KR20150081000A - 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법 - Google Patents

식물성폴리올 유래 바이오우레탄 나노복합체 제조방법 Download PDF

Info

Publication number
KR20150081000A
KR20150081000A KR1020140000531A KR20140000531A KR20150081000A KR 20150081000 A KR20150081000 A KR 20150081000A KR 1020140000531 A KR1020140000531 A KR 1020140000531A KR 20140000531 A KR20140000531 A KR 20140000531A KR 20150081000 A KR20150081000 A KR 20150081000A
Authority
KR
South Korea
Prior art keywords
weight
parts
added
nanocomposite
vegetable
Prior art date
Application number
KR1020140000531A
Other languages
English (en)
Inventor
김규린
김인경
김말남
전현정
윤진산
임거혁
고재홍
이상신
박은수
Original Assignee
주식회사 에스아이켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스아이켐 filed Critical 주식회사 에스아이켐
Priority to KR1020140000531A priority Critical patent/KR20150081000A/ko
Publication of KR20150081000A publication Critical patent/KR20150081000A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에, 아몬드, 살구씨유, 포도씨유 등의 식물성오일 40~60중량부와, 포름산(formic acid)이나 아세트산(acetic acid) 등의 유기산5~20중량부를 넣고, 40~60RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시킨 후, 여기에 과산화수소수(hydrogen peroxide) 5~20중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 증류수(distilled water) 50~100중량부를 가하여 반응물을 중화시키고 여기에 에틸아세테이트 (ethyl acetate)나 디에틸에테르 (diethyl ether) 등의 저비점 유기용매를 50~100중량부 가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 40~60중량부의 에폭시화오일(epoxised oil)을 제조한 다음, 온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 40~60℃로 유지시키면서 에폭시화오일 40~60중량부와 메탄올(methanol) 45~60중량부와, 증류수 5~10중량부, 이소프로필알코올(isopropyl alcohol)이나 이소부틸알코올(isobutyl alcohol), 이소아밀알코올(isoamyl alcohol) 등의 저가 알코올(low alcohol) 100 내지 150 중량부 및 플로보릭산(fluoboric acid) 1.5~3중량부를 가하여 반응기 온도를 50~70℃로 상승시킨 후, 40~60RPM의 속도로 1~4시간 동안 교반하고, 여기에 2~3중량부의 암모니아수를 가하여 반응을 종결한 다음 진공건조하여, 40~60중량부의 식물성폴리올을 제조하는 식물성폴리올 제조단계와;
톨루엔, 자이렌, 에틸렌클로라이드, 클로로포름, 메틸에틸케톤 등의 극성용매 80~100중량부에, 에틸렌-비닐아세테이트 공중합체, 비닐아세테이트-아크릭엑시드 공중합체, 아크릭아마이드-비닐아세테이트 공중합체중 어느 하나의 비닐아세테이트 공중합체인 고분자수지 1~10중량부를 용해시키고, 토르말린(tourmaline), 점토(clay), 지당(titanium dioxide), 포졸란(pozzolan), 황토(Loess), 음이온파우더(anion powder)나 원적외선파우더(far infrared powder)등의 기능성 나노충진제(functional filler) 10~50중량부를 분산시킨 다음, 1500~2500RPM으로 교반하는 500~1000중량부의 염기성용액에 적가하면서 검화 시킨 후, 여과, 세척 및 건조하여 고분자 나노복합체 개시제 11~60중량부를 제조하는 고분자 나노복합체 개시제 제조단계와;
온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 80~120℃로 유지하면서 ε-카프로락톤(ε-caprolactone) 10~60중량부와, 상기 고분자 나노복합체 개시제 제조단계에서 얻어진 고분자 나노복합체 개시제 11~60중량부를 넣고, 100~500RPM의 속도로 분산시키면서, 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고, 12~48시간 반응하여 21.01~120.05중량부의 폴리카프로락톤 디올 나노를 제조하는 폴리카프로락톤 디올 나노 제조단계와;
질소공급하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 상기 식물성폴리올 제조단계에서 제조된 40~60중량부의 식물성폴리올과 폴리카프로락톤 디올, 나노복합체 제조단계에서 제조된 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate) 등의 디이소시아네이트 20~80중량부 및 축합촉매 0.01~0.05중량부를 가하여 반응 온도를 40~60℃로 상승시킨 후, 6~12시간 동안 60~80RPM의 속도로 교반하여, 81.02~260.1중량부의 프리폴리머(prepolymer)를 제조하는 프리폴리머(prepolymer) 제조단계와;
상기 프리폴리머 제조단계에서 제조된 81.02~260.1중량부의 프리폴리머에 1,3-프로판디올(1,3-propanediol)이나 1,4-부탄디올(1,4-butanediol) 등의 체인확장제(chain extender) 1~10중량부를 가하고, 40~60℃에서 100~120RPM의 속도로 ㅊ최고 1시간 동안 교반시키는 분자량조절단계와;
상기 바이오우레탄 나노복합체 제조단계에서 제조된 수지를 진공건조 하여 사용용도에 맞는 크기로 자르는 펠렛화(pelletizing) 단계를 거쳐서, 40~60중량부의 식물성폴리올, 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 20~80중량부의 디이소시아네이트, 0.01~0.05중량부의 축합촉매, 및 1~10중량부의 체인확장제로 구성되는 식물성폴리올 유래 바이오우레탄 나노복합체를 제조하는 방법이다.

