organosilane compound .

본 발명의 상기 화학식 4로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the formula (4)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합도를 조절하여 상기 화학식 10을 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [B]b 구조 및 [D]d(OR7)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 및 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound, and adjusting the degree of condensation; After the first step, an acidic catalyst is added to the reactor to introduce the [B] b structure and the [D] d (OR 7 ) 2 structure into the general formula (10) A second step of adding and stirring; And a third step of adding a basic catalyst to the reactor after the second step and converting the reaction solution to basicity to carry out a condensation reaction.

본 발명의 상기 화학식 5로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (5)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합하여 상기 화학식 10을 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [B]b 구조 및 [D]d(OR8)2, [D]d(OR9)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 과량의 유기 실란 화합물을 첨가하고 교반하는 제2단계; 및 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 제3단계; 및 제3단계 이후 재결정과 필터과정을 통하여, 단독 cage 생성 구조를 제거하는 제4단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound and condensing the organosilane compound to produce the compound of Formula 10; And the reaction mixture by the addition of an acidic catalyst in a reactor to the first to the formula (10) after the step 1 [B] b structure and [D] d (OR 8) 2, [D] d (OR 9) to introduce the second structure A second step of adding an excess amount of organosilane compound to the mixture and stirring the resulting mixture; And a third step of adding a basic catalyst to the reactor after the second step to convert the reaction solution to a basic state to perform a condensation reaction; And a fourth step of removing the single cage generating structure through a recrystallization and a filtering process after the third step.

본 발명의 상기 화학식 6으로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (6)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합하여 상기 화학식 10을 제조하는 제1단계; 및 상기 제1단계 이후에 화학식 10에 [B]b 구조 및 [D]d(OR10)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 2단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 및 상기 제3단계 이후에 복합고분자의 말단에 [E]eX2 구조를 도입하여 위하여 반응기에 산성 촉매를 투입하여 반응액을 산성 분위기로 변환하고 유기실란 화합물을 혼합하여 교반하는 제4단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound and condensing the organosilane compound to produce the compound of Formula 10; After the first step, an acid catalyst is added to the reactor to introduce the [B] b structure and the [D] d (OR 10 ) 2 structure into the general formula ( 10 ) A second step of adding and stirring; A third step of adding a basic catalyst to the reactor after the second step to convert the reaction solution to basicity to effect a condensation reaction; And a fourth step of introducing the [E] eX 2 structure to the end of the composite polymer after the third step, by introducing an acidic catalyst into the reactor to convert the reaction solution into an acidic atmosphere and mixing and stirring the organosilane compound .

바람직하기로 상기 화학식 1 내지 6을 제조하는 방법에서 본 발명의 제1단계의 반응액의 pH는 9 내지 11.5인 것이 바람직하고, 제2단계의 반응액의 pH는 2 내지 4인 것이 바람직하고, 제3단계의 반응액의 pH는 8 내지 11.5인 것이 바람직하고, Ee을 도입하는 제4단계의 반응액의 pH는 1.5 내지 4인 것이 바람직하다. 상기 범위 내인 경우 제조되는 실세스퀴옥산 복합 고분자의 수율이 높을 뿐만 아니라 제조된 실세스퀴옥산 복합 고분자의 기계적 물성을 향상시킬 수 있다.
Preferably, in the method of preparing Formulas 1 to 6, the pH of the reaction solution of the first step of the present invention is preferably 9 to 11.5, the pH of the reaction solution of the second step is preferably 2 to 4, The pH of the reaction solution in the third step is preferably 8 to 11.5, and the pH of the reaction solution in the fourth step in which Ee is introduced is preferably 1.5 to 4. When the silsesquioxane complex polymer is within the above range, the yield of the silsesquioxane complex polymer to be produced is high, and the mechanical properties of the silsesquioxane complex polymer can be improved.

본 발명의 상기 화학식 7로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (7)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합도가 조절된 두 가지 형태의 상기 화학식 10를 제조하는 1단계; 상기 1단계에서 얻어진 화학식 10에 [B]b 구조 및 [D]d(OR12)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 각각의 2단계 반응 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 및 상기 3단계를 통해 얻어진 2가지 이상의 물질을 염기성 조건에서 축합하여 연결하는 4단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound, and preparing two types of the compound of the formula (10) whose condensation degree is controlled; In order to introduce the [B] b structure and the [D] d (OR 12 ) 2 structure into the chemical formula 10 obtained in the above step 1, an acidic catalyst is added to the reactor to adjust the reaction liquid acidic, A second step of stirring; A third step of adding a basic catalyst to the reactor after each of the two-step reactions to convert the reaction solution to basicity to effect a condensation reaction; And four steps of condensing and coupling two or more materials obtained through the above three steps under basic conditions.

본 발명의 상기 화학식 8로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (8)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합도가 조절된 두 가지 형태의 상기 화학식 10을 제조하는 1단계; 상기 1단계에서 얻어진 화학식 10에 [B]b 구조, [D]d(OR14)2 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 각각의 2단계 반응 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 상기 3단계를 통해 얻어진 2가지 이상의 물질을 염기성 조건에서 축합하여 연결하는 4단계; 상기 4단계 이후 [D]d(OR13)2를 도입하기 위한 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제5단계; 및 상기 5단계 반응 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제6단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound to prepare two types of the condensation-controlled compound of formula (10); In order to introduce the [B] b structure and the [D] d (OR 14 ) 2 structure into the formula (10) obtained in the above step 1, an acidic catalyst is added to the reactor to adjust the reaction liquid acidic, A second step of stirring; A third step of adding a basic catalyst to the reactor after each of the two-step reactions to convert the reaction solution to basicity to effect a condensation reaction; Four steps of condensing and connecting the two or more substances obtained in the above step 3 under basic conditions; A fifth step of adding an acid catalyst to the reactor for introducing [D] d (OR 13 ) 2 after the step 4, adjusting the reaction solution to acidity, adding and stirring the organosilane compound; And a sixth step of adding a basic catalyst to the reactor after the above-mentioned 5-step reaction to convert the reaction solution to basicity to carry out a condensation reaction.

본 발명의 상기 화학식 9로 표시되는 실세스퀴옥산 복합 고분자는 The silsesquioxane complex polymer represented by the above formula (9)

반응기에 염기성 촉매와 유기용매를 혼합한 후 유기 실란 화합물을 첨가하고 축합도가 조절된 두 가지 형태의 상기 화학식 10를 제조하는 1단계; 상기 1단계에서 얻어진 화학식 10에 [B]b 구조를 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제2단계; 상기 각각의 2단계반응 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제3단계; 상기 3단계를 통해 얻어진 2가지 이상의 화합물을 염기성 조건에서 축합하여 연결하는 4단계; 상기 제4단계 이후 [D]d(OR5)2를 도입하기 위한 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 제5단계; 상기 5단계 반응 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 제6단계; 상기 제6단계 이후에 복합고분자의 말단에 [E]eX2 구조를 도입하여 위하여 반응기에 산성 촉매를 투입하여 반응액을 산성 분위기로 변환하고 유기실란 화합물을 혼합하여 교반하는 제7단계를 포함하여 제조될 수 있다.
Mixing a basic catalyst and an organic solvent in a reactor, adding an organosilane compound, and preparing two types of the compound of the formula (10) whose condensation degree is controlled; A second step in which an acidic catalyst is added to a reactor to adjust the [B] b structure in the formula (10) obtained in the above step 1, the reaction liquid is adjusted to an acidic state, and then an organosilane compound is added and stirred; A third step of adding a basic catalyst to the reactor after each of the two-step reactions to convert the reaction solution to basicity to effect a condensation reaction; Four stages of condensation and coupling of two or more compounds obtained through the above three steps under basic conditions; A fifth step in which an acidic catalyst is added to a reactor for introducing [D] d (OR 5 ) 2 after the fourth step, the reaction solution is adjusted to be acidic, and then an organosilane compound is added and stirred; A sixth step of adding a basic catalyst to the reactor after the fifth step reaction to convert the reaction solution to basicity to perform a condensation reaction; And a seventh step of introducing the [E] eX 2 structure into the end of the complex polymer after the sixth step, by introducing an acidic catalyst into the reactor to convert the reaction solution into an acidic atmosphere, and mixing and stirring the organosilane compound .

바람직하기로 상기 화학식 7 내지 9의 고분자를 제조하는 방법에서 제1단계의 반응액의 pH는 9 내지 11.5인 것이 바람직하고, 제2단계의 반응액의 pH는 2 내지 4인 것이 바람직하고, 제3단계의 반응액의 pH는 8 내지 11.5인 것이 바람직하고, 제4단계의 반응액의 pH는 9 내지 11.5인 것이 바람직하고, 제5단계의 반응액의 pH는 2 내지 4인 것이 바람직하고, 제6단계의 반응액의 8 내지 11.5인 것이 바람직하고, Ee를 도입하는 제7단계의 반응액의 pH는 1.5 내지 4인 것이 바람직하다. 상기 범위 내인 경우 제조되는 실세스퀴옥산 복합 고분자의 수율이 높을 뿐만 아니라 제조된 실세스퀴옥산 복합 고분자의 기계적 물성을 향상시킬 수 있다.
Preferably, the pH of the reaction solution in the first step is preferably 9 to 11.5, the pH of the reaction solution in the second step is preferably 2 to 4, The pH of the reaction solution in the third step is preferably 8 to 11.5, the pH of the reaction solution in the fourth step is preferably 9 to 11.5, the pH of the reaction solution in the fifth step is preferably 2 to 4, It is preferable that the reaction solution in the sixth step is 8 to 11.5, and the pH of the reaction solution in the seventh step in which Ee is introduced is preferably 1.5 to 4. When the silsesquioxane complex polymer is within the above range, the yield of the silsesquioxane complex polymer to be produced is high, and the mechanical properties of the silsesquioxane complex polymer can be improved.

또한 필요한 경우 각각의 복합 고분자에 [B]b 구조 및 [D]d(OR)2 구조를 더욱 도입하기 위하여 반응기에 산성 촉매를 첨가하여 반응액을 산성으로 조절한 후, 유기 실란 화합물을 첨가하고 교반하는 단계; 및 상기 단계 이후에 반응기에 염기성 촉매를 첨가하여 반응액을 염기성으로 변환하여 축합반응을 실시하는 단계를 통하여 복합 고분자 내에 [B]b 반복단위를 더욱 포함할 수 있다.
If necessary, an acidic catalyst is added to the reactor to further introduce the [B] b structure and the [D] d (OR) 2 structure into each of the complex polymers, the reaction liquid is adjusted to be acidic, Stirring; And [B] b repeating units may be further included in the composite polymer through a step of converting the reaction solution into basicity by adding a basic catalyst to the reactor after the above step and performing a condensation reaction.

또한 필요한 경우 각각의 복합 고분자의 말단에 [E]eX2 구조를 도입하기 위하여 반응기에 산성 촉매를 투입하여 반응액을 산성 분위기로 변환하고 유기실란 화합물을 혼합하여 교반하는 제단계를 포함하여 복합 고분자의 말단에 [E]e의 반복단위를 더욱 포함할 수 있다.
And if necessary, introducing an [E] eX 2 structure at the end of each complex polymer, an acidic catalyst is added to the reactor to convert the reaction solution into an acidic atmosphere, and the organosilane compound is mixed and stirred, May further include a repeating unit of [E] e at the end of the molecule.

상기 실세스퀴옥산 복합 고분자의 제조방법에서는 염기성 촉매로서 바람직하기로는 2종 이상의 염기성 촉매의 혼합촉매를 사용하고, 이를 산성 촉매로 중화 및 산성화하여 재 가수분해를 유도하며, 다시 2종 이상의 염기성 촉매의 혼합촉매를 이용하여 염기성으로 축합을 진행함으로써 하나의 반응기내에서 산도와 염기도를 연속적으로 조절할 수 있다.
In the process for preparing the silsesquioxane complex polymer, a basic catalyst, preferably a mixed catalyst of two or more basic catalysts, is used, neutralized and acidified with an acidic catalyst to induce rehydrolysis, and two or more basic catalysts , The acidity and the basicity can be continuously controlled in a single reactor.

이때, 상기 염기성 촉매는 Li, Na, K, Ca 및 Ba 으로 이루어진 군에서 선택된 금속계 염기성 촉매 및 아민계 염기성 촉매에서 선택되는 2종 이상의 물질을 적절히 조합하여 제조될 수 있다. 바람직하게는 상기 아민계 염기성 촉매가 테트라메틸암모늄 하이드록시드(TMAH)이고, 금속계 염기성 촉매가 포타슘 하이드록시드(KOH) 또는 중탄산나트륨 (NaHCO3)일 수 있다. 상기 혼합촉매에서 각 성분의 함량은 바람직하기로는 아민계 염기성 촉매와 금속계 염기성 촉매의 비율이 10 내지 90: 10 내지 90 중량부의 비율에서 임의로 조절할 수 있다. 상기 범위 내인 경우 가수분해시 관능기와 촉매와의 반응성을 최소화시킬 수 있으며, 이로 인해 Si-OH 또는 Si-알콕시 등의 유기 관능기의 결함이 현저히 감소하여 축합도를 자유로이 조절할 수 있는 장점이 있다. 또한, 상기 산성 촉매로는 당분야에서 통상적으로 사용하는 산성 물질이라면 제한 없이 사용될 수 있으며, 예를 들어, HCl, H2SO4, HNO3, CH3COOH 등의 일반 산성물질을 사용할 수 있고, 또한 latic acid, tartaric acid, maleic acid, citric acid 등의 유기계 산성물질도 적용할 수 있다.
At this time, the basic catalyst may be prepared by appropriately combining two or more materials selected from metal-based basic catalysts selected from the group consisting of Li, Na, K, Ca and Ba and amine-based basic catalysts. Preferably, the amine-based basic catalyst is tetramethylammonium hydroxide (TMAH), and the metal-based basic catalyst is potassium hydroxide (KOH) or sodium bicarbonate (NaHCO 3 ). The content of each component in the mixed catalyst may be optionally controlled in the ratio of the amine-based basic catalyst to the metal-based basic catalyst in the range of 10 to 90: 10 to 90 parts by weight. Within the above range, the reactivity between the functional group and the catalyst during hydrolysis can be minimized, and defects of the organic functional groups such as Si-OH or Si-alkoxy are remarkably reduced and the degree of condensation can be freely controlled. The acidic catalyst may be any acidic substance commonly used in the art. For example, it may be a general acidic substance such as HCl, H 2 SO 4 , HNO 3 and CH 3 COOH, Organic acid materials such as latic acid, tartaric acid, maleic acid, and citric acid can also be applied.

본 발명의 실세스퀴옥산 복합 고분자의 제조방법에서 상기 유기용매는 당분야에서 통상적으로 사용하는 유기용매라면 제한 없이 사용될 수 있으며, 예를 들어, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 셀로솔브계 등의 알코올류, 락테이트계, 아세톤, 메틸(아이소부틸)에틸케톤 등의 케톤류, 에틸렌글리콜 등의 글리콜류, 테트라하이드로퓨란 등의 퓨란계, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 극성용매 뿐 아니라, 헥산, 사이클로헥산, 사이클로헥사논, 톨루엔, 자일렌, 크레졸, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크로니트릴, 메틸렌클로라이드, 옥타데실아민, 아닐린, 디메틸설폭사이드, 벤질알콜 등 다양한 용매를 사용할 수 있다.
In the process for preparing the silsesquioxane complex polymer of the present invention, the organic solvent may be any organic solvent conventionally used in the art, and examples thereof include methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, Ketones such as acetone, methyl (isobutyl) ethyl ketone, glycols such as ethylene glycol, furan such as tetrahydrofuran, dimethylformamide, dimethylacetamide, N- Methylene-2-pyrrolidone, but also polar solvents such as hexane, cyclohexane, cyclohexanone, toluene, xylene, cresol, chloroform, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, Nitrile, methylene chloride, octadecylamine, aniline, dimethylsulfoxide, benzyl alcohol and the like can be used.

또한, 상기 유기 실란계 화합물로는 본 발명의 실세스퀴옥산 복합 고분자인 화학식 1 내지 9의 R, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22를 포함하는 유기 실란이 사용될 수 있으며, 바람직하기로 실세스퀴옥산 복합 고분자의 내화학성을 증가시켜 비팽윤성을 향상시키는 효과가 있는 페닐기 또는 아미노기를 포함하는 유기 실란 화합물, 또는 복합 고분자의 경화 밀도를 증가시켜 경화층의 기계적 강도 및 경도를 향상시키는 효과가 있는 에폭시기 또는 (메타)아크릴기를 포함하는 유기 실란 화합물을 사용할 수 있다.
As the organosilane compound, the silsesquioxane complex polymer of the present invention, R 1 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9, R 10, R 11 , R 12, R 13, R 14, R 15, R 16, R 17, R 18, R 19, R 20, R 21, the organosilane can be used, including the R 22, and , Preferably the silsesquioxane complex polymer is increased in chemical resistance to improve the non-swelling property, and the mechanical strength and hardness of the cured layer are increased by increasing the curing density of the organosilane compound or the complex polymer containing an amino group An organosilane compound containing an epoxy group or a (meth)

상기 유기 실란계 화합물의 구체적인 예로는 (3-글리시드옥시프로필)트리메톡시실란, (3-글리시드옥시프로필)트리에톡시실란, (3-글리시드옥시프로필)메틸디메톡시실란, (3-글리시드옥시프로필)디메틸에톡시실란, 3-(메타아크릴옥시)프로필트리메톡시실란, 3,4-에폭시부틸트리메톡시실란, 3,4-에폭시부틸트리에톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리메톡시실란, 2-(3,4-에폭시시클로헥실)에틸트리에톡시실란, 아미노프로필트리에톡시실란, 비닐트리에톡시실란, 비닐트리-t-부톡시실란, 비닐트리이소부톡시실란, 비닐트리이소프로폭시실란, 비닐트리페녹시실란, 페닐트리에톡시실란, 페닐트리메톡시실란, 아미노프로필트리메톡시실란, N-페닐-3-아미노프로필트리메톡시실란, 디메틸테트라메톡시실록산, 디페닐테트라메톡시실록산 등을 들 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 병용하여 사용할 수도 있다. 최종 제조되는 조성물의 물성을 위하여 2종 이상을 혼합하여 사용하는 것이 보다 바람직하다.
Specific examples of the organosilane compound include (3-glycidoxypropyl) trimethoxysilane, (3-glycidoxypropyl) triethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, (3 (Methacryloxy) propyltrimethoxysilane, 3,4-epoxybutyltrimethoxysilane, 3,4-epoxybutyltriethoxysilane, 2- (3-hydroxybutyltrimethoxysilane) , 4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, aminopropyltriethoxysilane, vinyltriethoxysilane, vinyltri-t-butoxy Silane, vinyltriisobutoxysilane, vinyltriisopropoxysilane, vinyltriphenoxysilane, phenyltriethoxysilane, phenyltrimethoxysilane, aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Diphenyltetramethoxysiloxane, and the like, and the like. These may be used singly or in combination of two or more. It is more preferable to use a mixture of two or more kinds for the properties of the final composition.

본 발명에서 상기 화학식들의 반복단위 [D]d에 도입된[(SiO3/2R)4+2nO] 구조의 n은 1 내지 20의 정수로 치환될 수 있으며, 바람직하기로는 3 내지 10이며, 더욱 바람직하기로는 평균 n 값이 4 내지 5이며, 예를 들어, 상기 n이 4일 때 치환된 구조를 표현하면 하기 화학식 11과 같다:In the present invention, n in the [(SiO 3/2 R) 4 + 2 n O] structure introduced into the repeating unit [D] d of the above formulas may be substituted with an integer of 1 to 20, preferably 3 to 10 , More preferably an average n value of 4 to 5. For example, when n is 4, the substituted structure is represented by the following formula 11:

[화학식 11] (11)

Figure pat00028
Figure pat00028

상기 식에서, R은 상기에서 정의한 바와 같다.
Wherein R is as defined above.

본 발명에서, 상기 화학식들의 반복단위 [B]b 또는 [E]e에 도입된[(SiO3/2R)4+2nR] 구조의 n은 1 내지 20의 정수로 치환될 수 있으며, 바람직하기로는 3 내지 10이며, 더욱 바람직하기로는 평균 n 값이 4 내지 5이며, 예를 들어, 상기 n이 4일 때 치환된 구조를 표현하면 하기 화학식 12와 같다: In the present invention, n in the [(SiO 3/2 R) 4 + 2 n R] structure introduced into the repeating unit [B] b or [E] e of the above formulas may be substituted with an integer of 1 to 20, The average value of n is 4 to 5, and when n is 4, for example, the substituted structure is represented by the following general formula (12): < EMI ID =

[화학식 12] [Chemical Formula 12]

Figure pat00029
Figure pat00029

상기 식에서, R은 상기에서 정의한 바와 같다.
Wherein R is as defined above.

구체적인 예로 본 발명에 따른 실세스퀴옥산 고분자는 하기 표 1 내지 18에 고분자일 수 있다. 하기 표 1 내지 9에서 ECHE는 (Epoxycyclohexyl)ethyl, GlyP는 Glycidoxypropyl, POMMA는 (methacryloyloxy)propyl을 의미하며, 두 개 이상이 기재된 경우 혼합사용을 의미한다. n은 각각 독립적으로 1 내지 8이다.
As a specific example, the silsesquioxane polymer according to the present invention may be a polymer in Tables 1 to 18 below. In the following Tables 1 to 9, ECHE means (Epoxycyclohexyl) ethyl, GlyP means Glycidoxypropyl, and POMMA means (Methacryloyloxy) propyl. n is independently 1 to 8;

상기 화학식 1의 실세스퀴옥산 복합고분자는 하기 표 1 또는 2에 기재된 고분자일 수 있다.The silsesquioxane complex polymer of Formula 1 may be a polymer as shown in Table 1 or 2 below.

NoNo R1R1 R2R2 R6R6 R9R9 Y의RY of R 1-11-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 1-21-2 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 1-31-3 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 1-41-4 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 1-51-5 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 1-61-6 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 페닐Phenyl 페닐Phenyl 1-71-7 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 메틸methyl 메틸methyl 1-81-8 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE GlyPGlyP GlyPGlyP 1-91-9 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA 1-101-10 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl ECHEECHE ECHEECHE 1-111-11 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 메틸methyl 메틸methyl 1-121-12 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl GlyPGlyP GlyPGlyP 1-131-13 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl POMMAPOMMA POMMAPOMMA 1-141-14 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl ECHEECHE ECHEECHE 1-151-15 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 페닐Phenyl 페닐Phenyl 1-161-16 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl GlyPGlyP GlyPGlyP 1-171-17 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl POMMAPOMMA POMMAPOMMA 1-181-18 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP ECHEECHE ECHEECHE 1-191-19 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP 페닐Phenyl 페닐Phenyl 1-201-20 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP 메틸methyl 메틸methyl 1-211-21 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP POMMAPOMMA POMMAPOMMA 1-221-22 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA ECHEECHE ECHEECHE 1-231-23 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA 페닐Phenyl 페닐Phenyl 1-241-24 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl 1-251-25 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA GlyPGlyP GlyPGlyP

NoNo R1R1 R2R2 R6R6 R7R7 Y의RY of R nn 2-12-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 1~81 to 8 2-22-2 OH, CF3 OH, CF 3 H,에틸H, ethyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 1~81 to 8 2-32-3 OH,메톡시OH, methoxy H,아세틸틸H, acetyl 알킬사이올Alkyl thiol 메틸methyl 메틸methyl 1~81 to 8 2-42-4 CF3,메톡시CF 3 , methoxy 비닐,메틸Vinyl, methyl GlyPGlyP 도데실Dodecyl GlyPGlyP 1~81 to 8 2-52-5 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA 알킬사이올Alkyl thiol POMMAPOMMA 1~81 to 8 2-62-6 OH, C8F13 OH, C 8 F 13 H, FH, F ECHEECHE 페닐Phenyl 페닐Phenyl 1~81 to 8 2-72-7 OH, CF3 OH, CF 3 CF3,메틸CF 3 , methyl ECHEECHE 옥틸Octyl 메틸methyl 1~81 to 8 2-82-8 OH, C8F13 OH, C 8 F 13 H,메틸H, methyl FF 알킬사이올Alkyl thiol GlyPGlyP 1~81 to 8 2-92-9 OH,메톡시OH, methoxy H, CF3 H, CF 3 ECHEECHE POMMAPOMMA POMMAPOMMA 1~81 to 8 2-102-10 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 알킬사이올Alkyl thiol ECHEECHE 1~81 to 8 2-112-11 OH, C8F13 OH, C 8 F 13 아릴,메틸Aryl, methyl 알킬사이올Alkyl thiol 메틸methyl 헥실Hexyl 1~81 to 8 2-122-12 OH,알킬사이올OH, alkylaryl H,메타크릴H, methacrylic 페닐Phenyl GlyPGlyP GlyPGlyP 1~81 to 8 2-132-13 OH,메톡시OH, methoxy H,메틸H, methyl 알킬사이올Alkyl thiol POMMAPOMMA POMMAPOMMA 1~81 to 8 2-142-14 OH, 아크릴OH, acrylic H,옥틸H, octyl 메틸methyl ECHEECHE 아미노프로필Aminopropyl 1~81 to 8 2-152-15 비닐 ,메톡시Vinyl, methoxy H,메틸H, methyl 메틸methyl 알킬사이올Alkyl thiol 페닐Phenyl 1~81 to 8 2-162-16 알킬아민Alkylamine H,메틸H, methyl 메틸methyl GlyPGlyP GlyPGlyP 1~81 to 8 2-172-17 OH,에틸,메틸OH, ethyl, methyl 알킬사이올,메틸Alkyl thiol, methyl 메틸methyl POMMAPOMMA POMMAPOMMA 1~81 to 8 2-182-18 아세톡시,메톡시Acetoxy, methoxy H,메틸H, methyl GlyPGlyP ECHEECHE 아미노프로필Aminopropyl 1~81 to 8 2-192-19 프로폭시,메톡시Propoxy, methoxy H, CF3 H, CF 3 GlyPGlyP 페닐Phenyl 페닐Phenyl 1~81 to 8 2-202-20 OH, 메톡시OH, methoxy H,메틸H, methyl 아미노프로필Aminopropyl 메틸methyl 옥틸Octyl 1~81 to 8 2-212-21 C8F13,메톡시C 8 F 13 , methoxy C8F13,메틸C 8 F 13 , methyl GlyPGlyP POMMAPOMMA POMMAPOMMA 1~81 to 8 2-222-22 OH,아릴OH, aryl H,프로필H, profile POMMAPOMMA 프로필profile ECHEECHE 1~81 to 8 2-232-23 OH,메톡시OH, methoxy F,메틸F, methyl POMMAPOMMA 페닐Phenyl 페닐Phenyl 1~81 to 8 2-242-24 CF3,메타크릴CF 3 , methacrylic H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl 1~81 to 8 2-252-25 OH,메톡시OH, methoxy H,에틸H, ethyl 아미노프로필Aminopropyl GlyPGlyP GlyPGlyP 1~81 to 8

구체적인 예로 상기 화학식 2의 실세스퀴옥산 복합고분자는 하기 표 3 및 4에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of Formula 2 may be a polymer described in Tables 3 and 4.

