KR20150056061A - 플라즈마 처리 장치 및 플라즈마 처리 방법 - Google Patents

플라즈마 처리 장치 및 플라즈마 처리 방법 Download PDF

Info

Publication number
KR20150056061A
KR20150056061A KR1020140158044A KR20140158044A KR20150056061A KR 20150056061 A KR20150056061 A KR 20150056061A KR 1020140158044 A KR1020140158044 A KR 1020140158044A KR 20140158044 A KR20140158044 A KR 20140158044A KR 20150056061 A KR20150056061 A KR 20150056061A
Authority
KR
South Korea
Prior art keywords
antenna
main antenna
gas
rotary table
plasma
Prior art date
Application number
KR1020140158044A
Other languages
English (en)
Other versions
KR101802022B1 (ko
Inventor
히토시 가토
시게히로 미우라
치시오 고시미즈
준 야마와쿠
요헤이 야마자와
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20150056061A publication Critical patent/KR20150056061A/ko
Application granted granted Critical
Publication of KR101802022B1 publication Critical patent/KR101802022B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

고주파 전원에 접속되는 주 안테나와, 당해 주 안테나에 대해 전기적으로 절연된 (플로팅 상태의) 보조 안테나를 배치한다. 또한, 주 안테나 및 보조 안테나를 평면에서 보았을 때의 각각의 투영 영역에 대해, 서로 겹치지 않도록 한다. 구체적으로는, 주 안테나에 대해, 보조 안테나를 회전 테이블의 회전 방향 하류측에 배치한다. 그리고, 주 안테나를 통류하는 유도 전류를 통해 보조 안테나에 전자계를 발생시킴과 함께, 보조 안테나를 공진시켜, 주 안테나의 하방측의 영역뿐만 아니라, 보조 안테나의 하방측의 영역에 있어서도 유도 플라즈마를 발생시킨다.