Description

식물성폴리올 유래 바이오우레탄 나노복합체 제조방법{Manufacturing method of biourethane nanocomposite containing vegetable polyol}
본 발명은 식물성기름(oil)을 알콕실화(alkoxylation) 하여 제조된 식물성폴리올 (polyol)과 폴리카프로락톤 디올 나노복합체(polycaprolacton diol nanocomposite)를 기반으로 한 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법에 관한 것이다.
석유화학 원료에서 합성된 지방족 폴리에스테르 중에서도 비교적 저렴하게 제조될 수 있는 폴리카프로락톤(polycaprolacton, PCL)은 저 융점이지만, 200℃ 이상의 고온에서도 안정하여 가공성이 우수하고, 다른 분해성 플라스틱과의 혼화성이 좋은 장점이 있으며, 생분해성이 뛰어나기 때문에 생분해성 플라스틱의 표준물질로서의 위치를 차지하고 있다.
PCL은 다른 폴리머와 혼화성이 좋기 때문에 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리우레탄(polyurethane) 등과의 혼합체나 그들 단량체(monomer)와의 공중합체(copolymer)에 대해서도 생분해성(biodegradable)을 갖는 바이오재료(biomaterial)로서의 많은 용도 전개가 기대되고 있다.
저 분자량의 PCL 디올(diol)은 생분해성 폴리우레탄의 원료로도 이용할 수 있다.
하지만 단독 사용 시 인장강도, 신장율, 충격강도 등의 기계적 물성이 우수하지만 저융점(60~62℃) 때문에 필름 성형성 및 개구성이 좋지 않은 단점이 있다.
미국의 유니온 카바이드(Union Carbide)사에서는 연간 수천톤 정도 생산되고 있으며 다이셀(Daicell) 화학 공업 및 인터락(Interlock)사 [영국의 라포르테(La Forte)사와 벨기에의 솔베이(Solvay)사의 합병]도 PCL을 생산한다. 최근 PCL은 필름 이외에도 섬유나 부직포, 낚시줄 등으로 가공되고 있다.
고분자량 PCL이 미생물에 의해 완전 분해된다는 것이 밝혀진 것은 1976년이며, PCL 분해 미생물은 호기 및 혐기 조건하의 다양한 환경에 널리 분포되며, 필드나 활성 오니에서의 생분해성은 미생물이 만드는 폴리에스테르와 거의 동등하다.
PCL의 리파제에 의한 분해성은 PCL의 결정성 등 고차 구조에 영향을 받는 것으로, 가공 방법을 달리함으로써 PCL의 생분해 속도를 달리할 수 있다.
최근 변성 전분과 PCL로 된 블렌드(blend)는 상 구조의 제어에 의해 내수성과 기계 물성이 우수한 플라스틱 소재를 제조하고 있으며, 변성 전분을 이용하는 경우에는 전분의 재결정화(re-crystallization) 및 노화(aging) 방지라는 과제가 남아 있다.
따라서 변성시킨 전분 입자를 고속 와류 믹서를 이용하여 40~85%의 고배합으로 PCL에 균일하게 분산한 블렌드도 개발되고 있다.
이 경우, PCL 단독보다 굽힘 탄성률이 향상되고 분해 속도도 빨라진다.
또한 전분의 열변성이 없어 용출물이 적고 생분해성이 향상되는 등의 이점이 있어 각종의 용기, 장난감, 잡화 등에의 이용이 검토되고 있다.
전분 입자와 PCL의 블렌드로 만든 용기는 토양 중에서 6개월간 약 절반의 중량으로 분해되었다는 보고가 있다.
초산셀룰로오스와 같이 전분을 화학 변성하여 플라스틱 원료로 이용하기 위한 연구도 행해지고 있으나, 전분의 높은 생분해성을 가지면서 기계적 물성이 우수한 바이오플라스틱 소재는 아직 개발 중에 있다.
환경과 건강을 생각하는 바이오 소재에 대해 선진국에서는 이미 일상생활과 밀접한 관계를 유지하고 있으며, 우리나라에서도 여러 분야에서 친환경적인 바이오 제품을 개발 중인데, 최근 자동차 산업에도 바이오기술(biotechnology)을 이용한 환경친화형 내장재를 개발하여 적용하는 사례가 늘어나고 있다.
바이오기술은 기존의 화학산업(chemical industry)이 화석원료(fossil material)인 석유자원에 의존하던 것과는 달리, 자연계에서 빛에너지가 식물의 광합성을 통해 반복적으로 생산되는 식물자원을 원료로 기존의 화학산업 중 일부 혹은 상당 부분을 대체함으로써 인류의 지속가능한 성장 및 생존을 가능하게 하는 새로운 형태의 바이오-화학융합형 기술이라 할 수 있다.
이에 따라, 친환경적인 원료를 사용하여 바이오우레탄을 제조할 수 있는 방법이 개발되고 있다.
우레탄 수지는 폴리올과 디이소시아네이트 화합물의 중합반응에 의해 생성된 주사슬이 우레탄결합(-NHCOO-)을 일정량 이상 포함한 폴리머를 통칭한다.
연질상과 경질상의 종류, 함량, 블록 길이(block length), 상분리 정도(degree of phase separation)와 경질상(hard-segment)의 고차구조에 따라 다양한 물성을 갖는 소재로서의 분자설계가 가능하여, 기존의 어떠한 고분자(polymer) 보다도 원료 구성이 다양하고 용이하다.
엘라스토머(elastomer)에서 엔지니어링 플라스틱(engineering plastic)에 이르는 폭 넓은 사용용도와 섬유(fiber), 피혁(leather), 목재(wood), 고무(rubber), 접착제(adhesive), 코팅제(coating agent)의 용도로 적용가능하다.
또한 운송 분야에서는 대쉬(dash) 및 카페트(carpet), 방음용 패드(noise absorption panel), 내장부품의 표피재, 시트의 쿠션재(cushion material), 각종 내외장 부품의 헤드라이너(headliner) 기재 등으로 다양하게 사용되고 있다.
여기서 본 발명과 연관하여 선행기술 특허문헌을 살펴보면 다음과 같다.