NoNo R3R3 R4R4 R6R6 R7R7 Y의RY of R 3-13-1 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 3-23-2 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 3-33-3 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 3-43-4 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 3-53-5 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 3-63-6 H,메틸H, methyl H,메틸H, methyl ECHEECHE 페닐Phenyl 페닐Phenyl 3-73-7 H,메틸H, methyl H,메틸H, methyl ECHEECHE 메틸methyl 메틸methyl 3-83-8 H,메틸H, methyl H,메틸H, methyl ECHEECHE GlyPGlyP GlyPGlyP 3-93-9 H,메틸H, methyl H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA 3-103-10 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl ECHEECHE ECHEECHE 3-113-11 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 메틸methyl 3-123-12 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl GlyPGlyP GlyPGlyP 3-133-13 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA POMMAPOMMA 3-143-14 H,메틸H, methyl H,메틸H, methyl 메틸methyl ECHEECHE ECHEECHE 3-153-15 H,메틸H, methyl H,메틸H, methyl 메틸methyl 페닐Phenyl 페닐Phenyl 3-163-16 H,메틸H, methyl H,메틸H, methyl 메틸methyl GlyPGlyP GlyPGlyP 3-173-17 H,메틸H, methyl H,메틸H, methyl 메틸methyl POMMAPOMMA POMMAPOMMA 3-183-18 H,메틸H, methyl H,메틸H, methyl GlyPGlyP ECHEECHE ECHEECHE 3-193-19 H,메틸H, methyl H,메틸H, methyl GlyPGlyP 페닐Phenyl 페닐Phenyl 3-203-20 H,메틸H, methyl H,메틸H, methyl GlyPGlyP 메틸methyl 메틸methyl 3-213-21 H,메틸H, methyl H,메틸H, methyl GlyPGlyP POMMAPOMMA POMMAPOMMA 3-223-22 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA ECHEECHE ECHEECHE 3-233-23 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl 페닐Phenyl 3-243-24 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl 3-253-25 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA GlyPGlyP GlyPGlyP

NoNo R3R3 R4R4 R6R6 R7R7 Y의RY of R 4-14-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 4-24-2 OH, CF3 OH, CF 3 H,에틸H, ethyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 4-34-3 OH,메톡시OH, methoxy H,아세틸틸H, acetyl 알킬사이올Alkyl thiol 메틸methyl 메틸methyl 4-44-4 CF3,메톡시CF 3 , methoxy 비닐,메틸Vinyl, methyl POMMAPOMMA 도데실Dodecyl GlyPGlyP 4-54-5 OH, 아크릴OH, acrylic H,메틸H, methyl POMMAPOMMA 알킬사이올Alkyl thiol 옥틸Octyl 4-64-6 비닐 ,메톡시Vinyl, methoxy H, FH, F ECHEECHE 페닐Phenyl POMMAPOMMA 4-74-7 알킬아민Alkylamine CF3,메틸CF 3 , methyl ECHEECHE 옥틸Octyl 메틸methyl 4-84-8 OH,에틸,메틸OH, ethyl, methyl H,메틸H, methyl FF 아미노프로필Aminopropyl GlyPGlyP 4-94-9 아세톡시,메톡시Acetoxy, methoxy H, CF3 H, CF 3 아미노프로필Aminopropyl POMMAPOMMA 헥실Hexyl 4-104-10 프로폭시,메톡시Propoxy, methoxy H,메틸H, methyl 페닐Phenyl 알킬사이올Alkyl thiol ECHEECHE 4-114-11 OH, C8F13 OH, C 8 F 13 아릴,메틸Aryl, methyl 알킬사이올Alkyl thiol 메틸methyl 헥실Hexyl 4-124-12 OH,메톡시OH, methoxy H,메타크릴H, methacrylic 페닐Phenyl GlyPGlyP GlyPGlyP 4-134-13 CF3,메톡시CF 3 , methoxy H,메틸H, methyl 옥틸Octyl POMMAPOMMA POMMAPOMMA 4-144-14 OH, 아크릴OH, acrylic H,옥틸H, octyl 메틸methyl ECHEECHE 아미노프로필Aminopropyl 4-154-15 비닐 ,메톡시Vinyl, methoxy H,메틸H, methyl 옥틸Octyl 알킬사이올Alkyl thiol 페닐Phenyl 4-164-16 알킬아민Alkylamine H,메틸H, methyl 옥틸Octyl GlyPGlyP GlyPGlyP 4-174-17 OH,메톡시OH, methoxy 알킬사이올,메틸Alkyl thiol, methyl 메틸methyl POMMAPOMMA POMMAPOMMA 4-184-18 아세톡시,메톡시Acetoxy, methoxy H,메틸H, methyl GlyPGlyP ECHEECHE 아미노프로필Aminopropyl 4-194-19 프로폭시,메톡시Propoxy, methoxy H, CF3 H, CF 3 GlyPGlyP 아미노프로필Aminopropyl 페닐Phenyl 4-204-20 OH, 메톡시OH, methoxy H,메틸H, methyl 아미노프로필Aminopropyl 메틸methyl 옥틸Octyl 4-214-21 프로폭시,메톡시Propoxy, methoxy C8F13,메틸C 8 F 13 , methyl GlyPGlyP POMMAPOMMA POMMAPOMMA 4-224-22 OH, 메톡시OH, methoxy H,프로필H, profile POMMAPOMMA 프로필profile ECHEECHE 4-234-23 C8F13,메톡시C 8 F 13 , methoxy F,메틸F, methyl POMMAPOMMA 페닐Phenyl 페닐Phenyl 4-244-24 OH,아릴OH, aryl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 4-254-25 OH,메톡시OH, methoxy H,에틸H, ethyl 아미노프로필Aminopropyl GlyPGlyP GlyPGlyP

구체적인 예로 상기 화학식 3의 실세스퀴옥산 복합고분자는 하기 표 5 또는 6에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of Formula 3 may be a polymer as shown in Table 5 or 6 below.

NoNo R5R5 R6R6 R7R7 R8R8 R10R10 Y의 RY of R X의 RX of R 5-15-1 H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE 5-25-2 H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 5-35-3 H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 5-45-4 H,메틸H, methyl GlyPGlyP EGCDXEGCDX GlyPGlyP H,메틸H, methyl EGCDXEGCDX GlyPGlyP 5-55-5 H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA 5-65-6 H,메틸H, methyl ECHEECHE ECHEECHE 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl 5-75-7 H,메틸H, methyl ECHEECHE ECHEECHE 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl 5-85-8 H,메틸H, methyl ECHEECHE ECHEECHE GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP 5-95-9 H,메틸H, methyl ECHEECHE ECHEECHE POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA 5-105-10 H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 5-115-11 H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 5-125-12 H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE 5-135-13 H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE 5-145-14 H,메틸H, methyl 페닐Phenyl 페닐Phenyl ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 5-155-15 H,메틸H, methyl 페닐Phenyl 페닐Phenyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 5-165-16 H,메틸H, methyl 페닐Phenyl 페닐Phenyl EGDCXEGDCX H,메틸H, methyl 페닐Phenyl EGDCXEGDCX 5-175-17 H,메틸H, methyl 페닐Phenyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 5-185-18 H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl 5-195-19 H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 5-205-20 H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl 5-215-21 H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl 5-225-22 H,메틸H, methyl 메틸methyl 메틸methyl ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 5-235-23 H,메틸H, methyl 메틸methyl 메틸methyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 5-255-25 H,메틸H, methyl 메틸methyl 메틸methyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 5-255-25 H,메틸H, methyl 메틸methyl 메틸methyl POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 5-265-26 H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl 5-275-27 H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 5-285-28 H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl 5-295-29 H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 5-305-30 H,메틸H, methyl GlyPGlyP GlyPGlyP ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE 5-315-31 H,메틸H, methyl GlyPGlyP GlyPGlyP 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl 5-325-32 H,메틸H, methyl GlyPGlyP GlyPGlyP 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl 5-335-33 H,메틸H, methyl GlyPGlyP GlyPGlyP POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA 5-345-34 H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP 5-355-35 H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 5-365-36 H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 5-375-37 H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP 5-355-35 H,메틸H, methyl POMMAPOMMA POMMAPOMMA ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE 5-395-39 H,메틸H, methyl POMMAPOMMA POMMAPOMMA 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl 5-405-40 H,메틸H, methyl POMMAPOMMA POMMAPOMMA 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 5-415-41 H,메틸H, methyl POMMAPOMMA POMMAPOMMA GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP 5-425-42 H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA 5-435-43 H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 5-445-44 H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 5-455-45 H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA

NoNo R5R5 R6R6 R7R7 R8R8 R10R10 Y의 RY of R X의 RX of R 6-16-1 H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE ECHEECHE 6-26-2 H,에틸H, ethyl 페닐Phenyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 6-36-3 H,아세틸틸H, acetyl 알킬사이올Alkyl thiol 메틸methyl 메틸methyl H, CF3 H, CF 3 메틸methyl 메틸methyl 6-46-4 비닐,메틸Vinyl, methyl POMMAPOMMA 도데실Dodecyl GlyPGlyP H,메틸H, methyl EGCDXEGCDX GlyPGlyP 6-56-5 H,메틸H, methyl POMMAPOMMA 알킬사이올Alkyl thiol POMMAPOMMA C8F13,메틸C 8 F 13 , methyl POMMAPOMMA POMMAPOMMA 6-66-6 H, FH, F ECHEECHE 페닐Phenyl 페닐Phenyl H,프로필H, profile ECHEECHE 페닐Phenyl 6-76-7 CF3,메틸CF 3 , methyl ECHEECHE 옥틸Octyl 메틸methyl F,메틸F, methyl ECHEECHE 메틸methyl 6-86-8 H,메틸H, methyl FF 아미노프로필Aminopropyl GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP 6-96-9 H, CF3 H, CF 3 아미노프로필Aminopropyl POMMAPOMMA POMMAPOMMA H,에틸H, ethyl ECHEECHE POMMAPOMMA 6-106-10 H,메틸H, methyl 페닐Phenyl 알킬사이올Alkyl thiol ECHEECHE H,아세틸틸H, acetyl 페닐Phenyl ECHEECHE 6-116-11 아릴,메틸Aryl, methyl 알킬사이올Alkyl thiol 메틸methyl ECHEECHE 비닐,메틸Vinyl, methyl 메틸methyl ECHEECHE 6-126-12 H,메타크릴H, methacrylic 페닐Phenyl GlyPGlyP ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE 6-136-13 H,메틸H, methyl 옥틸Octyl POMMAPOMMA ECHEECHE H, FH, F POMMAPOMMA ECHEECHE 6-146-14 H,옥틸H, octyl 메틸methyl ECHEECHE ECHEECHE CF3,메틸CF 3 , methyl 페닐Phenyl ECHEECHE 6-156-15 H,메틸H, methyl 옥틸Octyl 알킬사이올Alkyl thiol 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 6-166-16 H,메틸H, methyl 옥틸Octyl GlyPGlyP EGDCXEGDCX H,옥틸H, octyl 페닐Phenyl EGDCXEGDCX 6-176-17 알킬사이올,메틸Alkyl thiol, methyl 메틸methyl POMMAPOMMA POMMAPOMMA H,아세틸틸H, acetyl 페닐Phenyl POMMAPOMMA 6-186-18 H,메틸H, methyl GlyPGlyP GlyPGlyP 페닐Phenyl 비닐,메틸Vinyl, methyl ECHEECHE 페닐Phenyl 6-196-19 H, CF3 H, CF 3 POMMAPOMMA POMMAPOMMA 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 6-206-20 H,메틸H, methyl ECHEECHE 아미노프로필Aminopropyl 페닐Phenyl H, FH, F GlyPGlyP 페닐Phenyl 6-216-21 C8F13,메틸C 8 F 13 , methyl 알킬사이올Alkyl thiol 페닐Phenyl 페닐Phenyl CF3,메틸CF 3 , methyl POMMAPOMMA 페닐Phenyl 6-226-22 H,프로필H, profile GlyPGlyP GlyPGlyP ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 6-236-23 F,메틸F, methyl POMMAPOMMA POMMAPOMMA 페닐Phenyl H, CF3 H, CF 3 메틸methyl 페닐Phenyl 6-246-24 H,메틸H, methyl ECHEECHE 아미노프로필Aminopropyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 6-256-25 H,에틸H, ethyl 아미노프로필Aminopropyl 페닐Phenyl POMMAPOMMA 아릴,메틸Aryl, methyl 메틸methyl POMMAPOMMA 6-266-26 H,아세틸틸H, acetyl 메틸methyl 옥틸Octyl 메틸methyl H,메타크릴H, methacrylic ECHEECHE 메틸methyl 6-276-27 비닐,메틸Vinyl, methyl POMMAPOMMA POMMAPOMMA 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 6-286-28 H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl H,옥틸H, octyl GlyPGlyP 메틸methyl 6-296-29 H, FH, F 도데실Dodecyl GlyPGlyP 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 6-306-30 CF3,메틸CF 3 , methyl 알킬사이올Alkyl thiol 옥틸Octyl ECHEECHE 비닐,메틸Vinyl, methyl GlyPGlyP ECHEECHE 6-316-31 H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl 6-326-32 H,옥틸H, octyl 옥틸Octyl 메틸methyl 메틸methyl H, FH, F GlyPGlyP 메틸methyl 6-336-33 H,메틸H, methyl 아미노프로필Aminopropyl GlyPGlyP POMMAPOMMA CF3,메틸CF 3 , methyl GlyPGlyP POMMAPOMMA 6-346-34 H,메틸H, methyl POMMAPOMMA 헥실Hexyl GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP 6-356-35 H,아세틸틸H, acetyl 알킬사이올Alkyl thiol ECHEECHE GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 6-366-36 비닐,메틸Vinyl, methyl 메틸methyl 헥실Hexyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 6-376-37 H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP 6-386-38 H, FH, F POMMAPOMMA POMMAPOMMA ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE 6-396-39 CF3,메틸CF 3 , methyl ECHEECHE 아미노프로필Aminopropyl 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl 6-406-40 H,메틸H, methyl 알킬사이올Alkyl thiol 페닐Phenyl 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 6-416-41 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP 6-426-42 H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA 6-436-43 H, FH, F ECHEECHE 아미노프로필Aminopropyl POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 6-446-44 CF3,메틸CF 3 , methyl 아미노프로필Aminopropyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 6-456-45 H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA

구체적인 예로 상기 화학식 4의 실세스퀴옥산 복합고분자는 하기 표 7 및 8에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of Formula 4 may be a polymer described in Tables 7 and 8 below.

NoNo R1R1 R2R2 R6R6 R7R7 R8R8 R9R9 X의 RX of R Y의 RY of R 7-17-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 7-27-2 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 7-37-3 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 7-47-4 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 7-57-5 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 7-67-6 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 7-77-7 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 7-87-8 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP 7-97-9 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 7-107-10 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE 7-117-11 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 7-127-12 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP 7-137-13 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA 7-147-14 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE 7-157-15 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 7-167-16 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 7-177-17 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA 7-187-18 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE 7-197-19 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 7-207-20 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 7-217-21 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA 7-227-22 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE 7-237-23 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 7-247-24 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 7-257-25 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

NoNo R1R1 R2R2 R6R6 R7R7 R8R8 R9R9 X의 RX of R Y의 RY of R 8-18-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 8-28-2 OH, CF3 OH, CF 3 H,에틸H, ethyl ECHEECHE 페닐Phenyl H,옥틸H, octyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 8-38-3 OH,메톡시OH, methoxy H,아세틸틸H, acetyl ECHEECHE 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 8-48-4 CF3,메톡시CF 3 , methoxy 비닐,메틸Vinyl, methyl 페닐Phenyl GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 8-58-5 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl POMMAPOMMA 알킬사이올,메틸Alkyl thiol, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 8-68-6 OH, C8F13 OH, C 8 F 13 H, FH, F 페닐Phenyl ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 8-78-7 OH, CF3 OH, CF 3 CF3,메틸CF 3 , methyl ECHEECHE ECHEECHE H, CF3 H, CF 3 메틸methyl ECHEECHE 메틸methyl 8-88-8 OH, C8F13 OH, C 8 F 13 H,메틸H, methyl 헥실Hexyl ECHEECHE H,에틸H, ethyl GlyPGlyP ECHEECHE GlyPGlyP 8-98-9 OH,메톡시OH, methoxy H, CF3 H, CF 3 GlyPGlyP ECHEECHE H,아세틸틸H, acetyl POMMAPOMMA ECHEECHE POMMAPOMMA 8-108-10 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA 페닐Phenyl 비닐,메틸Vinyl, methyl ECHEECHE 페닐Phenyl ECHEECHE 8-118-11 OH, C8F13 OH, C 8 F 13 아릴,메틸Aryl, methyl 아미노프로필Aminopropyl 페닐Phenyl H,메틸H, methyl 헥실Hexyl 페닐Phenyl 헥실Hexyl 8-128-12 OH,알킬사이올OH, alkylaryl H,메타크릴H, methacrylic 페닐Phenyl 페닐Phenyl H, FH, F GlyPGlyP 페닐Phenyl GlyPGlyP 8-138-13 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP ECHEECHE 비닐,메틸Vinyl, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA 8-148-14 OH, 아크릴OH, acrylic H,옥틸H, octyl POMMAPOMMA 헥실Hexyl H,메틸H, methyl 아미노프로필Aminopropyl 메틸methyl 아미노프로필Aminopropyl 8-158-15 비닐 ,메톡시Vinyl, methoxy H,메틸H, methyl 아미노프로필Aminopropyl GlyPGlyP H, FH, F 페닐Phenyl 메틸methyl 페닐Phenyl 8-168-16 알킬아민Alkylamine H,메틸H, methyl 페닐Phenyl POMMAPOMMA CF3,메틸CF 3 , methyl GlyPGlyP 메틸methyl GlyPGlyP 8-178-17 OH,에틸,메틸OH, ethyl, methyl 알킬사이올,메틸Alkyl thiol, methyl 옥틸Octyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA 8-188-18 아세톡시,메톡시Acetoxy, methoxy H,메틸H, methyl POMMAPOMMA 페닐Phenyl H, CF3 H, CF 3 아미노프로필Aminopropyl GlyPGlyP 아미노프로필Aminopropyl 8-198-19 프로폭시,메톡시Propoxy, methoxy H, CF3 H, CF 3 ECHEECHE GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 8-208-20 OH, 메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 옥틸Octyl GlyPGlyP 옥틸Octyl 8-218-21 C8F13,메톡시C 8 F 13 , methoxy C8F13,메틸C 8 F 13 , methyl 메틸methyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA 8-228-22 OH,아릴OH, aryl H,프로필H, profile GlyPGlyP 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE POMMAPOMMA ECHEECHE 8-238-23 OH,메톡시OH, methoxy F,메틸F, methyl POMMAPOMMA 옥틸Octyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 8-248-24 CF3,메타크릴CF 3 , methacrylic H,메틸H, methyl POMMAPOMMA POMMAPOMMA H, CF3 H, CF 3 메틸methyl POMMAPOMMA 메틸methyl 8-258-25 OH,메톡시OH, methoxy H,에틸H, ethyl POMMAPOMMA ECHEECHE H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

구체적인 예로 상기 화학식 5의 실세스퀴옥산 복합고분자는 하기 표 9 및 10에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of Formula 5 may be a polymer described in Tables 9 and 10 below.

NoNo R3R3 R4R4 R6R6 R7R7 R8R8 R9R9 X의 RX of R Y의 RY of R 9-19-1 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 9-29-2 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 9-39-3 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 9-49-4 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 9-59-5 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 9-69-6 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 9-79-7 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 9-89-8 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP 9-99-9 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 9-109-10 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE 9-119-11 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 9-129-12 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP 9-139-13 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA 9-149-14 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE 9-159-15 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 9-169-16 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 9-179-17 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA 9-189-18 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE 9-199-19 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 9-209-20 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 9-219-21 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA 9-229-22 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE 9-239-23 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 9-249-24 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 9-259-25 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

NoNo R3R3 R4R4 R6R6 R7R7 R8R8 R9R9 B의 RR of B D의 RD of R 10-110-1 H,메틸H, methyl CF3,메틸CF 3 , methyl ECHEECHE 알킬사이올Alkyl thiol H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 10-210-2 H,에틸H, ethyl H,메틸H, methyl ECHEECHE 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl 헥실Hexyl 페닐Phenyl 헥실Hexyl 10-310-3 H,아세틸틸H, acetyl H, CF3 H, CF 3 ECHEECHE 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 10-410-4 비닐,메틸Vinyl, methyl H,메틸H, methyl 페닐Phenyl GlyPGlyP H, CF3 H, CF 3 POMMAPOMMA GlyPGlyP POMMAPOMMA 10-510-5 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,에틸H, ethyl 아미노프로필Aminopropyl POMMAPOMMA 아미노프로필Aminopropyl 10-610-6 H, FH, F H,옥틸H, octyl 페닐Phenyl ECHEECHE H, FH, F 페닐Phenyl ECHEECHE 페닐Phenyl 10-710-7 CF3,메틸CF 3 , methyl H,메틸H, methyl ECHEECHE ECHEECHE 비닐,메틸Vinyl, methyl GlyPGlyP ECHEECHE GlyPGlyP 10-810-8 H,메틸H, methyl H,메틸H, methyl 헥실Hexyl ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 10-910-9 H, CF3 H, CF 3 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP ECHEECHE H, FH, F 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 10-1010-10 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl CF3,메틸CF 3 , methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 10-1110-11 아릴,메틸Aryl, methyl H,메틸H, methyl 아미노프로필Aminopropyl 페닐Phenyl H,메틸H, methyl 옥틸Octyl 페닐Phenyl 옥틸Octyl 10-1210-12 H,메타크릴H, methacrylic H,메틸H, methyl 페닐Phenyl 페닐Phenyl H, CF3 H, CF 3 POMMAPOMMA 페닐Phenyl POMMAPOMMA 10-1310-13 H,메틸H, methyl 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 10-1410-14 H,옥틸H, octyl H,메틸H, methyl POMMAPOMMA 헥실Hexyl H,메틸H, methyl 페닐Phenyl 헥실Hexyl 페닐Phenyl 10-1510-15 H,메틸H, methyl H, FH, F 아미노프로필Aminopropyl GlyPGlyP H,옥틸H, octyl 메틸methyl GlyPGlyP 메틸methyl 10-1610-16 H,메틸H, methyl CF3,메틸CF 3 , methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP 10-1710-17 알킬사이올,메틸Alkyl thiol, methyl H,메틸H, methyl 옥틸Octyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 10-1810-18 H,메틸H, methyl H, CF3 H, CF 3 POMMAPOMMA 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl 아미노프로필Aminopropyl 페닐Phenyl 아미노프로필Aminopropyl 10-1910-19 H, CF3 H, CF 3 H,메틸H, methyl ECHEECHE GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 10-2010-20 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 옥틸Octyl POMMAPOMMA 옥틸Octyl 10-2110-21 C8F13,메틸C 8 F 13 , methyl H,메틸H, methyl 메틸methyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 10-2210-22 H,프로필H, profile 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE 페닐Phenyl ECHEECHE 10-2310-23 F,메틸F, methyl H,메틸H, methyl POMMAPOMMA 옥틸Octyl H,메틸H, methyl 페닐Phenyl 옥틸Octyl 페닐Phenyl 10-2410-24 H,메틸H, methyl H, CF3 H, CF 3 POMMAPOMMA POMMAPOMMA H, CF3 H, CF 3 메틸methyl POMMAPOMMA 메틸methyl 10-2510-25 H,에틸H, ethyl H,메틸H, methyl POMMAPOMMA ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP

구체적인 예로 상기 화학식 6의 실세스퀴옥산 복합고분자는 하기 표 11 및 12에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of formula (6) may be a polymer described in Tables 11 and 12 below.