Description

플라즈마 처리 장치 및 플라즈마 처리 방법{PLASMA TREATMENT APPARATUS AND PLASMA TREATMENT METHOD}
본 출원은, 2013년 11월 14일에 일본 특허청에 출원된 일본 특허 출원 제2013-236013호에 기초하는 우선권을 주장하는 것이며, 일본 특허 출원 제2013-236013호의 전체 내용을 여기에 원용한다.
본 발명은, 기판에 대해 플라즈마 처리를 행하는 플라즈마 처리 장치 및 플라즈마 처리 방법에 관한 것이다.
반도체 웨이퍼 등의 기판(이하 「웨이퍼」라 함)에 대해 플라즈마 처리를 행하는 장치로서, 일본 특허 공개 제2013-45903에 기재된 세미 뱃치식의 장치가 알려져 있다. 구체적으로는, 일본 특허 공개 제2013-45903에서는, 회전 테이블 상에 5매의 웨이퍼를 주위 방향으로 배열함과 함께, 회전 테이블에 의해 이동(공전)하는 웨이퍼의 궤도에 대향하도록, 가스를 플라즈마화하기 위한 안테나를 배치하고 있다. 이러한 장치에서는, 웨이퍼가 이동하고 있으므로, 예를 들어 암모니아(NH3) 라디칼을 사용한 플라즈마 처리를 행하는 경우에는, 당해 라디칼의 발생 영역을 가능한 한 웨이퍼의 이동 방향으로 길게 형성하여, 라디칼을 장시간에 걸쳐 웨이퍼에 공급하고자 한다는 요청이 있다.
일본 특허 공개 제2011-119659, 일본 특허 공개 제2003-22977에는, 안테나를 구비한 매엽식의 장치나, 콘덴서가 구비된 플로팅 코일에 대해 기재되어 있다. 즉, 일본 특허 공개 제2011-119659에서는, 연직축 주위로 권회한 플라즈마 발생용 안테나의 상방측에 플로팅 코일을 배치함과 함께, 이 플로팅 코일에 접속된 가변 콘덴서의 정전 용량을 조정하고 있다. 이 가변 콘덴서의 정전 용량값을 조정함으로써, 플라즈마 발생용 안테나로부터 플로팅 코일에 전달하는 에너지의 양이 조정되고, 이와 같이 하여 특허문헌 2에서는 서셉터 근방에 있어서의 플라즈마 밀도가 서셉터의 직경 방향에서 제어된다. 그러나, 일본 특허 공개 제2011-119659, 일본 특허 공개 제2003-22977에서는, 웨이퍼를 공전시키는 방식의 장치나, 당해 장치에 있어서의 플라즈마의 분포에 대해서는 기재되어 있지 않다.
본 발명은 이러한 사정에 비추어 이루어진 것이며, 그 목적은, 공전하고 있는 기판에 대해 플라즈마 처리를 행하는 데 있어서, 장치의 비용 상승을 억제하면서, 평면에서 보았을 때의 플라즈마 발생 영역의 고면적화를 도모할 수 있는 플라즈마 처리 장치 및 플라즈마 처리 방법을 제공하는 데 있다.
본 발명의 일 형태에 관한 플라즈마 처리 장치는,
기판에 대해 플라즈마 처리를 행한다. 상기 플라즈마 처리 장치는,
진공 용기와,
상기 진공 용기 내에 설치되고, 기판을 적재하는 기판 적재 영역을 공전시키기 위한 회전 테이블과,
상기 기판에 처리 가스를 공급하기 위한 처리 가스 공급부와,
상기 기판의 통과 영역에 대향하도록 설치되고, 고주파 전력이 공급되어 처리 가스를 여기하여, 유도 결합 플라즈마를 발생시키기 위한 코일 형상의 주 안테나와,
상기 주 안테나에 대해 전자기 유도가 가능한 위치에서 전기적으로 절연된 상태로 배치됨과 함께, 평면적으로 보았을 때 상기 주 안테나의 투영 영역의 적어도 일부와 그 투영 영역이 겹치지 않도록 설치되고, 상기 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키기 위한 코일 형상의 보조 안테나와,
상기 보조 안테나의 루프 내에 설치되는 콘덴서를 구비한다.
본 발명의 다른 형태에 관한 플라즈마 처리 방법은,
기판에 대해 플라즈마 처리를 행한다. 상기 플라즈마 처리 방법에 있어서는,
진공 용기 내에서, 회전 테이블 상의 기판 적재 영역에 기판을 적재하여, 회전 테이블에 의해 이 기판을 공전시키고,
상기 기판의 표면에 처리 가스를 공급하고,
상기 회전 테이블에 대향하도록 배치된 코일 형상의 주 안테나에 대해 고주파 전력을 공급함으로써, 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키고,
상기 주 안테나에 대해 전자기 유도가 가능한 위치에서 전기적으로 절연된 상태로 배치됨과 함께, 평면적으로 보았을 때 상기 주 안테나의 투영 영역의 적어도 일부와 그 투영 영역이 겹치지 않도록 설치됨과 함께 상기 주 안테나에 대해 전기적으로 뜬 상태로 배치된 코일 형상의 보조 안테나에, 상기 주 안테나와의 전자기 유도에 의해 유도 전류를 발생시켜, 상기 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키고,
상기 보조 안테나의 루프 내에 설치되는 콘덴서에 의해, 당해 보조 안테나에 있어서의 유도 전류를 공진시킨다.
도 1a 및 도 1b는 본 발명의 플라즈마 처리 장치의 일례를 도시하는 모식도.
도 2는 본 발명의 플라즈마 처리 장치의 일례를 도시하는 종단면도.
도 3은 상기 플라즈마 처리 장치를 도시하는 횡단 평면도.
도 4는 상기 플라즈마 처리 장치를 도시하는 횡단 평면도.
도 5는 상기 플라즈마 처리 장치를 도시하는 종단면도.
도 6은 상기 플라즈마 처리 장치의 안테나를 도시하는 분해 사시도.
도 7은 상기 안테나를 도시하는 평면도.
도 8은 상기 안테나와 웨이퍼의 위치 관계를 도시하는 평면도.
도 9는 상기 안테나가 수납되는 하우징을 하측으로부터 본 모습을 도시하는 사시도.
도 10은 웨이퍼 상을 플라즈마가 통과하는 궤적을 모식적으로 도시하는 평면도.
도 11은 상기 플라즈마 처리 장치의 다른 예를 도시하는 종단면도.
도 12는 상기 플라즈마 처리 장치의 다른 예를 도시하는 종단면도.
도 13은 상기 플라즈마 처리 장치의 다른 예를 도시하는 종단면도.
도 14는 상기 플라즈마 처리 장치의 다른 예를 도시하는 종단면도.
도 15는 상기 플라즈마 처리 장치의 다른 예를 도시하는 종단면도.
도 16은 본 발명의 실시예에 있어서의 안테나의 배치 레이아웃을 도시하는 평면도.
도 17은 본 발명의 실시예에서 얻어진 결과를 촬상한 사진을 나타내는 특성도.
도 18은 본 발명의 실시예에서 얻어진 결과를 촬상한 사진을 나타내는 특성도.
도 19는 본 발명의 실시예에서 얻어진 결과를 촬상한 사진을 나타내는 특성도.
도 20은 본 발명의 실시예에서 얻어진 결과를 촬상한 사진을 나타내는 특성도.
도 21은 본 발명의 보조 안테나에서 얻어지는 전류값을 모식적으로 나타내는 특성도.
본 발명의 실시 형태에 관한 플라즈마 처리 장치의 일례에 대해, 도 1a∼도 9를 참조하여 설명한다. 이 장치는, 도 1a에 당해 장치의 특징 부분을 모식적으로 도시하는 바와 같이, 고주파 전원(89)에 접속된 주 안테나(83)와, 당해 주 안테나(83)에 대해 전기적으로 절연된 보조 안테나(코일)(84)를 구비하고 있다. 그리고, 도 1b에 도시하는 바와 같이, 보조 안테나(84)와 주 안테나(83) 사이의 전자기 유도에 의해, 보조 안테나(84)에 고주파 전원(89)을 접속하는 일 없이, 이들 안테나(83, 84)의 하방측의 영역에 걸쳐 플라즈마를 발생시키고 있다. 계속해서, 장치의 구체적인 구성에 대해 이하에 설명한다. 또한, 도 1a에서는 안테나(83, 84)를 간략화하여 묘화하고 있다.
이미 서술한 안테나(83, 84)의 하방측에는, 도 2∼도 4에 도시하는 바와 같이, 평면 형상이 대략 원형인 진공 용기(1)가 설치되어 있다. 진공 용기(1)는, 천장판(11) 및 용기 본체(12)를 구비하고 있고, 천장판(11)의 상면측 중앙부에 접속된 분리 가스 공급관(51)을 통해 질소(N2) 가스가 분리 가스로서 공급되도록 구성되어 있다. 회전 테이블(2)의 하방측에는, 도 2에 도시하는 바와 같이, 당해 회전 테이블(2) 상의 웨이퍼(W)를 성막 온도, 예를 들어 300℃로 가열하기 위해, 가열 기구인 히터 유닛(7)이 설치되어 있다. 도 2 중, 시일 부재, 예를 들어 O링 등의 시일 부재(13)가 용기 본체의 주연부에 설치되어 있다. 또한, 도 2에 있어서, 히터 유닛(7)의 커버 부재(71a), 히터 유닛(7)을 덮는 덮개 부재(7a), 퍼지 가스 공급관(72, 73)이 진공 용기(1)에 설치되어 있다.
진공 용기(1)의 내부에는, 회전 테이블(2)이 수납되어 있고, 이 회전 테이블(2)의 중심부에는, 개략 원통 형상의 코어부(21)가 장착되어 있다. 회전 테이블(2)은, 이 코어부(21)의 하면에 접속된 회전축(22)에 의해, 연직축 주위, 이 예에서는 시계 방향으로 회전 가능하게 구성되어 있다. 회전 테이블(2) 상에는, 도 3∼도 4에 도시하는 바와 같이, 웨이퍼(W)를 낙하시켜 보유 지지하기 위해, 원형의 오목부(24)가 기판 적재 영역으로서 형성되어 있고, 이 오목부(24)는 당해 회전 테이블(2)의 회전 방향(주위 방향)을 따라 복수 개소, 예를 들어 5개소에 형성되어 있다. 도 2 중, 수직축 주위로 회전축(22)을 회전시키는 구동부(회전 기구)(23)와, 회전축(22) 및 구동부(23)를 수용하는 케이스체(20)가 도시되어 있다.
오목부(24)의 통과 영역과 각각 대향하는 위치에는, 각각 예를 들어 석영으로 이루어지는 4개의 노즐(31, 32, 41, 42)이 진공 용기(1)의 주위 방향으로 서로 간격을 두고 방사 형상으로 배치되어 있다. 이들 각 노즐(31, 32, 41, 42)은, 예를 들어 진공 용기(1)의 외주벽으로부터 중심부 영역(10)을 향해 웨이퍼(W)에 대향하여 수평하게 신장되도록 각각 장착되어 있다. 이 예에서는, 후술하는 반송구(15)로부터 보아 시계 방향으로 플라즈마 발생용 가스 노즐(32), 분리 가스 노즐(41), 처리 가스 노즐(31) 및 분리 가스 노즐(42)이 이 순서로 배열되어 있다. 플라즈마 발생용 가스 노즐(32)은 처리 가스 공급부를 이루고 있다. 또한, 분리 가스 노즐(41, 42)은, 각각 분리 가스 공급부를 이루고 있다. 또한, 도 3은 플라즈마 발생용 가스 노즐(32)이 보이도록 안테나(83, 84) 및 하우징(90)을 제거한 상태, 도 4는 이들 안테나(83, 84) 및 하우징(90)을 장착한 상태를 나타내고 있다.
각 노즐(31, 32, 41, 42)은, 유량 조정 밸브를 통해 각각 이하의 각 가스 공급원(도시하지 않음)에 각각 접속되어 있다. 즉, 처리 가스 노즐(31)은 Si(실리콘)를 포함하는 처리 가스, 예를 들어 DCS(디클로로실란) 가스 등의 공급원에 접속되어 있다. 플라즈마 발생용 가스 노즐(32)은, 예를 들어 암모니아 가스 및 질소(N2) 가스 중 적어도 한쪽의 가스 공급원, 이 예에서는 암모니아 가스의 공급원에 접속되어 있다. 분리 가스 노즐(41, 42)은, 분리 가스인 질소 가스의 공급원에 각각 접속되어 있다. 이들 가스 노즐(31, 32, 41, 42)의 외주면에는, 가스 토출 구멍(33)이 각각 형성되어 있고, 이 가스 토출 구멍(33)은 회전 테이블(2)의 반경 방향을 따라 복수 개소에 예를 들어 등간격으로 배치되어 있다. 가스 토출 구멍(33)은, 가스 노즐(31, 41, 42)에서는 하면에 형성되고, 플라즈마 발생용 가스 노즐(32)에서는 회전 테이블(2)의 회전 방향 상류측의 측면에 형성되어 있다. 도 3 및 도 4에 있어서, 처리 가스 노즐(31)의 상방측을 덮는 노즐 커버(31a)가 도시되어 있다.