미국특허 제6,180,686호, 제6,465,569호 및 제6,624,244호를 비롯한 많은 특허에서는 우레탄 수지의 제조에 있어서 폴리올로서 개질되지 않은 산화된 콩 오일의 용도에 대해 개시되어 있다. 대한민국 특허공개 제10-2006-0107330호에서는 콩오일을 개질한 알콕실화(alkoxy) 식물성 오일 히드록실레이트(hydroxylate)를 비 식물성 오일과 혼합하여 우레탄 폼(urethane foam)을 제조하는 방안들이 기재되어 있다. 대한민국 특허공개 제10-2012-0107634호에서도 대두유, 아몬드유, 살구씨유, 아보카도유, 옥수수오일, 목화씨유, 아마인류, 포도씨유, 헤이즐넛오일, 해바라기씨유, 팜유 및 피마자유와 같은 식물성 오일로부터 천연 폴리올을 제조하는 방법과 이로부터 제조된 우레탄수지에 대해 기재되어있다. 그러나, 이러한 식물성 오일 유래 폴리올을 사용한 우레탄수지는 까다로운 특성을 요구하는 자동차나 기계 부품을 대체하기에는 한계가 있다.
고분자 나노복합체는 나노 기술과 고분자로 대표되는 유기재료가 결합된 복합소재로 나노 크기의 무기 필러를 고분자 매트릭스에 분산시켜 고분자가 본래 가지고 있는 물리적 성질을 향상시키거나 기존에 가지지 못했던 새로운 성질을 부여할 수 있다.
다양한 나노복합체 중에서도 고분자-점토 나노복합체는 기존의 나노복합체와 다르게 구형의 무기물이 아닌 종,횡비가 큰 판상형 구조의 클레이를 사용하기 때문에, 충진제와 고분자 사이의 접촉면적이 크게 증가한다.
접촉면적의 증가는 기존의 고분자가 가지고 있는 취약한 물성을 보완하여 열 변형 온도, 치수안정성 및 난연성 등의 열적 특성과 기계적 물성 등을 향상시킬 수 있다.
상기한 문제점을 해소하기 위해 대두(soybean)나, 피마자씨(castor seed), 유채씨(rapeseed), 해바라기씨(sunflower seed) 등의 식물 씨앗으로부터 추출된 식물성오일(oil)을 에폭시화(epoxidation reaction)를 거쳐 알콕실화(alkoxylation) 하여 제조된 식물성폴리올(polyol), 디이소시아네이트(diisocyanate) 및 폴리카프로락톤 디올 나노로부터 중합(polymerization)하여 향상된 내열성(thermal resistance), 기계적 강도(mechanical strength)와 우레탄수지가 갖는 탄성(elasticity), 신장(elogation) 및 취성(toughness)이 복합된 자동차 부품 및 접착제 용도의 바이오우레탄 수지 제조를 그 목적으로 한다.
온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에, 아몬드, 살구씨유, 포도씨유 등의 식물성오일 40~60중량부와, 포름산(formic acid)이나 아세트산(acetic acid) 등의 유기산5~20중량부를 넣고, 40~60RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시킨후, 여기에 과산화수소수(hydrogen peroxide) 5~20중량부를 4~6시간 동안 적가 한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 증류수(distilled water) 50~100중량부를 가하여 반응물을 중화시키고 여기에 에틸아세테이트 (ethyl acetate)나 디에틸에테르 (diethyl ether) 등의 저비점 유기용매를 50~100중량부 가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 40~60중량부의 에폭시화오일(epoxised oil)을 제조한 다음, 온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 40~60℃로 유지시키면서 에폭시화오일 40~60중량부와 메탄올(methanol) 45~60중량부와, 증류수 5~10중량부, 이소프로필알코올(isopropyl alcohol)이나 이소부틸알코올(isobutyl alcohol), 이소아밀알코올(isoamyl alcohol) 등의 저가 알코올(low alcohol) 100 내지 150 중량부 및 플로보릭산(fluoboric acid) 1.5~3중량부를 가하여 반응기 온도를 50~70℃로 상승시킨 후, 40~60RPM의 속도로 1~4시간 동안 교반하고, 여기에 2~3중량부의 암모니아수를 가하여 반응을 종결한 다음 진공건조하여, 40~60중량부의 식물성폴리올을 제조하는 식물성폴리올 제조단계와;
톨루엔, 자이렌, 에틸렌클로라이드, 클로로포름, 메틸에틸케톤 등의 극성용매 80~100중량부에, 에틸렌-비닐아세테이트 공중합체, 비닐아세테이트-아크릭엑시드 공중합체, 아크릭아마이드-비닐아세테이트 공중합체중 어느 하나의 비닐아세테이트 공중합체인 고분자수지 1~10중량부를 용해시키고, 토르말린(tourmaline), 점토(clay), 지당(titanium dioxide), 포졸란(pozzolan), 황토(Loess), 음이온파우더(anion powder)나 원적외선파우더(far infrared powder)등의 기능성 나노충진제(functional filler) 10~50중량부를 분산시킨 다음, 1500~2500RPM으로 교반하는 500~1000중량부의 염기성용액에 적가하면서 검화 시킨 후, 여과, 세척 및 건조하여 고분자 나노복합체 개시제 11~60중량부를 제조하는 고분자 나노복합체 개시제 제조단계와;
온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 80~120℃로 유지하면서 ε-카프로락톤(ε-caprolactone) 10~60중량부와, 상기 고분자 나노복합체 개시제 제조단계에서 얻어진 고분자 나노복합체 개시제 11~60중량부를 넣고, 100~500RPM의 속도로 분산시키면서, 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고, 12~48시간 반응하여 21.01~120.05중량부의 폴리카프로락톤 디올 나노를 제조하는 폴리카프로락톤 디올 나노 제조단계와;