NoNo R6R6 R7R7 R8R8 R9R9 R10R10 X의 RX of R Y의 RY of R E의 RE of R 11-111-1 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE ECHEECHE ECHEECHE 11-211-2 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 11-311-3 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 11-411-4 GlyPGlyP EGCDXEGCDX H,메틸H, methyl EGCDXEGCDX GlyPGlyP EGCDXEGCDX EGCDXEGCDX GlyPGlyP 11-511-5 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA POMMAPOMMA POMMAPOMMA 11-611-6 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE ECHEECHE 페닐Phenyl 11-711-7 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE ECHEECHE 메틸methyl 11-811-8 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE ECHEECHE GlyPGlyP 11-911-9 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE ECHEECHE POMMAPOMMA 11-1011-10 ECHEECHE 페닐Phenyl H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 11-1111-11 ECHEECHE 메틸methyl H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 메틸methyl ECHEECHE 11-1211-12 ECHEECHE GlyPGlyP H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE 11-1311-13 ECHEECHE POMMAPOMMA H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE 11-1411-14 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 11-1511-15 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 페닐Phenyl 메틸methyl 11-1611-16 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl EGDCXEGDCX 페닐Phenyl 페닐Phenyl EGDCXEGDCX 11-1711-17 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 페닐Phenyl POMMAPOMMA 11-1811-18 페닐Phenyl ECHEECHE H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE ECHEECHE 페닐Phenyl 11-1911-19 페닐Phenyl 메틸methyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 11-2011-20 페닐Phenyl GlyPGlyP H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl 11-2111-21 페닐Phenyl POMMAPOMMA H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 11-2211-22 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 메틸methyl ECHEECHE 11-2311-23 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 11-2411-24 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 11-2511-25 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 11-2611-26 메틸methyl ECHEECHE H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE ECHEECHE 메틸methyl 11-2711-27 메틸methyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 페닐Phenyl 메틸methyl 11-2811-28 메틸methyl GlyPGlyP H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl 11-2911-29 메틸methyl POMMAPOMMA H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl 11-3011-30 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE 11-3111-31 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl 11-3211-32 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl 11-3311-33 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP GlyPGlyP POMMAPOMMA 11-3411-34 GlyPGlyP ECHEECHE H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE ECHEECHE GlyPGlyP 11-3511-35 GlyPGlyP 페닐Phenyl H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 페닐Phenyl GlyPGlyP 11-3611-36 GlyPGlyP 메틸methyl H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 11-3711-37 GlyPGlyP POMMAPOMMA H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP 11-3811-38 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE 11-3911-39 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 11-4011-40 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl 11-4111-41 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP 11-4211-42 POMMAPOMMA ECHEECHE H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE ECHEECHE POMMAPOMMA 11-4311-43 POMMAPOMMA 페닐Phenyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 페닐Phenyl POMMAPOMMA 11-4411-44 POMMAPOMMA 메틸methyl H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 11-4511-45 POMMAPOMMA GlyPGlyP H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP GlyPGlyP POMMAPOMMA

NoNo R6R6 R7R7 R8R8 R9R9 R10R10 X의 RX of R Y의 RY of R E의 RE of R 12-112-1 ECHEECHE POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE POMMAPOMMA 12-212-2 페닐Phenyl POMMAPOMMA H,에틸H, ethyl 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl POMMAPOMMA 12-312-3 POMMAPOMMA ECHEECHE H,아세틸틸H, acetyl 메틸methyl ECHEECHE ECHEECHE 메틸methyl ECHEECHE 12-412-4 메틸methyl ECHEECHE 비닐,메틸Vinyl, methyl EGCDXEGCDX ECHEECHE ECHEECHE EGCDXEGCDX ECHEECHE 12-512-5 POMMAPOMMA FF H,메틸H, methyl POMMAPOMMA FF FF POMMAPOMMA FF 12-612-6 프로필profile 아미노프로필Aminopropyl CF3,메틸CF 3 , methyl ECHEECHE 아미노프로필Aminopropyl 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 12-712-7 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 페닐Phenyl 12-812-8 메틸methyl 알킬사이올Alkyl thiol H,아세틸틸H, acetyl ECHEECHE 알킬사이올Alkyl thiol 알킬사이올Alkyl thiol ECHEECHE 알킬사이올Alkyl thiol 12-912-9 GlyPGlyP 페닐Phenyl 비닐,메틸Vinyl, methyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 페닐Phenyl 12-1012-10 ECHEECHE 옥틸Octyl H,메틸H, methyl 페닐Phenyl 옥틸Octyl 옥틸Octyl 페닐Phenyl 옥틸Octyl 12-1112-11 알킬사이올Alkyl thiol 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 12-1212-12 페닐Phenyl 옥틸Octyl 비닐,메틸Vinyl, methyl GlyPGlyP 옥틸Octyl 옥틸Octyl GlyPGlyP 옥틸Octyl 12-1312-13 옥틸Octyl 옥틸Octyl H,메틸H, methyl POMMAPOMMA 옥틸Octyl 옥틸Octyl POMMAPOMMA 옥틸Octyl 12-1412-14 메틸methyl 메틸methyl H, FH, F 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 메틸methyl 12-1512-15 옥틸Octyl GlyPGlyP CF3,메틸CF 3 , methyl 페닐Phenyl ECHEECHE GlyPGlyP 페닐Phenyl ECHEECHE 12-1612-16 옥틸Octyl GlyPGlyP 비닐,메틸Vinyl, methyl 페닐Phenyl 페닐Phenyl GlyPGlyP 페닐Phenyl 페닐Phenyl 12-1712-17 메틸methyl 아미노프로필Aminopropyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 아미노프로필Aminopropyl 페닐Phenyl POMMAPOMMA 12-1812-18 GlyPGlyP GlyPGlyP H, FH, F ECHEECHE 메틸methyl GlyPGlyP ECHEECHE 메틸methyl 12-1912-19 GlyPGlyP POMMAPOMMA CF3,메틸CF 3 , methyl 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl POMMAPOMMA 12-2012-20 아미노프로필Aminopropyl 메틸methyl H,메틸H, methyl GlyPGlyP 프로필profile 메틸methyl GlyPGlyP 프로필profile 12-2112-21 GlyPGlyP POMMAPOMMA 알킬사이올,메틸Alkyl thiol, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 12-2212-22 POMMAPOMMA 프로필profile H,아세틸틸H, acetyl 메틸methyl 메틸methyl 프로필profile 메틸methyl 메틸methyl 12-2312-23 POMMAPOMMA 메틸methyl 비닐,메틸Vinyl, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 12-2412-24 GlyPGlyP GlyPGlyP 비닐,메틸Vinyl, methyl 메틸methyl ECHEECHE GlyPGlyP 메틸methyl ECHEECHE 12-2512-25 아미노프로필Aminopropyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 12-2612-26 메틸methyl 아미노프로필Aminopropyl H, FH, F ECHEECHE 아미노프로필Aminopropyl 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 12-2712-27 메틸methyl GlyPGlyP CF3,메틸CF 3 , methyl 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl GlyPGlyP 12-2812-28 메틸methyl 옥틸Octyl H,메틸H, methyl GlyPGlyP 옥틸Octyl 옥틸Octyl GlyPGlyP 옥틸Octyl 12-2912-29 메틸methyl 메틸methyl H,아세틸틸H, acetyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 12-3012-30 아미노프로필Aminopropyl GlyPGlyP 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 12-3112-31 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 12-3212-32 POMMAPOMMA 아미노프로필Aminopropyl H,메틸H, methyl GlyPGlyP 아미노프로필Aminopropyl 아미노프로필Aminopropyl GlyPGlyP 아미노프로필Aminopropyl 12-3312-33 메틸methyl GlyPGlyP 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 12-3412-34 POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE POMMAPOMMA 12-3512-35 프로필profile POMMAPOMMA H, FH, F 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl POMMAPOMMA 12-3612-36 메틸methyl GlyPGlyP CF3,메틸CF 3 , methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 12-3712-37 GlyPGlyP 아미노프로필Aminopropyl 비닐,메틸Vinyl, methyl POMMAPOMMA 아미노프로필Aminopropyl 아미노프로필Aminopropyl POMMAPOMMA 아미노프로필Aminopropyl 12-3812-38 GlyPGlyP 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 12-3912-39 아미노프로필Aminopropyl 메틸methyl H, FH, F POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 12-4012-40 아미노프로필Aminopropyl 메틸methyl CF3,메틸CF 3 , methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 12-4112-41 GlyPGlyP 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 12-4212-42 POMMAPOMMA GlyPGlyP 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE GlyPGlyP 12-4312-43 POMMAPOMMA 아미노프로필Aminopropyl H,아세틸틸H, acetyl 페닐Phenyl 아미노프로필Aminopropyl 아미노프로필Aminopropyl 페닐Phenyl 아미노프로필Aminopropyl 12-4412-44 POMMAPOMMA GlyPGlyP 비닐,메틸Vinyl, methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 12-4512-45 POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP POMMAPOMMA

구체적인 예로 상기 화학식 7의 실세스퀴옥산 복합고분자는 하기 표 13 및 14에 기재된 고분자일 수 있다. As a specific example, the silsesquioxane complex polymer of formula (7) may be a polymer described in Tables 13 and 14 below.

NoNo R1R1 R2R2 R6R6 R7R7 R8R8 R9R9 X의RX of R Y의RY of R 13-113-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 13-213-2 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 13-313-3 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 13-413-4 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 13-513-5 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 13-613-6 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 13-713-7 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 13-813-8 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP 13-913-9 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 13-1013-10 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE 13-1113-11 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 13-1213-12 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP 13-1313-13 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA 13-1413-14 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE 13-1513-15 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 13-1613-16 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 13-1713-17 OH,메톡시OH, methoxy H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA 13-1813-18 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE 13-1913-19 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 13-2013-20 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 13-2113-21 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA 13-2213-22 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE 13-2313-23 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 13-2413-24 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 13-2513-25 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

NoNo R1R1 R2R2 R6R6 R7R7 R8R8 R9R9 X의RX of R Y의RY of R 14-114-1 OH,메톡시OH, methoxy H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 14-214-2 OH, CF3 OH, CF 3 H,에틸H, ethyl ECHEECHE 페닐Phenyl H,에틸H, ethyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 14-314-3 OH,메톡시OH, methoxy H,아세틸틸H, acetyl ECHEECHE 메틸methyl H,아세틸틸H, acetyl 메틸methyl 메틸methyl 메틸methyl 14-414-4 CF3,메톡시CF 3 , methoxy 비닐,메틸Vinyl, methyl 페닐Phenyl GlyPGlyP 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP 14-514-5 OH,메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 14-614-6 OH, C8F13 OH, C 8 F 13 H, FH, F 페닐Phenyl ECHEECHE H, FH, F 페닐Phenyl ECHEECHE 페닐Phenyl 14-714-7 OH, CF3 OH, CF 3 CF3,메틸CF 3 , methyl ECHEECHE ECHEECHE CF3,메틸CF 3 , methyl 메틸methyl ECHEECHE 메틸methyl 14-814-8 OH, C8F13 OH, C 8 F 13 H,메틸H, methyl 헥실Hexyl ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP 14-914-9 OH,메톡시OH, methoxy H, CF3 H, CF 3 GlyPGlyP ECHEECHE H, CF3 H, CF 3 POMMAPOMMA ECHEECHE POMMAPOMMA 14-1014-10 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE 14-1114-11 OH, C8F13 OH, C 8 F 13 아릴,메틸Aryl, methyl 아미노프로필Aminopropyl 페닐Phenyl 아릴,메틸Aryl, methyl 헥실Hexyl 페닐Phenyl 헥실Hexyl 14-1214-12 OH,알킬사이올OH, alkylaryl H,메타크릴H, methacrylic 페닐Phenyl 페닐Phenyl H,메타크릴H, methacrylic GlyPGlyP 페닐Phenyl GlyPGlyP 14-1314-13 OH,메톡시OH, methoxy H,메틸H, methyl GlyPGlyP ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 14-1414-14 OH, 아크릴OH, acrylic H,옥틸H, octyl POMMAPOMMA 헥실Hexyl H,옥틸H, octyl 아미노프로필Aminopropyl 헥실Hexyl 아미노프로필Aminopropyl 14-1514-15 비닐 ,메톡시Vinyl, methoxy H,메틸H, methyl 아미노프로필Aminopropyl GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 14-1614-16 알킬아민Alkylamine H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP 14-1714-17 OH,에틸,메틸OH, ethyl, methyl 알킬사이올,메틸Alkyl thiol, methyl 옥틸Octyl 아미노프로필Aminopropyl 알킬사이올,메틸Alkyl thiol, methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 14-1814-18 아세톡시,메톡시Acetoxy, methoxy H,메틸H, methyl POMMAPOMMA 페닐Phenyl H,메틸H, methyl 아미노프로필Aminopropyl 페닐Phenyl 아미노프로필Aminopropyl 14-1914-19 프로폭시,메톡시Propoxy, methoxy H, CF3 H, CF 3 ECHEECHE GlyPGlyP H, CF3 H, CF 3 페닐Phenyl GlyPGlyP 페닐Phenyl 14-2014-20 OH, 메톡시OH, methoxy H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 옥틸Octyl POMMAPOMMA 옥틸Octyl 14-2114-21 C8F13,메톡시C 8 F 13 , methoxy C8F13,메틸C 8 F 13 , methyl 메틸methyl 아미노프로필Aminopropyl C8F13,메틸C 8 F 13 , methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 14-2214-22 OH,아릴OH, aryl H,프로필H, profile GlyPGlyP 페닐Phenyl H,프로필H, profile ECHEECHE 페닐Phenyl ECHEECHE 14-2314-23 OH,메톡시OH, methoxy F,메틸F, methyl POMMAPOMMA 옥틸Octyl F,메틸F, methyl 페닐Phenyl 옥틸Octyl 페닐Phenyl 14-2414-24 CF3,메타크릴CF 3 , methacrylic H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 14-2514-25 OH,메톡시OH, methoxy H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

구체적인 예로 상기 화학식 8의 실세스퀴옥산 복합고분자는 하기 표 15 및 16에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of formula (8) may be a polymer described in Tables 15 and 16 below.

NoNo R3R3 R4R4 R6R6 R7R7 R8R8 R9R9 X의RX of R Y의 RY of R 15-115-1 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 15-215-2 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 15-315-3 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 15-415-4 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP 15-515-5 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA 15-615-6 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 15-715-7 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 15-815-8 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP 15-915-9 H,메틸H, methyl H,메틸H, methyl ECHEECHE ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 15-1015-10 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE 15-1115-11 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 15-1215-12 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP 15-1315-13 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA 15-1415-14 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE 15-1515-15 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 15-1615-16 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 15-1715-17 H,메틸H, methyl H,메틸H, methyl 메틸methyl 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA 15-1815-18 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE 15-1915-19 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 15-2015-20 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 15-2115-21 H,메틸H, methyl H,메틸H, methyl GlyPGlyP GlyPGlyP H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA 15-2215-22 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE 15-2315-23 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 15-2415-24 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 15-2515-25 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP

NoNo R3R3 R4R4 R6R6 R7R7 R8R8 R9R9 X의RX of R Y의 RY of R 16-116-1 H,메틸H, methyl CF3,메틸CF 3 , methyl ECHEECHE 알킬사이올Alkyl thiol H,메틸H, methyl ECHEECHE 알킬사이올Alkyl thiol ECHEECHE 16-216-2 H,에틸H, ethyl H,메틸H, methyl ECHEECHE 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl 헥실Hexyl 페닐Phenyl 헥실Hexyl 16-316-3 H,아세틸틸H, acetyl H, CF3 H, CF 3 ECHEECHE 메틸methyl H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP 16-416-4 비닐,메틸Vinyl, methyl H,메틸H, methyl 페닐Phenyl GlyPGlyP H, CF3 H, CF 3 POMMAPOMMA GlyPGlyP POMMAPOMMA 16-516-5 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,에틸H, ethyl 아미노프로필Aminopropyl POMMAPOMMA 아미노프로필Aminopropyl 16-616-6 H, FH, F H,옥틸H, octyl 페닐Phenyl ECHEECHE H, FH, F 페닐Phenyl ECHEECHE 페닐Phenyl 16-716-7 CF3,메틸CF 3 , methyl H,메틸H, methyl ECHEECHE ECHEECHE 비닐,메틸Vinyl, methyl GlyPGlyP ECHEECHE GlyPGlyP 16-816-8 H,메틸H, methyl H,메틸H, methyl 헥실Hexyl ECHEECHE H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA 16-916-9 H, CF3 H, CF 3 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP ECHEECHE H, FH, F 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 16-1016-10 H,메틸H, methyl H,메틸H, methyl POMMAPOMMA 페닐Phenyl CF3,메틸CF 3 , methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 16-1116-11 아릴,메틸Aryl, methyl H,메틸H, methyl 아미노프로필Aminopropyl 페닐Phenyl H,메틸H, methyl 옥틸Octyl 페닐Phenyl 옥틸Octyl 16-1216-12 H,메타크릴H, methacrylic H,메틸H, methyl 페닐Phenyl 페닐Phenyl H, CF3 H, CF 3 POMMAPOMMA 페닐Phenyl POMMAPOMMA 16-1316-13 H,메틸H, methyl 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE 16-1416-14 H,옥틸H, octyl H,메틸H, methyl POMMAPOMMA 헥실Hexyl H,메틸H, methyl 페닐Phenyl 헥실Hexyl 페닐Phenyl 16-1516-15 H,메틸H, methyl H, FH, F 아미노프로필Aminopropyl GlyPGlyP H,옥틸H, octyl 메틸methyl GlyPGlyP 메틸methyl 16-1616-16 H,메틸H, methyl CF3,메틸CF 3 , methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP 16-1716-17 알킬사이올,메틸Alkyl thiol, methyl H,메틸H, methyl 옥틸Octyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 16-1816-18 H,메틸H, methyl H, CF3 H, CF 3 POMMAPOMMA 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl 아미노프로필Aminopropyl 페닐Phenyl 아미노프로필Aminopropyl 16-1916-19 H, CF3 H, CF 3 H,메틸H, methyl ECHEECHE GlyPGlyP H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 16-2016-20 H,메틸H, methyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA H,메틸H, methyl 옥틸Octyl POMMAPOMMA 옥틸Octyl 16-2116-21 C8F13,메틸C 8 F 13 , methyl H,메틸H, methyl 메틸methyl 아미노프로필Aminopropyl H,메틸H, methyl POMMAPOMMA 아미노프로필Aminopropyl POMMAPOMMA 16-2216-22 H,프로필H, profile 알킬사이올,메틸Alkyl thiol, methyl GlyPGlyP 페닐Phenyl 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE 페닐Phenyl ECHEECHE 16-2316-23 F,메틸F, methyl H,메틸H, methyl POMMAPOMMA 옥틸Octyl H,메틸H, methyl 페닐Phenyl 옥틸Octyl 페닐Phenyl 16-2416-24 H,메틸H, methyl H, CF3 H, CF 3 POMMAPOMMA POMMAPOMMA H, CF3 H, CF 3 메틸methyl POMMAPOMMA 메틸methyl 16-2516-25 H,에틸H, ethyl H,메틸H, methyl POMMAPOMMA ECHEECHE H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP

구체적인 예로 상기 화학식 9의 실세스퀴옥산 복합고분자는 하기 표 17 및 18에 기재된 고분자일 수 있다.As a specific example, the silsesquioxane complex polymer of Formula 9 may be a polymer described in Tables 17 and 18 below.

NoNo R6R6 R7R7 R8R8 R9R9 R10R10 X의 RX of R Y의 RY of R E의 말단 RThe terminal R of E 17-117-1 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE ECHEECHE ECHEECHE ECHEECHE ECHEECHE 17-217-2 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 페닐Phenyl 17-317-3 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 17-417-4 GlyPGlyP EGCDXEGCDX H,메틸H, methyl EGCDXEGCDX GlyPGlyP EGCDXEGCDX EGCDXEGCDX GlyPGlyP 17-517-5 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA POMMAPOMMA POMMAPOMMA POMMAPOMMA POMMAPOMMA 17-617-6 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE ECHEECHE 페닐Phenyl 17-717-7 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE ECHEECHE 메틸methyl 17-817-8 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE ECHEECHE GlyPGlyP 17-917-9 ECHEECHE ECHEECHE H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE ECHEECHE POMMAPOMMA 17-1017-10 ECHEECHE 페닐Phenyl H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 17-1117-11 ECHEECHE 메틸methyl H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 메틸methyl ECHEECHE 17-1217-12 ECHEECHE GlyPGlyP H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE 17-1317-13 ECHEECHE POMMAPOMMA H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE 17-1417-14 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 17-1517-15 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 페닐Phenyl 메틸methyl 17-1617-16 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl EGDCXEGDCX 페닐Phenyl 페닐Phenyl EGDCXEGDCX 17-1717-17 페닐Phenyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 페닐Phenyl POMMAPOMMA 17-1817-18 페닐Phenyl ECHEECHE H,메틸H, methyl ECHEECHE 페닐Phenyl ECHEECHE ECHEECHE 페닐Phenyl 17-1917-19 페닐Phenyl 메틸methyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 17-2017-20 페닐Phenyl GlyPGlyP H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl 17-2117-21 페닐Phenyl POMMAPOMMA H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 17-2217-22 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl ECHEECHE 메틸methyl 메틸methyl ECHEECHE 17-2317-23 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 17-2417-24 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 17-2517-25 메틸methyl 메틸methyl H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 17-2617-26 메틸methyl ECHEECHE H,메틸H, methyl ECHEECHE 메틸methyl ECHEECHE ECHEECHE 메틸methyl 17-2717-27 메틸methyl 페닐Phenyl H,메틸H, methyl 페닐Phenyl 메틸methyl 페닐Phenyl 페닐Phenyl 메틸methyl 17-2817-28 메틸methyl GlyPGlyP H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl 17-2917-29 메틸methyl POMMAPOMMA H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl 17-3017-30 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE 17-3117-31 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl 17-3217-32 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl 17-3317-33 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP GlyPGlyP POMMAPOMMA 17-3417-34 GlyPGlyP ECHEECHE H,메틸H, methyl ECHEECHE GlyPGlyP ECHEECHE ECHEECHE GlyPGlyP 17-3517-35 GlyPGlyP 페닐Phenyl H,메틸H, methyl 페닐Phenyl GlyPGlyP 페닐Phenyl 페닐Phenyl GlyPGlyP 17-3617-36 GlyPGlyP 메틸methyl H,메틸H, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 17-3717-37 GlyPGlyP POMMAPOMMA H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP 17-3817-38 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE 17-3917-39 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 17-4017-40 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl 17-4117-41 POMMAPOMMA POMMAPOMMA H,메틸H, methyl POMMAPOMMA GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP 17-4217-42 POMMAPOMMA ECHEECHE H,메틸H, methyl ECHEECHE POMMAPOMMA ECHEECHE ECHEECHE POMMAPOMMA 17-4317-43 POMMAPOMMA 페닐Phenyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 페닐Phenyl 페닐Phenyl POMMAPOMMA 17-4417-44 POMMAPOMMA 메틸methyl H,메틸H, methyl 메틸methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 17-4517-45 POMMAPOMMA GlyPGlyP H,메틸H, methyl GlyPGlyP POMMAPOMMA GlyPGlyP GlyPGlyP POMMAPOMMA

NoNo R6R6 R7R7 R8R8 R9R9 R10R10 X의 RX of R Y의 RY of R E의
말단R
Of E
The terminal R
18-118-1 ECHEECHE POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE POMMAPOMMA 18-218-2 페닐Phenyl POMMAPOMMA H,에틸H, ethyl 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl POMMAPOMMA 18-318-3 POMMAPOMMA ECHEECHE H,아세틸틸H, acetyl 메틸methyl ECHEECHE ECHEECHE 메틸methyl ECHEECHE 18-418-4 메틸methyl ECHEECHE 비닐,메틸Vinyl, methyl EGCDXEGCDX ECHEECHE ECHEECHE EGCDXEGCDX ECHEECHE 18-518-5 POMMAPOMMA FF H,메틸H, methyl POMMAPOMMA FF FF POMMAPOMMA FF 18-618-6 프로필profile 아미노프로필Aminopropyl CF3,메틸CF 3 , methyl ECHEECHE 아미노프로필Aminopropyl 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 18-718-7 페닐Phenyl 페닐Phenyl H,메틸H, methyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 페닐Phenyl 18-818-8 메틸methyl 알킬사이올Alkyl thiol H,아세틸틸H, acetyl ECHEECHE 알킬사이올Alkyl thiol 알킬사이올Alkyl thiol ECHEECHE 알킬사이올Alkyl thiol 18-918-9 GlyPGlyP 페닐Phenyl 비닐,메틸Vinyl, methyl ECHEECHE 페닐Phenyl 페닐Phenyl ECHEECHE 페닐Phenyl 18-1018-10 ECHEECHE 옥틸Octyl H,메틸H, methyl 페닐Phenyl 옥틸Octyl 옥틸Octyl 페닐Phenyl 옥틸Octyl 18-1118-11 알킬사이올Alkyl thiol 메틸methyl H,메틸H, methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 메틸methyl 18-1218-12 페닐Phenyl 옥틸Octyl 비닐,메틸Vinyl, methyl GlyPGlyP 옥틸Octyl 옥틸Octyl GlyPGlyP 옥틸Octyl 18-1318-13 옥틸Octyl 옥틸Octyl H,메틸H, methyl POMMAPOMMA 옥틸Octyl 옥틸Octyl POMMAPOMMA 옥틸Octyl 18-1418-14 메틸methyl 메틸methyl H, FH, F 페닐Phenyl 메틸methyl 메틸methyl 페닐Phenyl 메틸methyl 18-1518-15 옥틸Octyl GlyPGlyP CF3,메틸CF 3 , methyl 페닐Phenyl ECHEECHE GlyPGlyP 페닐Phenyl ECHEECHE 18-1618-16 옥틸Octyl GlyPGlyP 비닐,메틸Vinyl, methyl 페닐Phenyl 페닐Phenyl GlyPGlyP 페닐Phenyl 페닐Phenyl 18-1718-17 메틸methyl 아미노프로필Aminopropyl H,메틸H, methyl 페닐Phenyl POMMAPOMMA 아미노프로필Aminopropyl 페닐Phenyl POMMAPOMMA 18-1818-18 GlyPGlyP GlyPGlyP H, FH, F ECHEECHE 메틸methyl GlyPGlyP ECHEECHE 메틸methyl 18-1918-19 GlyPGlyP POMMAPOMMA CF3,메틸CF 3 , methyl 메틸methyl POMMAPOMMA POMMAPOMMA 메틸methyl POMMAPOMMA 18-2018-20 아미노프로필Aminopropyl 메틸methyl H,메틸H, methyl GlyPGlyP 프로필profile 메틸methyl GlyPGlyP 프로필profile 18-2118-21 GlyPGlyP POMMAPOMMA 알킬사이올,메틸Alkyl thiol, methyl POMMAPOMMA 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl 18-2218-22 POMMAPOMMA 프로필profile H,아세틸틸H, acetyl 메틸methyl 메틸methyl 프로필profile 메틸methyl 메틸methyl 18-2318-23 POMMAPOMMA 메틸methyl 비닐,메틸Vinyl, methyl 메틸methyl GlyPGlyP 메틸methyl 메틸methyl GlyPGlyP 18-2418-24 GlyPGlyP GlyPGlyP 비닐,메틸Vinyl, methyl 메틸methyl ECHEECHE GlyPGlyP 메틸methyl ECHEECHE 18-2518-25 아미노프로필Aminopropyl GlyPGlyP H,메틸H, methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 18-2618-26 메틸methyl 아미노프로필Aminopropyl H, FH, F ECHEECHE 아미노프로필Aminopropyl 아미노프로필Aminopropyl ECHEECHE 아미노프로필Aminopropyl 18-2718-27 메틸methyl GlyPGlyP CF3,메틸CF 3 , methyl 페닐Phenyl GlyPGlyP GlyPGlyP 페닐Phenyl GlyPGlyP 18-2818-28 메틸methyl 옥틸Octyl H,메틸H, methyl GlyPGlyP 옥틸Octyl 옥틸Octyl GlyPGlyP 옥틸Octyl 18-2918-29 메틸methyl 메틸methyl H,아세틸틸H, acetyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 18-3018-30 아미노프로필Aminopropyl GlyPGlyP 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 18-3118-31 GlyPGlyP GlyPGlyP H,메틸H, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 18-3218-32 POMMAPOMMA 아미노프로필Aminopropyl H,메틸H, methyl GlyPGlyP 아미노프로필Aminopropyl 아미노프로필Aminopropyl GlyPGlyP 아미노프로필Aminopropyl 18-3318-33 메틸methyl GlyPGlyP 비닐,메틸Vinyl, methyl GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP GlyPGlyP 18-3418-34 POMMAPOMMA POMMAPOMMA H,메틸H, methyl ECHEECHE POMMAPOMMA POMMAPOMMA ECHEECHE POMMAPOMMA 18-3518-35 프로필profile POMMAPOMMA H, FH, F 페닐Phenyl POMMAPOMMA POMMAPOMMA 페닐Phenyl POMMAPOMMA 18-3618-36 메틸methyl GlyPGlyP CF3,메틸CF 3 , methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 18-3718-37 GlyPGlyP 아미노프로필Aminopropyl 비닐,메틸Vinyl, methyl POMMAPOMMA 아미노프로필Aminopropyl 아미노프로필Aminopropyl POMMAPOMMA 아미노프로필Aminopropyl 18-3818-38 GlyPGlyP 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 18-3918-39 아미노프로필Aminopropyl 메틸methyl H, FH, F POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 18-4018-40 아미노프로필Aminopropyl 메틸methyl CF3,메틸CF 3 , methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 18-4118-41 GlyPGlyP 메틸methyl H,메틸H, methyl POMMAPOMMA 메틸methyl 메틸methyl POMMAPOMMA 메틸methyl 18-4218-42 POMMAPOMMA GlyPGlyP 알킬사이올,메틸Alkyl thiol, methyl ECHEECHE GlyPGlyP GlyPGlyP ECHEECHE GlyPGlyP 18-4318-43 POMMAPOMMA 아미노프로필Aminopropyl H,아세틸틸H, acetyl 페닐Phenyl 아미노프로필Aminopropyl 아미노프로필Aminopropyl 페닐Phenyl 아미노프로필Aminopropyl 18-4418-44 POMMAPOMMA GlyPGlyP 비닐,메틸Vinyl, methyl 메틸methyl GlyPGlyP GlyPGlyP 메틸methyl GlyPGlyP 18-4518-45 POMMAPOMMA POMMAPOMMA H,메틸H, methyl GlyPGlyP POMMAPOMMA POMMAPOMMA GlyPGlyP POMMAPOMMA

본 발명의 상기 실세스퀴옥산 복합 고분자는 우수한 보관 안정성을 확보하여 폭넓은 응용성을 얻기 위해, 축합도가 1 내지 99.9% 이상으로 조절될 수 있다. 즉, 말단 및 중앙의 Si에 결합된 알콕시 그룹의 함량이 전체 고분자의 결합기에 대해 50%에서 0.01%까지 조절될 수 있다.
The silsesquioxane complex polymer of the present invention can be controlled to have a degree of condensation of 1 to 99.9% or more in order to secure excellent storage stability and obtain wide applicability. That is, the content of the alkoxy group bonded to the terminal Si and the central Si can be adjusted from 50% to 0.01% with respect to the bonding group of the entire polymer.