처리 가스 노즐(31)의 하방 영역은, 처리 가스의 성분을 웨이퍼(W)에 흡착시키기 위한 흡착 영역(P1)으로 된다. 또한, 플라즈마 발생용 가스 노즐(32)의 하방측의 영역[후술하는 하우징(90)의 하방 영역]은, 웨이퍼(W)에 흡착된 처리 가스의 성분과 플라즈마 발생용 가스의 플라즈마를 반응시키기 위한 반응 영역(처리 영역)(P2)으로 된다. 분리 가스 노즐(41, 42)은, 각 영역(P1, P2)을 분리하는 분리 영역(D)을 형성하기 위한 것이다. 분리 영역(D)에 있어서의 진공 용기(1)의 천장판(11)에는, 도 3 및 도 4에 도시하는 바와 같이, 개략 부채형의 볼록 형상부(4)가 설치되어 있고, 분리 가스 노즐(41, 42)은, 이 볼록 형상부(4) 내에 수용되어 있다.
다음으로, 플라즈마 발생용 가스로부터 유도 플라즈마를 발생시키기 위한 구성에 대해 상세하게 설명한다. 플라즈마 발생용 가스 노즐(32)의 상방측에는, 도 1, 도 4 및 도 5에 도시하는 바와 같이, 이미 서술한 주 안테나(83) 및 보조 안테나(84)가 배치되어 있고, 이들 안테나(83, 84)는, 각각 금속선을 연직축 주위로 코일 형상으로 예를 들어 3회 권회하여 구성되어 있다. 주 안테나(83)는, 보조 안테나(84)에 대해 회전 테이블(2)의 회전 방향 상류측에 배치되어 있다. 우선, 이들 안테나(83, 84) 중, 주 안테나(83)에 대해 설명한다.
주 안테나(83)는, 도 7에 도시하는 바와 같이, 평면에서 보았을 때 회전 테이블(2)의 중앙부측으로부터 외주부측에 걸쳐 회전 테이블(2) 상의 웨이퍼(W)의 통과 영역에 걸치도록 배치되어 있다. 이 예에서는, 주 안테나(83)는 평면에서 보았을 때 개략 직사각형(직사각형)으로 되도록 권회되어 있다. 즉, 주 안테나(83)에 있어서의 회전 테이블(2)의 회전 방향 상류측 및 하류측의 부위와, 회전 테이블(2)의 중심측 및 외연측의 부위는, 각각 직선 형상으로 형성되어 있다.
구체적으로는, 주 안테나(83)에 있어서의 상기 회전 방향 상류측 및 하류측의 부위를 각각 「직선 부분(85)」이라 칭하면, 이들 직선 부분(85)은 회전 테이블(2)의 반경 방향을 따르도록, 바꾸어 말하면 플라즈마 발생용 가스 노즐(32)의 길이 방향을 따르도록 각각 형성되어 있다. 또한, 주 안테나(83)에 있어서의 상기 중심측 및 외연측의 부위를 각각 「접속 부분(86)」이라 칭하면, 이들 접속 부분(86)은 회전 테이블(2)의 접선 방향을 따르도록 각각 형성되어 있다. 그리고, 이들 직선 부분(85) 및 접속 부분(86)끼리는, 각각의 단부 위치에서 개략 직각으로 굴곡되는 부위를 통해 서로 직렬로 접속됨과 함께, 고주파 전원(89)에 정합기(88)를 통해 접속되어 있다. 이 예에서는, 고주파 전원(89)은 주파수 및 출력 전력이 예를 들어 각각 13.56㎒ 및 5000W로 되어 있다.
이미 서술한 2개의 직선 부분(85) 중 회전 테이블(2)의 회전 방향 상류측에 있어서의 직선 부분(85)은, 도 7에 도시하는 바와 같이, 평면에서 보았을 때, 플라즈마 발생용 가스 노즐(32)에 대해 회전 테이블(2)의 회전 방향 하류측으로 약간 이격된 위치에 배치되어 있다. 또한, 도 7 및 도 8에서는, 안테나(83, 84)를 파선으로 묘화하고 있고, 도 8에서는 웨이퍼(W)를 실선으로 묘화하고 있다.
보조 안테나(84)는, 주 안테나(83)로부터 보아 회전 테이블(2)의 회전 방향 하류측에서 당해 주 안테나(83)에 근접하도록 배치되어 있고, 주 안테나(83)에 대해 전기적으로 절연되어 있다. 따라서, 이들 안테나(83, 84)를 평면에서 보았을 때의 투영 영역끼리는, 서로 겹치지 않도록 배치되어 있다. 또한, 보조 안테나(84)는 평면에서 보았을 때, 주 안테나(83)보다도 한층 작은 직사각형 영역을 둘러싸도록 배치되어 있고, 회전 테이블(2)의 회전 중심까지의 거리와, 회전 테이블(2)의 외연까지의 거리가 개략 일치하는 위치에 설치되어 있다.
또한, 보조 안테나(84)에 대해서도, 회전 테이블(2)의 회전 방향 상류측 및 하류측에 있어서의 직선 부분(85)이 플라즈마 발생용 가스 노즐(32)을 각각 따르도록 직선 형상으로 배치되어 있다. 보조 안테나(84)의 회전 테이블(2)의 회전 중심측 및 외연측에 있어서의 접속 부분(86)은 회전 테이블(2)의 접선 방향을 따르도록 각각 형성되어 있다. 따라서, 주 안테나(83)에 있어서의 직선 부분(85)과, 보조 안테나(84)에 있어서의 직선 부분(85)은, 서로 평행하게 되어 있다.
보조 안테나(84)에 있어서의 회전 테이블(2)의 회전 방향 상류측의 직선 부분(85)과, 이미 서술한 주 안테나(83)에 있어서의 회전 테이블(2)의 회전 방향 하류측의 직선 부분(85)의 이격 거리 h는, 도 8에 도시하는 바와 같이, 주 안테나(83)에 있어서의 고주파 전계가 보조 안테나(84)에 도달하는 치수로 설정되어 있다. 상기 이격 치수 h는, 구체적으로는 2㎜∼30㎜이다.
즉, 주 안테나(83)에 고주파 전력을 공급하면, 당해 주 안테나(83)를 흐르는 고주파 전류에 의해, 주 안테나(83)가 신장되는 방향의 축 주위로 고주파 전계가 발생한다. 그리고, 이미 서술한 바와 같이, 보조 안테나(84)는 고주파 전원(89)이 접속되어 있지 않고, 주 안테나(83)에 대해 전기적으로 절연되어 있어 뜬 상태(플로팅 상태)로 되어 있다. 따라서, 주 안테나(83)의 주위에 형성되는 고주파 전계에 의해, 주 안테나(83)와 보조 안테나(84) 사이에 있어서의 전자기 유도를 통해, 보조 안테나(84)에는 유도 기전력이 발생하여 유도 전류가 흐른다.
여기서, 보조 안테나(84)를 흐르는 유도 전류의 크기에 대해 검토한다. 즉, 공진 주파수 f(Hz)는, 이하의 식으로 나타내어진다.
Figure pat00001
단, f는 주 안테나(83)[보조 안테나(84)]에 공급되는 고주파 전력의 주파수, L은 보조 안테나(84)의 인덕턴스(H), C는 보조 안테나(84)의 용량값(F)이다. 이 식에 대해, 용량값 C를 나타내는 식으로 변형하면,
Figure pat00002
가 얻어진다.
그리고, 주파수 f 및 인덕턴스 L을, 예를 들어 각각 13.56㎒ 및 2.62μH로 하여 상기 식에 대입하면, 보조 안테나(84)에서 직렬 공진이 일어나는 용량값 C는, 약 52.6pF로 된다. 즉, 보조 안테나(84)의 용량값 C가 52.6pF인 경우에는, 주 안테나(83)로부터 보조 안테나(84)에 전달되는 고주파 전계에 의해 당해 보조 안테나(84)에서 직렬 공진이 일어나, 주 안테나(83)의 하방측의 영역에 더하여, 보조 안테나(84)의 하방측의 영역에서도 플라즈마가 발생한다. 따라서, 본 발명에서는, 보조 안테나(84)에서 공진이 일어나도록, 나아가서는 이 공진의 상태를 조정할 수 있도록, 당해 보조 안테나(84)를 구성하고 있다.
구체적으로는, 보조 안테나(84)에는, 도 1 및 도 4∼도 6에 도시하는 바와 같이, 당해 보조 안테나(84)의 용량값 C를 조정하기 위한 베리어블 콘덴서(가변 용량 콘덴서) 등으로 이루어지는 용량 조정부(200)가 임피던스 조정부로서 설치되어 있다. 즉, 보조 안테나(84)의 길이 방향에 있어서의 일단부측 및 타단부측에는, 당해 보조 안테나(84)의 루프 내에 배치되도록, 용량 조정부(200)의 양 단자의 한쪽 및 다른 쪽이 접속되어 있다. 그리고, 도 2에 도시하는 바와 같이, 용량 조정부(200)에는 모터 등으로 이루어지는 구동부(201)가 접속되어 있고, 당해 구동부(201)를 구동시킴으로써 용량 조정부(200)[보조 안테나(84)]의 용량값을 조정할 수 있도록 구성되어 있다.
이러한 용량 조정부(200)나 구동부(201)의 구성예를 설명하면, 용량 조정부(200)에는, 예를 들어 한 쌍의 대향 전극(도시하지 않음)이 설치되어 있고, 이들 대향 전극 중 한쪽의 전극에는 이미 서술한 구동부(201)로부터 신장되는 도시하지 않은 승강축(구동축)이 접속되어 있다. 이와 같이 하여 구동부(201)를 통해 상기 한쪽의 전극에 있어서의 다른 쪽의 전극에 대한 이격 거리를 변화시킴으로써, 용량 조정부(200)의 용량값, 바꾸어 말하면 보조 안테나(84)의 용량값 C가 조정된다. 그리고, 평면에서 보았을 때, 보조 안테나(84)의 임피던스에 의해 주 안테나(83)와 보조 안테나(84)를 흐르는 전류의 방향이 서로 역방향으로 될 때, 이미 서술한 도 1b에 도시하는 바와 같이, 이들 안테나(83, 84)를 흐르는 전류끼리가 서로 겹치도록(상쇄되지 않도록) 당해 전류의 방향이 정해진다. 이 용량값 C의 조정[구동부(201)의 구동]은, 후술하는 제어부(120)로부터의 제어 신호에 의해 행해진다. 용량 조정부(200)의 용량값의 가변 범위는, 예를 들어 50pF 이하이고, 보조 안테나(84) 전체의 용량값 C의 가변 범위는 50∼500pF이다.
이상 설명한 안테나(83, 84)는, 진공 용기(1)의 내부 영역으로부터 기밀하게 구획되도록 배치되어 있다. 즉, 이미 서술한 플라즈마 발생용 가스 노즐(32)의 상방측에 있어서의 천장판(11)은 평면적으로 보았을 때에 개략 부채형으로 개구되어 있고, 예를 들어 석영 등으로 이루어지는 하우징(90)에 의해 기밀하게 폐색되어 있다. 이 하우징(90)은 도 5 및 도 6에 도시하는 바와 같이, 상방측 주연부가 주위 방향에 걸쳐 플랜지 형상으로 수평하게 신장됨과 함께, 중앙부가 진공 용기(1)의 내부 영역을 향해 우묵하게 들어가도록 형성되어 있고, 이 하우징(90)의 내측에 상기 안테나(83, 84)가 수납되어 있다. 이 하우징(90)은, 고정 부재(91)에 의해 천장판(11)에 고정되어 있다. 또한, 고정 부재(91)에 대해서는, 도 2 이외에서는 묘화를 생략하고 있다.
하우징(90)의 하면은, 당해 하우징(90)의 하방 영역으로의 질소 가스 등의 침입을 저지하기 위해, 도 2 및 도 9에 도시하는 바와 같이, 외연부가 주위 방향에 걸쳐 하방측[회전 테이블(2)측]을 향해 수직하게 신장되어 벽부(92)를 이루고 있다. 이 벽부(92)에 있어서의 회전 테이블(2)의 회전 방향 상류측의 부위와 회전 방향 하류측의 부위는, 도 4 및 도 9로부터 알 수 있는 바와 같이, 당해 회전 테이블(2)의 중앙으로부터 방사 형상으로, 또한 회전 테이블(2)의 주위 방향으로 서로 이격되도록 신장되어 있다. 또한, 벽부(92)에 있어서의 회전 테이블(2)의 외주측의 부위는, 도 5에 도시하는 바와 같이, 당해 회전 테이블(2)의 외주연보다도 외측에 위치하고 있다. 그리고, 이 벽부(92)의 내주면, 하우징(90)의 하면 및 회전 테이블(2)의 상면에 의해 둘러싸인 영역을 「반응 영역(P2)」이라 하면, 이 반응 영역(P2)은, 평면에서 보았을 때, 벽부(92)에 의해 부채 형상으로 되도록 구획되어 있다. 이미 서술한 플라즈마 발생용 가스 노즐(32)은, 이 반응 영역(P2)의 내부에 있어서 회전 테이블(2)의 회전 방향 상류측의 단부에서 상기 벽부(92)의 근방에 배치되어 있다.