질소공급하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 상기 식물성폴리올 제조단계에서 제조된 40~60중량부의 식물성폴리올과 폴리카프로락톤 디올, 나노복합체 제조단계에서 제조된 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate) 등의 디이소시아네이트 20~80중량부 및 축합촉매 0.01~0.05중량부를 가하여 반응 온도를 40~60℃로 상승시킨 후, 6~12시간 동안 60~80RPM의 속도로 교반하여, 81.02~260.1중량부의 프리폴리머(prepolymer)를 제조하는 프리폴리머(prepolymer) 제조단계와;
상기 프리폴리머 제조단계에서 제조된 81.02~260.1중량부의 프리폴리머에 1,3-프로판디올(1,3-propanediol)이나 1,4-부탄디올(1,4-butanediol) 등의 체인확장제(chain extender) 1~10중량부를 가하고, 40~60℃에서 100~120RPM의 속도로 최고 1시간 동안 교반시키는 분자량조절단계와;
상기 바이오우레탄 나노복합체 제조단계에서 제조된 수지를 진공건조 하여 사용용도에 맞는 크기로 자르는 펠렛화(pelletizing) 단계를 거쳐서 40~60중량부의 식물성폴리올, 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 20~80중량부의 디이소시아네이트, 0.01~0.05중량부의 축합촉매, 및 1~10중량부의 체인확장제로 구성되는 식물성폴리올 유래 바이오우레탄 나노복합체 제조를 완성하였다.
이상에서 설명한 바와 같이 본 발명 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법은 완전 경화되어 미반응 화합물질이 발생하지 않으며, 기계적 물성이 우수하여 자동차용 부품소재나 접착제 용도의 바이오우레탄 수지를 용이하게 제조할 수 있다.
도1은 본 발명의 실시단계 예시도.
도2는 본 발명의 폴리카프로락톤 디올 나노복합체 예시도.
도3은 본 발명의 폴리카프로락톤 디올 나노복합체의 전자현미경 사진.
도4은 본 발명의 실시예의 반응기 예시도.
본 발명에 따른 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법을 보다 상세하게 살펴보고, 그에 따른 실시예를 서술하면 다음과 같다.
온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에, 아몬드, 살구씨유, 포도씨유 등의 식물성오일 40~60중량부와, 포름산(formic acid)이나 아세트산(acetic acid) 등의 유기산5~20중량부를 넣고, 40~60RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시킨다.
여기에 과산화수소수(hydrogen peroxide) 5~20중량부를 4~6시간 동안 적가 한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시킨다.
반응이 끝나면 증류수(distilled water) 50~100중량부를 가하여 반응물을 중화시키고 여기에 에틸아세테이트 (ethyl acetate)나 디에틸에테르 (diethyl ether) 등의 저비점 유기용매를 50~100중량부 가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 40~60중량부의 에폭시화오일(epoxised oil)을 제조한 다음, 온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 40~60℃로 유지시키면서 에폭시화오일 40~60중량부와 메탄올(methanol) 45~60중량부와, 증류수 5~10중량부, 이소프로필알코올(isopropyl alcohol)이나 이소부틸알코올(isobutyl alcohol), 이소아밀알코올(isoamyl alcohol) 등의 저가 알코올(low alcohol) 100 내지 150 중량부 및 플로보릭산(fluoboric acid) 1.5~3중량부를 가하여 반응기 온도를 50~70℃로 상승시킨 후, 40~60RPM의 속도로 1~4시간 동안 교반하고, 여기에 2~3중량부의 암모니아수를 가하여 반응을 종결한 다음 진공건조하여, 40~60중량부의 식물성폴리올을 제조하는 식물성폴리올 제조단계와;
톨루엔, 자이렌, 에틸렌클로라이드, 클로로포름, 메틸에틸케톤 등의 극성용매 80~100중량부에, 에틸렌-비닐아세테이트 공중합체, 비닐아세테이트-아크릭엑시드 공중합체, 아크릭아마이드-비닐아세테이트 공중합체중 어느 하나의 비닐아세테이트 공중합체인 고분자수지 1~10중량부를 용해시키고, 토르말린(tourmaline), 점토(clay), 지당(titanium dioxide), 포졸란(pozzolan), 황토(Loess), 음이온파우더(anion powder)나 원적외선파우더(far infrared powder)등의 기능성 나노충진제(functional filler) 10~50중량부를 분산시킨 다음, 1500~2500RPM으로 교반하는 500~1000중량부의 염기성용액에 적가하면서 검화 시킨 후, 여과, 세척 및 건조하여 고분자 나노복합체 개시제 11~60중량부를 제조하는 고분자 나노복합체 개시제 제조단계를 완성한다.
다음으로, 온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 80~120℃로 유지하면서 ε-카프로락톤(ε-caprolactone) 10~60중량부와, 상기 고분자 나노복합체 개시제 제조단계에서 얻어진 고분자 나노복합체 개시제 11~60중량부를 넣고, 100~500RPM의 속도로 분산시키면서, 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고, 12~48시간 반응하여 21.01~120.05중량부의 폴리카프로락톤 디올 나노를 제조하는 폴리카프로락톤 디올 나노 제조단계를 완성한다.