또한 본 발명에 실세스퀴옥산 복합 고분자의 중량평균분자량은 1,000 내지 1,000,000, 바람직하게는 5,000 내지 100,000이며, 더욱 바람직하게는 7,000 내지 50,000일 수 있다. 이 경우 실세스퀴옥산의 가공성 및 물리적 특성을 동시에 향상시킬 수 있다.
The silsesquioxane complex polymer according to the present invention may have a weight average molecular weight of 1,000 to 1,000,000, preferably 5,000 to 100,000, and more preferably 7,000 to 50,000. In this case, the processability and physical properties of silsesquioxane can be simultaneously improved.

본 발명에서 투명기판 위에 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자의 경화물을 적층시키는 방법은 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자를 포함하는 코팅조성물을 투명기판에 코팅 후 경화시켜 형성할 수 있다. 2종 이상의 복합 고분자가 사용하는 것도 가능하며, 바람직하기로는 화학식 3 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자를 사용하는 것이 좋다. 이 경우 반복단위 [B]b 또는 [E]e를 포함함으로써 표면경도를 포함한 투명기판의 물성을 더욱 향상시킬 수 있다.In the present invention, a method of laminating a cured product of a silsesquioxane complex polymer represented by any one of Chemical Formulas 1 to 9 on a transparent substrate is characterized in that a coating composition comprising a silsesquioxane complex polymer represented by any one of Chemical Formulas 1 to 9 The coating can be formed by coating on a transparent substrate and curing. Two or more kinds of complex polymers may be used, and it is preferable to use the silsesquioxane complex polymer represented by any one of formulas (3) to (9). In this case, by including the repeating unit [B] b or [E] e, the physical properties of the transparent substrate including the surface hardness can be further improved.

상기 코팅 조성물은 실세스퀴옥산 복합 고분자가 액상인 경우 무용제 타입으로 단독으로 코팅이 가능하며, 고상인 경우 유기용매를 포함하여 구성될 수 있다. 또한 코팅 조성물은 개시제 또는 경화제를 더욱 포함할 수 있다.
When the silsesquioxane complex polymer is in a liquid phase, the coating composition can be solely coated in a non-solvent type, and in the case of a solid phase, an organic solvent can be included. The coating composition may further comprise an initiator or a curing agent.

바람직하기로 상기 코팅조성물은 상기 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자, 상기 복합 고분자와 상용성이 있는 당분야에서 통상적으로 사용하는 유기용매, 개시제를 포함하는 것을 특징으로 하며, 선택적으로 경화제, 가소제, 자외선 차단제, 기타 기능성 첨가제 등의 첨가제를 추가로 포함하여 경화성, 내열특성, 자외선차단, 가소 효과 등을 향상시킬 수 있다.
Preferably, the coating composition comprises the silsesquioxane complex polymer represented by any one of the above formulas (1) to (9), an organic solvent commonly used in the art having compatibility with the complex polymer, and an initiator , And optionally additives such as a hardener, a plasticizer, an ultraviolet screening agent, and other functional additives to improve the curability, heat resistance, ultraviolet shielding, and plasticizing effect.

본 발명의 코팅 조성물에 있어서 상기 실세스퀴옥산 복합 고분자는 코팅 조성물 100 중량부에 대하여 적어도 5 중량부 이상으로 포함되는 것이 좋으며, 바람직하게는 5 내지 90 중량부, 더욱 바람직하게는 10 내지 50 중량부의 양으로 포함되는 것이 바람직하다. 상기 범위 내인 경우 코팅 조성물의 경화막의 기계적 물성을 더욱 향상시킬 수 있다.
In the coating composition of the present invention, the silsesquioxane complex polymer is preferably contained in an amount of at least 5 parts by weight, preferably 5 to 90 parts by weight, more preferably 10 to 50 parts by weight, Is preferably included in the negative amount. Within the above range, the mechanical properties of the cured film of the coating composition can be further improved.

상기 유기용매로는 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 셀로솔브계 등의 알코올류, 락테이트계, 아세톤, 메틸(아이소부틸)에틸케톤 등의 케톤류, 에틸렌글리콜 등의 글리콜 류, 테트라하이드로퓨란 등의 퓨란계, 디메틸포름아미드, 디메틸아세트아미드, N-메틸-2-피롤리돈 등의 극성용매 뿐 아니라, 헥산, 사이클로헥산, 사이클로헥사논, 톨루엔, 자일렌, 크레졸, 클로로포름, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크로니트릴, 메틸렌클로라이드, 옥타데실아민, 아닐린, 디메틸설폭사이드, 벤질알콜 등 다양한 용매를 이용할 수 있으나, 이에 제한되지는 않는다. 상기 유기용매의 양은 복합고분자, 개시제, 및 선택적으로 추가되는 첨가제를 제외한 잔량으로 포함된다.
Examples of the organic solvent include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol and cellosolve, ketones such as lactate, acetone and methyl (isobutyl) ethyl ketone, glycols such as ethylene glycol, But are not limited to, polar solvents such as tetrahydrofuran and tetrahydrofuran; polar solvents such as dimethylformamide, dimethylacetamide and N-methyl-2-pyrrolidone, as well as hexane, cyclohexane, cyclohexanone, toluene, xylene, But are not limited to, various solvents such as dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acronitrile, methylene chloride, octadecylamine, aniline, dimethylsulfoxide and benzyl alcohol. The amount of the organic solvent is included in the balance excluding the complex polymer, the initiator, and optionally the additive.

또한 본 발명의 코팅 조성물에 있어서 상기 개시제 또는 경화제는 실세스퀴옥산 복합 고분자에 포함된 유기관능기에 따라 적절히 선택하여 사용할 수 있다.In the coating composition of the present invention, the initiator or the curing agent may be appropriately selected depending on the organic functional group contained in the silsesquioxane complex polymer.

구체적인 예로서 상기 유기관능기에 불포화 탄화수소, 사이올계, 에폭시계, 아민계, 이소시아네이트계 등의 후경화가 가능한 유기계가 도입될 경우, 열 또는 광을 이용한 다양한 경화가 가능하다. 이때 열 또는 광에 의한 변화를 고분자 자체 내에서 도모할 수 있지만, 바람직하게는 상기와 같은 유기용매에 희석함으로써 경화공정을 도모할 수 있다.
As a specific example, when an organic system capable of post-curing such as an unsaturated hydrocarbon, a silane system, an epoxy system, an amine system or an isocyanate system is introduced into the organic functional group, various curing using heat or light is possible. At this time, a change due to heat or light can be achieved in the polymer itself, but preferably the curing process can be achieved by diluting the organic solvent.

또한 본 발명에서는 복합 고분자의 경화 및 후 반응을 위하여, 다양한 개시제를 사용할 수 있으며, 상기 개시제는 조성물 총중량 100 증량부에 대하여 0.1-10 중량부로 포함되는 것이 바람직하며, 상기 범위 내의 함량으로 포함될 때, 경화 후 투과도 및 코팅안정성을 동시에 만족시킬 수 있다.
In the present invention, various initiators may be used for the curing and post-reaction of the composite polymer, and the initiator is preferably included in an amount of 0.1-10 parts by weight based on 100 parts by weight of the total weight of the composition, The permeability and the coating stability after curing can be satisfied at the same time.

또한 상기 유기관능기에 불포화 탄화수소 등이 도입될 경우에는 라디칼 개시제를 사용할 수 있으며, 상기 라디칼 개시제로는 트리클로로 아세토페논(trichloro acetophenone), 디에톡시 아세토페논(diethoxy acetophenone), 1-페닐-2-히드록시-2-메틸프로판-1-온(1-phenyl-2-hydroxyl-2-methylpropane-1-one), 1-히드록시사이클로헥실페닐케톤, 2-메틸-1-(4-메틸 티오페닐)-2-모르폴리노프로판-1-온(2-methyl-1-(4-methyl thiophenyl)-2-morpholinopropane-1-one), 2,4,6-트리메틸 벤조일 디페닐포스핀 옥사이드(trimethyl benzoyl diphenylphosphine oxide), 캠퍼 퀴논(camphor quinine), 2,2'-아조비스(2-메틸부티로니트릴), 디메틸-2,2'-아조비스(2-메틸 부틸레이트), 3,3-디메틸-4-메톡시-벤조페논, p-메톡시벤조페논, 2,2-디에톡시 아세토페논, 2,2-디메톡시-1,2-디페닐 에탄-1-온 등의 광 래디컬 개시제, t-부틸파옥시 말레인산, t-부틸하이드로퍼옥사이드, 2,4-디클로로벤조일퍼옥사이드, 1,1-디(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, N-부틸-4,4'-디(t-부틸퍼옥시)발레레이트 등의 열 라디칼 개시제 및 이들의 다양한 혼합물 등이 사용될 수 있다.
When an unsaturated hydrocarbon or the like is introduced into the organic functional group, a radical initiator may be used. Examples of the radical initiator include trichloro acetophenone, diethoxy acetophenone, 2-methylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- (4-methylthiophenyl) 2-morpholinopropane-1-one, 2,4,6-trimethyl benzoyl diphenylphosphine oxide (trimethyl benzoyl diphenylphosphine oxide, camphor quinine, 2,2'-azobis (2-methylbutyronitrile), dimethyl-2,2'-azobis (2-methylbutylate), 3,3- A photo radical initiator such as 4-methoxy-benzophenone, p-methoxybenzophenone, 2,2-diethoxyacetophenone and 2,2-dimethoxy-1,2-diphenylethane- Butylpoxomaleic acid, t-butyl Di (t-butylperoxy) -3,3,5-trimethylcyclohexane, N-butyl-4,4'-di (t-butyl Peroxy) valerate, and various mixtures thereof can be used.

또한, 상기 유기관능기에 에폭시 등이 포함되는 경우에는, 광중합 개시제(양이온)로서 트리페닐술포늄, 디페닐-4-(페닐티오)페닐술포늄 등의 술포늄계, 디페닐요오드늄이나 비스(도데실페닐)요오드늄 등의 요오드늄, 페닐디아조늄 등의 디아조늄, 1-벤질-2-시아노피리니늄이나 1-(나프틸메틸)-2-시아노프리디늄 등의 암모늄, (4-메틸페닐)[4-(2-메틸프로필)페닐]-헥사플루오로포스페이트 요오드늄, 비스(4-t-부틸페닐)헥사플루오로포스페이트 요오드늄, 디페닐헥사플루오로포스페이트 요오드늄, 디페닐트리플루오로메탄술포네이트 요오드늄, 트리페닐술포늄 테트라풀루오로보레이트, 트리-p-토일술포늄 헥사풀루오로포스페이트, 트리-p-토일술포늄 트리풀루오로메탄술포네이트 및 (2,4-시클로펜타디엔-1-일)[(1-메틸에틸)벤젠]-Fe 등의 Fe 양이온들과 BF4 -, PF6 -, SbF6 - 등의 [BQ4]- 오늄염 조합을 이용할 수 있다(여기서, Q는 적어도 2개 이상의 불소 또는 트리플루오로메틸기로 치환된 페닐기이다.). When the organic functional group includes an epoxy or the like, a photopolymerization initiator (cation) such as triphenylsulfonium, diphenyl-4- (phenylthio) phenylsulfonium or the like sulfonium-based, diphenyliodonium or bis Iodonium such as iodonium, iodonium such as phenyldiazonium, ammonium such as 1-benzyl-2-cyanopyridinium or 1- (naphthylmethyl) -2- cyanopyridinium, Methylphenyl) [4- (2-methylpropyl) phenyl] -hexafluorophosphate iodonium, bis (4-t-butylphenyl) hexafluorophosphate iodonium, diphenylhexafluorophosphate iodonium, diphenyltrifluoro Triphenylsulfonium tetrafluoroborate, tri-p-tolylsulfonium hexafluorophosphate, tri-p-tolylsulfonium trifluoromethanesulfonate, and (2,4- (1-methylethyl) benzene] -Fe and BF 4 - , PF 6 - -, SbF 6 - [BQ 4 ] , such as-may be used in combination with onium salts (here, Q is a phenyl group substituted with at least a group of two or more fluorine or a trifluoromethyl group.).

또한, 열에 의해 작용하는 양이온 개시제로는 트리플산염, 3불화 붕소 에테르착화합물, 3불화 붕소 등과 같은 양이온계 또는 프로톤산 촉매, 암모늄염, 포스포늄염 및 술포늄염 등의 각종 오늄염 및 메틸트리페닐포스포늄 브롬화물, 에틸트리페닐포스포늄 브롬화물, 페닐트리페닐포스포늄 브롬화물 등을 제한 없이 사용할 수 있으며, 이들 개시제 또한 다양한 혼합형태로 첨가할 수 있으며, 상기에 명시한 다양한 라디칼 개시제들과의 혼용도 가능하다.
Examples of the cationic initiator that acts by heat include cationic or protonic acid catalysts such as triflic acid salt, boron trifluoride ether complex, boron trifluoride, etc., various onium salts such as ammonium salts, phosphonium salts and sulfonium salts, and methyltriphenylphosphonium Bromide, ethyltriphenylphosphonium bromide, phenyltriphenylphosphonium bromide and the like can be used without limitation. These initiators can also be added in various mixing forms, and can be mixed with various radical initiators described above. Do.

또한, 상기 유기관능기의 종류에 따라, 아민 경화제류인 에틸렌디아민, 트리에틸렌 테트라민, 테트라에틸렌 펜타민, 1,3-디아미노프로판, 디프로필렌트리아민, 3-(2-아미노에틸)아미노-프로필아민, N,N'-비스(3-아미노프로필)-에틸렌디아민, 4,9-디옥사도테칸-1,12-디아민, 4,7,10-트리옥사트리데칸-1,13-디아민, 헥사메틸렌디아민, 2-메틸펜타메틸렌디아민, 1,3-비스아미노메틸시클로헥산, 비스(4-아니모시클로헥실)메탄, 노르보르넨디아민, 1,2-디아미노시클로헥산 등을 이용할 수 있다.
Depending on the type of the organic functional group, amine curing agents such as ethylenediamine, triethylenetetramine, tetraethylenepentamine, 1,3-diaminopropane, dipropylenetriamine, 3- (2-aminoethyl) Amine, N, N'-bis (3-aminopropyl) -ethylenediamine, 4,9-dioxadodecane-1,12-diamine, 4,7,10-trioxal tridecane- (4-aminomyclohexyl) methane, norbornenediamine, 1,2-diaminocyclohexane, and the like can be used as the initiator .

또한 상기 경화작용을 촉진하기 위한 경화 촉진제로, 아세토구아나민, 벤조구아나민, 2,4-디아미노-6-비닐-s-트리아진 등의 트리아진계 화합물, 이미다졸, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸, 2-페닐이미다졸, 2-페닐-4-메틸이미다졸, 비닐이미다졸, 1-메틸이미다졸 등의 이미다졸계 화합물, 1,5-디아자비시클로[4.3.0]논엔-5,1,8-디아자비시클로[5.4.0]운데센-7, 트리페닐포스핀, 디페닐(p-트릴)포스핀, 트리스(알킬페닐)포스핀, 트리스(알콕시페닐)포스핀, 에틸트리페닐포스포늄포스페이트, 테트라부틸포스포늄히드록시드, 테트라부틸포스포늄아세테이트, 테트라부틸포스포늄하이드로젠디플루오라이드, 테트라부틸포스포늄디하이드로젠트리플루오르 등도 사용될 수 있다.
As the curing accelerator for accelerating the curing action, triazine compounds such as acetoguanamine, benzoguanamine and 2,4-diamino-6-vinyl-s-triazine, imidazole compounds such as 2-methylimidazole Imidazole compounds such as 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, vinylimidazole, Diazabicyclo [4.3.0] nonane-5,1,8-diazabicyclo [5.4.0] undecene-7, triphenylphosphine, diphenyl (p- ) Phosphine, tris (alkoxyphenyl) phosphine, ethyltriphenylphosphonium phosphate, tetrabutylphosphonium hydroxide, tetrabutylphosphonium acetate, tetrabutylphosphoniumhydrogen difluoride, tetrabutylphosphonium dihydrogentry, Fluorine and the like may also be used.

아울러, 무수프탈산, 무수트리멜리트산, 무수피로멜리트산, 무수말레산, 테트라히드로 무수프탈산, 메틸헥사히드로 무수프탈산, 메틸테트라히드로 무수프탈산, 메틸나드산 무수물, 수소화메틸나드산 무수물, 트리알킬테트라히드로 무수프탈산, 도데세닐 무수숙신산, 무수2,4-디에틸글루타르산 등의 산무수경화제류도 폭넓게 사용될 수 있다.Examples of the anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadonic anhydride, Acid anhydride curing agents such as phthalic anhydride, dodecenylsuccinic anhydride and 2,4-diethylglutaric anhydride can be widely used.

상기 경화제는 조성물 100 중량부에 대하여 0.1-10 중량부로 포함되는 것이 좋다.
The curing agent is preferably included in an amount of 0.1-10 parts by weight based on 100 parts by weight of the composition.

본 발명에서는 또한 경화공정 또는 후반응을 통한 경도, 강도, 내구성, 성형성 등을 개선하는 목적으로 자외선 흡수제, 산화 방지제, 소포제, 레벨링제, 발수제, 난연제, 접착개선제 등의 첨가제를 추가로 포함할 수 있다. 이러한 첨가제는 그 사용에 있어 특별하게 제한은 없으나 기판의 특성 즉, 유연성, 투광성, 내열성, 경도, 강도 등의 물성을 해치지 않는 범위 내에서 적절히 첨가할 수 있다. 상기 첨가제는 각각 독립적으로 조성물 100 중량부에 대하여 0.1-10 중량부로 포함되는 것이 좋다.
The present invention may further include additives such as an ultraviolet absorber, an antioxidant, a defoaming agent, a leveling agent, a water repellent agent, a flame retardant, and an adhesion improver for the purpose of improving hardness, strength, durability and moldability through a curing process or a post reaction . Such an additive is not particularly limited in its use, but may be suitably added within a range that does not impair the properties of the substrate, that is, the properties such as flexibility, light transmittance, heat resistance, hardness and strength. It is preferable that each of the above additives is included independently in an amount of 0.1-10 parts by weight based on 100 parts by weight of the composition.

본 발명에서 사용가능한 첨가제로는 폴리에테르 디메틸폴리실록산계 (Polyether-modified polydimethylsiloxane, 예를 들어, BYK 사 제품인 BYK-300, BYK-301, BYK-302, BYK-331, BYK-335, BYK-306, BYK-330, BYK-341, BYK-344, BYK-307, BYK-333, BYK-310 등), 폴리에테르 하이드록시 폴리디메틸실록산계 (Polyether modified hydroxyfunctional poly-dimethyl-siloxane, 예를 들어, BYK 사의 BYK-308, BYK-373 등), 폴리메틸알킬실록산계 (Methylalkylpolysiloxane, 예를 들어, BYK-077, BYK-085 등), 폴리에테르 폴리메틸알킬실록산계 (Polyether modified methylalkylpolysiloxane, 예를 들어, BYK-320, BYK-325 등), 폴리에스테르 폴리메틸알킬실록산계 (Polyester modified poly-methyl-alkyl-siloxane, 예를 들어, BYK-315 등), 알랄킬 폴리메틸알킬실록산계 (Aralkyl modified methylalkyl polysiloxane, 예를 들어, BYK-322, BYK-323 등), 폴리에스테르 하이드록시 폴리디메틸실록산계 (Polyester modified hydroxy functional polydimethylsiloxane, 예를 들어, BYK-370 등), 폴리에스테르 아크릴 폴리디메틸실록산계 (Acrylic functional polyester modified polydimethylsiloxane, 예를 들어, BYK-371, BYK-UV 3570 등), 폴리에테르-폴리에스테르 하이드록시 폴리디메틸실록산계 (Polyeher-polyester modified hydroxy functional polydimethylsiloxane, 예를 들어, BYK-375 등), 폴리에테르 폴리디메틸실록산계 (Polyether modified dimethylpolysiloxane, 예를 들어, BYK-345, BYK-348, BYK-346, BYK-UV3510, BYK-332, BYK-337 등), 비이온 폴리아크릴계 (Non-ionic acrylic copolymer, 예를 들어, BYK-380 등), 이온성 폴리아크릴계 (Ionic acrylic copolymer, 예를 들어, BYK-381 등), 폴리아크릴레이트계 (Polyacrylate, 예를 들어, BYK-353, BYK-356, BYK-354, BYK-355, BYK-359, BYK-361 N, BYK-357, BYK-358 N, BYK-352 등), 폴리메타아크릴레이트계 (Polymethacrylate, 예를 들어, BYK-390 등), 폴리에테르 아크릴 폴리디메틸실록산계 (Polyether modified acryl functional polydimethylsiloxane, 예를 들어, BYK-UV 3500, BYK-UV3530 등), 폴리에테르 실록산계 (Polyether modified siloxane, 예를 들어, BYK-347 등), 알코올 알콕시레이트계 (Alcohol alkoxylates, 예를 들어, BYK-DYNWET 800 등), 아크릴레이트계 (Acrylate, 예를 들어, BYK-392 등), 하이드록시 실리콘 폴리아크릴레이트계 (Silicone modified polyacrylate (OH-functional), 예를 들어, BYK-Silclean 3700 등) 등을 들 수 있다.
Examples of additives usable in the present invention include polyether-modified polydimethylsiloxane (BYK-300, BYK-301, BYK-302, BYK-331, BYK-335, BYK- BYK-330, BYK-341, BYK-344, BYK-307, BYK-333 and BYK-310), polyether modified hydroxyfunctional poly-dimethyl-siloxane BYK-308 and BYK-373), polymethylalkylpolysiloxane (e.g., BYK-077 and BYK-085), polyether modified methylalkylpolysiloxane (e.g., BYK- 320, BYK-325 and the like), polyester modified poly-methyl-alkyl-siloxane (e.g., BYK-315 and the like), Aralkyl modified methylalkyl polysiloxane BYK-322, BYK-323, etc.), polyester hydroxypolydimethylsiloxane-based (Polyester modified hydroxy functional polydimethylsiloxane such as BYK-370 and the like), polyester acrylic modified polydimethylsiloxane (e.g., BYK-371, BYK-UV 3570 and the like), polyether- Polyether modified dimethylpolysiloxane (e.g., BYK-345, BYK-348, BYK-346, etc.), polyoxyalkylene-modified hydroxypolydimethylsiloxane (e.g., BYK- , BYK-UV3510, BYK-332 and BYK-337), non-ionic acrylic copolymers (e.g. BYK-380 and the like), ionic acrylic copolymers 354, BYK-358, BYK-357, BYK-357, etc.), polyacrylate (e.g., BYK-352, etc.), polymethacrylate (e.g., BYK-390, etc.), polyether Polyether modified siloxane (e.g., BYK-347), an alcohol alkoxylate-based (e.g., polyetheretherketone-based siloxane such as BYK- (E.g., alcohol alkoxylates such as BYK-DYNWET 800), acrylates (e.g., BYK-392), silicone-modified polyacrylates (OH-functional) For example, BYK-Silclean 3700, etc.).

또한 본 발명의 표면강화 투명기판에 사용될 수 있는 투명기판은 플라스틱 투명기판 및 유리가 사용될 수 있으며, 투명기판이라 함은 500 ㎚ 파장의 광원에서 투과율이 적어도 80 % 이상인 기판이며, 구체적인 플라스틱 투명기판의 예로는 COC(Cyclic olefin copolymer), PAc(Polyacrylate), PC(Polycarbonate), PE(Polyethylene), PEEK (Polyetheretherketone), PEI(Polyetherimide), PEN(Polyethylenenaphthalate), PES(Polyethersulfone), PET(Polyethyleneterephtalate), PI(Polyimide), PO(Polyolefin), PMMA(Polymethylmethacrylate), PSF(Polysulfone), PVA(Polyvinylalcohol), PVCi(Polyvinylcinnamate), TAC(Triacetylcellulose), 폴리실리콘(Poly Silicone), 폴리우레탄(Polyurethane) 및 에폭시 수지(Epoxy Resin)로 이루어진 군으로부터 선택되는 소재의 기판을 사용할 수 있다. 상기 소재로 단층 또는 동일 소재의 특성이 다른 2층 이상으로 구성될 수 있으며, 또한 공압출을 통하여 2종 이상의 플라스틱이 혼합된 투명기판일 수도 있다.
Also, the transparent substrate that can be used for the surface-enhanced transparent substrate of the present invention can be a plastic transparent substrate and glass, and the transparent substrate is a substrate having a transmittance of at least 80% in a light source of 500 nm wavelength, Examples include polyolefins such as COC (Cyclic Olefin Copolymer), PAc (Polyacrylate), PC (Polycarbonate), PE (Polyethylene), PEEK (Polyetheretherketone), PEI (Polyetherenaphthalate), PEN (Polyethersulfone) (PVA), polyvinyl cinnamate (PVA), triacetylcellulose (TAC), poly silicone, polyurethane, and epoxy resin (for example, polyimide, polyolefin, polymethylmethacrylate, PSF, polysulfone, Epoxy Resin) can be used. The material may be a single layer or two or more layers having different characteristics of the same material, or may be a transparent substrate mixed with two or more plastics through coextrusion.

본 발명에 있어서, 상기 코팅 조성물을 투명기판 위에 코팅하는 방법은 스핀코팅, 바코팅, 슬릿코팅, 딥 코팅, 내츄럴 코팅, 리버스 코팅, 롤 코팅, 스핀코팅, 커텐코팅, 스프레이 코팅, 그라비어 코팅 등 공지된 방법 중에서 당업자가 임의로 선택하여 적용할 수 있음은 물론이며, 경화방법에 있어도 광경화 또는 열경화를 복합고분자의 관능기에 따라 적절하게 선택하여 적용할 수 있음은 물론이다. 바람직하기로 열경화의 경우 경화온도는 80 내지 120 ℃이다.
In the present invention, a method of coating the above-mentioned coating composition on a transparent substrate may be a known method such as spin coating, bar coating, slit coating, dip coating, natural coating, reverse coating, roll coating, spin coating, curtain coating, spray coating, Of course, those skilled in the art can select and apply the method of the present invention. Also, in the curing method, it is of course possible to appropriately select and apply photo-curing or thermosetting according to the functional group of the composite polymer. Preferably, in the case of thermosetting, the curing temperature is from 80 to 120 占 폚.

본 발명에서 상기 코팅 조성물의 코팅 두께는 임의로 조절 가능하며, 바람직하게는 0.01 내지 500 um이며, 더욱 바람직하게는 0.1 내지 300 um, 더더욱 바람직하기로는 1 내지 100 um 범위가 좋다. 상기 범위 내인 경우 7H 이상의 표면경도를 안정적으로 확보할 수 있을 뿐만 아니라 기판 표면 특성에 있어서도 우수한 물성을 나타낸다. 특히 5 um 이상의 두께로 코팅층이 적층된 경우 표면경도가 9H를 안정적으로 나타낼 수 있어 유리의 대체품으로도 적용될 수 있다.
In the present invention, the coating thickness of the coating composition is optionally adjustable, preferably 0.01 to 500 μm, more preferably 0.1 to 300 μm, still more preferably 1 to 100 μm. Within the above range, not only the surface hardness of 7H or more can be stably secured, but also the surface properties of the substrate are excellent. Particularly, when the coating layer is laminated to a thickness of 5 탆 or more, the surface hardness can stably exhibit 9H and can be applied as a substitute for glass.

본 발명은 또한 상기 표면강화 투명기판을 포함하는 전자제품을 제공하는 바, 바람직하기로 상기 전자제품은 디스플레이 기기이며, 구체적인 예로는 스마트폰, 테블릿 PC, 노트북 PC, AIO(All-In-One) PC, LCD 모니터, TV, 광고판 또는 터치패널일 수 있으며, 기판의 유연성을 요구하는 플렉시블 스마트 기기(웨어러블 스마트 기기)일 수도 있다.
The present invention also provides an electronic product including the surface-enhanced transparent substrate. Preferably, the electronic product is a display device. Examples of the electronic device include a smart phone, a tablet PC, a notebook PC, an All- A PC, an LCD monitor, a TV, a billboard, or a touch panel, or a flexible smart device (wearable smart device) that requires flexibility of a substrate.

상기 전자제품에 포함되는 상기 표면강화 투명기판의 형태는 특별히 한정되지 않으며, 일예로 윈도우 커버 기판 또는 보호필름의 형태일 수 있다. 본 발명에 따른 전자제품은 하나의 단일층 만으로 투명기판의 표면경도가 현저히 개선되고, 동시에 내지문성, 내스크레치성, 내오염성, 내열성, 투과도 및 헤이즈 특성이 우수하다.
The shape of the surface-enhanced transparent substrate included in the electronic product is not particularly limited, and may be, for example, a window cover substrate or a protective film. In the electronic product according to the present invention, the surface hardness of the transparent substrate is remarkably improved by only one single layer, and at the same time, it has excellent transparency, scratch resistance, stain resistance, heat resistance, transparency and haze characteristics.

또한 본 발명은 상기 표면강화 투명기판을 포함하는 보호판을 제공하는 바, 상기 보호판은 투명하여 내부를 들여다 볼 수 있거나 내부의 전자제품(디스플레이기기)를 보호하는 기판일 수 있으며, 일예로 공공건물(기차 역사, 공항, 버스터미널 등)의 디스플레이 설치물에 디스플레이 기기를 보호하는 투명 보호판일 수 있다.
Further, the present invention provides a protective plate comprising the above-mentioned surface-enhanced transparent substrate, wherein the protective plate is transparent and can be seen through the inside or can be a substrate for protecting an internal electronic product (display device) A train history, an airport, a bus terminal, etc.).

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 하기 본 발명의 실시예에서 ECHETMS는 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, GPTMS는 Glycidoxypropytrimethoxysilane, MAPTMS는 (methacryloyloxy)propyltrimethoxysilane, PTMS는 Phenyltrimethoxysilane, MTMS는 Methyltrimethoxysilane, ECHETMDS는 Di(epoxycyclohexyethyl) tetramethoxy disiloxane, GPTMDS는 Di(glycidoxypropyl) tetramethoxy disiloxane, MAPTMDS는 Di(methacryloyloxy)propy, PTMDS는 Di(phenyl) tetramethoxy disiloxane, MTMDS는 Di(Methyl) tetramethoxy disiloxane을 의미한다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples. In the examples of the present invention, ECHETMS is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, GPTMS is Glycidoxypropytrimethoxysilane, MAPTMS is methacryloyloxy propyltrimethoxysilane, PTMS is Phenyltrimethoxysilane, MTMS is Methyltrimethoxysilane, ECHETMDS is Di (epoxycyclohexyethyl) tetramethoxy disiloxane, GPTMDS Di (methacryloyloxy) propy as MAPTMDS, Di (phenyl) tetramethoxy disiloxane as PTMDS, and Di (Methyl) tetramethoxy disiloxane as MTMDS as glycidoxypropyltetramethoxy disiloxane.

[실시예 1] 공중합체 1 및 9을 포함하는 코팅조성물의 제조[Example 1] Preparation of a coating composition comprising Copolymers 1 and 9

합성단계는 아래와 같이, 연속가수분해 및 축합을 단계적으로 진행하였다. The synthesis step progressed stepwise through continuous hydrolysis and condensation as follows.

[실시예 1-a] 촉매의 제조[Example 1-a] Preparation of catalyst

염기도 조절을 위하여, Tetramethylammonium hydroxide (TMAH) 25 중량% 수용액에 10 중량% Potassium hydroxide (KOH) 수용액을 혼합하여 촉매 1a를 준비하였다.
For controlling the basicity, a catalyst 1a was prepared by mixing a 25 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) with a 10 wt% aqueous potassium hydroxide (KOH) solution.

[실시예 1-b] 선형 실세스퀴옥산 구조의 합성 [Example 1-b] Synthesis of linear silsesquioxane structure

냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 5 중량부, 테트라하이드로퓨란 15 중량부, 상기 실시예 1-a에서 제조된 촉매 1 중량부를 적가하고, 1시간 동안 상온에서 교반 한 후, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 20중량부를 적가하고, 다시 테트라하이드로류란을 15 중량부 적가하여 5시간 추가 교반 하였다. 교반 중의 혼합용액을 적취하여, 두 차례 세정하는 것으로 촉매와 불순물을 제거하고 필터 한 후, IR 분석을 통하여 말단기에 생성된 SI-OH 관능기를 확인할 수 있었으며(3200 cm-1), 분자량을 측정한 결과, 화학식 4구조와 같은 선형구조의 실세스퀴옥산이 8,000 스티렌 환산 분자량을 가짐을 확인할 수 있었다.
5 parts by weight of distilled water, 15 parts by weight of tetrahydrofuran and 1 part by weight of the catalyst prepared in Example 1-a were added dropwise to a dried flask equipped with a cooling tube and a stirrer, stirred at room temperature for 1 hour, - (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added dropwise, 15 parts by weight of tetrahydrofuran was added dropwise, and the mixture was further stirred for 5 hours. After removing the catalyst and impurities by filtration, the SI-OH functional group generated at the end of the reaction was identified by IR analysis (3200 cm -1 ), and the molecular weight was measured As a result, it was confirmed that the silsesquioxane having a linear structure such as the structure of the formula (4) had a molecular weight in terms of 8,000 styrene.

[실시예 1-c] 연속적 cage 구조의 생성 [Example 1-c] Production of continuous cage structure

상기 실시예 1-b 혼합용액에 0.36 중량% HCl 수용액을 매우 천천히 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 Diphenyltetramethoxydisiloxane 5 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 1시간 교반 후 실시예 1-a에서 제조된 촉매를 7 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, 선형고분자와는 별도로 alkoxy가 열려있는 D구조의 전구체가 형성된다. 소량의 샘플을 적취하여, H-NMR과 IR로 분석하여 methoxy의 잔존율을 확인한 후, 잔존율이 20% 일 때, 0.36 중량% HCl 수용액을 10 중량부 천천히 적가하여, pH를 산성으로 조절해 주었다. 이후 Phenyltrimethoxysilane 1 중량부를 한번에 적가하여 15분간 교반 후, 1-a에서 제조된 촉매 20 중량부를 첨가하였다. 4시간의 혼합교반 이후, 확인결과 고분자내에 cage 형태의 고분자가 생성됨을 확인 할 수 있었다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합 교반 이후, 일부를 적취하여 29Si-NMR을 통해 분석한 결과 phenyl기를 이용해 도입된 구조의 분석피크가 날카로운 형태의 2개로 나타나고 별도로 잔존하는 부산물 없이 화학식 1과 같은 A-D 고분자가 50% 이상 제조되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 11,000으로 측정되었으며, 평균 n값은 4.6이었다. 29Si-NMR (CDCl3) δ To the mixed solution of Example 1-b was added 5 parts by weight of a 0.36 wt% aqueous solution of HCl very slowly, adjusted to have an acidic pH, and stirred at a temperature of 4 캜 for 30 minutes. Then, 5 parts by weight of diphenyltetramethoxydisiloxane was added dropwise at a time to stabilize hydrolysis. After stirring for 1 hour, 7 parts by weight of the catalyst prepared in Example 1-a was added again to adjust the pH of the mixed solution in a basic state. At this time, a precursor of D structure is formed in which alkoxy is opened separately from the linear polymer. A small amount of the sample was taken out and analyzed by 1 H-NMR and IR to confirm the residual ratio of methoxy. When the residual ratio was 20%, 10 parts by weight of 0.36 wt% HCl aqueous solution was slowly added dropwise to adjust the pH to acidic gave. Then, 1 part by weight of phenyltrimethoxysilane was added dropwise at a time, and the mixture was stirred for 15 minutes, and 20 parts by weight of the catalyst prepared in 1-a was added. After mixing for 4 hours, it was confirmed that cage type polymer was formed in the polymer. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed under vacuum so that the whole reactant was converted into the aqueous solution mixture. After 4 hours of mixing, a part of the mixture was taken out and analyzed by 29 Si-NMR. As a result, the analysis peak of the structure introduced by using the phenyl group appeared as two sharp shapes and the AD polymer as shown in formula (1) Or more. The molecular weight in terms of styrene was measured to be 11,000, and the average n value was 4.6. 29 Si-NMR (CDCl 3) δ

[실시예 1-d] 광경화형 수지 조성물 제조[Example 1-d] Photocurable resin composition production

상기 실시예 1-c에서 수득한 실세스퀴옥산 복합 고분자 30 g을 메틸아이소부틸케톤에 30 wt%로 녹여 100 g의 코팅조성물을 제조하였다. 이후, 코팅 조성물 100 중량부에 클로로 아세토페논(chloro acetophenone) 3 중량부와 BYK-347 1 중량부, BYK-UV 3500 1 중량부를 각각 첨가하고 10분간 교반하여 광경화형 코팅 조성물을 제조하였다.
30 g of the silsesquioxane complex polymer obtained in Example 1-c was dissolved in methyl isobutyl ketone in 30 wt% to prepare 100 g of a coating composition. 3 parts by weight of chloroacetophenone, 1 part by weight of BYK-347 and 1 part by weight of BYK-UV 3500 were added to 100 parts by weight of the coating composition and stirred for 10 minutes to prepare a photocurable coating composition.

[실시예 1-e] 열경화형 수지 조성물의 제조 [Example 1-e] Preparation of thermosetting resin composition

상기 실시예 1-c에서 수득한 실세스퀴옥산 복합 고분자 50 g을 메틸에틸케톤에 50 중량%로 녹여 100 g의 코팅조성물을 제조하였다. 이후, 준비된 코팅 조성물 100 중량부에 1,3-디아미노프로판 3 중량부와 BYK-357 및 BYK-348을 각 1 중량부씩 첨가하고 10분간 교반하여 열경화형 코팅 조성물을 제조하였다.
50 g of the silsesquioxane complex polymer obtained in Example 1-c was dissolved in methyl ethyl ketone at 50% by weight to prepare 100 g of a coating composition. 3 parts by weight of 1,3-diaminopropane, 1 part by weight of BYK-357 and BYK-348 were added to 100 parts by weight of the prepared coating composition, followed by stirring for 10 minutes to prepare a thermosetting coating composition.

[실시예 1-f] 고분자 자체로 구성된 코팅 조성물 [Example 1-f] Coating composition composed of the polymer itself

실시예 1-c 만으로 별도의 조성 없이 코팅 조성물을 구성하였다.
The coating composition was prepared without the separate composition in Example 1-c alone.

또한, 하기 표 19에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자를 제조 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 1-b, 1-c, 1-d, 1-e 및 1-f에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer was prepared and the coating composition was prepared by applying the monomers described in Table 19 below. At this time, the preparation method was applied equally to the methods used in Examples 1-b, 1-c, 1-d, 1-e and 1-f.

실시
방법
practice
Way
1-b 방법
적용 단량체
1-b method
Applied Monomer
1-c 방법
적용 단량체
1-c method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
전구체Precursor cage도입introduction of cage 1One ECHETMSECHETMS PTMDSPTMDS PTMSPTMS 11,00011,000 1-11-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 8,0008,000 1-21-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 48,00048,000 1-31-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 25,00025,000 1-41-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 21,00021,000 1-51-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 3,0003,000 1-61-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 9,0009,000 1-71-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 11,00011,000 1-81-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 18,00018,000 1-91-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 36,00036,000 1-101-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 120,000120,000 1-111-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 11,00011,000 1-121-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 110,000110,000 1-131-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 18,00018,000 1-141-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 5,0005,000 1-151-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 80,00080,000 1-161-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 35,00035,000 1-171-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 7,0007,000 1-181-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 120,000120,000 1-191-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 100,000100,000 1-201-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 4,0004,000 1-211-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 35,00035,000 1-221-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 2,8002,800 1-231-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 8,0008,000 1-241-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 180,000180,000

실시예Example 2 2 : : 실세스퀴옥산Silsesquioxane D-A-D 구조 복합 고분자의 합성 Synthesis of D-A-D Structure Composite Polymer

D-A-D구조의 복합 고분자를 제조하기 위하여 아래의 실시예를 이용하였으며, 상기 실시예 1에 기재된 방법과 대응한 방법으로 코팅 조성물을 제조하였다. 촉매 및 선형구조의 제조는 실시예 1-a 및 1-b의 방법을 동일하게 사용하였으며, 이후 연속적 D-A-D 구조를 생성하기 위하여 아래의 방법으로 제조를 실시하였다.
In order to prepare a composite polymer having a DAD structure, the following examples were used and the coating composition was prepared by a method corresponding to that described in Example 1 above. The catalyst and the linear structure were prepared in the same manner as in Examples 1-a and 1-b, and the production was carried out in the following manner to produce a continuous DAD structure.

[실시예 2-a] 과량의 연속적 cage 구조의 생성 [Example 2-a] Production of excessive continuous cage structure

상기 실시예 1-b 혼합용액에 0.36 중량% HCl 수용액을 매우 천천히 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 실시예 1-b에서 사용된 Diphenyltetramethoxydisiloxane의 5배인 25 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 1시간 교반 후 실시예 1-a에서 제조된 촉매를 7 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, 선형고분자와는 별도로 alkoxy가 열려있는 D구조의 전구체가 형성된다. 소량의 샘플을 적취하여, H-NMR과 IR로 분석하여 methoxy의 잔존율을 확인한 후, 잔존율이 20% 일 때, 0.36 중량% HCl 수용액을 10 중량부 천천히 적가하여, pH를 산성으로 조절해 주었다. 이후 Phenyltrimethoxysilane 1 중량부를 한번에 적가하여 15분간 교반 후, 1-a에서 제조된 촉매 20 중량부를 첨가하였다. 4시간의 혼합교반 이후, 확인결과 고분자내에 cage 형태의 고분자가 생성됨을 확인 할 수 있었다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합 교반 이후, 일부를 적취하여 29Si-NMR을 통해 분석한 결과 phenyl기를 이용해 도입된 구조의 분석피크가 날카로운 형태의 2개로 나타나고 별도로 잔존하는 부산물 없이 화학식 1과 같은 A-D 고분자가 제조되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 14,000으로 측정되었으며, 평균 n값은 4.6이었다. 또한, Si-NMR 분석에서 A-D구조와는 달리 A구조의 말단에서 보이던 -68ppm 근방의 피크가 사라져, A구조의 말단이 D구조로 모두 변환되어 D-A-D구조로 생성됨을 확인 하였다. 29Si-NMR (CDCl3) δ -72.3(broad), -81.1(sharp), -80.8(sharp), -82.5(broad)
To the mixed solution of Example 1-b was added 5 parts by weight of a 0.36 wt% aqueous solution of HCl very slowly, adjusted to have an acidic pH, and stirred at a temperature of 4 캜 for 30 minutes. Then, 25 parts by weight of diphenyltetramethoxydisiloxane used in Example 1-b was added dropwise at a time to stabilize hydrolysis. After stirring for 1 hour, 7 parts by weight of the catalyst prepared in Example 1-a was added again, To adjust the pH of the mixed solution. At this time, a precursor of D structure is formed in which alkoxy is opened separately from the linear polymer. A small amount of the sample was taken out and analyzed by 1 H-NMR and IR to confirm the residual ratio of methoxy. When the residual ratio was 20%, 10 parts by weight of 0.36 wt% HCl aqueous solution was slowly added dropwise to adjust the pH to acidic gave. Then, 1 part by weight of phenyltrimethoxysilane was added dropwise at a time, and the mixture was stirred for 15 minutes, and 20 parts by weight of the catalyst prepared in 1-a was added. After mixing for 4 hours, it was confirmed that cage type polymer was formed in the polymer. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed under vacuum so that the whole reactant was converted into the aqueous solution mixture. After 4 hours of mixing, some of the fractions were taken out and analyzed by 29 Si-NMR. As a result, the analysis peak of the structure introduced by using the phenyl group appeared as two sharp shapes and the AD polymer of formula 1 was produced without any residual by- I could confirm. The molecular weight in terms of styrene was measured at 14,000, and the average n value was 4.6. In addition, in Si-NMR analysis, peaks near -68 ppm observed at the end of the A structure disappeared unlike the AD structure, and it was confirmed that the end of the A structure was converted into the D structure to generate DAD structure. 29 Si-NMR (CDCl 3) δ -72.3 (broad), -81.1 (sharp), -80.8 (sharp), -82.5 (broad)

또한, 하기 표 20에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 2에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer and coating composition were prepared by applying the monomers described in Table 20 below. At this time, the manufacturing method was the same as the method used in Example 2 above.

실시
방법
practice
Way
1-b 방법
적용 단량체
1-b method
Applied Monomer
2-a 방법
적용 단량체
2-a method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
전구체Precursor cage도입introduction of cage 22 ECHETMSECHETMS PTMDSPTMDS PTMSPTMS 14,00014,000 2-12-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 9,0009,000 2-22-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 52,00052,000 2-32-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 30,00030,000 2-42-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 24,00024,000 2-52-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 6,0006,000 2-62-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 12,00012,000 2-72-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 13,00013,000 2-82-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 21,00021,000 2-92-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 38,00038,000 2-102-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 150,000150,000 2-112-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 18,00018,000 2-122-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 123,000123,000 2-132-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 23,00023,000 2-142-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 9,0009,000 2-152-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 91,00091,000 2-162-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 41,00041,000 2-172-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 12,00012,000 2-182-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 131,000131,000 2-192-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 110,000110,000 2-202-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 6,0006,000 2-212-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 38,00038,000 2-222-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 5,0005,000 2-232-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 12,00012,000 2-242-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 192,000192,000

실시예Example 3 3 : : 실세스퀴옥산Silsesquioxane E-A-D 구조 복합 고분자의 합성 Synthesis of E-A-D Structure Composite Polymer

E-A-D구조의 복합 고분자를 제조하기 위하여 아래의 실시예를 이용하였으며, 상기 실시예 1에 기재된 방법과 대응한 방법으로 코팅 조성물을 제조하였다. 촉매 및 선형구조의 제조는 실시예 1의 방법을 동일하게 사용하였으며, 이후 E-A-D 구조를 생성하기 위하여 아래의 방법으로 제조를 실시하였다.
In order to prepare a composite polymer having an EAD structure, the following examples were used, and coating compositions were prepared by a method corresponding to that described in Example 1 above. The catalyst and the linear structure were prepared in the same manner as in Example 1, and then, the production was carried out in the following manner to produce the EAD structure.

[실시예 3-a] 사슬 말단 E구조의 생성 [Example 3-a] Production of chain terminal E structure

실시예 1-c 에서 얻어진 A-D 혼합물에 별도의 정제 없이 메틸렌크로라이드 20 중량부를 적가하고, 0.36 중량% HCl 수용액을 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 dimethyltetramethoxysilane 1 중량부를 한번에 적가하였다. 이때, 아직 분자구조 내에서 가수분해되지 않고 존재하던 부분들이 용매와 분리된 산성 수용액 층에서 가수분해물로 쉽게 변환되며, 생성된 별도의 반응물과 유기용매 층에서 축합되어 말단단위에 E가 도입되었다. 5시간의 교반 후, 반응의 교반을 정지하고 상온으로 반응기의 온도를 조절 하였다.
20 parts by weight of methylene chloride was added dropwise to the AD mixture obtained in Example 1-c without further purification, 5 parts by weight of a 0.36% by weight aqueous solution of HCl was added dropwise, the pH was adjusted to be acidic, Lt; / RTI > Then, 1 part by weight of dimethyltetramethoxysilane was added dropwise at a time. At this time, the portions which were not hydrolyzed yet in the molecular structure were easily converted into the hydrolyzate in the acidic aqueous solution layer separated from the solvent, and E was introduced at the terminal unit by condensation in the organic solvent layer and the separated reaction product. After stirring for 5 hours, the stirring of the reaction was stopped and the temperature of the reactor was adjusted to room temperature.

[실시예 3-b] 말단 E 구조에 cage 도입 [Example 3-b] Cage introduction into the terminal E structure

상기 실시예 3-a에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 반응이 진행 중인 실시예 3-a 혼합용액에 Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 24시간 교반 후 실시예 1-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, E 구조 말단에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 3과 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 3-a was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 3 parts by weight of Methyltrimethoxysilane was added dropwise to the mixed solution of Example 3-a in which the reaction was proceeding at once to stabilize hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 1-a was added again, To adjust the pH of the mixed solution. At this time, the cage-type polymer is introduced at the end of the E structure, and the reaction proceeds continuously in the reactor to form the polymer of Formula 3. However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 3-c] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 3-c] Removal of by-products by precipitation and recrystallization, yielding the product

상기 실시예 3-b에서 반응이 완료된 혼합물을 얻어낸 후, 증류수를 이용하여 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. After completion of the reaction in Example 3-b, the mixture was washed with distilled water, and when the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 3의 고분자를 여러 부산물과 함께 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 17,000이었으며, n의 평균값은 4.6이었으며, 특히 화학식 3의 결과는 다음과 같다.     After completion of the recrystallization process, the obtained solid materials were filtered to obtain a polymer of formula (3) together with various by-products through vacuum depressurization. In addition, when the GPC results are compared with the NMR results, it can be seen that the complex polymer can be obtained without problems since the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. At this time, the molecular weight was 17,000 in terms of styrene, and the average value of n was 4.6.

29Si-NMR (CDCl3) δ -68.2, -71.8(sharp). -72.3(broad), -81.1(sharp), -80.8(sharp), -82.5(broad)
29 Si-NMR (CDCl 3) δ -68.2, -71.8 (sharp). -72.3 (broad), -81.1 (sharp), -80.8 (sharp), -82.5 (broad)

또한, 하기 표 21에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 3에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer and coating composition were prepared by applying the monomers described in Table 21 below. At this time, the manufacturing method was the same as the method used in Example 3 above.

실시
방법
practice
Way
1-b 방법
적용 단량체
1-b method
Applied Monomer
1-c 방법
적용 단량체
1-c method
Applied Monomer
3-a
방법
적용 단량체
3-a
Way
Applied Monomer
3-b
방법
적용단량체
3-b
Way
Applied Monomer
MwMw
전구체Precursor cage도입introduction of cage 33 ECHETMSECHETMS PTMDSPTMDS PTMSPTMS MTMDSMTMDS MAPTMSMAPTMS 17,00017,000 3-13-1 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 12,00012,000 3-23-2 PTMSPTMS PTMDSPTMDS PTMSPTMS PTMDSPTMDS PTMSPTMS 18,00018,000 3-33-3 MTMSMTMS MTMDSMTMDS MTMSMTMS MTMDSMTMDS MTMSMTMS 59,00059,000 3-43-4 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 41,00041,000 3-53-5 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 31,00031,000 3-63-6 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS PTMDSPTMDS PTMSPTMS 16,00016,000 3-73-7 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 12,00012,000 3-83-8 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 16,00016,000 3-93-9 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 92,00092,000 3-103-10 ECHETMSECHETMS PTMDSPTMDS PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 25,00025,000 3-113-11 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 38,00038,000 3-123-12 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 56,00056,000 3-133-13 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 97,00097,000 3-143-14 PTMSPTMS PTMDSPTMDS PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 24,00024,000 3-153-15 PTMSPTMS PTMDSPTMDS PTMSPTMS MTMDSMTMDS MTMSMTMS 31,00031,000 3-163-16 PTMSPTMS PTMDSPTMDS PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 21,00021,000 3-173-17 PTMSPTMS PTMDSPTMDS PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 64,00064,000 3-183-18 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS PTMDSPTMDS PTMSPTMS 120,000120,000 3-193-19 PTMSPTMS MTMDSMTMDS MTMSMTMS PTMDSPTMDS PTMSPTMS 210,000210,000 3-203-20 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS PTMDSPTMDS PTMSPTMS 23,00023,000 3-213-21 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 160,000160,000 3-223-22 MTMSMTMS MTMDSMTMDS MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 63,00063,000 3-233-23 MTMSMTMS MTMDSMTMDS MTMSMTMS PTMDSPTMDS PTMSPTMS 52,00052,000 3-243-24 MTMSMTMS MTMDSMTMDS MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 73,00073,000 3-253-25 MTMSMTMS MTMDSMTMDS MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 98,00098,000 3-263-26 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 41,00041,000 3-273-27 MTMSMTMS PTMDSPTMDS PTMSPTMS MTMDSMTMDS MTMSMTMS 15,00015,000 3-283-28 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS MTMDSMTMDS MTMSMTMS 110,000110,000 3-293-29 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 45,00045,000 3-303-30 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 35,00035,000 3-313-31 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS PTMDSPTMDS PTMSPTMS 33,00033,000 3-323-32 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS MTMDSMTMDS MTMSMTMS 48,00048,000 3-333-33 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 29,00029,000 3-343-34 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 19,00019,000 3-353-35 GPTMSGPTMS PTMDSPTMDS PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 156,000156,000 3-363-36 GPTMSGPTMS MTMDSMTMDS MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 116,000116,000 3-373-37 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 12,00012,000 3-383-38 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 31,00031,000 3-393-39 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 28,00028,000 3-403-40 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 35,00035,000 3-413-41 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 31,00031,000 3-423-42 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 57,00057,000 3-433-43 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 9,0009,000 3-443-44 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 19,00019,000 3-453-45 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 213,000213,000

실시예 4Example 4 : A-B-D 구조 복합 실세스퀴옥산 고분자의 합성: Synthesis of A-B-D Structured Composite Silsesquioxane Polymer

합성단계는 아래와 같이, 연속가수분해 및 축합을 단계적으로 진행하여 E-A-D구조의 복합 고분자를 제조하였으며, 상기 실시예 1에 기재된 방법과 대응한 방법으로 코팅 조성물을 제조하였다.였다. In the synthesis step, the continuous hydrolysis and condensation were progressed step by step to prepare a composite polymer of E-A-D structure, and the coating composition was prepared by the method corresponding to the method described in Example 1 above.

[실시예 4-a] 가수분해 및 축합 반응을 위한 촉매의 제조 [Example 4-a] Preparation of catalyst for hydrolysis and condensation reaction

염기도 조절을 위하여, Tetramethylammonium hydroxide (TMAH) 25 wt% 수용액에 10 wt% Potassium hydroxide (KOH) 수용액을 혼합하여 촉매 1a를 준비하였다.
For the control of basicity, Catalyst 1a was prepared by mixing 10 wt% aqueous potassium hydroxide (KOH) solution with 25 wt% aqueous solution of tetramethylammonium hydroxide (TMAH).

[실시예 4-b] 선형 실세스퀴옥산 구조의 합성 (A-B전구체의 합성) [Example 4-b] Synthesis of linear silsesquioxane structure (Synthesis of A-B precursor)

냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 5 중량부, 테트라하이드로퓨란 40 중량부, 상기 실시예 4-a에서 제조된 촉매 0.5 중량부를 적가하고, 1시간 동안 상온에서 교반 한 후, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 10 중량부를 적가하고, 다시 테트라하이드로류란을 20 중량부 적가하여 2시간 추가 교반 하였다. 교반 중의 혼합용액을 적취하여, 두 차례 세정하는 것으로 촉매와 불순물을 제거하고 필터 한 후, 1H-NMR 분석을 통하여 잔존하는 alkoxy group이 0.1 mmol/g 이하로 잔존하고 있는 선형 실세스퀴옥산을 얻어 내었고, 이는 이후 cage를 연속반응으로 도입하는데 이용되는 부분이다. 선형 구조의 형태 분석은 XRD 분석을 통해 전체적인 구조가 선형구조체임을 확인하였다. 분자량을 측정한 결과, 선형구조의 실세스퀴옥산이 6,000 스티렌 환산 분자량을 가짐을 확인할 수 있었다. 5 parts by weight of distilled water, 40 parts by weight of tetrahydrofuran and 0.5 parts by weight of the catalyst prepared in Example 4-a were added dropwise to a dried flask equipped with a cooling tube and a stirrer, stirred at room temperature for 1 hour, - (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added dropwise thereto, 20 parts by weight of tetrahydrofuran was added dropwise, and further stirred for 2 hours. The mixed solution under stirring was taken out and washed twice to remove catalyst and impurities. After filtering, 1 H-NMR analysis was performed to determine the amount of linear silsesquioxane remaining in the remaining alkoxy group of 0.1 mmol / g or less , Which is then used to introduce the cage into a continuous reaction. The morphological analysis of the linear structure was confirmed by XRD analysis as a linear structure. As a result of the measurement of the molecular weight, it was confirmed that the silsesquioxane having a linear structure had a molecular weight of 6,000 styrene equivalents.

1H-NMR (CDCl3) δ 3.7, 3.4, 3.3(broad), 3.1, 2.8, 2.6, 1.5(broad), 0.6.
1 H-NMR (CDCl 3 )? 3.7, 3.4, 3.3 (broad), 3.1, 2.8, 2.6, 1.5 (broad), 0.6.

[실시예 4-c] 사슬 내 cage 구조의 생성을 위한 pH 변환 반응 (B,D 구조의 도입) [Example 4-c] pH conversion reaction for introduction of cage structure in chain (introduction of B, D structure)

반응이 진행 중인 실시예 4-b 혼합용액에 0.36 wt% HCl 수용액을 매우 천천히 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 DiPhenyltetramethoxydisiloxane 5 중량부를 한번에 적가하여, 1시간 교반 후 실시예 4-a에서 제조된 촉매를 5 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, 선형구조체와는 별도로 cage 형태의 구조체가 생성되어 고분자 사슬에 도입됨을 확인 할 수 있었으며, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합교반 이후, 일부를 적취하여 29Si-NMR 및 1H-NMR 을 통해 분석한 결과 B 구조내에 존재하는 alkoxy group의 양이 0.025 mmol/g으로 변화되어 B 와 D의 반복단위가 약 5:5 비율로 도입되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 10,000으로 측정되었다. 또한, cage형 구조가 도입되었음에도, 고분자의 GPC 형태에서 단독 cage형 물질의 분자량 분포를 찾아볼 수 없으므로, cage구조가 연속반응을 통해 고분자 사슬에 잘 도입되었음을 확인할 수 있었다.To the mixed solution of Example 4-b undergoing the reaction, 5 parts by weight of a 0.36 wt% aqueous solution of HCl was added very slowly and the pH was controlled to be acidic and stirred at a temperature of 4 ° C for 30 minutes. Then, 5 parts by weight of DiPhenyltetramethoxydisiloxane was added dropwise at a time, and after stirring for 1 hour, 5 parts by weight of the catalyst prepared in Example 4-a was added again to adjust the pH of the mixed solution in a basic state. At this time, it was confirmed that a cage-type structure was formed separately from the linear structure and introduced into the polymer chain. The temperature was changed to room temperature, the tetrahydrofuran in the mixed solution was removed by vacuum, and the whole reaction product was converted into an aqueous solution mixture Respectively. After 4 hours of mixing, some of the fractions were collected and analyzed by 29 Si-NMR and 1 H-NMR. As a result, the amount of alkoxy groups in B structure was changed to 0.025 mmol / g, 5: 5 ratio. The molecular weight in terms of styrene was measured to be 10,000. In addition, although the cage type structure was introduced, since the molecular weight distribution of the single cage type material was not found in the GPC type of the polymer, it was confirmed that the cage structure was well introduced into the polymer chain through the continuous reaction.

1H-NMR (CDCl3) δ 7.5, 7.2, 3.7, 3.4, 3.3(broad), 3.1, 2.8, 2.6, 1.5(broad), 0.6. 29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -82.5(broad)
1 H-NMR (CDCl 3 )? 7.5, 7.2, 3.7, 3.4, 3.3 (broad), 3.1, 2.8, 2.6, 1.5 (broad), 0.6. 29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp)

[실시예 4-d] B 구조내 X도입 (B,D 구조의 도입) [Example 4-d] Introduction of X structure in B structure (introduction of B structure, D structure)

상기 실시예 4-c에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 실시예 4-c에서 얻어진 물질 100 중량부를 50 중량부의 테트라하이드로퓨란에 녹인 후, 5 중량부의 증류수를 넣어 혼합용액을 제조하였다. 이후 제조된 혼합용액에 0.36 wt% HCl 10 중량부를 첨가하고 10분간 교반 후, Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하였다. 24시간 교반 후 실시예 4-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, B 구조의 X 부분에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 4와 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 4-c was prepared without further purification, and the terminal was converted to a cage structure using a trifunctional monomer. 100 parts by weight of the material obtained in Example 4-c was dissolved in 50 parts by weight of tetrahydrofuran, and 5 parts by weight of distilled water was added to prepare a mixed solution. Then, 10 parts by weight of 0.36 wt% HCl was added to the mixed solution, which was then stirred for 10 minutes, and then 3 parts by weight of methyltrimethoxysilane was added dropwise at one time to perform stable hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 4-a was added again to adjust the pH of the mixed solution in a basic state. At this time, a cage-shaped polymer is introduced into the X portion of the B structure, and the reaction proceeds continuously in the reactor to form the polymer of Formula 4. However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 4-e] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 4-e] Removal of by-products by precipitation and recrystallization,

상기 실시예 4-d에서 반응이 완료된 혼합물에 메틸렌크로라이드 200 중량부를 넣어, 증류수와 함께 분별 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. 200 parts by weight of methylene chloride was added to the mixture after completion of the reaction in Example 4-d, and the mixture was washed with distilled water. When the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 4의 고분자가 여러 부산물 없이 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 12,000의 값을 얻을 수 있었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었으며, 특히 화학식 4의 결과는 다음과 같다.     After the completion of the recrystallization process, the obtained solid materials were filtered, and it was confirmed through vacuum decompression that the polymer of formula (4) was obtained without various byproducts. In addition, when the GPC results are compared with the NMR results, it can be seen that the complex polymer can be obtained without problems since the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. The average molecular weight of styrene was 12,000, the average value of n of n was 4.6, and the average value of n of n was 4.6. The results of formula (4) are as follows.

29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -81.5(sharp), -82.5(broad)
29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp), -81.5

또한, 하기 표 22에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 4에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer and coating composition were prepared by applying the monomers described in Table 22 below. At this time, the manufacturing method was the same as the method used in Example 4 above.

실시
방법
practice
Way
4-b 방법
적용 단량체
4-b method
Applied Monomer
4-c 방법
적용 단량체
4-c method
Applied Monomer
4-d 방법
적용 단량체
4-d method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
44 ECHETMSECHETMS PTMDSPTMDS MTMSMTMS 12,00012,000 4-14-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 15,00015,000 4-24-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 16,00016,000 4-34-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 56,00056,000 4-44-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 9,5009,500 4-54-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 7,5007,500 4-64-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 16,00016,000 4-74-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 23,00023,000 4-84-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 9,5009,500 4-94-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 72,00072,000 4-104-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 68,00068,000 4-114-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 11,00011,000 4-124-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 110,000110,000 4-134-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 23,00023,000 4-144-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 9,5009,500 4-154-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 64,00064,000 4-164-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 12,00012,000 4-174-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 8,0008,000 4-184-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 451,000451,000 4-194-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 320,000320,000 4-204-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 15,00015,000 4-214-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 45,00045,000 4-224-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 351,000351,000 4-234-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 14,00014,000 4-244-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 160,000160,000

실시예 5Example 5 : D-A-B-D 구조 복합 실세스퀴옥산 고분자의 합성: Synthesis of D-A-B-D Structured Composite Silsesquioxane Polymer

D-A-B-D구조의 복합 고분자를 제조하기 위하여 아래의 방법을 이용하였으며, 상기 실시예 1과 대등한 방법으로 코팅 조성물을 제조하였다.
To prepare a composite polymer having a DABD structure, the following method was used, and a coating composition was prepared in the same manner as in Example 1.

[실시예 5-a] D구조의 과량 생성을 위한 pH 변환 반응 (B,D 구조의 도입) [Example 5-a] pH conversion reaction for introduction of excess structure of D structure (introduction of structure B and structure D)

반응이 진행 중인 실시예 4-b 혼합용액에 0.36 wt% HCl 수용액을 매우 천천히 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 Diphenyltetramethoxydisiloxane의 양을 실시예 4-b의 5배인 25 중량부로 준비하여 한번에 적가하고, 1시간 교반 후 실시예 1-a에서 제조된 촉매를 5 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 반응 완료 후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합교반 이후, 일부를 적취하여 29Si-NMR 및 1H-NMR 을 통해 분석한 결과 B 구조내에 존재하는 alkoxy group의 양이 0.012 mmol/g으로 변화되고 B 와 D의 반복단위가 약 1:9 비율로 도입되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 24,000으로 측정되었다. 또한, cage형 구조가 도입되었음에도, 고분자의 GPC 형태에서 단독 cage형 물질의 분자량 분포를 찾아볼 수 없으므로, cage구조가 연속반응을 통해 고분자 사슬에 잘 도입되었음을 확인할 수 있었다.To the mixed solution of Example 4-b undergoing the reaction, 5 parts by weight of a 0.36 wt% aqueous solution of HCl was added very slowly and the pH was controlled to be acidic and stirred at a temperature of 4 ° C for 30 minutes. Then, 25 parts by weight of diphenyltetramethoxydisiloxane was added in an amount of 25 parts by weight, which was 5 times that of Example 4-b, and the mixture was added dropwise at a time. After stirring for 1 hour, 5 parts by weight of the catalyst prepared in Example 1-a was added again. Respectively. After completion of the reaction, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed under vacuum so that the whole reactant was converted into the aqueous solution mixture. After 4 hours of mixing, part of the mixture was taken out and analyzed by 29 Si-NMR and 1 H-NMR. As a result, the amount of alkoxy group in B structure was changed to 0.012 mmol / g and the repeating units of B and D were weak 1: 9 ratio. The molecular weight in terms of styrene was measured to be 24,000. In addition, although the cage type structure was introduced, since the molecular weight distribution of the single cage type material was not found in the GPC type of the polymer, it was confirmed that the cage structure was well introduced into the polymer chain through the continuous reaction.

1H-NMR (CDCl3) δ 7.5, 7.2, 3.7, 3.4, 3.3(broad), 3.1, 2.8, 2.6, 1.5(broad), 0.6. 29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -82.5(broad)
1 H-NMR (CDCl 3 )? 7.5, 7.2, 3.7, 3.4, 3.3 (broad), 3.1, 2.8, 2.6, 1.5 (broad), 0.6. 29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp)

[실시예 5-b] B 구조내 X도입 (B,D 구조의 도입) [Example 5-b] Introduction of X structure in B structure (introduction of B structure, D structure)

상기 실시예 5-a에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 실시예 5-a에서 얻어진 물질 100 중량부를 50 중량부의 테트라하이드로퓨란에 녹인 후, 5 중량부의 증류수를 넣어 혼합용액을 제조하였다. 이후 제조된 혼합용액에 0.36 wt% HCl 10 중량부를 첨가하고 10분간 교반 후, Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하였다. 24시간 교반 후 실시예 4-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, B 구조의 X 부분에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 5와 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 5-a was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 100 parts by weight of the material obtained in Example 5-a was dissolved in 50 parts by weight of tetrahydrofuran, and 5 parts by weight of distilled water was added to prepare a mixed solution. Then, 10 parts by weight of 0.36 wt% HCl was added to the mixed solution, which was then stirred for 10 minutes, and then 3 parts by weight of methyltrimethoxysilane was added dropwise at one time to perform stable hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 4-a was added again to adjust the pH of the mixed solution in a basic state. At this time, a cage-shaped polymer is introduced into the X portion of the B structure, and the reaction proceeds continuously in the reactor to form the polymer of Formula 5. However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 5-c] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 5-c] Removal of by-products by precipitation and recrystallization,

상기 실시예 5-b에서 반응이 완료된 혼합물에 메틸렌크로라이드 200 중량부를 넣어, 증류수와 함께 분별 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. 200 parts by weight of methylene chloride was added to the mixture after completion of the reaction in Example 5-b, and the mixture was washed with distilled water. When the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 5의 고분자가 여러 부산물 없이 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 16,000의 값을 얻을 수 있었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었으며, 특히 화학식 5의 결과는 다음과 같다.     After the completion of the recrystallization process, the obtained solid materials were filtered, and it was confirmed through vacuum decompression that the polymer of formula (5) was obtained without various byproducts. In addition, when the GPC results are compared with the NMR results, it can be seen that the complex polymer can be obtained without problems since the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. The average molecular weight of styrene was 16,000, the average value of n of n was 4.6, the average value of n of n was 4.6, and the results of formula (5) were as follows.

29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -81.5(sharp), -82.5(broad)
29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp), -81.5

또한, 하기 표 23에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 5에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer and the coating composition were prepared by applying the monomers described in Table 23 below. At this time, the manufacturing method was the same as the method used in Example 5 above.

실시
방법
No.
practice
Way
No.
4-b 방법
적용 단량체
4-b method
Applied Monomer
4-a 방법
적용 단량체
4-a method
Applied Monomer
5-b 방법
적용 단량체
5-b method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
22 ECHETMSECHETMS PTMDSPTMDS MTMSMTMS 16,00016,000 5-15-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 19,00019,000 5-25-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 20,00020,000 5-35-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 63,00063,000 5-45-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 12,00012,000 5-55-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 14,50014,500 5-65-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 19,00019,000 5-75-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 25,00025,000 5-85-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 11,50011,500 5-95-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 78,00078,000 5-105-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 79,00079,000 5-115-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 15,00015,000 5-125-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 124,000124,000 5-135-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 30,00030,000 5-145-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 12,00012,000 5-155-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 64,00064,000 5-165-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 13,00013,000 5-175-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 12,00012,000 5-185-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 631,000631,000 5-195-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 421,000421,000 5-205-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 18,00018,000 5-215-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 65,00065,000 2-222-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 425,000425,000 5-235-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 25,00025,000 5-245-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 213,000213,000

실시예 6Example 6 : 실세스퀴옥산 E-A-B-D 구조 복합 고분자의 합성: Synthesis of Silsesquioxane E-A-B-D Structure Composite Polymer

E-A-B-D구조의 복합 고분자를 제조하기 위하여 아래의 아래의 방법을 이용하였으며, 상기 실시예 1과 대등한 방법으로 코팅 조성물을 제조하였다.
In order to prepare a composite polymer having an EABD structure, a coating composition was prepared in the same manner as in Example 1, using the following method.

[실시예 6-a] 사슬 말단 E구조의 생성 [Example 6-a] Production of chain terminal E structure

실시예 4-c 에서 얻어진 혼합물에 별도의 정제 없이 메틸렌크로라이드 20 중량부를 적가하고, 0.36 중량% HCl 수용액을 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 dimethyltetramethoxysilane 1 중량부를 한번에 적가하였다. 이때, 아직 분자구조 내에서 가수분해되지 않고 존재하던 부분들이 용매와 분리된 산성 수용액 층에서 가수분해물로 쉽게 변환되며, 생성된 별도의 반응물과 유기용매 층에서 축합되어 말단단위에 E가 도입되었다. 5시간의 교반 후, 반응의 교반을 정지하고 상온으로 반응기의 온도를 조절 하였다.
20 parts by weight of methylene chloride was added dropwise to the mixture obtained in Example 4-c without dropping, 5 parts by weight of 0.36% by weight aqueous HCl solution was added dropwise, the pH was controlled to be acidic, Lt; / RTI > Then, 1 part by weight of dimethyltetramethoxysilane was added dropwise at a time. At this time, the portions which were not hydrolyzed yet in the molecular structure were easily converted into the hydrolyzate in the acidic aqueous solution layer separated from the solvent, and E was introduced at the terminal unit by condensation in the organic solvent layer and the separated reaction product. After stirring for 5 hours, the stirring of the reaction was stopped and the temperature of the reactor was adjusted to room temperature.

[실시예 6-b] B구조 및 말단 E 구조의 X에 cage 도입 [Example 6-b] Introduction of cage to X of B structure and terminal E structure

상기 실시예 6-a에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 반응이 진행 중인 실시예 6-a 혼합용액에 Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 24시간 교반 후 실시예 1-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, E 구조 말단에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 6과 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 6-a was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 3 parts by weight of Methyltrimethoxysilane was added dropwise to the mixed solution of Example 6-a in which the reaction was proceeding to stabilize hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 1-a was added again, To adjust the pH of the mixed solution. At this time, a cage-type polymer is introduced at the end of the E structure, and the reaction proceeds continuously in the reactor to form a polymer as shown in Formula 6. However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 6-c] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 6-c] Removal of by-products by precipitation and recrystallization,

상기 실시예 6-b에서 반응이 완료된 혼합물을 얻어낸 후, 증류수를 이용하여 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. After completion of the reaction in Example 6-b, the mixture was washed with distilled water, and when the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 6의 고분자를 여러 부산물과 함께 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 21,000의 값을 얻을 수 있었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었으며, 특히 화학식 6의 결과는 다음과 같다.     After completion of the recrystallization process, the obtained solid materials were filtered, and the polymer of formula (6) was obtained together with various by-products through vacuum decompression. In addition, when the GPC results are compared with the NMR results, it can be seen that the complex polymer can be obtained without problems since the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. The average molecular weight of styrene was 21,000, the average value of n of n was 4.6, the average value of n of n was 4.6, and the results of formula (6) were as follows.

29Si-NMR (CDCl3) δ -68.2, -71.8(sharp). -72.3(broad), -81.1(sharp), -80.8(sharp), -82.5(broad)
29 Si-NMR (CDCl 3) δ -68.2, -71.8 (sharp). -72.3 (broad), -81.1 (sharp), -80.8 (sharp), -82.5 (broad)

또한, 하기 표 24에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자를 제조하였다. 이때 제조 방법은 상기 실시예 6에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer was prepared by applying the monomers described in Table 24 below. At this time, the manufacturing method was the same as the method used in Example 6 above.

실시
방법
No.
practice
Way
No.
4-b 방법
적용 단량체
4-b method
Applied Monomer
4-c 방법
적용 단량체
4-c method
Applied Monomer
6-a
방법
적용 단량체
6-a
Way
Applied Monomer
6-b
방법
적용단량체
6-b
Way
Applied Monomer
MwMw
66 ECHETMSECHETMS PTMDSPTMDS MTMDSMTMDS MAPTMSMAPTMS 21,00021,000 6-16-1 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMDSECHETMDS ECHETMSECHETMS 18,00018,000 6-26-2 PTMSPTMS PTMDSPTMDS PTMDSPTMDS PTMSPTMS 19,00019,000 6-36-3 MTMSMTMS MTMDSMTMDS MTMDSMTMDS MTMSMTMS 31,00031,000 6-46-4 GPTMSGPTMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 63,00063,000 6-56-5 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 125,000125,000 6-66-6 ECHETMSECHETMS ECHETMDSECHETMDS PTMDSPTMDS PTMSPTMS 18,00018,000 6-76-7 ECHETMSECHETMS ECHETMDSECHETMDS MTMDSMTMDS MTMSMTMS 14,00014,000 6-86-8 ECHETMSECHETMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 20,00020,000 6-96-9 ECHETMSECHETMS ECHETMDSECHETMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 91,00091,000 6-106-10 ECHETMSECHETMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 18,00018,000 6-116-11 ECHETMSECHETMS MTMDSMTMDS ECHETMDSECHETMDS ECHETMSECHETMS 121,000121,000 6-126-12 ECHETMSECHETMS GPTMDSGPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 80,00080,000 6-136-13 ECHETMSECHETMS MAPTMDSMAPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 112,000112,000 6-146-14 PTMSPTMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 35,00035,000 6-156-15 PTMSPTMS PTMDSPTMDS MTMDSMTMDS MTMSMTMS 91,00091,000 6-166-16 PTMSPTMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 45,00045,000 6-176-17 PTMSPTMS PTMDSPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 75,00075,000 6-186-18 PTMSPTMS ECHETMDSECHETMDS PTMDSPTMDS PTMSPTMS 140,000140,000 6-196-19 PTMSPTMS MTMDSMTMDS PTMDSPTMDS PTMSPTMS 220,000220,000 6-206-20 PTMSPTMS GPTMDSGPTMDS PTMDSPTMDS PTMSPTMS 51,00051,000 6-216-21 PTMSPTMS MAPTMDSMAPTMDS PTMDSPTMDS PTMSPTMS 73,00073,000 6-226-22 MTMSMTMS MTMDSMTMDS ECHETMDSECHETMDS ECHETMSECHETMS 69,00069,000 6-236-23 MTMSMTMS MTMDSMTMDS PTMDSPTMDS PTMSPTMS 51,00051,000 6-246-24 MTMSMTMS MTMDSMTMDS GPTMDSGPTMDS GPTMSGPTMS 91,00091,000 6-256-25 MTMSMTMS MTMDSMTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 128,000128,000 6-266-26 MTMSMTMS ECHETMDSECHETMDS MTMDSMTMDS MTMSMTMS 68,00068,000 6-276-27 MTMSMTMS PTMDSPTMDS MTMDSMTMDS MTMSMTMS 45,00045,000 6-286-28 MTMSMTMS GPTMDSGPTMDS MTMDSMTMDS MTMSMTMS 265,000265,000 6-296-29 MTMSMTMS MAPTMDSMAPTMDS MTMDSMTMDS MTMSMTMS 105,000105,000 6-306-30 GPTMSGPTMS GPTMDSGPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 101,000101,000 6-316-31 GPTMSGPTMS GPTMDSGPTMDS PTMDSPTMDS PTMSPTMS 95,00095,000 6-326-32 GPTMSGPTMS GPTMDSGPTMDS MTMDSMTMDS MTMSMTMS 73,00073,000 6-336-33 GPTMSGPTMS GPTMDSGPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 51,00051,000 6-346-34 GPTMSGPTMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 31,00031,000 6-356-35 GPTMSGPTMS PTMDSPTMDS GPTMDSGPTMDS GPTMSGPTMS 315,000315,000 6-366-36 GPTMSGPTMS MTMDSMTMDS GPTMDSGPTMDS GPTMSGPTMS 125,000125,000 6-376-37 GPTMSGPTMS MAPTMDSMAPTMDS GPTMDSGPTMDS GPTMSGPTMS 45,00045,000 6-386-38 MAPTMSMAPTMS MAPTMDSMAPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 94,00094,000 6-396-39 MAPTMSMAPTMS MAPTMDSMAPTMDS PTMDSPTMDS PTMSPTMS 35,00035,000 6-406-40 MAPTMSMAPTMS MAPTMDSMAPTMDS MTMDSMTMDS MTMSMTMS 80,00080,000 6-416-41 MAPTMSMAPTMS MAPTMDSMAPTMDS GPTMDSGPTMDS GPTMSGPTMS 83,00083,000 6-426-42 MAPTMSMAPTMS ECHETMDSECHETMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 74,00074,000 6-436-43 MAPTMSMAPTMS PTMDSPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 10,00010,000 6-446-44 MAPTMSMAPTMS MTMDSMTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 65,00065,000 6-456-45 MAPTMSMAPTMS GPTMDSGPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 418,000418,000

실시예 7Example 7 : 실세스퀴옥산 A-B-A-D 구조 복합 고분자의 합성: Synthesis of Silsesquioxane A-B-A-D Structure Composite Polymer

합성단계는 아래와 같이, 연속가수분해 및 축합을 단계적으로 진행하였으며, 상기 실시예 1과 같은 방법을 코팅 조성물을 제조하였다.
The synthesis step was carried out in a sequential hydrolysis and condensation stepwise as described below, and a coating composition was prepared in the same manner as in Example 1.

[실시예 7-a] 촉매의 제조 [Example 7-a] Preparation of catalyst

염기도 조절을 위하여, Tetramethylammonium hydroxide (TMAH) 25 중량% 수용액에 10 중량% Potassium hydroxide (KOH) 수용액을 혼합하여 촉매 1a를 준비하였다.
For controlling the basicity, a catalyst 1a was prepared by mixing a 25 wt% aqueous solution of tetramethylammonium hydroxide (TMAH) with a 10 wt% aqueous potassium hydroxide (KOH) solution.

[실시예 7-b] 선형 실세스퀴옥산 합성 (A 전구체) [Example 7-b] Synthesis of linear silsesquioxane (A precursor)

냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 5 중량부, 테트라하이드로퓨란 15 중량부, 상기 실시예 7-a에서 제조된 촉매 1 중량부를 적가하고, 1시간 동안 상온에서 교반 한 후, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 20 중량부를 적가하고, 다시 테트라하이드로류란을 15 중량부 적가하여 5시간 추가 교반 하였다. 교반 중의 혼합용액을 적취하여, 두 차례 세정하는 것으로 촉매와 불순물을 제거하고 필터 한 후, IR 분석을 통하여 말단기에 생성된 SI-OH 관능기를 확인할 수 있었으며(3200 cm-1), 분자량을 측정한 결과, 선형구조의 실세스퀴옥산이 6,000 스티렌 환산 분자량을 가짐을 확인할 수 있었다.
5 parts by weight of distilled water, 15 parts by weight of tetrahydrofuran and 1 part by weight of the catalyst prepared in Example 7-a were added dropwise to a dried flask equipped with a cooling tube and a stirrer, stirred at room temperature for 1 hour, - (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added dropwise, 15 parts by weight of tetrahydrofuran was added dropwise, and the mixture was further stirred for 5 hours. After removing the catalyst and impurities by filtration, the SI-OH functional group generated at the end of the reaction was identified by IR analysis (3200 cm -1 ), and the molecular weight was measured As a result, it was confirmed that the silsesquioxane having a linear structure had a molecular weight of 6,000 styrene equivalents.

[실시예 7-c] 선형 실세스퀴옥산 구조의 합성 (A-B전구체의 합성) [Example 7-c] Synthesis of linear silsesquioxane structure (Synthesis of A-B precursor)

냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 5 중량부, 테트라하이드로퓨란 40 중량부, 상기 실시예 7-a에서 제조된 촉매 0.5 중량부를 적가하고, 1시간 동안 상온에서 교반 한 후, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane 10 중량부를 적가하고, 다시 테트라하이드로류란을 20 중량부 적가하여 2시간 추가 교반 하였다. 교반 중의 혼합용액을 적취하여, 두 차례 세정하는 것으로 촉매와 불순물을 제거하고 필터 한 후, 1H-NMR 분석을 통하여 잔존하는 alkoxy group이 0.1 mmol/g 이하로 잔존하고 있는 선형 실세스퀴옥산을 얻어 내었고, 이는 이후 cage를 연속반응으로 도입하는데 이용되는 부분이다. 선형 구조의 형태 분석은 XRD 분석을 통해 전체적인 구조가 선형구조체임을 확인하였다. 분자량을 측정한 결과, 선형구조의 실세스퀴옥산이 8,000 스티렌 환산 분자량을 가짐을 확인할 수 있었다.
5 parts by weight of distilled water, 40 parts by weight of tetrahydrofuran and 0.5 parts by weight of the catalyst prepared in Example 7-a were added dropwise to a dried flask equipped with a cooling tube and a stirrer, stirred at room temperature for 1 hour, - (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added dropwise thereto, 20 parts by weight of tetrahydrofuran was added dropwise, and further stirred for 2 hours. The mixed solution under stirring was taken out and washed twice to remove catalyst and impurities. After filtering, 1 H-NMR analysis was performed to determine the amount of linear silsesquioxane remaining in the remaining alkoxy group of 0.1 mmol / g or less , Which is then used to introduce the cage into a continuous reaction. The morphological analysis of the linear structure was confirmed by XRD analysis as a linear structure. As a result of molecular weight measurement, it was confirmed that silsesquioxane having a linear structure had a molecular weight of 8,000 styrene equivalents.

[실시예 7-d] 선형 실세스퀴옥산 구조의 합성 (A-B-A전구체의 합성) [Example 7-d] Synthesis of linear silsesquioxane structure (Synthesis of A-B-A precursor)

냉각관과 교반기를 구비한 건조된 플라스크에, 증류수 5 중량부, 테트라하이드로퓨란 5 중량부, 제조된 실시예 7-a 촉매를 10 중량부를 적가하고, 1시간 동안 상온에서 교반 한 후, 실시예 7-b 전구체와 7-c 전구체를 20 중량부씩 각각 적가하고, 다시 테트라하이드로류란을 10 중량부 적가하여 24시간 추가 교반 하였다. 교반 중의 혼합용액을 적취하여, 두 차례 세정하는 것으로 촉매와 불순물을 제거하고 필터 한 후, IR 분석을 통하여 말단기에 생성된 SI-OH 관능기를 확인할 수 있었으며(3200 cm-1), 분자량을 측정한 결과, 선형구조의 실세스퀴옥산이 15,000 스티렌 환산 분자량을 가짐을 확인할 수 있었다.5 parts by weight of distilled water, 5 parts by weight of tetrahydrofuran and 10 parts by weight of the prepared catalyst of Example 7-a were added dropwise to a dried flask equipped with a cooling tube and a stirrer and stirred at room temperature for 1 hour, 20 parts by weight of 7-b precursor and 7-c precursor were added dropwise, respectively, and 10 parts by weight of tetrahydrofuran was further added dropwise, followed by further stirring for 24 hours. After removing the catalyst and impurities by filtration, the SI-OH functional group generated at the end of the reaction was identified by IR analysis (3200 cm -1 ), and the molecular weight was measured As a result, it was confirmed that the silsesquioxane having a linear structure had a molecular weight in terms of 15,000 styrene.

1H-NMR (CDCl3) δ 3.7, 3.4, 3.3(broad), 3.1, 2.8, 2.6, 1.5(broad), 0.6.
1 H-NMR (CDCl 3 )? 3.7, 3.4, 3.3 (broad), 3.1, 2.8, 2.6, 1.5 (broad), 0.6.

[실시예 7-e] 연속적 cage 구조의 생성 (D 구조의 도입) [Example 7-e] Production of continuous cage structure (introduction of D structure)

상기 실시예 7-d 혼합용액에 0.36 중량% HCl 수용액을 매우 천천히 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 Diphenyltetramethoxydisiloxane 5 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 1시간 교반 후 실시예 7-a에서 제조된 촉매를 7 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, 선형고분자와는 별도로 alkoxy가 열려있는 D구조의 전구체가 형성된다. 소량의 샘플을 적취하여, H-NMR과 IR로 분석하여 methoxy의 잔존율을 확인한 후, 잔존율이 10% 일 때, 0.36 중량% HCl 수용액을 10 중량부 천천히 적가하여, pH를 산성으로 조절해 주었다. 이후 Phenyltrimethoxysilane 1 중량부를 한번에 적가하여 15분간 교반 후, 1-a에서 제조된 촉매 20 중량부를 첨가하였다. 4시간의 혼합교반 이후, 확인결과 고분자내에 cage 형태의 고분자가 생성됨을 확인 할 수 있었다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합 교반 이후, 일부를 적취하여 29Si-NMR을 통해 분석한 결과 phenyl기를 이용해 도입된 구조의 분석피크가 날카로운 형태의 2개로 나타나고 별도로 잔존하는 부산물 없이 화학식 7과 같은 고분자가 제조되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 18,000으로 측정되었다.To the mixed solution of Example 7-d, 5 parts by weight of a 0.36% by weight aqueous solution of HCl was added very slowly and the pH was controlled to be acidic, and the mixture was stirred at a temperature of 4 캜 for 30 minutes. Then, 5 parts by weight of diphenyltetramethoxydisiloxane was added dropwise at a time to stabilize hydrolysis. After stirring for 1 hour, 7 parts by weight of the catalyst prepared in Example 7-a was added again to adjust the pH of the mixed solution in a basic state. At this time, a precursor of D structure is formed in which alkoxy is opened separately from the linear polymer. A small amount of the sample was taken out and analyzed by 1 H-NMR and IR to confirm the residual ratio of methoxy. When the residual ratio was 10%, 10 parts by weight of 0.36 wt% HCl aqueous solution was slowly added dropwise to adjust the pH to acidic gave. Then, 1 part by weight of phenyltrimethoxysilane was added dropwise at a time, and the mixture was stirred for 15 minutes, and 20 parts by weight of the catalyst prepared in 1-a was added. After mixing for 4 hours, it was confirmed that cage type polymer was formed in the polymer. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed under vacuum so that the whole reactant was converted into the aqueous solution mixture. After 4 hours of mixing, some of the fractions were taken out and analyzed by 29 Si-NMR. As a result, it was confirmed that the analysis peak of the structure introduced by using the phenyl group appeared as two sharp shapes and the polymer as the formula 7 was produced without any residual by- I could. The molecular weight in terms of styrene was measured to be 18,000.

29Si-NMR (CDCl3) δ -68.2, -72.3(broad), -81.1(sharp), -80.8(sharp), -82.5(broad)
29 Si-NMR (CDCl 3 )? -68.2, -72.3 (broad), -81.1 (sharp), -80.8 (sharp)

[실시예 7-f] B 구조내 X도입 (A-B-A-D구조의 완성) [Example 7-f] X introduction in structure B (completion of structure A-B-A-D)

상기 실시예 7-e에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 실시예 7-e에서 얻어진 물질 100 중량부를 50 중량부의 테트라하이드로퓨란에 녹인후, 5 중량부의 증류수를 넣어 혼합용액을 제조하였다. 이후 제조된 혼합용액에 0.36 wt% HCl 10 중량부를 첨가하고 10분간 교반 후, Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하였다. 24시간 교반 후 실시예 7-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, B 구조의 X 부분에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 7과 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 7-e was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 100 parts by weight of the material obtained in Example 7-e was dissolved in 50 parts by weight of tetrahydrofuran, and 5 parts by weight of distilled water was added to prepare a mixed solution. Then, 10 parts by weight of 0.36 wt% HCl was added to the mixed solution, which was then stirred for 10 minutes, and then 3 parts by weight of methyltrimethoxysilane was added dropwise at one time to perform stable hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 7-a was added again to adjust the pH of the mixed solution to a basic state. At this time, a cage-type polymer is introduced into the X portion of the B structure, and the reaction proceeds continuously in the reactor to form a polymer as shown in Formula (7). However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 7-g] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 7-g] By-products were removed by precipitation and recrystallization, and the resultant was obtained

상기 실시예 7-f에서 반응이 완료된 혼합물에 메틸렌크로라이드 200 중량부를 넣어, 증류수함께 분별 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. 200 parts by weight of methylene chloride was added to the reaction mixture in Example 7-f, and the mixture was washed with distilled water. When the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 7의 고분자가 여러 부산물 없이 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 24,000의 값이었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었다.
After the completion of the recrystallization process, the obtained solid materials were filtered, and it was confirmed through vacuum decompression that the polymer of formula (7) was obtained without various byproducts. In addition, when the GPC results are compared with the NMR results, it can be concluded that the complex polymer can be obtained without problems because the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. At this time, the molecular weight was a value of 24,000 in styrene conversion, the average value of n of n was 4.6, and the average value of n of n was 4.6.

또한, 하기 표 25에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자를 제조하였다. 이때 제조 방법은 상기 실시예 7에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer was prepared by applying the monomers described in Table 25 below. At this time, the method used in Example 7 was applied equally.

실시
방법
No.
practice
Way
No.
7-b,c 방법
적용 단량체
7-b, c method
Applied Monomer
7-e 방법
적용 단량체
7-e method
Applied Monomer
7-f 방법
적용 단량체
7-f method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
77 ECHETMSECHETMS PTMDSPTMDS MTMSMTMS 24,00024,000 7-17-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 11,00011,000 7-27-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 13,00013,000 7-37-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 23,00023,000 7-47-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 14,50014,500 7-57-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 12,50012,500 7-67-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 53,00053,000 7-77-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 11,00011,000 7-87-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 9,0009,000 7-97-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 48,00048,000 7-107-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 90,00090,000 7-117-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 32,00032,000 7-127-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 150,000150,000 7-137-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 17,00017,000 7-147-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 38,50038,500 7-157-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 15,00015,000 7-167-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 17,00017,000 7-177-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 6,0006,000 7-187-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 18,00018,000 7-197-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 457,000457,000 7-207-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 16,00016,000 7-217-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 97,00097,000 7-227-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 951,000951,000 7-237-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 15,00015,000 7-247-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 12,00012,000

실시예 8Example 8 : D-A-B-A-D 구조 복합 실세스퀴옥산 고분자의 합성: Synthesis of D-A-B-A-D Structured Composite Silsesquioxane Polymer

D-A-B-D구조의 복합 고분자를 제조하기 위하여 아래의 실시예를 이용하였으며, 상기 실시예 1과 같은 방법으로 코팅 조성물을 제조하였다.
In order to prepare a composite polymer having a DABD structure, the following examples were used, and coating compositions were prepared in the same manner as in Example 1.

[실시예 8-a] D구조의 과량 생성을 위한 pH 변환 반응 [Example 8-a] pH conversion reaction for overproduction of D structure

반응이 진행 중인 실시예 7-d 혼합용액에 0.36 wt% HCl 수용액을 매우 천천히 15 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 Diphenyltetramethoxydisiloxane의 양을 실시예 7-e의 5배인 25 중량부로 준비하여 한번에 적가하고, 1시간 교반 후 실시예 7-a에서 제조된 촉매를 20 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 반응 완료 후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여, 전체적인 반응물이 수용액 혼합물로 변환되도록 하였다. 4시간의 혼합교반 이후, 일부를 적취하여 29Si-NMR 및 1H-NMR 을 통해 분석한 결과 B 구조내에 존재하는 alkoxy group의 양이 0.006 mmol/g으로 변화되고 B 와 D의 반복단위가 약 5:5 비율로 도입되었음을 확인할 수 있었다. 또한 스티렌 환산 분자량은 32,000으로 측정되었다. 또한, cage형 구조가 도입되었음에도, 고분자의 GPC 형태에서 단독 cage형 물질의 분자량 분포를 찾아볼 수 없으므로, cage구조가 연속반응을 통해 고분자 사슬에 잘 도입되었음을 확인할 수 있었다.15 parts by weight of a 0.36 wt% aqueous solution of HCl was slowly added dropwise to the mixed solution of Example 7-d in which the reaction was proceeding, the pH was controlled to be acidic, and the mixture was stirred at 4 캜 for 30 minutes. Then, 25 parts by weight of diphenyltetramethoxydisiloxane was added in an amount of 25 parts by weight, which was five times the amount of Example 7-e, and the mixture was added dropwise at a time. After stirring for 1 hour, 20 parts by weight of the catalyst prepared in Example 7- Respectively. After completion of the reaction, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed under vacuum so that the whole reactant was converted into the aqueous solution mixture. After 4 hours of mixing, some of the fractions were collected and analyzed by 29 Si-NMR and 1 H-NMR. As a result, the amount of alkoxy groups in the structure B was changed to 0.006 mmol / g and the repeating units of B and D were weak 5: 5 ratio. The molecular weight in terms of styrene was measured to be 32,000. In addition, although the cage type structure was introduced, since the molecular weight distribution of the single cage type material was not found in the GPC type of the polymer, it was confirmed that the cage structure was well introduced into the polymer chain through the continuous reaction.

1H-NMR (CDCl3) δ 7.5, 7.2, 3.7, 3.4, 3.3(broad), 3.1, 2.8, 2.6, 1.5(broad), 0.6. 29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -82.5(broad)
1 H-NMR (CDCl 3 )? 7.5, 7.2, 3.7, 3.4, 3.3 (broad), 3.1, 2.8, 2.6, 1.5 (broad), 0.6. 29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp)

[실시예 8-b] B 구조내 X도입 [Example 8-b] X introduction in structure B

상기 실시예 8-a에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 실시예 8-a에서 얻어진 물질 100 중량부를 50 중량부의 테트라하이드로퓨란에 녹인 후, 5 중량부의 증류수를 넣어 혼합용액을 제조하였다. 이후 제조된 혼합용액에 0.36 wt% HCl 10 중량부를 첨가하고 10분간 교반 후, Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하였다. 24시간 교반 후 실시예 7-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, B 구조의 X 부분에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 8와 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 8-a was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 100 parts by weight of the material obtained in Example 8-a was dissolved in 50 parts by weight of tetrahydrofuran, and 5 parts by weight of distilled water was added to prepare a mixed solution. Then, 10 parts by weight of 0.36 wt% HCl was added to the mixed solution, which was then stirred for 10 minutes, and then 3 parts by weight of methyltrimethoxysilane was added dropwise at one time to perform stable hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 7-a was added again to adjust the pH of the mixed solution to a basic state. At this time, the cage-type polymer is introduced into the X portion of the B structure, and the reaction proceeds continuously in the reactor to form the polymer of Formula 8. However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 8-c] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 8-c] Removal of by-products by precipitation and recrystallization,

상기 실시예 8-b에서 반응이 완료된 혼합물에 메틸렌크로라이드 200 중량부를 넣어, 증류수와 함께 분별 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. 200 parts by weight of methylene chloride was added to the reaction mixture in Example 8-b, followed by washing with distilled water. When the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 1의 고분자가 여러 부산물 없이 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 36,000의 값을 얻을 수 있었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었으며, 특히 화학식 8의 결과는 다음과 같다.     After the completion of the recrystallization process, the obtained solid materials were filtered, and it was confirmed through vacuum decompression that the polymer of formula (1) was obtained without various byproducts. In addition, when the GPC results are compared with the NMR results, it can be seen that the complex polymer can be obtained without problems since the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. At this time, the molecular weight was found to be 36,000 in terms of styrene conversion. The average value of n of n was 4.6 and the average value of n of n was 4.6.

29Si-NMR (CDCl3) δ -72.5(broad), -81.1(sharp), -80.8(sharp), -79.9(sharp), -81.5(sharp), -82.5(broad)
29 Si-NMR (CDCl 3 )? -72.5 (broad), -81.1 (sharp), -80.8 (sharp), -79.9 (sharp), -81.5

또한, 하기 표 26에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자 및 코팅 조성물을 제조하였다. 이때 제조 방법은 상기 실시예 8에서 사용한 방법을 대등하게 적용하였다. The silsesquioxane complex polymer and coating composition were prepared by applying the monomers described in Table 26 below. At this time, the method used in Example 8 was applied equally.

실시
방법
No.
practice
Way
No.
7-b,c 방법
적용 단량체
7-b, c method
Applied Monomer
8-a 방법
적용 단량체
8-a method
Applied Monomer
8-b 방법
적용 단량체
8-b method
Applied Monomer
분자량
(Mw)
Molecular Weight
(Mw)
88 ECHETMSECHETMS PTMDSPTMDS MTMSMTMS 36,00036,000 8-18-1 PTMSPTMS PTMDSPTMDS PTMSPTMS 14,00014,000 8-28-2 MTMSMTMS MTMDSMTMDS MTMSMTMS 18,00018,000 8-38-3 GPTMSGPTMS GPTMDSGPTMDS GPTMSGPTMS 27,00027,000 8-48-4 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 19,50019,500 8-58-5 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMSECHETMS 19,50019,500 8-68-6 ECHETMSECHETMS MTMDSMTMDS MTMSMTMS 58,00058,000 8-78-7 ECHETMSECHETMS GPTMDSGPTMDS GPTMSGPTMS 19,00019,000 8-88-8 ECHETMSECHETMS MAPTMDSMAPTMDS MAPTMSMAPTMS 12,00012,000 8-98-9 PTMSPTMS ECHETMDSECHETMDS ECHETMSECHETMS 53,00053,000 8-108-10 PTMSPTMS MTMDSMTMDS MTMSMTMS 113,000113,000 8-118-11 PTMSPTMS GPTMDSGPTMDS GPTMSGPTMS 42,00042,000 8-128-12 PTMSPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 173,000173,000 8-138-13 MTMSMTMS ECHETMDSECHETMDS ECHETMSECHETMS 19,00019,000 8-148-14 MTMSMTMS PTMDSPTMDS PTMSPTMS 45,00045,000 8-158-15 MTMSMTMS GPTMDSGPTMDS GPTMSGPTMS 32,00032,000 8-168-16 MTMSMTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 34,00034,000 8-178-17 GPTMSGPTMS ECHETMDSECHETMDS ECHETMSECHETMS 12,00012,000 8-188-18 GPTMSGPTMS PTMDSPTMDS PTMSPTMS 24,00024,000 8-198-19 GPTMSGPTMS MTMDSMTMDS MTMSMTMS 486,000486,000 8-208-20 GPTMSGPTMS MAPTMDSMAPTMDS MAPTMSMAPTMS 32,00032,000 8-218-21 MAPTMSMAPTMS ECHETMDSECHETMDS ECHETMSECHETMS 181,000181,000 8-228-22 MAPTMSMAPTMS PTMDSPTMDS PTMSPTMS 981,000981,000 8-238-23 MAPTMSMAPTMS MTMDSMTMDS MTMSMTMS 21,00021,000 8-248-24 MAPTMSMAPTMS GPTMDSGPTMDS GPTMSGPTMS 20,00020,000

실시예 9Example 9 : 실세스퀴옥산 E-A-B-A-D 구조 복합 고분자의 합성: Synthesis of Silsesquioxane E-A-B-A-D Structure Composite Polymer

E-A-B-A-D구조의 복합 고분자를 제조하기 위하여 아래의 실시예를 이용하였으며, 상기 실시예 1과 대등한 방법으로 코팅 조성물을 제조하였다.
In order to prepare a composite polymer having an EABAD structure, the following examples were used and coating compositions were prepared in a manner equivalent to Example 1.

[실시예 9-a] 사슬 말단 E구조의 생성 [Example 9-a] Production of chain terminal E structure

실시예 7-g 에서 얻어진 혼합물에 별도의 정제 없이 메틸렌크로라이드 20 중량부를 적가하고, 0.36 중량% HCl 수용액을 5 중량부 적가하고, pH가 산성을 가지도록 조절하였으며, 4 ℃의 온도에서 30분간 교반하였다. 이후 dimethyltetramethoxysilane 1 중량부를 한번에 적가하였다. 이때, 아직 분자구조 내에서 가수분해되지 않고 존재하던 부분들이 용매와 분리된 산성 수용액 층에서 가수분해물로 쉽게 변환되며, 생성된 별도의 반응물과 유기용매 층에서 축합되어 말단단위에 E가 도입되었다. 5시간의 교반 후, 반응의 교반을 정지하고 상온으로 반응기의 온도를 조절 하였다.
20 parts by weight of methylene chloride was added dropwise to the mixture obtained in Example 7-g with no additional purification, 5 parts by weight of a 0.36% by weight aqueous solution of HCl was added dropwise, the pH was adjusted to be acidic, Lt; / RTI > Then, 1 part by weight of dimethyltetramethoxysilane was added dropwise at a time. At this time, the portions which were not hydrolyzed yet in the molecular structure were easily converted into the hydrolyzate in the acidic aqueous solution layer separated from the solvent, and E was introduced at the terminal unit by condensation in the organic solvent layer and the separated reaction product. After stirring for 5 hours, the stirring of the reaction was stopped and the temperature of the reactor was adjusted to room temperature.

[실시예 9-b] B구조 및 말단 E 구조의 X에 cage 도입 [Example 9-b] Cage introduction into X of B structure and terminal E structure

상기 실시예 9-a에서 얻어진 결과물의 유기층을 별도의 정제 없이 준비한 후, 3관능 단량체를 이용해서 말단을 cage구조로 변환하였다. 반응이 진행 중인 실시예 9-a 혼합용액에 Methyltrimethoxysilane 3 중량부를 한번에 적가하여, 안정적인 가수분해를 도모하고, 24시간 교반 후 실시예 7-a에서 제조된 촉매를 3 중량부 다시 첨가해 주어 염기성 상태로 혼합용액의 pH를 조절해 주었다. 이때, E 구조 말단에 cage 형태의 고분자가 도입되며, 반응기 내에서 연속적으로 반응이 진행되어 화학식 9과 같은 고분자가 형성된다. 그러나, 다른 부산물들과 함께 얻어지므로, 별도의 정제가 필요하였다. 이후, 상온으로 온도를 변화시키고, 혼합용액 내 테트라하이드로퓨란을 진공으로 제거하여 정제를 준비하였다.
The resulting organic layer obtained in Example 9-a was prepared without further purification, and the terminal was converted into a cage structure using a trifunctional monomer. 3 parts by weight of Methyltrimethoxysilane was added dropwise to the mixed solution of Example 9-a in which the reaction was proceeding to stabilize hydrolysis. After stirring for 24 hours, 3 parts by weight of the catalyst prepared in Example 7-a was added again, To adjust the pH of the mixed solution. At this time, a cage-type polymer is introduced at the end of the E structure, and the reaction proceeds continuously in the reactor to form a polymer such as the formula (9). However, since it was obtained with other by-products, a separate purification was required. Thereafter, the temperature was changed to room temperature, and the tetrahydrofuran in the mixed solution was removed by vacuum to prepare a tablet.

[실시예 9-c] 침전 및 재결정을 통한 부산물 제거, 결과물의 수득 [Example 9-c] Removal of by-products by precipitation and recrystallization,

상기 실시예 9-b에서 반응이 완료된 혼합물을 얻어낸 후, 증류수를 이용하여 세척하고, 증류수 층의 pH가 중성을 나타낼 때, 진공감압으로 용매를 완전히 제거하였다. 이후, 메탄올에 2회 침전하여, 미반응 단량체를 제거하고 테트라하이드로퓨란과 수용액이 9.5:0.5 중량비율로 혼합된 용매에 30 중량부로 녹여 -20 ℃의 온도에서 2일간 보관하였다. 이는 고분자에 도입되지 못하고, cage구조로 닫혀 버린 물질의 재결정을 도모하여, 정제가 쉽게 이루어지도록 하기 위함이다. After completion of the reaction in Example 9-b, the mixture was washed with distilled water. When the pH of the distilled water layer was neutral, the solvent was completely removed by vacuum decompression. Thereafter, the solution was precipitated twice in methanol to remove unreacted monomers, dissolved in tetrahydrofuran and an aqueous solution mixed in a weight ratio of 9.5: 0.5 by weight to 30 parts by weight, and stored at -20 캜 for 2 days. This is to prevent recrystallization of the material which is not introduced into the polymer and closed by the cage structure, so that purification can be easily performed.

재결정 과정을 마치고 얻어진 고체물질들을 필터 후, 진공감압을 통해 화학식 9의 고분자를 여러 부산물과 함께 얻어짐을 확인하였다. 또한, GPC 결과를 NMR 결과와 비교할 때, 각 단계의 고분자 성장에서 단독으로 얻어지는 저분자가 없이 Sharp한 형태의 Cage 형태가 결과로 도출되는 것으로 미루어 보아, 복합 고분자가 문제없이 얻어질 수 있음을 확인할 수 있었다. 이때, 분자량은 스티렌환산 값으로 28,000의 값을 얻을 수 있었으며, X의 n의 평균값은 4.6이었으며, Y의 n의 평균값은 4.6이었다.
After the completion of the recrystallization process, the obtained solid materials were filtered, and the polymer of formula (9) was obtained together with various by-products through vacuum decompression. In addition, when the GPC results are compared with the NMR results, it can be concluded that the complex polymer can be obtained without problems because the shaper type cage shape is obtained as a result of the low molecular weight obtained independently in the polymer growth of each step there was. At this time, the molecular weight was 28,000 as styrene conversion value, and the average value of n of n was 4.6 and the average value of n of n was 4.6.

또한, 하기 표 27에 기술한 단량체들을 적용하여 실세스퀴옥산 복합 고분자를 제조하였다. 이때 제조 방법은 상기 실시예 9에서 사용한 방법을 대등하게 적용하였다. Also, the silsesquioxane complex polymer was prepared by applying the monomers described in Table 27 below. At this time, the manufacturing method was the same as the method used in Example 9 above.

실시
방법
practice
Way
7-b,c 방법
적용 단량체
7-b, c method
Applied Monomer
7-e 방법
적용 단량체
7-e method
Applied Monomer
9-a
방법
적용 단량체
9-a
Way
Applied Monomer
9-b
방법
적용단량체
9-b
Way
Applied Monomer
MwMw
99 ECHETMSECHETMS PTMDSPTMDS MTMDSMTMDS MAPTMSMAPTMS 28,00028,000 9-19-1 ECHETMSECHETMS ECHETMDSECHETMDS ECHETMDSECHETMDS ECHETMSECHETMS 24,00024,000 9-29-2 PTMSPTMS PTMDSPTMDS PTMDSPTMDS PTMSPTMS 21,00021,000 9-39-3 MTMSMTMS MTMDSMTMDS MTMDSMTMDS MTMSMTMS 36,00036,000 9-49-4 GPTMSGPTMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 62,00062,000 9-59-5 MAPTMSMAPTMS MAPTMDSMAPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 153,000153,000 9-69-6 ECHETMSECHETMS ECHETMDSECHETMDS PTMDSPTMDS PTMSPTMS 24,00024,000 9-79-7 ECHETMSECHETMS ECHETMDSECHETMDS MTMDSMTMDS MTMSMTMS 19,00019,000 9-89-8 ECHETMSECHETMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 26,00026,000 9-99-9 ECHETMSECHETMS ECHETMDSECHETMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 99,00099,000 9-109-10 ECHETMSECHETMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 21,00021,000 9-119-11 ECHETMSECHETMS MTMDSMTMDS ECHETMDSECHETMDS ECHETMSECHETMS 142,000142,000 9-129-12 ECHETMSECHETMS GPTMDSGPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 70,00070,000 9-139-13 ECHETMSECHETMS MAPTMDSMAPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 72,00072,000 9-149-14 PTMSPTMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 15,00015,000 9-159-15 PTMSPTMS PTMDSPTMDS MTMDSMTMDS MTMSMTMS 51,00051,000 9-169-16 PTMSPTMS PTMDSPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 85,00085,000 9-179-17 PTMSPTMS PTMDSPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 95,00095,000 9-189-18 PTMSPTMS ECHETMDSECHETMDS PTMDSPTMDS PTMSPTMS 160,000160,000 9-199-19 PTMSPTMS MTMDSMTMDS PTMDSPTMDS PTMSPTMS 240,000240,000 9-209-20 PTMSPTMS GPTMDSGPTMDS PTMDSPTMDS PTMSPTMS 56,00056,000 9-219-21 PTMSPTMS MAPTMDSMAPTMDS PTMDSPTMDS PTMSPTMS 71,00071,000 9-229-22 MTMSMTMS MTMDSMTMDS ECHETMDSECHETMDS ECHETMSECHETMS 81,00081,000 9-239-23 MTMSMTMS MTMDSMTMDS PTMDSPTMDS PTMSPTMS 63,00063,000 9-249-24 MTMSMTMS MTMDSMTMDS GPTMDSGPTMDS GPTMSGPTMS 121,000121,000 9-259-25 MTMSMTMS MTMDSMTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 153,000153,000 9-269-26 MTMSMTMS ECHETMDSECHETMDS MTMDSMTMDS MTMSMTMS 82,00082,000 9-279-27 MTMSMTMS PTMDSPTMDS MTMDSMTMDS MTMSMTMS 63,00063,000 9-289-28 MTMSMTMS GPTMDSGPTMDS MTMDSMTMDS MTMSMTMS 310,000310,000 9-299-29 MTMSMTMS MAPTMDSMAPTMDS MTMDSMTMDS MTMSMTMS 125,000125,000 9-309-30 GPTMSGPTMS GPTMDSGPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 97,00097,000 9-319-31 GPTMSGPTMS GPTMDSGPTMDS PTMDSPTMDS PTMSPTMS 45,00045,000 9-329-32 GPTMSGPTMS GPTMDSGPTMDS MTMDSMTMDS MTMSMTMS 61,00061,000 9-339-33 GPTMSGPTMS GPTMDSGPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 52,00052,000 9-349-34 GPTMSGPTMS ECHETMDSECHETMDS GPTMDSGPTMDS GPTMSGPTMS 37,00037,000 9-359-35 GPTMSGPTMS PTMDSPTMDS GPTMDSGPTMDS GPTMSGPTMS 365,000365,000 9-369-36 GPTMSGPTMS MTMDSMTMDS GPTMDSGPTMDS GPTMSGPTMS 85,00085,000 9-379-37 GPTMSGPTMS MAPTMDSMAPTMDS GPTMDSGPTMDS GPTMSGPTMS 75,00075,000 9-389-38 MAPTMSMAPTMS MAPTMDSMAPTMDS ECHETMDSECHETMDS ECHETMSECHETMS 144,000144,000 9-399-39 MAPTMSMAPTMS MAPTMDSMAPTMDS PTMDSPTMDS PTMSPTMS 85,00085,000 9-409-40 MAPTMSMAPTMS MAPTMDSMAPTMDS MTMDSMTMDS MTMSMTMS 60,00060,000 9-419-41 MAPTMSMAPTMS MAPTMDSMAPTMDS GPTMDSGPTMDS GPTMSGPTMS 53,00053,000 9-429-42 MAPTMSMAPTMS ECHETMDSECHETMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 12,00012,000 9-439-43 MAPTMSMAPTMS PTMDSPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 10,00010,000 9-449-44 MAPTMSMAPTMS MTMDSMTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 32,00032,000 9-459-45 MAPTMSMAPTMS GPTMDSGPTMDS MAPTMDSMAPTMDS MAPTMSMAPTMS 231,000231,000

[실험] [Experiment]

PC, PET 및 PMMA 투명기판에 상기 실시예 1 내지 9에서 제조한 코팅 조성물을 코팅하고, 경화시켜 표면특성을 측정하였다.
PC, PET and PMMA transparent substrates were coated with the coating compositions prepared in Examples 1 to 9 and cured to measure surface properties.

- 표면경도측정 : 일반적으로 연필경도법(JIS 5600-5-4)은 일반적으로 500 g 하중으로 평가하는데 이보다 가혹조건인 1 kgf 하중으로 코팅면에 45도 각도로 연필을 매초 0.5 mm의 속도로 수평으로 3 mm 이동해서 코팅막을 긁어서 긁힌 흔적으로 평가하였다. 5회 실험으로 2회 이상 긁힌 흔적이 확인되지 않으면 상위의 경도의 연필을 선택하고 , 긁힌 흔적이 2회 이상 되면 연필을 선정하고 그 연필경도보다 한단 하위의 연필경도가 해당 코팅막의 연필경도로 평가하여 하기 표 28에 나타내었다. 평가 결과는 10 um 이상의 코팅 두께에서 기판 종류에 상관없이 유리수준의 9H 경도를 확인하였다.
- Surface hardness measurement : In general, the pencil hardness method (JIS 5600-5-4) is generally evaluated with a load of 500 g, which is a 1 kgf load, which is a stricter condition, and a pencil is horizontally moved at a rate of 0.5 mm per second The coating film was scratched by scraping. If no trace of scratching is found more than 2 times in the 5th experiment, the pencil of the upper hardness is selected. If the scratching marks are more than 2 times, the pencil is selected and pencil hardness lower than the pencil hardness is evaluated by pencil hardness Are shown in Table 28 below. The evaluation results confirmed a glass level of 9H hardness regardless of the substrate type at a coating thickness of 10 μm or more.

실시예(코팅두께 10 um)Example (coating thickness 10 [mu] m) PETPET PCPC PMMAPMMA 코팅전Before coating 코팅후After coating 코팅전Before coating 코팅후After coating 코팅전Before coating 코팅 후After coating 실시예 1의 광경화코팅조성물The photocurable coating composition of Example 1 2B2B 9H9H 6B6B 9H9H 2H2H 9H9H 실시예 2의 열경화코팅조성물The thermosetting coating composition of Example 2 9H9H 9H9H 9H9H 실시예 3의 광경화코팅조성물The photocurable coating composition of Example 3 9H9H 9H9H 9H9H 실시예 4의 열경화코팅조성물The thermosetting coating composition of Example 4 9H9H 9H9H 9H9H 실시예 5의 광경화코팅조성물The photocurable coating composition of Example 5 9H9H 9H9H 9H9H 실시예 6의 열경화코팅조성물The thermosetting coating composition of Example 6 9H9H 9H9H 9H9H 실시예 6의 고분자자체코팅조성물The polymer self-coating composition of Example 6 9H9H 9H9H 9H9H 실시예 7의 열경화코팅조성물The thermosetting coating composition of Example 7 9H9H 9H9H 9H9H 실시예 8의 광경화코팅조성물The photocurable coating composition of Example 8 9H9H 9H9H 9H9H 실시예 9의 열경화코팅조성물The thermosetting coating composition of Example 9 9H9H 9H9H 9H9H

- 신뢰성 평가 : 85%, 85℃ 신뢰성 챔버에 240시간 보관하고 휨 특성 평가하였으며, 그 결과를 하기 표 29에 나타내었다. - Reliability evaluation: 85%, 85 캜 Reliability The chamber was stored for 240 hours and the bending properties were evaluated. The results are shown in Table 29 below.

휨평가 기준은 신뢰성 평가전 ±0.1 mm이내, 신뢰성평가 후 ±0.3 mm 이내이다.The flexural evaluation standard is within ± 0.1 mm before reliability evaluation and within ± 0.3 mm after reliability evaluation.

평가 결과는 PET, PC, PMMA 모든 기재에 있어서 우수하였다.The evaluation results were excellent in all of PET, PC, and PMMA substrates.

실시예(코팅두께 10 um)
YI(ASTMD1925)
Example (coating thickness 10 [mu] m)
YI (ASTM D1925)
PETPET PCPC PMMAPMMA
코팅전Before coating 코팅후After coating 코팅전Before coating 코팅후After coating 코팅전Before coating 코팅 후After coating 실시예 1-1의 광경화코팅조성물The photocurable coating composition of Example 1-1 0.380.38 -0.11-0.11 -0.15-0.15 0.040.04 0.140.14 0.220.22 실시예 2-2의 열경화코팅조성물The thermosetting coating composition of Example 2-2 -0.11-0.11 0.040.04 0.210.21 실시예 3-3의 광경화코팅조성물The photocurable coating composition of Example 3-3 -0.10-0.10 0.030.03 0.200.20 실시예 4-4의 열경화코팅조성물The thermosetting coating composition of Example 4-4 -0.11-0.11 0.050.05 0.180.18 실시예 5-5의 광경화코팅조성물The photocurable coating compositions of Examples 5-5 -0.11-0.11 0.040.04 0.170.17 실시예 6의 열경화코팅조성물The thermosetting coating composition of Example 6 -0.05-0.05 0.020.02 0.150.15 실시예 6의 고분자자체코팅조성물The polymer self-coating composition of Example 6 -0.14-0.14 0.060.06 0.180.18 실시예 7-7의 열경화코팅조성물The thermosetting coating compositions of Examples 7-7 -0.11-0.11 0.050.05 0.190.19 실시예 8-8의 광경화코팅조성물The photocurable coating compositions of Examples 8-8 -0.11-0.11 0.040.04 0.180.18 실시예 9-9의 열경화코팅조성물The thermosetting coating compositions of Examples 9-9 -0.09-0.09 0.050.05 0.180.18

- Scratch test 측정: Steel wool #0000을 1 kgf로 400회 평가 Steel wool에 의한 마모 평가법(JIS K5600-5-9)은 1kg 정도 무게의 쇠망치의 선단에 #0000의 Steel wool을 감아서 15회 왕복 시험편을 문지르고 그 헤이즈를 값을 측정하는데 이보다 가혹한 조건인 400회 시험편을 문지르고 헤이즈 측정 및 현미경으로 육안 평가 진행하였으며, 실시예 6의 광경화성 코팅 조성물에 대한 결과는 하기 표 30에 나타내었다. 표 30에 기재되지 않았지만 본 발명의 다른 실시예의 코팅 조성물들은 코팅두께가 5 um 이상의 코팅에서는 표면에 발생되는 스크래치에 대한 내성이 우수한 것을 확인하였다.
- Scratch test measurement: 400 times evaluation of steel wool # 0000 at 1 kgf The wear evaluation method (JIS K5600-5-9) by steel wool was performed by winding a # 0000 steel wool around the tip of a steel hammer weighing about 1 kg The reciprocating test piece was rubbed and its haze value was measured. The harder condition 400 rubbing test piece was rubbed, and haze measurement and microscopic evaluation were carried out. The results of the photocurable coating composition of Example 6 are shown in Table 30 below. Although not shown in Table 30, the coating compositions of another embodiment of the present invention were found to be excellent in scratch resistance on the surface in a coating having a coating thickness of 5 μm or more.

- 접착력 평가(JIS K5600-5-6) : 코팅막을 1-5 mm간격으로 컷터날로 긁어서 그 위에 셀로판테이프를 붙이고 붙인 테입을 잡아당겼을 때 이탈된 갯수로 접착성 판단하는데 이때 컷터날로 100개의 칸을 만들어 100개 중 떨어지는 개수로 접착성 판단 시행하였으며, 실시예 6의 광경화성 코팅 조성물에 대한 결과는 하기 표 30에 나타내었다. 표기는 100개중 떨어지지 않은 개수로 "(떨어지지 않은 개수/100)"로 표기 예제로 100개가 떨어지지 않으면 "(100/100)"로 표기 하였다. 접착성은 매우 우수한 것을 확인하였다. 표 30에 기재되지 않았지만 본 발명의 다른 실시예의 코팅 조성물들은 평가결과 접착성은 매우 우수한 것을 확인하였다. - Adhesion evaluation (JIS K5600-5-6): Scratch the coating film with a cutter blade at intervals of 1-5 mm and attach a cellophane tape on it. When the adhesive tape is pulled out, it is judged as adhesive detachment number. The results of the photocurable coating composition of Example 6 are shown in Table 30 below. ≪ tb > < TABLE > The notation is expressed as "(the number not falling down / 100)" as the number of the 100 not falling down. It was confirmed that the adhesiveness was very excellent. Although not shown in Table 30, the coating compositions of the other examples of the present invention were found to have excellent adhesion as a result of the evaluation.

평가항목Evaluation items PETPET PCPC PMMAPMMA 코팅전Before coating 코팅후After coating 코팅전Before coating 코팅후After coating 코팅전Before coating 코팅후After coating 코팅두께Coating thickness -- 10㎛10 탆 -- 10㎛10 탆 -- 10㎛10 탆 접착력Adhesion -- pass
(100/100)
pass
(100/100)
-- pass
(100/100)
pass
(100/100)
-- pass
(100/100)
pass
(100/100)
투과율(%)Transmittance (%) UV-vis-400nmUV-vis-400 nm 91.091.0 91.791.7 89.289.2 88.588.5 90.490.4 89.589.5 UV-vis-450nmUV-vis-450 nm 91.591.5 93.193.1 90.190.1 90.290.2 91.591.5 91.291.2 UV-vis-500nmUV-vis-500 nm 92.492.4 93.893.8 91.491.4 91.691.6 91.991.9 91.691.6 Scrath test
(Steel wool, 1kgf하중,
400회)
Scrath test
(Steel wool, 1kg load f,
400 times)
FailFail passpass FailFail passpass FailFail passpass
Haze(%)Haze (%) 0.150.15 0.140.14 0.150.15 0.120.12 0.050.05 0.030.03

상기 표 30에 나타난 바와 같이 본 발명의 표면강화 투명기판은 매우 우수한 표면경도와 광학적 특성을 보일 뿐만 아니라 기타 물성에 있어서도 동시에 우수함을 확인할 수 있다.As shown in Table 30, the surface-enhanced transparent substrate of the present invention shows not only excellent surface hardness and optical characteristics, but also excellent physical properties at the same time.

Claims (17)

투명기판 위에 하기 화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자의 경화물이 적층된 것을 특징으로 하는 표면강화 투명기판:
[화학식 1]
Figure pat00030

[화학식 2]
Figure pat00031

[화학식 3]
Figure pat00032

[화학식 4]
Figure pat00033

[화학식 5]
Figure pat00034

[화학식 6]
Figure pat00035

[화학식 7]
Figure pat00036

[화학식 8]
Figure pat00037

[화학식 9]
Figure pat00038

상기 화학식 1 내지 9에서,
A는
Figure pat00039
이고, B는
Figure pat00040
이고, D는
Figure pat00041
이고, E는
Figure pat00042
이며,
Y는 각각 독립적으로 O, NR21 또는 [(SiO3/2R)4+2nO]이며, 적어도 하나는 [(SiO3/2R)4+2nO]이며,
X는 각각 독립적으로 R22 또는 [(SiO3/2R)4+2nR]이고, 적어도 하나는 [(SiO3/2R)4+2nR]이고,
R, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22는 각각 독립적으로 수소; 중수소; 할로겐; 아민기; 에폭시기; 사이클로헥실에폭시기; (메타)아크릴기; 사이올기; 이소시아네이트기; 니트릴기; 니트로기; 페닐기; 중수소, 할로겐, 아민기, 에폭시기, (메타)아크릴기, 사이올기, 이소시아네이트기, 니트릴기, 니트로기, 페닐기로 치환되거나 치환되지 않은 C1~C40의 알킬기; C2~C40의 알케닐기; C1~C40의 알콕시기; C3~C40의 시클로알킬기; C3~C40의 헤테로시클로알킬기; C6~C40의 아릴기; C3~C40의 헤테로아릴기; C3~C40의 아르알킬기; C3~C40의 아릴옥시기; 또는 C3~C40의 아릴사이올기이며,
a 및 d는 각각 독립적으로 1 내지 100,000의 정수이고,
b는 각각 독립적으로 1 내지 500의 정수이며,
e는 각각 독립적으로 1 또는 2이며,
n은 각각 독립적으로 1 내지 20의 정수이다.
A surface-enhanced transparent substrate comprising a transparent substrate laminated with a cured product of a silsesquioxane complex polymer represented by any one of Chemical Formulas 1 to 9 below:
[Chemical Formula 1]
Figure pat00030

(2)
Figure pat00031

(3)
Figure pat00032

[Chemical Formula 4]
Figure pat00033

[Chemical Formula 5]
Figure pat00034

[Chemical Formula 6]
Figure pat00035

(7)
Figure pat00036

[Chemical Formula 8]
Figure pat00037

[Chemical Formula 9]
Figure pat00038

In the above Chemical Formulas 1 to 9,
A is
Figure pat00039
And B is
Figure pat00040
And D is
Figure pat00041
And E is
Figure pat00042
Lt;
Y is independently 0, NR 21 or [(SiO 3/2 R) 4 + 2n O], at least one is [(SiO 3/2 R) 4 + 2n O]
X is independently R 22 or [(SiO 3/2 R) 4 + 2n R], at least one is [(SiO 3/2 R) 4 + 2n R]
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , R 21 and R 22 are each independently hydrogen; heavy hydrogen; halogen; An amine group; An epoxy group; Cyclohexyl epoxy group; (Meth) acrylic group; A diazo group; Isocyanate group; A nitrile group; A nitro group; A phenyl group; A C 1 to C 40 alkyl group which is unsubstituted or substituted with a halogen atom, an amino group, an epoxy group, a (meth) acrylic group, a silyl group, an isocyanate group, a nitrile group, a nitro group or a phenyl group; A C 2 to C 40 alkenyl group; A C 1 to C 40 alkoxy group; A C 3 to C 40 cycloalkyl group; A C 3 to C 40 heterocycloalkyl group; A C 6 to C 40 aryl group; A C 3 to C 40 heteroaryl group; A C 3 to C 40 aralkyl group; A C 3 to C 40 aryloxy group; Or an aryl radical of C 3 to C 40 ,
a and d are each independently an integer of 1 to 100,000,
b is independently an integer of 1 to 500,
e is independently 1 or 2,
n are each independently an integer of 1 to 20;
제1항에 있어서,
a는 3 내지 1000이고, b는 1 내지 500, d는 1 내지 500인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
a is from 3 to 1000, b is from 1 to 500, and d is from 1 to 500.
제1항에 있어서,
d는 2 내지 100인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
and d is 2 to 100.
제1항에 있어서,
n 값의 평균이 4 내지 5인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
wherein the average value of n is from 4 to 5.
제1항에 있어서,
상기 실세스퀴옥산 복합 고분자의 중량평균분자량이 1,000 내지 1,000,000인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
Wherein the silsesquioxane complex polymer has a weight average molecular weight of 1,000 to 1,000,000.
제1항에 있어서,
상기 투명기판은 500 ㎚ 파장의 광원에서 투과율이 적어도 80 % 이상인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
Wherein the transparent substrate has a transmittance of at least 80% in a light source having a wavelength of 500 nm.
제1항에 있어서,
상기 기판은 COC(Cyclic olefin copolymer), PAc(Polyacrylate), PC(Polycarbonate), PE(Polyethylene), PEEK (Polyetheretherketone), PEI(Polyetherimide), PEN(Polyethylenenaphthalate), PES(Polyethersulfone), PET(Polyethyleneterephtalate), PI(Polyimide), PO(Polyolefin), PMMA(Polymethylmethacrylate), PSF(Polysulfone), PVA(Polyvinylalcohol), PVCi(Polyvinylcinnamate), TAC(Triacetylcellulose), 폴리실리콘(Poly Silicone), 폴리우레탄(Polyurethane) 및 에폭시 수지(Epoxy Resin)로 이루어진 군으로부터 선택되는 소재의 기판인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
The substrate may be formed of a material selected from the group consisting of COC (Cyclic Olefin Copolymer), PAc (Polyacrylate), PC (Polycarbonate), PE (Polyethylene), PEEK (Polyetheretherketone), PEI (Polyetherenaphthalate), PEN (Polyethersulfone) Polyimide, polymethylmethacrylate (PS), polysulfone (PSF), polyvinylalcohol (PVA), polyvinylcinnamate (PVC), triacetylcellulose (TAC), polysilicon, polyurethane and epoxy resin (Epoxy Resin). ≪ RTI ID = 0.0 > 11. < / RTI >
제7항에 있어서,
상기 기판은 2종 이상의 플라스틱 소재를 공압출하여 형성한 것을 특징으로 하는 표면강화 투명기판.
8. The method of claim 7,
Wherein the substrate is formed by co-extruding two or more types of plastic materials.
제1항에 있어서,
상기 경화물의 두께는 0.01 내지 500 um인 것을 특징으로 하는 표면강화 투명기판.
The method according to claim 1,
Wherein the thickness of the cured product is 0.01 to 500 μm.
화학식 1 내지 9 중 어느 하나로 표시되는 실세스퀴옥산 복합 고분자를 포함하는 코팅 조성물을 투명기판 위에 코팅하고 경화시키는 것을 특징으로 하는 투명기판의 표면강화방법. Wherein the coating composition comprising the silsesquioxane complex polymer represented by any one of Chemical Formulas 1 to 9 is coated on a transparent substrate and cured. 제10항에 있어서,
상기 코팅 조성물은 무용제 타입인 것을 특징으로 하는 투명기판의 표면강화방법.
11. The method of claim 10,
Wherein the coating composition is a solventless type.
제10항에 있어서,
제1항에 따른 실세스퀴옥산 복합 고분자;
개시제; 및
유기용매;
를 포함하는 것을 특징으로 투명기판의 표면강화방법.
11. The method of claim 10,
The silsesquioxane complex polymer according to claim 1,
Initiator; And
Organic solvent;
And the surface of the transparent substrate.
제12항에 있어서,
상기 실세스퀴옥산 복합 고분자가 코팅 조성물 100 중량부에 대하여 5 내지 90 중량부인 것을 특징으로 투명기판의 표면강화방법.
13. The method of claim 12,
Wherein the silsesquioxane complex polymer is 5 to 90 parts by weight based on 100 parts by weight of the coating composition.
제1항 기재의 표면강화 투명기판을 포함하는 전자제품. An electronic product comprising the surface-reinforced transparent substrate according to claim 1. 제14항에 있어서,
상기 전자제품은 스마트폰, 테블릿 PC, 노트북 PC, AIO(All-In-One) PC, LCD 모니터, TV, 광고판 또는 터치패널, 기판의 유연성을 요구하는 플렉시블 스마트 기기인 것을 특징으로 전자제품.
15. The method of claim 14,
The electronic product is a flexible smart device requiring flexibility of a smart phone, a tablet PC, a notebook PC, an all-in-one PC, an LCD monitor, a TV, an advertising board or a touch panel.
제14항에 있어서,
상기 표면강화 투명기판은 윈도우 커버 기판 또는 보호필름으로 사용되는 것을 특징으로 전자제품.
15. The method of claim 14,
Wherein the surface-enhanced transparent substrate is used as a window cover substrate or a protective film.
제1항 기재의 표면강화 투명기판을 포함하는 보호판. A protective plate comprising the surface-reinforced transparent substrate according to claim 1.
KR1020150028601A 2014-02-28 2015-02-27 A surface enhanced transparent substrate and method for manufacturing thereof KR102367120B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2015/001971 WO2015130146A1 (en) 2014-02-28 2015-02-27 Transparent substrate having reinforced surfaces and method for manufacturing same
TW104106518A TWI656028B (en) 2014-02-28 2015-03-02 Surface-reinforced transparent substrate and method of manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140024507 2014-02-28
KR1020140024507 2014-02-28

Publications (3)

Publication Number Publication Date
KR20150102745A true KR20150102745A (en) 2015-09-07
KR102367120B1 KR102367120B1 (en) 2022-02-25
KR102367120B9 KR102367120B9 (en) 2023-05-11

Family

ID=54243423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150028601A KR102367120B1 (en) 2014-02-28 2015-02-27 A surface enhanced transparent substrate and method for manufacturing thereof

Country Status (3)

Country Link
KR (1) KR102367120B1 (en)
CN (1) CN106062053B (en)
TW (1) TWI656028B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020514465A (en) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Coating composition and film produced therefrom
JP2021503540A (en) * 2017-11-16 2021-02-12 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Silsesquioxane polymer and coating composition containing it
CN111205645A (en) * 2020-03-20 2020-05-29 无锡创彩光学材料有限公司 Polyimide film with high transparency and high surface hardness and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080007118A (en) * 2006-07-13 2008-01-17 신닛테츠가가쿠 가부시키가이샤 Film laminate and method of manufacturing the same
KR20130003491A (en) * 2011-06-30 2013-01-09 삼성디스플레이 주식회사 Protective window and display device comprising protective window
KR20130016069A (en) * 2011-08-03 2013-02-14 주식회사 동진쎄미켐 Photocurable organic-inorganic hybrid resin composition
KR20130081576A (en) * 2012-01-09 2013-07-17 삼성디스플레이 주식회사 Transparent laminate, window panel for display device and display device including the window panel
KR20130110018A (en) * 2012-03-27 2013-10-08 주식회사 동진쎄미켐 Ladder-like silsesquioxane polymer and resin composition for optical film comprising the same
KR20130118069A (en) * 2012-04-19 2013-10-29 제일모직주식회사 Window sheet and displaying apparatus comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000063142A (en) * 2000-02-17 2000-11-06 이응찬 Starting materials for manufacturing polyorganosilsesquioxanes, polyorganosilsesquioxanes and method for manufacturing polyorganosilsesquioxanes
JP2007204611A (en) * 2006-02-02 2007-08-16 Kri Inc Silsesquioxane-containing cellulose derivative resin composition
US9249313B2 (en) * 2011-09-21 2016-02-02 The United States Of America As Represented By The Secretary Of The Air Force Synthesis of functional fluorinated polyhedral oligomeric silsesquioxane (F-POSS)
WO2013147443A1 (en) * 2012-03-27 2013-10-03 주식회사 동진쎄미켐 Resin composition containing ladder-like silsesquioxane polymer for optical film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080007118A (en) * 2006-07-13 2008-01-17 신닛테츠가가쿠 가부시키가이샤 Film laminate and method of manufacturing the same
KR20130003491A (en) * 2011-06-30 2013-01-09 삼성디스플레이 주식회사 Protective window and display device comprising protective window
KR20130016069A (en) * 2011-08-03 2013-02-14 주식회사 동진쎄미켐 Photocurable organic-inorganic hybrid resin composition
KR20130081576A (en) * 2012-01-09 2013-07-17 삼성디스플레이 주식회사 Transparent laminate, window panel for display device and display device including the window panel
KR20130110018A (en) * 2012-03-27 2013-10-08 주식회사 동진쎄미켐 Ladder-like silsesquioxane polymer and resin composition for optical film comprising the same
KR20130118069A (en) * 2012-04-19 2013-10-29 제일모직주식회사 Window sheet and displaying apparatus comprising the same

Also Published As

Publication number Publication date
KR102367120B9 (en) 2023-05-11
TW201545871A (en) 2015-12-16
KR102367120B1 (en) 2022-02-25
TWI656028B (en) 2019-04-11
CN106062053B (en) 2019-07-19
CN106062053A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
KR102367173B1 (en) A coating method for preventing warpage of substrate
KR102325278B1 (en) A thermoplastic resin composion comprising silsesquioxane composite polymer
US10570311B2 (en) Laminate and method for producing same
KR102363819B1 (en) Silsesquioxane composite polymer and method for manufacturing thereof
KR20150102860A (en) Silsesquioxane composite polymer and method for manufacturing thereof
KR102363818B1 (en) Silsesquioxane composite polymer and method for manufacturing thereof
KR102367120B1 (en) A surface enhanced transparent substrate and method for manufacturing thereof
KR102414700B1 (en) A coating method for plastic using silsesquioxane composite polymer
KR20150105606A (en) A coating method for ceramics using silsesquioxane composite polymer
KR20160092507A (en) Coating Product and Hard Coating Method Having High Hardness
KR20150105605A (en) A coating method for metal using silsesquioxane composite polymer
KR20150105608A (en) A coating method for wood ana pulp using silsesquioxane composite polymer
KR102363820B1 (en) Silsesquioxane composite polymer and method for manufacturing thereof
KR20150105604A (en) A coating method for fiber using silsesquioxane composite polymer
CN113710750A (en) (meth) acrylic composition, coating material containing same, and cured product

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]