즉, 벽부(92)의 하단부는, 도 9에 도시하는 바와 같이, 플라즈마 발생용 가스 노즐(32)이 삽입되는 부위에 대해서는 당해 플라즈마 발생용 가스 노즐(32)의 외주면을 따라 상방측으로 만곡되고, 한편 나머지 부위에 대해서는 주위 방향에 걸쳐 회전 테이블(2)에 근접하는 높이 위치로 되도록 배치되어 있다. 이미 서술한 플라즈마 발생용 가스 노즐(32)의 가스 토출 구멍(33)은, 도 5에 도시하는 바와 같이 반응 영역(P2)의 주위를 둘러싸는 벽부(92) 중 회전 테이블(2)의 회전 방향 상류측의 벽부(92)를 향해 횡방향으로 형성되어 있다.
여기서, 이미 서술한 바와 같이, 웨이퍼(W)는, 회전 테이블(2)에 의해 공전하여, 각 노즐(31, 32)의 하방측의 영역(P1, P2)을 통과한다. 그로 인해, 회전 테이블(2) 상의 웨이퍼(W)에서는, 회전 중심측의 단부와, 회전 테이블(2)의 외주부측의 단부에 있어서, 각 영역(P1, P2)을 통과할 때의 속도(각속도)가 다르다. 구체적으로는, 웨이퍼(W)의 직경 치수가 300㎜(12인치 사이즈)인 경우에는, 상기 회전 중심측의 단부에서는, 상기 외주부측의 단부와 비교하여, 속도가 1/3로 된다.
즉, 회전 테이블(2)의 회전 중심으로부터 상기 회전 중심측의 웨이퍼(W)의 단부까지의 거리를 s로 하면, 당해 회전 중심측의 웨이퍼(W)의 단부가 통과하는 원주의 길이 치수 DI는, (2×π×s)로 된다. 한편, 상기 외주부측의 단부가 통과하는 원주의 길이 치수 DO는, (2×π×(s+300))으로 된다. 그리고, 회전 테이블(2)의 회전에 의해, 웨이퍼(W)는, 상기 길이 치수 DI, DO를 동일한 시간 내에 이동한다. 그로 인해, 회전 테이블(2) 상의 웨이퍼(W)에 있어서의 회전 중심측의 단부 및 외주부측의 단부의 각각의 속도를 VI 및 VO로 하면, 이들 속도 VI, VO의 비 R(VI÷VO)는 (s÷(s+300))으로 된다. 그리고, 상기 거리 s가 150㎜인 경우에는, 상기 비 R은, 1/3로 된다.
따라서, 암모니아 가스의 플라즈마와 같이, 웨이퍼(W) 상에 흡착된 DCS 가스의 성분과의 반응성이 그다지 높지 않은 플라즈마를 사용하는 경우에는, 단순히 플라즈마 발생용 가스 노즐(32)의 근방에서 암모니아 가스를 플라즈마화하였을 뿐이면, 웨이퍼(W)의 외주부측에서는 중심부측보다도 박막(반응 생성물)이 얇아질 우려가 있다.
따라서, 본 발명에서는, 웨이퍼(W)에 대해 균일한 플라즈마 처리를 행하기 위해, 벽부(92)의 형상을 조정하고 있다. 구체적으로는, 도 8에 도시하는 바와 같이, 회전 테이블(2) 상의 웨이퍼(W)에 있어서의 회전 중심측의 단부가 통과하는 반응 영역(P2)의 길이 치수와, 상기 웨이퍼(W)에 있어서의 회전 테이블(2)의 외주부측의 단부가 통과하는 반응 영역(P2)의 길이 치수를 각각 LI, LO로 하면, 이들 길이 치수 LI, LO의 비 (LI÷LO)는 1/3로 되어 있다. 즉, 회전 테이블(2) 상의 웨이퍼(W)가 반응 영역(P2)을 통과하는 속도에 따라서, 벽부(92)의 형상[반응 영역(P2)의 치수]을 설정하고 있다. 그리고, 후술하는 바와 같이, 반응 영역(P2)에 있어서 암모니아 가스의 플라즈마를 가득 채우고 있는 것으로부터도, 웨이퍼(W) 상에서는 플라즈마 처리가 면내에 걸쳐 균일하게 행해진다.
하우징(90)과 안테나(83, 84) 사이에는, 도 4∼도 7에 도시하는 바와 같이, 안테나(83, 84)에 있어서 발생하는 전자계 중 전계 성분이 하방을 향하는 것을 저지함과 함께, 전자계 중 자계를 하방으로 통과시키기 위한 패러데이 실드(95)가 배치되어 있다. 즉, 패러데이 실드(95)는 상면측이 개구되는 개략 상자형으로 되도록 형성되어 있고, 전계를 차단하기 위해, 도전성의 판 형상체인 금속판(도전판)에 의해 구성됨과 함께 접지되어 있다. 이 패러데이 실드(95)의 저면에는, 상기 금속판에 직사각형의 개구부를 형성하여 이루어지는 슬릿(97)이 자계를 통과시키기 위해 설치되어 있다.
각각의 슬릿(97)은, 당해 슬릿(97)에 인접하는 다른 슬릿(97)과 연통되어 있지 않고, 바꾸어 말하면 각각의 슬릿(97)의 주위에는 패러데이 실드(95)를 구성하는 금속판이 주위 방향에 걸쳐 위치하고 있다. 슬릿(97)은, 안테나(83, 84)가 신장되는 방향에 대해 직교하는 방향으로 형성되어 있고, 안테나(83, 84)의 하방 위치에서 안테나(83, 84)의 길이 방향을 따라 복수 개소에 등간격으로 배치되어 있다. 그리고, 슬릿(97)은 플라즈마 발생용 가스 노즐(32)의 상방측에 대응하는 위치에는 형성되어 있지 않고, 따라서 당해 플라즈마 발생용 가스 노즐(32)의 내부에 있어서의 암모니아 가스의 플라즈마화를 저지하고 있다.
여기서, 슬릿(97)은 도 6 및 도 7에 도시하는 바와 같이, 안테나(83, 84)의 각각의 직선 부분(85)의 하방 위치에 형성되어 있는 한편, 당해 직선 부분(85)의 양단부에서 굴곡되는 부분의 하방 위치 및 접속 부분(86)의 하방 위치에는 형성되어 있지 않다. 즉, 안테나(83, 84)의 주위 방향에 걸쳐 슬릿(97)을 형성하려고 하면, 안테나(83, 84)가 굴곡되는 부분(R 부분)에서는, 슬릿(97)에 대해서도 안테나(83, 84)를 따라 굴곡되어 배치된다. 그러나, 상기 굴곡되는 부분에 있어서 안테나(83, 84)의 내측에 대응하는 영역에서는, 서로 인접하는 슬릿(97)끼리가 연통되어 버릴 우려가 있고, 그 경우에는 전계를 차단하는 효과가 작아지게 되어 버린다. 한편, 상기 굴곡되는 부분에 있어서, 서로 인접하는 슬릿(97)이 연통되지 않도록 슬릿(97)의 폭 치수를 좁게 하면, 웨이퍼(W)측에 도달하는 자계 성분의 양이 직선 부분(85)보다도 감소한다. 또한, 안테나(83, 84)의 외측에 대응하는 영역에서 서로 인접하는 슬릿(97)끼리의 사이의 이격 치수를 넓히면, 자계 성분과 함께 전계 성분에 대해서도 웨이퍼(W)측에 도달하여, 당해 웨이퍼(W)에 차징 대미지를 부여해 버릴 우려도 있다.
따라서, 본 발명에서는, 각각의 슬릿(97)을 통해 주 안테나(83)로부터 웨이퍼(W)측에 도달하는 자계 성분의 양을 균일하게 하기 위해, 웨이퍼(W)가 통과하는 위치에 걸치도록 주 안테나(83)에 있어서의 직선 부분(85)을 배치함과 함께, 이 직선 부분(85)의 하방측에 슬릿(97)을 형성하고 있다. 그리고, 직선 부분(85)의 양단부로부터 신장되는 굴곡 부분의 하방측에는, 슬릿(97)을 형성하지 않고, 말하자면 패러데이 실드(95)를 구성하는 도전판을 배치하여, 전계 성분뿐만 아니라 자계 성분도 차단하고 있다. 그로 인해, 후술하는 바와 같이, 회전 테이블(2)의 반경 방향에 걸쳐 플라즈마의 발생량이 균일화된다.
따라서, 어느 임의의 위치에 있어서의 슬릿(97)을 보았을 때, 당해 슬릿(97)의 개구 폭은, 이 슬릿(97)의 길이 방향에 걸쳐 치수가 균일하게 되어 있다. 그리고, 슬릿(97)의 상기 개구 폭은, 패러데이 실드(95)에 있어서의 다른 모든 슬릿(97)에 있어서 균일하도록 조정되어 있다.
이상 설명한 패러데이 실드(95)와 안테나(83, 84) 사이에는, 이들 패러데이 실드(95)와 안테나(83, 84)의 절연을 취하기 위해, 예를 들어 석영으로 이루어지는 절연 부재(94)가 개재되어 있고, 이 절연 부재(94)는 상면측이 개구되는 개략 상자형 형상을 이루고 있다. 또한, 도 8에서는, 안테나(83, 84)와 웨이퍼(W)의 위치 관계를 나타내기 위해, 패러데이 실드(95)를 생략하고 있다. 또한, 도 5 이외에 대해서는, 절연 부재(94)의 묘화를 생략하고 있다.
도 3, 도 4에 도시하는 바와 같이, 회전 테이블(2)의 외주측에 있어서 당해 회전 테이블(2)보다도 약간 하방의 위치에는, 환 형상의 사이드 링(100)이 배치되어 있고, 이 사이드 링(100)의 상면에는, 서로 주위 방향으로 이격되도록 2개소에 배기구(61, 62)가 형성되어 있다. 이들 2개의 배기구(61, 62) 중 한쪽 및 다른 쪽을 각각 제1 배기구(61) 및 제2 배기구(62)라 칭하면, 제1 배기구(61)는 처리 가스 노즐(31)과, 당해 처리 가스 노즐(31)보다도 회전 테이블의 회전 방향 하류측에 있어서의 분리 영역(D) 사이에 있어서, 당해 분리 영역(D)측에 치우친 위치에 형성되어 있다. 제2 배기구(62)는 플라즈마 발생용 가스 노즐(32)과, 당해 플라즈마 발생용 가스 노즐(32)보다도 회전 테이블의 회전 방향 하류측에 있어서의 분리 영역(D) 사이에 있어서, 당해 분리 영역(D)측에 치우친 위치에 형성되어 있다. 따라서, 제2 배기구(62)는, 회전 테이블(2)의 회전 중심과, 벽부(92)에 있어서의 반응 영역(P2)측의 테두리부가 회전 테이블(2)의 외주연과 교차하는 2개의 점을 연결하는 개략 삼각형의 정점 부근에 위치하고 있다.
제1 배기구(61)는 처리 가스 및 분리 가스를 배기하기 위한 것이고, 제2 배기구(62)는 플라즈마 발생용 가스 및 분리 가스를 배기하기 위한 것이다. 그리고, 하우징(90)의 외연측에 있어서의 사이드 링(100)의 상면에는, 당해 하우징(90)을 피하여 가스를 제2 배기구(62)에 통류시키기 위한 홈 형상의 가스 유로(101)가 형성되어 있다. 이들 제1 배기구(61) 및 제2 배기구(62)는, 도 2에 도시하는 바와 같이, 각각 버터플라이 밸브 등의 압력 조정부(65)가 개재 설치된 배기관(63)에 의해, 진공 배기 기구인 예를 들어 진공 펌프(64)에 접속되어 있다.
천장판(11)의 하면에 있어서의 중앙부에는, 도 2에 도시하는 바와 같이, 천장판으로부터 하방측으로 돌출되는 돌출부(5)가 배치되어 있어, 이 돌출부(5)에 의해, 중심부 영역(10)에 있어서 처리 가스와 플라즈마 발생용 가스가 서로 혼합되는 것을 방지하고 있다. 돌출부(5)에 더하여, 처리 가스와 플라즈마 발생용 가스가 서로 혼합되는 것을 억제하기 위해, 회전 테이블(2)의 중심 부근에 래비린스 구조(110)가 설치되어 있다. 래비린스 구조(110)는, 회전 테이블(2)측으로부터 천장판(11)측을 향해 주위 방향에 걸쳐 수직하게 신장되는 벽부와, 천장판(11)측으로부터 회전 테이블(2)을 향해 주위 방향에 걸쳐 수직하게 신장되는 벽부를 회전 테이블(2)의 반경 방향으로 교대로 배치한 구성을 채용하고 있다.
진공 용기(1)의 측벽에는, 도 3∼도 4에 도시하는 바와 같이, 도시하지 않은 외부의 반송 아암과 회전 테이블(2) 사이에 있어서 웨이퍼(W)의 전달을 행하기 위한 반송구(15)가 형성되어 있고, 이 반송구(15)는 게이트 밸브(G)보다 기밀하게 개폐 가능하게 구성되어 있다. 또한, 이 반송구(15)와 대향하는 위치에 있어서의 회전 테이블(2)의 하방측에는, 회전 테이블(2)의 관통구를 통해 웨이퍼(W)를 이면측으로부터 들어올리기 위한 승강 핀(모두 도시하지 않음)이 설치되어 있다.