그리고 질소공급하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 상기 식물성폴리올 제조단계에서 제조된 40~60중량부의 식물성폴리올과 폴리카프로락톤 디올, 나노복합체 제조단계에서 제조된 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate) 등의 디이소시아네이트 20~80중량부 및 축합촉매 0.01~0.05중량부를 가하여 반응 온도를 40~60℃로 상승시킨 후, 6~12시간 동안 60~80RPM의 속도로 교반하여, 81.02~260.1중량부의 프리폴리머(prepolymer)를 제조하는 프리폴리머(prepolymer) 제조단계를 완성한다.
상기 프리폴리머 제조단계에서 제조된 81.02~260.1중량부의 프리폴리머에 1,3-프로판디올(1,3-propanediol)이나 1,4-부탄디올(1,4-butanediol) 등의 체인확장제(chain extender) 1~10중량부를 가하고, 40~60℃에서 100~120RPM의 속도로 최고 1시간 동안 교반시키는 분자량조절단계를 완성한다.
상기 바이오우레탄 나노복합체 제조단계에서 제조된 수지를 진공건조 하여 사용용도에 맞는 크기로 자르는 펠렛화(pelletizing) 단계를 거쳐서 40~60중량부의 식물성폴리올, 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 20~80중량부의 디이소시아네이트, 0.01~0.05중량부의 축합촉매, 및 1~10중량부의 체인확장제로 구성되는 식물성폴리올 유래 바이오우레탄 나노복합체 제조를 완성하였다.
상기 식물성오일은 대두나, 유채씨, 아몬드, 살구씨, 옥수수, 목화씨유, 포도씨, 해바라기씨, 피마자 등의 식물 씨앗에서 통상의 압출법이나 용매추출법에 의해 추출한 기름이 사용가능하며 그 선정에는 사실상 제약이 없다.
상기 과산화수소수는 식물성오일의 산화제로 100중량부의 증류수에 50~100중량부의 과산화수소가 혼합된 것이 바람직하며 과산화수소수를 5~20중량부 사용한다.
이때 과산화수소수 함량이 5중량부 이하일 경우 에폭시화 반응이 일어나지 않으며 20중량부 이상일 경우 반응성 조절이 어렵다.
상기 플로보릭산은 알콕시화 촉매로 100중량부의 증류수에 50~100중량부의 플로보릭산이 혼합된 것이 바람직하며, 이와 같이 혼합하여서 된 플로보릭산 1.5~3.0중량부가 사용된다.
이때 플로보릭산 함량이 1.5중량부 이하일 경우 알콕시화 반응시간이 길어지고 3.0중량부 이상일 경우 반응성 조절이 어렵다.
상기 기능성 나노충진제는 토르말린이나, 점토, 옥, 지당, 포졸란, 황토파우더, 음이온파우더, 원적외선파우더, 카본나노튜브 등이 10~50중량부가 사용된다.
이때 나노충진제는 10~100nm 크기를 갖는 미분말 형태가 바람직하다.
이때 나노충진제 함량이 10중량부 이하일 경우 경제성이 떨어지며, 50중량부 이상일 경우 점도가 급상승하여 반응성 조절이 어렵다.
상기 염기성용액은 메탄올(methyl alcohol)이나 에탄올(ethyl alcohol)과 같은 알코올에 수산화칼륨(KOH)이나 수산화나트륨(NaOH) 등의 강염기(strong alkaline)를 녹인 용액을 500~1000중량부 사용한다.
이때 알코올에 대한 강염기의 농도는 0.1~10몰 농도(mole concentration)로 사용하는 것이 바람직하다.
이때 강염기 용액을 500중량부 미만으로 사용할 경우 검화 시간이 길어지며, 1000중량부 이상으로 사용할 경우 폐기물에 의한 환경오염이 증대될 수 있다.
상기 식물성폴리올은 40~60중량부가 사용되어 바이오우레탄 나노복합체의 유연성을 부여한다.
이때 식물성폴리올 함량이 40중량부 미만일 경우 형성되는 바이오우레탄 나노복합체의 기계적 강도가 떨어지고 60중량부 이상일 경우 가공성이 떨어진다.
상기 폴리카프로락톤 디올 나노복합체는 21.01~120.05중량부가 사용되어 바이오우레탄 나노복합체의 내열성과 강도를 부여한다.
이때 폴리카프로락톤 디올 나노복합체는 함량이 21.01중량부 미만일 경우 형성되는 바이오우레탄 나노복합체의 기계적 강도가 떨어지고 120.05중량부 이상일 경우 가공성이 떨어진다.
상기 디이소시아네이트는 반응성결합제로 20~80중량부가 사용되며, 1,4-페닐렌 디이소시아네이트나, 4,4'-디이소시아네토디씨크로헥실 메탄, 2,4-톨루엔 디이소시아네이트(2,4-toluene diisocyanate), 2,4-페닐렌디이소시아네이트(2,4-phenylene diisocyanate), 1,6-헥사메틸렌 디이소시아네이트(1,6-hexamethylene diisocyanate) 및 이소포론 디이소시아네이트(isophorone diisocyanate) 등 바이오우레탄 수지의 용도에 따라 그 선택에는 제약이 없다.
이때 디이소시아네이트 함량이 20중량부 미만일 경우 형성되는 바이오우레탄 나노복합체의 기계적 강도가 떨어지고 80중량부 이상일 경우 환경친화성이 떨어진다.
상기 축합촉매는 반응촉매로 디부틸 틴 디라울레이트, 디부틸 틴 말레이트, 디 옥틸 틴 디아세테이트, 1,4-디아조[2,2,2]-바이시크로-옥탄 등이 바람직하며 0.01~0.05중량부가 사용된다.
이때 축합촉매 함량이 0.01중량부 미만일 경우 형성되는 바이오우레탄 나노복합체의 점도가 떨어지고 0.05중량부 이상일 경우 생산성이 떨어진다.
상기 체인확장제는 분자량 조절제로 1,3-프로판디올이나 1,4-부탄디올을 사용하며 1~10중량부가 사용된다.
이때 체인확장제 함량이 1중량부 미만일 경우 형성되는 바이오우레탄 나노복합체의 분자량이 떨어지고 10중량부 이상일 경우 생산성이 떨어진다.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다.
단 본 발명의 범위가 예시한 실시예 만으로 한정되는 것은 아니다.
<표 1>에 기재된 성분을 각각의 배합비로 아래와 같은 공정의 제조방법으로 혼합하여 제조하였다.
Figure pat00001