또한, 이 성막 장치에는, 도 2에 도시하는 바와 같이, 장치 전체의 동작 컨트롤을 행하기 위한 컴퓨터로 이루어지는 제어부(120)가 설치되어 있고, 이 제어부(120)의 메모리 내에는 후술하는 성막 처리를 행하기 위한 프로그램이 저장되어 있다. 이 메모리에는, 웨이퍼(W)에 대해 행하는 처리의 레시피마다, 용량 조정부(200)의 용량값이 저장되어 있다. 즉, 진공 용기(1) 내의 압력이나 사용하는 가스종, 주 안테나(83)에 공급하는 고주파 전력량 등의 레시피에 따라서, 용량 조정부(200)의 최적의 용량값을 실험 등에 의해 미리 구해 두어, 각 레시피에 대응하여 상기 최적의 용량값이 메모리에 기억되어 있다. 상기 프로그램은, 후술하는 장치의 동작을 실행하도록 스텝군이 짜여져 있고, 하드 디스크, 콤팩트 디스크, 광자기 디스크, 메모리 카드, 플렉시블 디스크 등의 기억 매체인 기억부(121)로부터 제어부(120) 내에 인스톨된다.
다음으로, 상술한 실시 형태의 작용에 대해 설명한다. 우선, 게이트 밸브(G)를 개방하여, 회전 테이블(2)을 간헐적으로 회전시키면서, 도시하지 않은 반송 아암에 의해 반송구(15)를 통해 회전 테이블(2) 상에 예를 들어 5매의 웨이퍼(W)를 적재한다. 이어서, 게이트 밸브(G)를 폐쇄하고, 진공 펌프(64)에 의해 진공 용기(1) 내를 진공 상태로 함과 함께, 회전 테이블(2)을 예를 들어 2rpm∼240rpm으로 시계 방향으로 회전시킨다. 그리고, 히터 유닛(7)에 의해 웨이퍼(W)를, 예를 들어 300℃ 정도로 가열한다.
계속해서, 처리 가스 노즐(31)로부터 DCS 가스를 토출함과 함께, 반응 영역(P2)에 있어서의 압력이 진공 용기(1) 내의 다른 영역보다도 양압(陽壓)으로 되도록, 플라즈마 발생용 가스 노즐(32)로부터 암모니아 가스를 토출한다. 또한, 분리 가스 노즐(41, 42)로부터 분리 가스를 토출하고, 분리 가스 공급관(51) 및 퍼지 가스 공급관(72, 73)으로부터도 질소 가스를 토출한다. 그리고, 압력 조정부(65)에 의해 진공 용기(1) 내를 미리 설정한 처리 압력으로 조정한다. 또한, 주 안테나(83)에 대해 전력량이 예를 들어 500W인 고주파 전력을 공급함과 함께, 보조 안테나(84)의 용량 조정부(200)에 대해서는, 주 안테나(83)와 보조 안테나(84)가 공진하는 용량값 C로 되도록 설정한다.
주 안테나(83)에서는, 고주파 전원(89)으로부터 공급되는 고주파 전력에 의해 전자계가 발생하여, 이 전자계 중 패러데이 실드(95)에 의해 전계 성분이 차단되고 자계 성분만이 진공 용기(1)에 도달한다. 한편, 보조 안테나(84)에 대해, 주 안테나(83)에 대해 근접 배치하고 있으므로, 이미 서술한 도 1에 도시하는 바와 같이, 당해 주 안테나(83)의 전자계가 보조 안테나(84)에 도달한다. 그리고, 보조 안테나(84)에서는, 주 안테나(83)로부터 전달되는 전자계에 의해 유도 전류가 흘러, 마찬가지로 전자계가 발생한다. 보조 안테나(84)에서는, 용량 조정부(200)의 용량값을 이미 서술한 바와 같이 설정하고 있으므로, 유도 전류의 직렬 공진이 일어나, 이러한 직렬 공진이 일어나지 않는 경우와 비교하여 전류값이 증대된다. 그리고, 보조 안테나(84)에서 발생한 전자계는, 패러데이 실드(95)에 의해 전계 성분이 차단되고, 자계 성분이 진공 용기(1) 내에 도달한다.
흡착 영역(P1)에서는, 웨이퍼(W)의 표면에 DCS 가스의 성분이 흡착되어 흡착층이 생성된다. 이때, 흡착 영역(P1)을 웨이퍼(W)가 통과하는 데 있어서, 회전 테이블(2)의 외주부측에서는 중앙부측보다도 이동 속도가 빠르다. 그로 인해, 상기 외주부측에서는 상기 중앙부측보다도 흡착층의 막 두께가 얇아지려고 한다. 그러나, DCS 가스의 성분의 흡착은 빠르게 일어나므로, 흡착 영역(P1)을 웨이퍼(W)가 통과하면, 흡착층은 웨이퍼(W)의 면내에 걸쳐 균일하게 형성된다.
반응 영역(P2)에서는, 이미 서술한 바와 같이 제2 배기구(62)의 위치를 설정하고 있으므로, 플라즈마 발생용 가스 노즐(32)로부터 토출된 암모니아 가스는, 회전 테이블(2)의 회전 방향 상류측에 있어서의 벽부(92)에 충돌한 후, 도 10에 도시하는 바와 같이, 당해 제2 배기구(62)를 향해 직선적으로 통류한다. 그리고, 암모니아 가스는, 제2 배기구(62)를 향하는 도중의 경로에서, 도 10에 도시하는 바와 같이, 주 안테나(83)의 하방측에 있어서, 자계에 의해 빠르게 플라즈마화되어 암모니아 라디칼(플라즈마)로 된다. 이 플라즈마는, 이미 서술한 바와 같이 슬릿(97)의 개구 폭을 회전 테이블(2)의 반경 방향에 걸쳐 균일하게 하고 있으므로, 당해 반경 방향을 따라 발생량(농도)이 균일해진다. 이와 같이 하여 플라즈마는, 제2 배기구(62)를 향해 통류해 간다.
그리고, 암모니아 라디칼은, 웨이퍼(W)와의 충돌 등에 의해 불활성화되어 암모니아 가스로 복귀되면, 보조 안테나(84)의 하방측에서 다시 플라즈마화된다. 따라서, 반응 영역(P2)에서는, 당해 반응 영역(P2)에 있어서 진공 용기(1) 내의 다른 영역보다도 양압으로 되도록 설정하고 있는 것으로부터도, 암모니아 가스의 플라즈마가 가득 채워진다.
또한, 반응 영역(P2)의 치수를 이미 서술한 바와 같이 설정하고 있으므로, 회전 테이블(2) 상의 웨이퍼(W)로부터 보면, 플라즈마가 공급되는 시간이 회전 테이블(2)의 반경 방향에 걸쳐 균일해진다. 따라서, 반응 영역(P2)을 웨이퍼(W)가 통과하면, 당해 웨이퍼(W) 상의 흡착층이 면내에 걸쳐 균일하게 질화되어 반응층(질화실리콘막)이 형성된다. 이와 같이 하여 회전 테이블(2)의 회전에 의해 각 웨이퍼(W)가 흡착 영역(P1) 및 반응 영역(P2)을 교대로 통과함으로써, 반응층이 다층에 걸쳐 적층되어 박막이 형성된다.
이상의 일련의 프로세스를 행하고 있는 동안, 하우징(90)의 외주측에 있어서의 사이드 링(100)에 가스 유로(101)를 형성하고 있으므로, 각 가스는, 하우징(90)을 피하도록, 당해 가스 유로(101)를 통해 배기된다. 또한, 하우징(90)의 하단부측 주연부에 벽부(92)를 설치하고 있으므로, 당해 하우징(90) 내에의 질소 가스의 침입이 억제된다.
또한, 흡착 영역(P1)과 반응 영역(P2) 사이에 질소 가스를 공급하고 있으므로, 처리 가스와 플라즈마 발생용 가스(플라즈마)가 서로 혼합되지 않도록 각 가스가 배기된다. 또한, 회전 테이블(2)의 하방측에 퍼지 가스를 공급하고 있으므로, 회전 테이블(2)의 하방측으로 확산되려고 하는 가스는, 상기 퍼지 가스에 의해 배기구(61, 62)측으로 되밀린다. 또한, 중심부 영역(10)에 분리 가스를 공급하고 있으므로, 당해 중심부 영역(10)에서는 처리 가스와 플라즈마 발생용 가스나 플라즈마의 혼합이 억제된다.
상술한 실시 형태에 따르면, 회전 테이블(2) 상에서 공전하는 웨이퍼(W)에 대해 플라즈마 처리를 행하는 데 있어서, 고주파 전원(89)에 접속되는 주 안테나(83) 및 당해 주 안테나(83)에 전기적으로 절연된 보조 안테나(84)를 배치하고 있다. 또한, 주 안테나(83) 및 보조 안테나(84)를 평면에서 보았을 때의 각각의 투영 영역에 대해, 서로 겹치지 않도록 하고 있다. 그리고, 주 안테나(83)를 흐르는 고주파 전류를 통해 보조 안테나(84)에도 전자계를 발생시켜, 주 안테나(83)의 하방측의 영역뿐만 아니라, 보조 안테나(84)의 하방측의 영역에 있어서도 유도 플라즈마를 발생시키고 있다. 그로 인해, 보조 안테나(84)에 대해 고주파 전력을 공급하기 위한 전원을 설치할 필요가 없으므로, 장치의 비용 상승을 억제하면서, 평면에서 보았을 때의 플라즈마 발생 영역[반응 영역(P2)]의 고면적화를 도모할 수 있다. 즉, 본 발명에서는, 공통의 고주파 전원(89)으로부터 주 안테나(83) 및 보조 안테나(84)에 급전하는 구성과 비교하여, 보조 안테나(84)와 고주파 전원(89)을 배선할 필요가 없는 만큼, 배선의 배열을 간략화할 수 있고, 따라서 장치 구성을 간소화(저비용화)할 수 있다.
그리고, 후술하는 실시예로부터도 알 수 있는 바와 같이, 용량 조정부(200)에 있어서의 용량값에 따라서, 주 안테나(83)의 하방 영역과 보조 안테나(84)의 하방 영역에 있어서 발생하는 플라즈마의 농도를 조정할 수 있다. 따라서, 주 안테나(83)에 1개의 고주파 전원(89)을 설치한 것만으로, 이들 안테나(83, 84)에 있어서의 플라즈마 발생량을 조정할 수 있으므로, 플라즈마 처리의 자유도가 높은 장치를 구성할 수 있다. 바꾸어 말하면, 고주파 전원(89)을 이들 안테나(83, 84)마다 개별로 설치하지 않아도, 회전 테이블(2)의 주위 방향에 있어서의 플라즈마 농도를 조정할 수 있다.
또한, 하우징(90)의 하면측 주연부에 벽부(92)를 주위 방향에 걸쳐 형성함과 함께, 당해 벽부(92)에 의해 둘러싸이는 영역인 반응 영역(P2)에 대해, 진공 용기(1)의 다른 영역보다도 양압으로 되도록 암모니아 가스의 토출량을 조정하고 있다. 또한, 플라즈마 발생용 가스 노즐(32)을 반응 영역(P2)에 있어서의 회전 테이블(2)의 회전 방향 상류측에 배치함과 함께, 이 플라즈마 발생용 가스 노즐(32)의 토출 구멍(33)에 대해, 상기 회전 방향 상류측에 있어서의 벽부(92)에 대향하도록 형성하고 있다. 그로 인해, 반응 영역(P2)에의 질소 가스의 침입을 저지할 수 있으므로, 당해 반응 영역(P2)에 걸쳐 웨이퍼(W)와 플라즈마의 접촉 영역을 넓게 확보할 수 있다.
그리고, 회전 테이블(2)의 회전 속도에 의해 내주측과 외주측 사이에서 발생하는 속도차가 해소되도록, 반응 영역(P2)의 레이아웃을 조정하고 있다. 따라서, 이미 서술한 바와 같이 회전 테이블(2)의 반경 방향에 걸쳐 플라즈마의 양이 균일화되고, 또한 플라즈마와 웨이퍼(W)의 접촉 시간이 균일화되어 있으므로, 웨이퍼(W)의 면내에 걸쳐 균일한 플라즈마 처리를 행할 수 있다. 즉, 이미 상세하게 서술한 바와 같이, DCS 가스에 대해서는 웨이퍼(W)에 빠르게 흡착되므로, 흡착 영역(P1)을 그다지 넓게 형성하지 않아도, 흡착층은 웨이퍼(W)의 면내에 걸쳐 균일하게 형성된다. 한편, 이 흡착층을 반응시키는 데 있어서는, 암모니아 가스의 플라즈마는 그다지 반응성이 높지 않다. 그로 인해, 플라즈마의 농도 및 플라즈마와 웨이퍼(W)의 접촉 시간을 균일화함으로써, 반응 생성물의 막 두께를 웨이퍼(W)의 면내에 걸쳐 균일화할 수 있다.
또한, 안테나(83, 84)를 사용하여, 플라즈마를 회전 테이블(2)의 회전 방향을 따라 발생시키고 있으므로, 이미 서술한 바와 같이, 플라즈마를 당해 회전 방향에 걸쳐 넓게 체류시킬 수 있다. 따라서, 장치의 비용 상승을 억제하면서, 이상 설명한 바와 같이 균일성이 높은 처리를 행할 수 있다.
또한, 플라즈마 발생용 가스 노즐(32)의 상방측에는 슬릿(97)을 형성하고 있지 않으므로, 당해 플라즈마 발생용 가스 노즐(32)의 내부 혹은 외벽에 반응 생성물 등의 부착물이 부착되는 것을 억제할 수 있다.
도 11은, 주 안테나(83)와 보조 안테나(84) 사이에서 전자기 유도를 발생시키는 데 있어서, 보조 안테나(84)에 있어서의 회전 테이블(2)의 회전 방향 상류측의 직선 부분(85)에 대해, 평면에서 보았을 때, 주 안테나(83)에 있어서의 회전 테이블(2)의 회전 방향 하류측의 직선 부분(85)과 겹치는 위치에 배치한 예를 나타내고 있다. 즉, 보조 안테나(84)에 있어서의 회전 테이블(2)의 회전 방향 상류측에서 상하 방향으로 적층된 3개의 직선 부분(85)의 각각과, 주 안테나(83)에 있어서의 회전 테이블(2)의 회전 방향 하류측에서 상하 방향으로 적층된 3개의 직선 부분(85)의 각각은, 상하 방향으로 번갈아 교대로 배치되어 있다.
따라서, 주 안테나(83) 및 보조 안테나(84)를 평면에서 보았을 때의 투영 영역을 각각 주 투영 영역 및 보조 투영 영역이라 칭하면, 도 11에서는, 주 투영 영역은, 보조 투영 영역에 대해 일부가 겹침과 함께, 회전 테이블(2)의 회전 방향 상류측의 부위가 밀려나와 있다. 또한, 보조 투영 영역은, 주 투영 영역에 대해 일부가 겹침과 함께, 회전 테이블(2)의 회전 방향 하류측의 부위가 밀려나와 있다. 보조 안테나(84)에서 주 안테나(83)로부터 회전 테이블(2)의 회전 방향 하류측으로 이격된 부위는, 하측을 향해 굴곡되어, 절연 부재(94)에 근접하고 있다. 주 안테나(83)와 보조 안테나(84) 사이의 이격 치수 h는, 이 예에 있어서도 이미 서술한 범위 내로 설정되어 있다. 또한, 도 11에서는, 절연 부재(94)의 묘화를 생략하고 있다.
도 12는, 보조 안테나(84)에 대해, 도 11의 예보다도 더욱 회전 테이블(2)의 회전 방향 상류측에 위치시킨 예를 나타내고 있다. 즉, 보조 안테나(84)에 있어서의 회전 테이블(2)의 회전 방향 상류측의 직선 부분(85)은, 주 안테나(83)에 있어서의 2개의 직선 부분(85, 85) 사이에 위치하고 있다. 그리고, 상기 이격 치수 h에 대해, 이미 서술한 예와 동일한 범위 내로 설정되어 있다. 이 예에 있어서도, 주 투영 영역 및 보조 투영 영역은, 보조 투영 영역 및 주 투영 영역에 대해 각각 적어도 일부가 밀려나와 있다. 즉, 본 발명에서는, 주 투영 영역 및 보조 투영 영역의 각각에 대해, 다른 쪽의 투영 영역에 포함되지 않도록 배치함으로써, 주 안테나(83)만을 설치한 경우와 비교하여 플라즈마 발생 영역의 고면적화를 도모할 수 있다.
도 13은, 보조 안테나(84)에 대해, 회전 테이블(2)의 외연 근방의 위치에 배치한 예를 나타내고 있다. 이러한 레이아웃을 채용함으로써, 회전 테이블(2)의 중심측의 영역과 비교하여 상기 외연 부근의 영역의 플라즈마 농도를 높게 할 수 있고, 따라서 회전 테이블(2)의 반경 방향에 있어서의 플라즈마의 농도를 조정할 수 있다. 도 14는, 주 안테나(83)와 보조 안테나(84)를 회전 테이블(2)의 반경 방향으로 배열한 예를 나타내고 있다. 이 예에서는, 주 안테나(83) 및 보조 안테나(84)는 각각 회전 테이블(2)의 회전 중심측 및 외연측에 배치되어 있다. 도 14와 같이 각 안테나(83, 84)를 배치함으로써, 주 안테나(83)만을 사용한 경우와 비교하여, 회전 테이블(2)의 반경 방향에 있어서 플라즈마가 발생하는 영역을 넓힐 수 있다. 또한, 도 15는, 평면에서 보았을 때, 안테나(83, 84)를 각각 타원 형상으로 형성한 예를 나타내고 있다. 도 15에 있어서도, 상기 이격 치수 h는 이미 서술한 범위 내로 설정되어 있다. 또한, 도 13∼도 15에서는, 안테나(83, 84) 등을 간략화하여 묘화하고 있다.
이상 설명한 장치를 사용하여 성막하는 성막종으로서는, 질화실리콘막 대신에, 산화실리콘(SiO2)막이나 질화티탄(TiN)막 등을 성막해도 된다. 산화실리콘막의 경우에는, 플라즈마 발생용 가스로서 예를 들어 산소(O2) 가스 및 오존(O3) 가스 중 적어도 한쪽이 사용된다. 질화티탄막의 경우에는, 흡착 가스 및 플라즈마 발생용 가스로서, 각각 티탄을 포함하는 유기계 가스 및 암모니아 가스가 사용된다. 또한, 산화실리콘막이나 질화티탄막 이외에도, 질화물, 산화물 또는 수소화물로 이루어지는 반응 생성물의 성막에 본 발명을 적용해도 된다. 질화물, 산화물 및 수소화물을 각각 성막하는 경우에 사용되는 플라즈마 발생용 가스로서는, 각각 암모니아 가스, 산소 가스 및 수소(H2) 가스 등을 들 수 있다.
또한, 흡착 영역(P1)으로부터 보아 회전 테이블(2)의 회전 방향 하류측, 또한 반응 영역(P2)으로부터 보아 회전 테이블(2)의 회전 방향 상류측의 위치에, 이상 설명한 플라즈마 발생용 가스 노즐(32)이나 하우징(90) 및 안테나(83, 84)로 이루어지는 구성을 배치하여, 당해 위치에 있어서 별도의 플라즈마 처리를 행해도 된다. 이 경우에는, 상기 별도의 플라즈마 처리는, 아르곤(Ar) 가스를 플라즈마 발생용 가스로서 사용함으로써, 웨이퍼(W) 상에 생성된 반응 생성물의 플라즈마 개질 처리를 행해도 된다. 또한, 이러한 플라즈마 개질 처리를 행하는 경우에는, 반응 생성물을 복수층 적층할 때마다, 당해 플라즈마 개질 처리를 행해도 된다. 즉, 회전 테이블(2)이 복수회 회전할 때마다, 플라즈마 개질 처리를 행해도 된다.
여기서, 이미 서술한 공진 주파수에 대한 식으로부터도 알 수 있는 바와 같이, 보조 안테나(84)에서 직렬 공진을 일으키게 하는 데 있어서, 보조 안테나(84)의 용량값 C[용량 조정부(200)의 용량값] 대신에, 혹은 당해 용량값 C와 함께, 보조 안테나(84)의 인덕턴스 L이나 고주파 전원(89)의 주파수 f에 대해 조정해도 된다. 구체적으로는, 보조 안테나(84)의 길이 방향에 있어서의 일단부측을 타단부측에 접속하여 루프 형상의 코일을 구성하는 데 있어서, 상기 일단부측을 상기 타단부측에 접속하는 접속점을 당해 타단부측의 근방 위치에 복수 개소에 형성해 두고, 이 접속점의 선택을 통해 인덕턴스 L[보조 안테나(84)의 길이 치수]을 조정해도 된다. 또한, 고주파 전원(89)으로서 출력 주파수 f를 변경 가능한 구성을 사용해도 된다. 따라서, 본 발명에 있어서의 「임피던스 조정부」라 함은, 용량값을 가변할 수 있는 가변 용량 콘덴서, 인덕턴스값을 가변할 수 있는 가변 인덕턴스 및 주파수를 가변할 수 있는 발진 장치 중 적어도 하나이다. 또한, 용량 조정부(200)를 설치하지 않고, 보조 안테나(84)의 용량값 C를 미리 주 안테나(83)에 대해 공진하는 값으로 조정해도 된다. 이 경우에는, 보조 안테나(84)의 루프 내에 설치되는 콘덴서라 함은, 당해 보조 안테나(84)의 용량 성분으로 된다.
[실시예]
계속해서, 안테나(83, 84)의 하방측에서 플라즈마가 발생하는 것을 확인하기 위해 행한 실험에 대해 설명한다. 이 실험은, 도 16에 도시하는 바와 같이, 실험용 챔버의 내부에, 평면에서 보았을 때 개략 직사각 형상으로 되도록 형성한 주 안테나(83)와, 당해 주 안테나(83)에 근접한 위치에서 개략 사각 형상으로 형성한 보조 안테나(84)를 배치하여 행하였다. 이 예에서는, 주 안테나(83)의 용량값에 대해서도 조정 가능하게 구성하기 위해, 주 안테나(83)의 길이 방향에 있어서의 일단부측과 고주파 전원(89) 사이에도 용량 조정부(201)를 배치함과 함께, 주 안테나(83)의 타단부측과 어스 사이에도 용량 조정부(202)를 배치하였다. 또한, 보조 안테나(84)에는, 이미 서술한 바와 같이 용량 조정부(200)를 배치하였다.
그리고, 보조 안테나(84)측에 있어서의 용량 조정부(200)의 용량값을 이하의 표의 실험예 1∼4와 같이 다양하게 변경함과 함께, 각 안테나(83, 84)를 흐르는 전류값을 측정하였다. 그리고, 각각의 실험예 1∼4의 조건에서 챔버 내에 플라즈마를 발생시켜, 플라즈마의 발광 상태를 촬영하였다. 또한, 이 실험에 대해서는, 플라즈마 발생용 가스로서 아르곤(Ar)과 산소(O2) 가스의 혼합 가스를 사용하였다.
Figure pat00003
그 결과, 도 17∼도 20에 나타내는 바와 같이, 용량 조정부(200)의 용량값에 따라서 플라즈마의 발광 분포가 변화되어 있고, 도 17→도 18→도 19→도 20을 향함에 따라, 플라즈마의 발생 영역(각 도 17∼도 20에 있어서 백색으로 보이는 부분)이 주 안테나(83)의 하방측으로부터 보조 안테나(84)의 하방측으로 이동하고 있었다. 구체적으로는, 도 17에서는, 플라즈마는, 주로 주 안테나(83)의 하방 위치에서 발생하고 있다. 도 18에서는, 플라즈마는, 주 안테나(83) 및 보조 안테나(84)의 외연를 따르도록, 이들 안테나(83, 84)에 걸치도록 형성되어 있었다. 도 19에서는, 플라즈마는, 안테나(83, 84)가 대향하는 위치에서 강하게 발생하고 있고, 당해 위치로부터 주 안테나(83)측 및 보조 안테나(84)측을 향함에 따라 약해지고 있었다. 또한, 도 20에서는, 플라즈마는 주로 보조 안테나(84)의 하방 위치에서 발생하고 있다.
그리고, 이미 서술한 표에 병기한 바와 같이, 주 안테나(83) 및 보조 안테나(84)를 흐르는 전류값에 대해서도, 도 17∼도 20에 있어서의 플라즈마의 발광 상태에 대응하여 변화되어 있었다. 즉, 도 17→도 18→도 19→도 20을 향함에 따라, 주 안테나(83)에 있어서의 전류값은 작아지고, 한편 보조 안테나(84)에 있어서의 전류값은 증가하고 있었다. 이상의 실험 결과로부터, 이미 상세하게 서술한 바와 같이, 주 안테나(83)의 하방측에 있어서의 플라즈마를, 말하자면 보조 안테나(84)의 하방측에 걸치도록 넓히는 것이 가능하다(도 18, 도 19). 또한, 예를 들어 성막 처리를 개시할 때, 플라즈마를 빠르게 발생시키고자 하는 경우에는, 주 안테나(83)의 하방측에서 국소적으로 강한 플라즈마를 발생시키는 것도 가능하다(도 17).
도 21은, 이상 설명한 용량 조정부(200)의 용량값과, 보조 안테나(84)를 흐르는 고주파 전류의 값의 상관 관계를 모식적으로 나타낸 곡선을 나타내고 있고, 횡축이 상기 용량값, 종축이 상기 고주파 전류의 값으로 되어 있다. 이 곡선은, 위로 볼록한 2차 곡선으로 되어 있고, 주 안테나(83)에 대해 보조 안테나(84)의 직렬 공진이 일어나는 용량값으로 될 때, 보조 안테나(84)를 흐르는 전류값이 최대로 되어 있다. 이미 서술한 바와 같이 안테나(83, 84) 사이에 걸쳐 넓은 플라즈마를 발생시키기 위해서는, 용량 조정부(200)의 용량값에 대해, 보조 안테나(84)를 흐르는 전류값이 가능한 한 커지도록 설정하는 것이 바람직하다. 구체적으로는, 상기 용량값에 대해, 안테나(83, 84) 사이에서 직렬 공진이 일어나는 전류값의 85% 이상이 얻어지는 전류값으로 되도록 설정하는 것이 바람직하다.
본 발명은, 회전 테이블 상에서 공전하는 기판에 대해 플라즈마 처리를 행하는 데 있어서, 고주파 전력이 공급되는 주 안테나, 및 당해 주 안테나에 대해 전기적으로 절연된 보조 안테나를 배치하고 있다. 또한, 이들 주 안테나 및 보조 안테나를 평면에서 보았을 때의 각각의 투영 영역에 대해, 다른 쪽의 투영 영역에 대해 적어도 일부가 겹치지 않도록 주 안테나 및 보조 안테나를 배치하고 있다. 그리고, 주 안테나와 보조 안테나 사이의 전자기 유도를 통해, 주 안테나에 더하여 보조 안테나에 있어서도 유도 플라즈마를 발생시키고 있다. 따라서, 보조 안테나에 대해, 주 안테나와는 별도의 고주파 전원을 설치할 필요가 없으므로, 장치의 비용 상승을 억제하면서, 평면에서 보았을 때의 플라즈마 발생 영역의 고면적화를 도모할 수 있다.