피마자를 분쇄한 후에 착유기로 추출된 55g의 피마자유를 교반기 및 응축콘덴서가 장착된 반응기 넣고 12g의 포름산을 가하여 40RPM으로 교반하면서 혼합하고 반응기 온도를 50℃로 상승시킨다.
12g의 과산화수소수를 반응기에 5시간 동안 서서히 적가한 다음, 적가가 완료되면 50℃ 온도에서 5시간 동안 반응을 더 지속시킨다.
반응이 끝나면 50g의 증류수를 가하여 반응계를 중화시키고 여기에 50g의 에틸아세테이트를 가하여 상분리를 유도하고 물층을 제거하는 에폭시화피마자유를 제조한다.
40℃로 유지되는 반응기에 에폭시화단계에서 얻어진 50g의 에폭시화피마자유와 50g의 메탄올, 50g의 증류수, 150g의 이소프로필알코올 및 2g의 플로보릭산을 첨가한 다음, 반응기 온도를 50℃로 상승시켜 1시간 동안 반응시킨다.
반응이 완료되면 3g의 암모니아수를 가하여 반응을 종결시킨다.
이렇게 얻어진 반응물을 회전증발기를 이용하여 불순물을 제거한 후 피마자폴리올 제조한다.
90g의 톨루엔에 10g의 에틸렌-비닐아세테이트 공중합체를 용해시키고 50g의 점토를 분산시킨 다음 2000RPM으로 교반되는 500g의 0.5몰 농도 수산화칼륨 에탄올 용액에 적가하면서 검화시킨 후 여과, 세척 및 건조하여 고분자 나노복합체 개시제를 제조한다.
온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 120℃로 유지하면서 10g의 ε-카프로락톤과, 11g의 고분자 나노복합체 개시제를 넣고 200RPM의 속도로 분산시키면서 0.01g의 디부틸 틴 디라울레이트를 가하고 24시간 반응하여 폴리카프로락톤 디올 나노복합체를 제조한다.
질소공급 하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 40g의 피마자폴리올과, 21.01g의 폴리카프로락톤 디올 나노복합체, 20g의 1,4-페닐렌 디이소시아네이트 및 0.01g의 디부틸 틴 디라울레이트를 가하여 반응 온도를 60℃로 상승시킨 후 6시간 동안 60RPM의 속도로 교반한 다음, 여기에 1g의 1,4-부탄디올을 첨가하여 60℃에서 120RPM의 속도로 20분 동안 교반시킨 후 회전증발기를 이용하여 용매를 제거 한 후 4mm 크기의 펠렛화를 거쳐 식물성폴리올 유래 바이오우레탄 나노복합체 제조를 완료하였다.
상기 실시예 (1) 내지 (4)의 평가 결과는 하기 <표 2>에 나타내었다.
실시예에 따라 제조된 식물성폴리올 유래 바이오우레탄 나노복합체의 성능은 하기 각종 기능성 시험방법에 따라 평가된다.
(1) 생분해도
합성된 바이오 우레탄/에폭시 수지의 생분해도는 ASTM D5209-91을 변형한 변형 스텀법(modified sturm test)으로 측정한다.
균주배양에 사용하는 스톡용액(stock solution)은 100㎖씩 유리병에 분주하여 121℃에서 15분간 고압증기로 멸균한다.
스톡용액은 4㎖의 페릭 클로라이드(ferric chloride) [FeCl3 6H2O (0.25g)/증류수 1L], 1㎖의 마그네슘 설페이트(magnesium sulfate) [MgSO4 7H2O (2.5g)/증류수 1L], 1㎖의 칼슘 클로라이드(calcium chloride) [CaCl (227.5g)/증류수 1L], 2㎖의 인산완충용액(phosphate buffer) [KH2PO4 (8.5g), K2HPO4 (21.75g), NH4Cl (1.7g), NaHPO4 H2O (33.4g)/증류수 1L), 1㎖의 암모니움 설페이트(ammonium sulfate) [(NH4)2SO4 (40g)/증류수 1L]를 증류수 991㎖에 혼합하여 제조한다.
공기펌프(air pump)에서 생성되는 공기 내의 이산화탄소(CO2)를 제거하기 위한 시약은 10N의 수산화나트륨(NaOH)와 0.025N 수산화바륨[Ba(OH)2]을 사용한다.
균주를 1 x 10 9cfu/ml 만큼 접종하여 쉐이킹 배양기(shaking incubator)에서 30℃에서 120RPM으로 하루 동안 배양한 뒤 시료 1.5(vol%/vol%) 만큼 넣어준다.
시료가 분해되어 발생하는 이산화탄소를 포집하기 위해 삼각플라스크에 0.025N 수산화바륨 250㎖을 넣어 연결한다.
이때 공기의 유량은 50cc/min으로 고정한다.
30℃, 120RPM의 조건으로 배양하고, 3일에 한 번씩 포집된 이산화탄소를 0.1% 페놀프탈레인과 0.05N 염산을 사용하여 적정하여 포집된 이산화탄소의 양을 측정하고 생분해도를 계산한다.
(2) 인장특성 및 굽힘강도 측정
시편의 인장강도(tensile strength), 인장신율(tensile elongation) 및 굽힘강도(flexural strength)는 만능재료시험기(universal testing machine)를 사용하여 3회 반복 측정하여 평균값을 산출하였다.
(3) 절연파괴강도
고전압시험기를 이용하여 전압을 0V에서 0.1kV/초 단위로 상승시키면서 절연파괴가 일어날 때의 전압을 측정하였다.
(4) 경도
시편의 경도는 쇼어 A(Shore A) 경도계를 사용하여 측정한다.
(5) 미반응 이소시아네이트 및 중합여부 판정
적외분광법을 이용하여 미반응 이소시아네이트의 존재 여부 및 중합여부를 확인한다.
Figure pat00002
상기 <표 2>에 나타낸 실험결과에 따라, 본 발명의 실시예 1 내지 4는 인장신율은 감소하고 생분해도, 인장강도, 굽힘강도, 절연파괴강도, 경도가 비교예 보다 크게 향상됨을 알 수 있다.
본 발명에 의한 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법은 인체에 무해하고, 생분해성, 기계적 물성이 우수한 특성을 보유하여 자동차 부품 및 접착제용 수지로 널리 실시할 수 있는 등 산업상 이용가치가 대단하다 할 것이다.
본 발명은 중소기업청에서 시행한 중소기업 기술개발지원사업 미래선도 과제인 "부품소재 및 접착제용 바이오 폴리우레탄/에폭시 수지 및 나노복합체 개발" 연구결과로 출원되었다.

Claims (1)

  1. 온도계(thermometer)와 교반기(mechanical stirrer), 응축콘덴서(reflux condenser)를 장착한 반응기(reactor)에, 아몬드, 살구씨유, 포도씨유 등의 식물성오일 40~60중량부와, 포름산(formic acid)이나 아세트산(acetic acid) 등의 유기산5~20중량부를 넣고, 40~60RPM의 속도로 교반하면서 반응기 온도를 40~60℃로 상승시킨 후, 여기에 과산화수소수(hydrogen peroxide) 5~20중량부를 4~6시간 동안 적가한 다음, 40~60℃의 온도를 유지시키면서 4~6시간 동안 반응을 더 지속시켜서, 반응이 끝나면 증류수(distilled water) 50~100중량부를 가하여 반응물을 중화시키고 여기에 에틸아세테이트 (ethyl acetate)나 디에틸에테르 (diethyl ether) 등의 저비점 유기용매를 50~100중량부 가하여 상분리(phase separation)를 유도한 후, 물 층(water layer)을 제거하여 40~60중량부의 에폭시화오일(epoxised oil)을 제조한 다음, 온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 40~60℃로 유지시키면서 에폭시화오일 40~60중량부와 메탄올(methanol) 45~60중량부와, 증류수 5~10중량부, 이소프로필알코올(isopropyl alcohol)이나 이소부틸알코올(isobutyl alcohol), 이소아밀알코올(isoamyl alcohol) 등의 저가 알코올(low alcohol) 100 내지 150 중량부 및 플로보릭산(fluoboric acid) 1.5~3중량부를 가하여 반응기 온도를 50~70℃로 상승시킨 후, 40~60RPM의 속도로 1~4시간 동안 교반하고, 여기에 2~3중량부의 암모니아수를 가하여 반응을 종결한 다음 진공건조하여, 40~60중량부의 식물성폴리올을 제조하는 식물성폴리올 제조단계와;
    톨루엔, 자이렌, 에틸렌클로라이드, 클로로포름, 메틸에틸케톤 등의 극성용매 80~100중량부에, 에틸렌-비닐아세테이트 공중합체, 비닐아세테이트-아크릭엑시드 공중합체, 아크릭아마이드-비닐아세테이트 공중합체중 어느 하나의 비닐아세테이트 공중합체인 고분자수지 1~10중량부를 용해시키고, 토르말린(tourmaline), 점토(clay), 지당(titanium dioxide), 포졸란(pozzolan), 황토(Loess), 음이온파우더(anion powder)나 원적외선파우더(far infrared powder)등의 기능성 나노충진제(functional filler) 10~50중량부를 분산시킨 다음, 1500~2500RPM으로 교반하는 500~1000중량부의 염기성용액에 적가하면서 검화시킨 후, 여과, 세척 및 건조하여 고분자 나노복합체 개시제 11~60중량부를 제조하는 고분자 나노복합체 개시제 제조단계와;
    온도계와 교반기, 응축콘덴서를 장착한 반응기의 온도를 80~120℃로 유지하면서 ε-카프로락톤(ε-caprolactone) 10~60중량부와, 상기 고분자 나노복합체 개시제 제조단계에서 얻어진 고분자 나노복합체 개시제 11~60중량부를 넣고, 100~500RPM의 속도로 분산시키면서, 디부틸 틴 디라울레이트(dibutyl tin dilaurate)나, 디부틸 틴 말레이트(dibutyl tin maleate), 1,4-디아조바이시크로[2,2,2] 옥탄[1,4-diazabicyclo [2,2,2] octane] 등의 축합촉매(condensation catalyst) 0.01~0.05중량부를 가하고, 12~48시간 반응하여 21.01~120.05중량부의 폴리카프로락톤 디올 나노를 제조하는 폴리카프로락톤 디올 나노 제조단계와;
    질소공급하에 온도계와 교반기, 응축콘덴서를 장착한 반응기에 상기 식물성폴리올 제조단계에서 제조된 40~60중량부의 식물성폴리올과 폴리카프로락톤 디올, 나노복합체 제조단계에서 제조된 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 1,4-페닐렌 디이소시아네이트(1,4-phenylene diisocyanate)나, 4,4'-디이소시아네토디씨크로헥실 메탄(4,4'-diisocyanatodi cyclohexyl methane), 톨리엔 디이소시아네이트(tolylene diisocyanate) 등의 디이소시아네이트 20~80중량부 및 축합촉매 0.01~0.05중량부를 가하여 반응 온도를 40~60℃로 상승시킨 후, 6~12시간 동안 60~80RPM의 속도로 교반하여, 81.02~260.1중량부의 프리폴리머(prepolymer)를 제조하는 프리폴리머(prepolymer) 제조단계와;
    상기 프리폴리머 제조단계에서 제조된 81.02~260.1중량부의 프리폴리머에 1,3-프로판디올(1,3-propanediol)이나 1,4-부탄디올(1,4-butanediol) 등의 체인확장제(chain extender) 1~10중량부를 가하고, 40~60℃에서 100~120RPM의 속도로 ㅊ최고 1시간 동안 교반시키는 분자량조절단계와;
    상기 바이오우레탄 나노복합체 제조단계에서 제조된 수지를 진공건조 하여 사용용도에 맞는 크기로 자르는 펠렛화(pelletizing) 단계를 거쳐서, 40~60중량부의 식물성폴리올, 21.01~120.05중량부의 폴리카프로락톤 디올 나노복합체, 20~80중량부의 디이소시아네이트, 0.01~0.05중량부의 축합촉매 및 1~10중량부의 체인확장제로 구성되는 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법.
KR1020140000531A 2014-01-03 2014-01-03 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법 KR20150081000A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140000531A KR20150081000A (ko) 2014-01-03 2014-01-03 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140000531A KR20150081000A (ko) 2014-01-03 2014-01-03 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법

Publications (1)

Publication Number Publication Date
KR20150081000A true KR20150081000A (ko) 2015-07-13

Family

ID=53792846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140000531A KR20150081000A (ko) 2014-01-03 2014-01-03 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법

Country Status (1)

Country Link
KR (1) KR20150081000A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824857A (zh) * 2019-02-19 2019-05-31 美瑞新材料股份有限公司 一种热塑性聚氨酯弹性体及其制备方法和应用
CN112480649A (zh) * 2020-11-26 2021-03-12 上海应用技术大学 一种二氧化钛/tpu复合型亲水薄膜及其制备方法
CN114213189A (zh) * 2022-01-07 2022-03-22 西北农林科技大学 一种超疏水改性废弃餐厨油基包膜控释磷肥及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109824857A (zh) * 2019-02-19 2019-05-31 美瑞新材料股份有限公司 一种热塑性聚氨酯弹性体及其制备方法和应用
CN112480649A (zh) * 2020-11-26 2021-03-12 上海应用技术大学 一种二氧化钛/tpu复合型亲水薄膜及其制备方法
CN114213189A (zh) * 2022-01-07 2022-03-22 西北农林科技大学 一种超疏水改性废弃餐厨油基包膜控释磷肥及其制备方法

Similar Documents

Publication Publication Date Title
Ghasemlou et al. Polyurethanes from seed oil-based polyols: A review of synthesis, mechanical and thermal properties
Krishnan et al. Toughening of polylactic acid: an overview of research progress
KR102486203B1 (ko) 다당류를 포함하는 폴리우레탄 중합체
Chandra et al. Environmentally friendly polyurethane dispersion derived from dimer acid and citric acid
Sisti et al. PBS makes its entrance into the family of biobased plastics
Gu et al. Multiple hydrogen bonding enables strong, tough, and recyclable soy protein films
MX2008010890A (es) Composicion para preparar una espuma con base de poliuretano biodegradable y una espuma de poliuretano biodegradable.
CN102186916A (zh) 基于淀粉材料的酯类的弹性体组合物以及制备此类组合物的方法
CN107033563B (zh) 一种增强增韧聚乳酸材料及其制备方法
KR101494947B1 (ko) 식물성폴리올 및 폴리유산을 함유한 생분해성 바이오우레탄 수지의 제조방법
Rattanapan et al. Preparation and properties of bio-based polyurethane foams from natural rubber and polycaprolactone diol
KR20150081000A (ko) 식물성폴리올 유래 바이오우레탄 나노복합체 제조방법
Narine et al. Vegetable oils in production of polymers and plastics
Sklenickova et al. Open-cell aliphatic polyurethane foams with high content of polysaccharides: structure, degradation, and ecotoxicity
JP2006183042A (ja) 新規マルチブロックコポリマー、その製造方法、及びその利用
Gnanasekar et al. Mechanically robust, degradable, catalyst-free fully bio-based shape memory polyurethane: Influence of a novel vanillin–alaninol chain extender
Wu et al. Preparation and characterization of thermoplastic starch mixed with waterborne polyurethane
Sangeetha et al. A review on advanced methods of polyurethane synthesis based on natural resources
Behera et al. Advances in thermoplastic polyurethane elastomers: Design, applications and their circularity
Madbouly Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films
Liu et al. Plant-oil-based Polymeric Materials and their Applications
KR102596235B1 (ko) 음이온성 수분산 폴리우레탄 분산액의 제조방법 및 그 분산액으로 제조된 생분해성 폴리우레탄 필름
JP6255345B2 (ja) パーム油からポリオールを得る方法、該方法によって得られるポリオール、並びに該ポリオールを用いた製品及びその製造方法
Robertson et al. Biorenewable multiphase polymers
Maurya et al. P olyurethane and Its Composites: Synthesis to Application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application