Claims (11)

  1. 기판에 대해 플라즈마 처리를 행하는 플라즈마 처리 장치에 있어서,
    진공 용기와,
    상기 진공 용기 내에 설치되고, 기판을 적재하는 기판 적재 영역을 공전시키기 위한 회전 테이블과,
    상기 기판에 처리 가스를 공급하기 위한 처리 가스 공급부와,
    상기 기판의 통과 영역에 대향하도록 설치되고, 고주파 전력이 공급되어 처리 가스를 여기하여, 유도 결합 플라즈마를 발생시키기 위한 코일 형상의 주 안테나와,
    상기 주 안테나에 대해 전자기 유도가 가능한 위치에서 전기적으로 절연된 상태로 배치됨과 함께, 평면적으로 보았을 때 상기 주 안테나의 투영 영역의 적어도 일부와 그 투영 영역이 겹치지 않도록 설치되고, 상기 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키기 위한 코일 형상의 보조 안테나와,
    상기 보조 안테나의 루프 내에 설치되는 콘덴서를 구비한, 플라즈마 처리 장치.
  2. 제1항에 있어서,
    상기 보조 안테나의 루프 내에는, 임피던스를 조정할 수 있는 임피던스 조정부가 설치되어 있는, 플라즈마 처리 장치.
  3. 제2항에 있어서,
    상기 임피던스 조정부는, 용량값을 가변할 수 있는 가변 용량 콘덴서인, 플라즈마 처리 장치.
  4. 제2항에 있어서,
    상기 임피던스 조정부는, 당해 임피던스 조정부의 임피던스를 바꾸어 보조 안테나에 흐르는 전류를 변화시켰을 때 얻어지는 당해 전류의 최대값의 85% 이상의 전류가 보조 안테나에 흐르도록 조정되어 있는, 플라즈마 처리 장치.
  5. 제1항에 있어서,
    상기 처리 가스는, 기판의 표면을 질화 또는 산화하기 위한 가스인, 플라즈마 처리 장치.
  6. 제5항에 있어서,
    기판의 표면을 질화하는 가스는, 암모니아 가스 및 질소 가스 중 적어도 한쪽을 포함하는 가스인, 플라즈마 처리 장치.
  7. 제5항에 있어서,
    기판의 표면을 산화하는 가스는, 산소 가스 및 오존 가스 중 적어도 한쪽을 포함하는 가스인, 플라즈마 처리 장치.
  8. 제1항에 있어서,
    상기 주 안테나는, 상기 기판의 통과 영역에 걸치도록 상기 회전 테이블의 중심측으로부터 외연측을 향해 신장되어 있고,
    상기 보조 안테나는, 상기 주 안테나에 대해 상기 회전 테이블의 회전 방향 하류측에 배치되어 있는, 플라즈마 처리 장치.
  9. 제1항에 있어서,
    상기 주 안테나에 있어서의 상기 보조 안테나측의 테두리부와, 상기 보조 안테나에 있어서의 상기 주 안테나측의 테두리부는, 평면에서 보았을 때 서로 이격되도록 설치되어 있는, 플라즈마 처리 장치.
  10. 제9항에 있어서,
    상기 주 안테나에 있어서의 상기 보조 안테나측의 테두리부와, 상기 보조 안테나에 있어서의 상기 주 안테나측의 테두리부 사이의 이격 치수는 2㎜∼30㎜인, 플라즈마 처리 장치.
  11. 기판에 대해 플라즈마 처리를 행하는 플라즈마 처리 방법에 있어서,
    진공 용기 내에서, 회전 테이블 상의 기판 적재 영역에 기판을 적재하여, 회전 테이블에 의해 이 기판을 공전시키고,
    상기 기판의 표면에 처리 가스를 공급하고,
    상기 회전 테이블에 대향하도록 배치된 코일 형상의 주 안테나에 대해 고주파 전력을 공급함으로써, 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키고,
    상기 주 안테나에 대해 전자기 유도가 가능한 위치에서 전기적으로 절연된 상태로 배치됨과 함께, 평면적으로 보았을 때 상기 주 안테나의 투영 영역의 적어도 일부와 그 투영 영역이 겹치지 않도록 설치됨과 함께 상기 주 안테나에 대해 전기적으로 뜬 상태로 배치된 코일 형상의 보조 안테나에, 상기 주 안테나와의 전자기 유도에 의해 유도 전류를 발생시켜, 상기 처리 가스를 여기하여 유도 결합 플라즈마를 발생시키고,
    상기 보조 안테나의 루프 내에 설치되는 콘덴서에 의해, 당해 보조 안테나에 있어서의 유도 전류를 공진시키는, 플라즈마 처리 방법.
KR1020140158044A 2013-11-14 2014-11-13 플라즈마 처리 장치 및 플라즈마 처리 방법 KR101802022B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013236013A JP6248562B2 (ja) 2013-11-14 2013-11-14 プラズマ処理装置及びプラズマ処理方法
JPJP-P-2013-236013 2013-11-14

Publications (2)

Publication Number Publication Date
KR20150056061A true KR20150056061A (ko) 2015-05-22
KR101802022B1 KR101802022B1 (ko) 2017-11-27

Family

ID=53044029

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140158044A KR101802022B1 (ko) 2013-11-14 2014-11-13 플라즈마 처리 장치 및 플라즈마 처리 방법

Country Status (5)

Country Link
US (1) US9502215B2 (ko)
JP (1) JP6248562B2 (ko)
KR (1) KR101802022B1 (ko)
CN (1) CN104630748B (ko)
TW (1) TWI619139B (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017107963A (ja) * 2015-12-09 2017-06-15 東京エレクトロン株式会社 プラズマ処理装置及び成膜方法
JP6584355B2 (ja) * 2016-03-29 2019-10-02 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6890497B2 (ja) * 2017-02-01 2021-06-18 東京エレクトロン株式会社 プラズマ処理装置
KR101979597B1 (ko) * 2017-09-21 2019-05-20 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948458A (en) * 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
EP1230664B1 (en) * 1999-11-15 2008-05-07 Lam Research Corporation Processing systems
JP3462865B2 (ja) * 2001-07-10 2003-11-05 三菱重工業株式会社 給電アンテナ及び半導体製造装置
US6842147B2 (en) * 2002-07-22 2005-01-11 Lam Research Corporation Method and apparatus for producing uniform processing rates
WO2008016836A2 (en) * 2006-07-29 2008-02-07 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
JP5694721B2 (ja) * 2009-10-27 2015-04-01 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US9313872B2 (en) * 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP5644719B2 (ja) * 2011-08-24 2014-12-24 東京エレクトロン株式会社 成膜装置、基板処理装置及びプラズマ発生装置
JP5712874B2 (ja) * 2011-09-05 2015-05-07 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体

Also Published As

Publication number Publication date
CN104630748B (zh) 2018-04-27
JP6248562B2 (ja) 2017-12-20
JP2015095628A (ja) 2015-05-18
TWI619139B (zh) 2018-03-21
CN104630748A (zh) 2015-05-20
KR101802022B1 (ko) 2017-11-27
US9502215B2 (en) 2016-11-22
TW201532109A (zh) 2015-08-16
US20150132505A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
KR101563773B1 (ko) 성막 장치, 성막 방법 및 기억 매체
KR101672078B1 (ko) 성막 장치, 기판 처리 장치 및 성막 방법
KR101654968B1 (ko) 기판 처리 장치 및 성막 방법
JP6051788B2 (ja) プラズマ処理装置及びプラズマ発生装置
JP5353905B2 (ja) プラズマ処理装置及び酸化膜の形成方法
KR101536805B1 (ko) 성막 장치, 성막 방법 및 기억 매체
KR101888224B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
US8608902B2 (en) Plasma processing apparatus
KR101895658B1 (ko) 성막 장치
KR102198727B1 (ko) 보호막 형성 방법
US8336490B2 (en) Plasma processing apparatus
KR101802022B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 방법
KR20180098136A (ko) 성막 장치
JP2017107963A (ja) プラズマ処理装置及び成膜方法
KR101990667B1 (ko) 성막 장치
US20210351005A1 (en) Plasma processing apparatus and plasma processing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant