KR20150054302A - Method to transform bovine lactoferrin to Chlorella by electroporation - Google Patents

Method to transform bovine lactoferrin to Chlorella by electroporation Download PDF

Info

Publication number
KR20150054302A
KR20150054302A KR1020130136574A KR20130136574A KR20150054302A KR 20150054302 A KR20150054302 A KR 20150054302A KR 1020130136574 A KR1020130136574 A KR 1020130136574A KR 20130136574 A KR20130136574 A KR 20130136574A KR 20150054302 A KR20150054302 A KR 20150054302A
Authority
KR
South Korea
Prior art keywords
lactoferrin
chlorella
recombinant
gene
electroporation
Prior art date
Application number
KR1020130136574A
Other languages
Korean (ko)
Inventor
구정모
김학응
박동준
Original Assignee
박복희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박복희 filed Critical 박복희
Priority to KR1020130136574A priority Critical patent/KR20150054302A/en
Publication of KR20150054302A publication Critical patent/KR20150054302A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/40Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for expressing the cow-derived lactoferrin proteins by using microalgae chlorella. More precisely, the present invention builds recombinant lactoferrin expression vectors by inserting the lactoferrin genes optimized with the codons appropriate for the chlorella to pCAMBIA1304. The expression vectors prepared by using the method are transformed through an electroporation process using the chlorella to express the lactoferrin proteins. According to the present invention, the recombinant lactoferrin production is increased when the chlorella included in the recombinant lactoferrin expression system is mass-produced to use the recombinant lactoferrin proteins as a substitute of the antibiotics for animals.

Description

전기천공법으로 젖소 락토페린 유전자를 클로렐라에 형질전환하기 위한 방법{Method to transform bovine lactoferrin to Chlorella by electroporation}[0001] The present invention relates to a method for transforming a cow lactoferrin gene into chlorella by electroporation,

본 발명은 미세조류인 클로렐라에서 젖소 유래 재조합 락토페린를 형질전환하는 방법에 관한 것으로서, 더욱 정확하게는 젖소 유래 락토페린 유전자를 클로렐라 뉴클레오타이드에 적합하게 코돈 최적화된 락토페린 유전자를 클로렐라에 전기천공법으로 형질전환하여 재조합 락토페린을 발현하는 것을 특징으로 하는 발현 방법이다.The present invention relates to a method for transforming a recombinant lactoferrin derived from a cow, which is a microalgae, into a recombinant lactoferrin derived from a cow, by transforming the lactoferrin gene of a cow into a chlorella with an appropriate codon-optimized lactoferrin gene for chlorella nucleotide by electrophoresis, Is expressed.

락토페린(lactoferrin)은 철과 결합하는 단백질인 트랜스페린(transferrin)의 일종으로 주로 모유나 우유, 혈액, 침, 눈물, 점액 분비물 등에 존재하고 있다. 최초의 락토페린은 소의 유즙으로부터 정제, 동정되었고 곧 여러 포유동물의 유즙에서도 차례로 분리, 정제되었다. 락토페린이 처음 발견되었을 때 붉은색을 띠는 단백질이라는 의미에서 '붉은 단백질(red protein)'이라고 불렸다. 이 붉은색은 락토페린이 철과 결합함으로써 나타나는 것으로 철 이온과 결합하지 않은 락토페린은 무색이며 철과 결합하는 락토페린의 성질은 이 단백질이 생체 내에서 여러가지 기능을 발휘하는 데 있어서 매우 중요한 특성이 되고 있다. 젓소 유래 락토페린은 분자량이 약 7만인 당단백질로서 은행잎과 같은 나뭇잎 모양의 로브(lobe) 2개가 약간 빗대어져 겹쳐진 모양을 하고 있으며 각 로브에는 철이온과 결합하는 결합부위가 1개씩 존재한다. 그러므로 락토페린 1분자는 2개의 철이온과 결합하게 된다. 철이온과 결합하는 락토페린의 결합력은 트랜스페린에 비해 약 260배 정도 강하며 락토페린의 이러한 성질은 철의 수송이라는 의미보다는 철을 포획(capture)하는 것에 그 본질적인 기능이 있다. Lactoferrin is a type of transferrin, a protein that binds iron, and is mainly found in milk, milk, blood, saliva, tears, mucus secretions, and the like. The first lactoferrin was purified from bovine milk, and soon it was separated and purified in the milk of several mammals. When lactoferrin was first discovered, it was called 'red protein' in the sense that it was a reddish protein. This red color appears as a result of binding of lactoferrin to iron. The lactoferrin that is not bound to iron ion is colorless, and the property of lactoferrin bound to iron is a very important characteristic in the function of this protein in vivo. Lactoferrin derived from a cow is a glycoprotein with a molecular weight of about 70,000. It has two leaf-like lobes like ginkgo bilob, slightly overlapping each other, and each lobe has one binding site that binds with iron. Therefore, one molecule of lactoferrin is bound to two iron ions. The binding of lactoferrin to iron ion is about 260 times stronger than that of transferrin, and this property of lactoferrin has an essential function in capturing iron rather than the transport of iron.

락토페린의 생물학적 활성의 대표적인 역할을 항균 활성이며, 그 외에도 항바이러스 작용, 항암작용, 항염증작용 등 다방면에 효과적인 것으로 보고되었다(Y. K. Rye and W. S. Kim. Current trends in lactoferrin research and development. 2009. Korean J. Dairy Sci. Technol., Vol. 27(1), pp. 19~28). 이와 같은 훌륭한 기능을 가진 락토페린은 유즙에 함량이 많으며 그 중에서도 분만 후 며칠간 분비되는 노르스름하고 묽은 젖인 초유(colostrums)에 가장 많이 함유돼 있는데 사람의 초유에는 6∼8mg/ℓ가 들어있고 수유 기간에 분비되는 모유에도 약 2mg/ℓ가 들어있다. 우유의 초유는 1.2mg/ℓ 일반 우유에는 0.1~0.2mg/ℓ가 들어있다. 현재는 우유에서 락토페린을 정제하여 사용하고 있는 실정이다. It has been reported that lactoferrin is an antimicrobial activity that is representative of the biological activity of lactoferrin, and it is reported to be effective in various aspects such as antiviral action, anti-cancer activity, anti-inflammatory action (YK Rye and WS Kim. Dairy Sci. Technol., Vol. 27 (1), pp. 19-28). Lactoferrin, which has such a good function, has a high content in lactose, and is most abundant in colostrum, which is a yellowish and diluted milk which is secreted for a few days after labor. It is contained in human colostrum 6 to 8 mg / The breast milk contains about 2mg / l. Colostrum of milk contains 1.2mg / ℓ and 0.1 ~ 0.2mg / ℓ in general milk. Currently, lactoferrin is purified from milk and used.

이러한 다기능성 락토페린 생산량이 매우 적기 때문에 이 단백질을 재조합 단백질 생산하기 위한 연구 개발이 수행되었다. 인체 락토페린을 포유동물로 부터 재조합 락토페린을 발현하는 방법(대한민국 특허공보 0192718호)과 곤충세포를 이용하여 인체 락토페린을 발현한는 방법(대한민국 특허공보 0331981호)이 있지만, 재조합 락토페린을 생산하기 위한 비용이 높기 때문에 경제성이 약하다. 재조합 락토페린을 발현하기 위해서 미생물을 사용하기도 하였다. 원핵생물인 바실러스 균주를 이용한 재조합 락토페린 발현 방법(대한민국 특허공보 0543462호), 진핵 생물인 곰팡이 아스퍼질러스를 이용한 재조합 인간 락토페린 제조 방법(대한민국 특허공보 0383436호) 및 효모인 피치아를 이용한 인간 락토페린 생산 방법(대한민국 특허공보 0468593호) 등이 고안 되었다. 또한 식물을 재조합 락토페린 발현하기 위해 활용되었다. 식물세포 배양에서 인간락토페린을 대량 생산하는 방법(대한민국 특허공보 0551713호), 벼를 이용한 인간 락토페린 생산 방법(미국 특허 7,276,646)등이 고안되었다.  Because of the very low production of this multifunctional lactoferrin, research and development has been conducted to produce recombinant proteins of this protein. There is a method of expressing human lactoferrin by recombinant lactoferrin from a mammal (Korean Patent Publication No. 0192718) and a method of expressing human lactoferrin using insect cells (Korean Patent Publication No. 0331981), but the cost for producing recombinant lactoferrin It is not economical because it is high. Microorganisms have also been used to express recombinant lactoferrin. (Korean Patent Publication No. 0543462) using a prokaryotic Bacillus strain (Korean Patent Publication No. 0543462), a method for producing a recombinant human lactoferrin using a fungus aspergillus as a eukaryotic organism (Korean Patent Publication No. 0383436) and a human lactoferrin production using a yeast strain (Korean Patent Publication No. 0468593). Plants were also utilized to express recombinant lactoferrin. A method for mass production of human lactoferrin in plant cell culture (Korean Patent Publication No. 0551713), and a method for producing human lactoferrin using rice (U.S. Patent No. 7,276,646).

현재 락토페린은 재조합 락토페린보다 우유에서 정제한 락토페린이 시장을 점령하고 있다. 우선 락토페린에 대한 활용 용도가 다양하지만, 생산량이 너무 작기 때문에 락토페린의 생산량을 높이기 위해서 다양한 방법들이 시도 되고 있다.Currently, lactoferrin is lactoferrin purified from milk rather than recombinant lactoferrin. First, lactoferrin is used for a variety of applications, but because the production is too small, various methods have been tried to increase the production of lactoferrin.

KRKR 01291590129159 A1A1

현재 상업적으로 구할 수 있는 재조합 단백질의 대부분은 세균이나 효모 또는 동물세포의 배양을 위해 설계된 생물반응기를 이용하여 생산되고 있다. 세균에 의한 단백질의 발현시스템에는 splicing, 당화, 단백질assembly 등의 전사 혹은 번역 후의 조정과정이 결핍되어 있다. 또한 세균성 endotoxin과 단백질 분해효소 등의 불순물도 혼재될 가능성이 높다. 진핵세포인 효모에 의한 발현시스템도 당화과정을 충실하게 실현하지는 못한다. 현재 의료 단백질의 대부분은 동물세포 배양을 통해 생산되고 있지만 대량 생산이 쉽지않고 배지가 고가이며 오염되기 쉬운데다가 발현량이 적어서 생산 비용이 높다. 형질전환 동물은 제조비용이 마리당 50만 달러가 소요되며 노동집약적인 관리가 필요하고 대량생산하기에 오랜 시간이 필요하다.     Most of the commercial commercially available recombinant proteins are produced using bioreactors designed for the cultivation of bacteria, yeast or animal cells. Protein expression systems by bacteria are lacking in transcriptional or post-translational coordination processes such as splicing, glycation, and protein assembly. In addition, there is a high possibility that bacterial endotoxin and protease and other impurities are mixed. Eukaryotic expression system by yeast does not faithfully realize glycosylation process. Currently, most of the medical proteins are produced through animal cell cultivation, but mass production is not easy, the medium is expensive, is easily contaminated, and the expression amount is low and the production cost is high. Transgenic animals cost up to $ 500,000 per production, require labor-intensive management, and require a long time to mass-produce.

형질전환 식물은 안정성과 기능성을 갖춘 단백질의 대량생산을 위해 비교적 많은 장점을 지닌 발현 시스템이다. 백신, 항체, 효소, 호르몬, 의료단백질 등의 상업화를 위해서는 발현량이 세포 내 수용성 단백질총량의 최소 5%까지 차지하여야 하는데 일반적으로는 0.001~46.1% 범위이다. 일반적으로 Pseudomonas aeruginosa 등 일부 독성 세균이나 곰팡이를 제외한 나머지 주요 인간병원체들은 식물을 숙주로 삼지 않는다. 식물성 바이러스는 인체나 동물을 감염시키지 않으며 동물성 바이러스도 식물체에 작동하지 않는다고 알려져 있다. 유전자변형식물에 의한 환경오염 식물성분에 대한 엘레르기 반응, 단백질의 오염, 의약 단백질의 허가 규제 등의 문제점도 있다.      Transgenic plants are an expression system with relatively many advantages for the mass production of proteins with stability and functionality. For commercialization of vaccines, antibodies, enzymes, hormones, and medical proteins, the expression level should be at least 5% of the total amount of water-soluble proteins in the cell, generally in the range of 0.001 to 46.1%. In general, the major human pathogens, except for some toxic bacteria and fungi, such as Pseudomonas aeruginosa, do not host the plant. Plant viruses do not infect humans or animals, and animal viruses are known to not work on plants. Environmental pollution caused by genetically modified plants There are also problems such as an enzyme reaction on plant components, contamination of proteins, regulation of permission of pharmaceutical proteins.

지난 십년 이상 관련된 유전공학적 기술이 개발되고 연구되어 온 진핵성 미세조류가 다른 종류의 균주가 가지는 문제점들을 해결하기 위해 대안적인 발현시스템이 될 수 있다. 최근에 미세조류에 의한 항체, 살충제, 백신의 생산에 관한 연구가 많이 진행되고 있다. 미세조류는 일반 농작물에는 적합하지 않는 생육조건에서도 대규모로 배양할 수 있다는 잠재성 때문에 천연성분의 생산성 증가, 신규 물질의 합성 등을 위한 유전자 조작의 대상이 된다. 미세조류에 대한 유전자 조작기술은 아직 초보수준에 머물러 있으며 미세조류로부터 생산된 재조합 생산물들 중 상용화된 것은 아직 없다.  Eukaryotic microalgae, which have been developed and studied for over a decade or more, can be an alternative expression system to solve the problems of other strains. Recently, studies on the production of antibodies, insecticides and vaccines by microalgae have been conducted. Microalgae are subject to genetic manipulation for increased productivity of natural ingredients and synthesis of new substances because of the potential for large-scale cultivation under conditions of growth that are not suitable for general crops. Genetic engineering techniques for microalgae are still at a novice level and none of the recombinant products produced from microalgae have been commercialized yet.

클로렐라와 같은 미세녹조류에 외래 유전자를 도입하여 형질전환하기 위한 방법으로는 Agrobacterium tumifaciens, microprojectile bombardment, glass-bead, electroporation 등의 방법을 사용한다. 가장 일반적이고 경제적인 방법으로 Agrobacterium tumifaciens을 사용하지만 형질전환하기 위한 과정이 competent cell 배양과정을 제외하고, 발현벡터를 아그로박테리움에 형질전환하는 과정, cocultivation 전후 과정 등 약 7일정도의 시간이 소요된다. 하지만 전기천공법은 competent cell과 정제된 발현벡터만 있으면 아주 짧은 시간내에 형질전환하여 배양할 수 있다. 전기천공법은 전기적 쇼크에 의해서 발현벡터가 숙주세포로 삽입되는 것이기 때문에 전기적 쇼크 조건을 적절하게 조절하는 것이 중요하다.Agrobacterium tumifaciens, microprojectile bombardment, glass-bead, and electroporation are used as methods for transforming a microalgae such as chlorella by introducing a foreign gene. Agrobacterium tumifaciens is the most common and economical method, but the process for transfection is about 7 days, including the transformation of the expression vector into Agrobacterium and the post-cocultivation process, except for the cultivation of competent cells do. However, the electroporation method can be transformed and cultured within a very short time with only competent cells and purified expression vectors. It is important to adjust the electrical shock conditions appropriately because the electroporation method involves insertion of the expression vector into host cells by electrical shock.

상기 목적을 달성하기 위한 본 발명은 미세조류 클로렐라에서 젖소 락토페린 유전자를 발현하기 위해서 클로렐라 핵 유전자 코돈에 적합하게 코돈 최적화를 하였다. 또한 코돈 최적화시 락토페린의 항균 코어인 N loop 부분은 990bp(LfB-N)를 최적화하였다. 이와 같이 최적화된 락토페린 유전자를 pCAMBIA1304 벡터에 삽입하여 발현 벡터를 구축했다. 이 발현 벡터를 클로렐라에 전기천공법으로 형질전환하여 재조합 락토페린 단백질을 발현하는 것을 특징으로 할 수 있다.In order to accomplish the above object, the present invention provides codon optimization suitable for the chlorella nuclear gene codon in order to express the cow lactoferrin gene in microalgae chlorella. In the codon optimization, the N loop part of the antimicrobial core of lactoferrin optimized 990 bp (LfB-N). The optimized lactoferrin gene was inserted into the pCAMBIA1304 vector to construct an expression vector. And expressing the recombinant lactoferrin protein by transforming the expression vector with chlorella by electroporation.

본 발명은 미세조류인 클로렐라에서 젖소 유래 락토페린을 전기천공법으로 형질전환하는 방법을 제공하는 효과가 있다. 본 발명은 클로렐라 코돈 최적화된 Lfb-N 유전자를 pCAMBIA1304에 삽입하여 발현벡터를 구축한다. 이 발현벡터를 클로렐라에 전기천공법으로 형질전환시켜 재조합 락토페린을 발현을 확인되었다. 따라서 본 발명에서 제시한 방법으로 재조합 락토페린 생산하는 클로렐라를 배양하고, 추출 및 정제를 통해 새로운 항생제 대체물질이 될 수 있을 것을 기대된다. The present invention is effective in providing a method of transforming lactoferrin derived from cow by electrophoresis in microalgae, chlorella. The present invention constructs an expression vector by inserting the chlorella codon-optimized Lfb-N gene into pCAMBIA1304. This expression vector was transformed into chlorella by electroporation to confirm recombinant lactoferrin expression. Therefore, it is expected that chlorella producing recombinant lactoferrin can be cultured by the method proposed by the present invention, and can be a new antibiotic substitute through extraction and purification.

도 1 발현벡터 구축 모식도
Spe I / BstE II; 제한효소 사이트
1-F / 1-R; Lfb-N ? 발현벡터 pCAMLfb-N 검출 프라이머
2-F / 2-R; 형질전환체 검출 프라이머
도 2 라이브러리에서 구축된 발현벡터 확인
도 3 형질전환된 클로렐라에서 발현벡터 확인
도 4 재조합 락토페린 발현 확인
a; SDS-PAGE에서 확인
b; Immunodetection에서 확인
1 Expression vector construction diagram
Spe I / BstE II; Restriction enzyme site
1-F / 1-R; Lfb-N? Expression vector pCAMLfb-N detection primer
2-F / 2-R; Transformant detection primers
Figure 2 Identification of the constructed expression vector in the library
Figure 3 Identification of expression vectors in transformed chlorella
Figure 4 Recombinant lactoferrin expression confirmation
a; Confirmation on SDS-PAGE
b; Confirmation by Immunodetection

(1) 락토페린 유전자 코돈 최적화 및 insert 준비(1) Optimization of lactoferrin gene codon and preparation of insert

미세조류에서 외래 유전자를 도입하여 재조합 단백질을 발현하기 위해서는 발현하고자 하는 미세조류 핵 유전자에 적합하게 코돈을 최적화시켜주는 것이 재조합 단백질의 발현율을 높일 수 있는 방법 중에 하나이다. 그러한 이유로 젖소 락토페린 유전자를 클로렐라 유전자에 적합하게 코돈 최적화를 수행하였다. 이 최적화는 (주)바이오니아의 유전자합성 서비스에 의뢰하여 항균활성 코어인 락토페리신이 포함되어 있는 락토페린 N lobe부분(990bp)을 코돈 최적하였다. 유전자 합성시 5'말단에 Spe I site 를 삽입하고 3'말단에 6× His tag, 종료코돈(TGA) 및 BstE II site를 삽입하도록 유전자 합성을 의뢰하였다. 코돈 최적화된 락토페린 유전자(Lfb-N)은 pGEM T easy 벡터에 pLfb-N을 구축하였고, E. coli XL1 bule에 클로닝하였다(도 1). 클로닝된 E. coli에서 pLfb-N을 추출하고, Spe I / BstE II 제한 효소 절단하여 insert를 준비하였다. In order to express a recombinant protein by introducing a foreign gene in microalgae, optimizing the codon for the microalgae nucleus gene to be expressed is one of methods for increasing the expression rate of the recombinant protein. For this reason, the cow lactoferrin gene was subjected to codon optimization to suit the chlorella gene. This optimization was codon optimized for lactoferrin N lobe part (990 bp) containing lactoperrice, an antimicrobial active core, by Biona 's gene synthesis service. Gene synthesis was initiated by inserting Spe I site at the 5 'end and 6 × His tag, TGA and BstE II site at the 3' end. The codon optimized lactoferrin gene (Lfb-N) constructed pLfb-N in the pGEM T easy vector and cloned into E. coli XL1 bule (Fig. 1). PLfb-N was extracted from the cloned E. coli, and the insert was prepared by digesting Spe I / BstE II restriction enzyme.

(2) 발현벡터 구축     (2) Construction of expression vector

클로렐라를 형질전환하기 위해서 발현벡터 pCAMBIA1304의 report gene이 있는 GFP::GUS 부위를 Spe I / BstE II 제한 효소 절단하여 backbone을 제작하였다. Insert인 Lfb-N과 backbone인 linear pCMABIA1304을 T4 DNA ligase로 25℃, 2시간동안 연결하여 pCAMLfb-N을 구축하였고, E. coli XL1 bule에 클로닝하였다. 클로닝된 라이브러리 pCAMLfb-N을 확인하기 위해서 프라이머 1-F / 1-R를 사용하여 PCR 분석으로 확인하였다. 사용된 프라이머는 표 1과 같다. PCR 조건은 초기 변성반응 95℃ 2분, 30cycle에 변성반응 94℃ 1분, 부착반응 58℃ 2분, 확장반응 72℃ 3분, 최종 확장반응 72℃ 7분으로 수행하였다. PCR 분석 결과는 도2와 같다. 10개의 라이브러리 중에서 1번과 7번을 제외한 나머지 라이브러리에 구축된 발현벡터 pCAMLfb-N가 포함하고 있는 것으로 확인되었다. To transform chlorella, the GFP :: GUS region containing the report gene of the expression vector pCAMBIA1304 was digested with Spe I / BstE II restriction enzyme backbone. The insert Lfb-N and the backbone linear pCMABIA1304 were ligated with T4 DNA ligase at 25 ℃ for 2 hours to construct pCAMLfb-N and cloned into E. coli XL1 bule. To confirm the cloned library pCAMLfb-N, PCR was verified using primer 1-F / 1-R. Table 1 shows the primers used. PCR was performed at 95 ° C for 2 min, 30 cycles of denaturation at 94 ° C for 1 min, adherence at 58 ° C for 2 min, extension at 72 ° C for 3 min and final expansion at 72 ° C for 7 min. The results of the PCR analysis are shown in Fig. It was confirmed that among the 10 libraries, the expression vector pCAMLfb-N constructed in the remaining library except 1 and 7 was included.

프라이머primer 염기서열(5'→3')The base sequence (5 '- > 3') 1-F1-F CTAGTGTTCGATGGTGCACCATTTCCCCTAGTGTTCGATGGTGCACCATTTCCC 1-R1-R CTCACACGTGGTGGTGGTGGTGCTCACACGTGGTGGTGGTGGTG

(1) 전기천공법에 의한 클로렐라 형질전환      (1) Chlorella transformation by electroporation

전기청공법으로 클로렐라를 형질전환하기 위해서 클로렐라의 세포 농도가 흡광도 600nm에서 0.3~0.5 정도가 되도록 배양했다. 배양후 6,000rpm 10분동안 원심분리하여 배양 상등액은 버리고 세포 펠렛을 취한 후, osmosis buffer(0.2M Mannitol, 0.2M Sorbitol)에 현탁하여 1시간동안 방치하였다. 방치된 세포현탁액을 원심분리하여 세포 펠렛을 취한후 1mL의 electroporation buffer(0.5M NaCl, 5mM KCl, 5mM CaCl2, 20mM Hepes, 0.2M manitol, 0.2M sorbitol, pH7.2)에 현탁하고, 5㎍의 pCAMLfb-N을 첨가하여 혼합하고 얼음에 10분 동안 방치하였다. 클로렐라 세포와 pCAMLfb-N의 혼합액을 2mm electroporation cuvette에 옮겨 넣고, electroporator ECM 2001으로 전기천공법을 실시하였다. 조건은 500 ~ 5,000V/cm, 25μF, 200Ω에서 수행한 후, 5mL BG11 배지에 혼합액을 접종하고, 25℃, 24시간동안 암조건에서 배양하였다. 배양 종료 후 배양액을 원심분리하여 세포펠렛을 취하여 200㎕의 BG11 배지에 현탁하고 선택배지(20mg/L의 hygromycin의 함유된 BG11 한천 플레이트)에 접종하였다. 접종 후 5일 동안 4000 lux 형광등 조명, 25℃ 조건에서 배양하면서 형질전환 콜로니를 관찰하였다. 그 결과 표 2와 같다. 전기쇼크강도를 달리하여 수행한 결과 5,000V/cm에서 클로렐라 형질전환체 콜로니가 약 184개의 콜로니가 확인되었고, 4,000V/cm에서는 104개, 3,000V/cm에서는 71개, 2,000V/cm에서는 46개, 1,000V/cm에서는 12개, 500V/cm에서는 8개의 콜로니가 형성되었다. 이러한 결과를 바탕으로 5,000V/cm, 25μF, 200Ω의 조건에서 전기천공법을 수행하는 것으로 최적화하였다.In order to transform chlorella by an electrorheological method, the cell concentration of chlorella was adjusted to 0.3 to 0.5 at an absorbance of 600 nm. After culturing, the culture supernatant was discarded by centrifugation at 6,000 rpm for 10 minutes. The cell pellet was discarded and suspended in osmosis buffer (0.2 M Mannitol, 0.2 M Sorbitol) and left for 1 hour. The cell suspension was centrifuged and the cells were suspended in 1 ml of electroporation buffer (0.5 M NaCl, 5 mM KCl, 5 mM CaCl 2 , 20 mM Hepes, 0.2 M manitol, 0.2 M sorbitol, pH 7.2) Of pCAMLfb-N were added and mixed and left on ice for 10 minutes. The mixture of chlorella cells and pCAMLfb-N was transferred to a 2 mm electroporation cuvette and electroporator ECM 2001 was used for electroporation. The conditions were 500 to 5,000 V / cm, 25 μF, 200 Ω, and the mixture was inoculated in 5 mL of BG11 medium and cultured at 25 ° C. for 24 hours under dark conditions. After completion of the cultivation, the culture broth was centrifuged to take out cell pellets, suspended in 200 μl of BG11 medium, and inoculated into a selective medium (BG11 agar plate containing 20 mg / L of hygromycin). Transgenic colonies were observed for 5 days after inoculation with 4000 lux fluorescent lighting and incubation at 25 ℃. Table 2 shows the results. As a result of performing different electric shock strengths, about 184 colonies of chlorella transformant colonies were found at 5,000 V / cm, 104 at 4,000 V / cm, 71 at 3,000 V / cm, 46 at 2,000 V / , 12 colonies at 1,000V / cm, and 8 colonies at 500V / cm. Based on these results, we optimized the electroporation method at 5,000V / cm, 25μF, and 200Ω.

Field strength(V/cm)Field strength (V / cm) Number of colonies resistant to hygromycinNumber of colonies resistant to hygromycin 50005000 184±4184 ± 4 40004000 104±3104 ± 3 30003000 71±471 ± 4 20002000 46±246 ± 2 10001000 12±312 ± 3 500500 8±28 ± 2

(2) PCR 분석을 통한 클로렐라 형질전환체 선별     (2) Selection of chlorella transformant by PCR analysis

형질 전환된 콜로니 12개를 임의적으로 선택하여 hygromycin(10㎍/ml)이 함유된 BG11 액체 배지(10ml)에 접종하고 4000 lux 형광등 조명, 25℃ 조건에서 배양하였다. 배양농도 흡광도 600nm에서 OD값 1.0인 시점에 배양액을 12,000rpm 10분동안 원심분리 하여 세포를 회수하였다. 회수된 세포를 DNeasy Plant Mini kit(QIAGEN)을 이용하여 DNA를 추출하였다. 추출된 DNA를 표 3에서 제시한 프라이머 2-F / 2-R로 PCR 반응시켜 확인하였다. 사용된 프라이머는 표 3과 같다. PCR 조건은 초기 변성반응 95℃ 2분, 30cycle에 변성반응 94℃ 1분, 부착반응 60℃ 2분, 확장반응 72℃ 3분, 최종 확장반응 72℃ 7분으로 수행하였다. 그 결과는 도 3과 같다. Lane 1은 형질전환되지 않은 클로렐라 DNA, lane 2는 정제된 pCAMLfb-N, lane 3~14(CT1~12)는 형질전환된 클로렐라들의 DNA로 나열되었다. Lane 1에서는 PCR 증폭된 밴드가 확인되지 않았으며, lane 2는 약 1.1kb의 PCR 산물이 확인되었고, lane 11(CT9)와 lane 14(CT12)에서 약 1.1kb의 PCR 산물이 확인된 반면에 나머지 lane에서는 PCR 산물이 확인되지 않았다. 이로써 CT9와 CT12가 락토페린 유전자를 포함하고 있는 클로렐라 형질전환체로 확인되었다.      Twelve transformed colonies were randomly selected and inoculated into BG11 liquid medium (10 ml) containing hygromycin (10 μg / ml) and cultured at 25 ° C. under 4,000 lux fluorescent lighting. At an OD value of 1.0 at a culture concentration absorbance of 600 nm, the culture was centrifuged at 12,000 rpm for 10 minutes to recover the cells. The recovered cells were extracted with DNeasy Plant Mini kit (QIAGEN). The extracted DNA was confirmed by PCR with the primer 2-F / 2-R shown in Table 3. Table 3 shows the primers used. PCR was performed at 95 ° C for 2 minutes, 30 cycles of denaturation at 94 ° C for 1 minute, adhesion reaction at 60 ° C for 2 minutes, extension reaction at 72 ° C for 3 minutes, and final expansion reaction at 72 ° C for 7 minutes. The results are shown in FIG. Lane 1 is the untransformed chlorella DNA, lane 2 is the purified pCAMLfb-N, and lane 3-14 (CT1-12) are listed as transformed chlorella DNA. Lane 1 showed no PCR amplified bands, lane 2 showed a PCR product of about 1.1 kb, lane 11 (CT9) and lane 14 (CT12) showed a PCR product of about 1.1 kb, PCR products were not detected in lane. As a result, CT9 and CT12 were identified as chlorella transformants containing the lactoferrin gene.

프라이머primer 염기서열(5'→3')The base sequence (5 '- > 3') 2-F2-F GAGAACACGGGGGACTCTTGGAGAACACGGGGGACTCTTG 2-R2-R GGGGAAATTCGAGCTGGTCAGGGGAAATTCGAGCTGGTCA

(1) 재조합 락토페린 발현      (1) expression of recombinant lactoferrin

Hygromycin(10ug/ml)이 첨가된 50ml BG11 액상배지에 CT9와 CT12를 4000 lux 형광등 조명, 25℃ 조건에서 7일 동안 배양하였다. 종료된 배양액(1.0 × 107cfu/ml)을 12,000 rpm 10분 동안 원심분리하여 균체를 회수 한 후, 2ml의 total protein extraction buffer(50mM Hepes, 250mM KCl, 0.1mM EDTA, 1mM DTT, 0.5mM phenylmethylsulfonyl fluride)로 현탁시켰다. 이 균체 현탁액을 sonication (30W, 10min)으로 세포를 파쇄한 후 12,000 rpm 10분 동안 원심분리하여 상등액을 회수하였다. 회수된 상등액을 10kDa membrane filter로 농축한 후 20ug의 total protein을 SDS-PAGE로 확인하였다. 그 결과는 도 4-a와 같다. Lane 1은 형질전환되지 않은 클로렐라 총 단백질 샘플이며, lane 2는 CT9의 총 단백질 샘플, lane 3은 CT12의 총단백질 샘플이다. SDS-PAGE 결과 형질전환되지 않은 클로렐라에서는 목적 단백질 크기의 밴드가 확인되지 않은 반면에, CT9와 CT12에서 목적 단백질 크기인 약 35kDa의 밴드가 확인되었다. 목적 단백질이 재조합 락토페린 단백질 여부를 확인하기 위해서 단밸질 C-말단 부위에 코딩해 놓은 6× His tag을 이용하여 확인하였다. 이를 확인하기 위해서 western blotting한 후 immunodetection을 수행하였다(도 4-b). 1차 항체는 mouse anti-6× His monoclonal antibody을 사용하였고, 2차 항체로는 anti-mouse IgG-Alkaline phosphatase를 사용하였다. 그 결과는 도 4-b와 같다. Lane 1은 형질전환되지 않은 클로렐라 총 단백질 샘플이며, lane 2는 CT9의 총 단백질 샘플, lane 3은 CT12의 총단백질 샘플이다. Immunodetection 결과 형질전환되지 않은 클로렐라에서는 목적 단백질 크기의 밴드가 확인되지 않은 반면에, CT9와 CT12에서 목적 단백질 크기인 약 35kDa의 밴드가 확인되었다. CT9 and CT12 were cultured in a 50 ml BG11 liquid medium supplemented with Hygromycin (10 ug / ml) for 7 days at 4000 lux fluorescent lighting and 25 ° C. The end culture (1.0 × 10 7 cfu / ml ) to 12,000 rpm and then the cells were collected by centrifugation for 10 minutes in 2ml total protein extraction buffer (50mM Hepes , 250mM KCl, 0.1mM EDTA, 1mM DTT, 0.5mM phenylmethylsulfonyl fluride. The cell suspension was sonicated (30 W, 10 min) to disrupt the cells and centrifuged at 12,000 rpm for 10 min to recover the supernatant. The recovered supernatant was concentrated with a 10 kDa membrane filter and 20 ug of total protein was confirmed by SDS-PAGE. The result is shown in Fig. 4-a. Lane 1 is the untransformed chlorella total protein sample, lane 2 is the total protein sample of CT9, and lane 3 is the total protein sample of CT12. SDS-PAGE showed no band of the desired protein size in the untransformed chlorella, while a band of about 35 kDa in the CT9 and CT12 target protein sizes was identified. The target protein was identified using a 6 × His tag coding at the C-terminal region of the protein to determine if it was a recombinant lactoferrin protein. To confirm this, western blotting and immunodetection were performed (Fig. 4-b). Mouse anti-6 × His monoclonal antibody was used as the primary antibody and anti-mouse IgG-Alkaline phosphatase was used as the secondary antibody. The result is shown in Fig. 4-b. Lane 1 is the untransformed chlorella total protein sample, lane 2 is the total protein sample of CT9, and lane 3 is the total protein sample of CT12. Immunodetection showed that a band of the target protein size was not detected in the untransformed chlorella, while a band of about 35 kDa in the CT9 and CT12 target protein sizes was identified.

상기의 결과들로 미루어 보아 전기천공법을 이용하여 클로렐라에서 재조합 락토페린을 발현할 수 있는 방법이 확립되었다. Based on the above results, it has been established that a recombinant lactoferrin can be expressed in chlorella using electroporation.

V/cm ; 1cm당 전압V / cm; Voltage per 1 cm

<110> PARK, Bok Hee <120> Method to transform bovine lactoferrin to Chlorella by electroporation <130> 1 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 1005 <212> DNA <213> Artificial Sequence <220> <223> bovine lactoferrin <400> 1 gttcgatggt gcaccatttc ccagcccgag tggttcaaat gccgccgatg gcagtggcgg 60 atgaagaagc tgggcgctcc ctctatcacc tgcgtccgca gggccttcgc gcttgagtgc 120 attcgggcca tcgcggagaa gaaggcggac gcggtgaccc tggatggtgg catggtgttt 180 gaggcgggcc gtgaccccta caagctgcgc cccgttgcag cagagatcta cgggacgaag 240 gagtcccccc agacccacta ctacgccgtg gccgtggtga agaagggcag caattttcag 300 ctggaccagc tgcaaggccg gaagtcctgc catacgggcc ttggccgctc cgctggttgg 360 atcatcccta tgggcatctt gcgcccgtac ctaagctgga cagagtccct cgagcccctc 420 cagggagctg tggccaagtt cttctcagca agctgcgtac cgtgcattga cagacaagca 480 taccctaacc tgtgtcagct gtgcaagggg gagggggaga accagtgcgc ctgctcctca 540 cgggagccat acttcggtta ctctggtgcc ttcaagtgtc tgcaagacgg ggctggcgac 600 gtggctttcg tcaaggagac tacagtgttc gagaacttgc cagagaaggc tgaccgcgac 660 cagtatgagt tgctttgcct gaacaacagc cgcgccccgg tggatgcgtt caaggaatgc 720 cacctggccc aggtcccgtc gcacgccgtc gtggcgcgaa gtgtggatgg caaggaggac 780 ctgatctgga agctcctcag caaggcacag gagaagtttg ggaagaacaa gtcgcggagc 840 tttcagctct tcggctctcc gccgggccag cgggacctgc tgttcaagga ctccgcactg 900 ggatttttgc gtattccgtc gaaggtggac tcggcgctgt acctgggctc ccgctacttg 960 accaccctga agaacctcag ggaacaccac caccaccacc actga 1005 <110> PARK, Bok Hee <120> Method to transform bovine lactoferrin to Chlorella by          electroporation <130> 1 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 1005 <212> DNA <213> Artificial Sequence <220> <223> bovine lactoferrin <400> 1 gtcgatggt gcaccatttc ccagcccgag tggttcaaat gccgccgatg gcagtggcgg 60 atgaagaagc tgggcgctcc ctctatcacc tgcgtccgca gggccttcgc gcttgagtgc 120 attcgggcca tcgcggagaa gaaggcggac gcggtgaccc tggatggtgg catggtgttt 180 gaggcgggcc gtgaccccta caagctgcgc cccgttgcag cagagatcta cgggacgaag 240 gagtcccccc agacccacta ctacgccgtg gccgtggtga agaagggcag caattttcag 300 ctggaccagc tgcaaggccg gaagtcctgc catacgggcc ttggccgctc cgctggttgg 360 atcatcccta tgggcatctt gcgcccgtac ctaagctgga cagagtccct cgagcccctc 420 cagggagctg tggccaagtt cttctcagca agctgcgtac cgtgcattga cagacaagca 480 taccctaacc tgtgtcagct gtgcaagggg gagggggaga accagtgcgc ctgctcctca 540 cgggagccat acttcggtta ctctggtgcc ttcaagtgtc tgcaagacgg ggctggcgac 600 gtggctttcg tcaaggagac tacagtgttc gagaacttgc cagagaaggc tgaccgcgac 660 cagtatgagt tgctttgcct gaacaacagc cgcgccccgg tggatgcgtt caaggaatgc 720 cacctggccc aggtcccgtc gcacgccgtc gtggcgcgaa gtgtggatgg caaggaggac 780 ctgatctgga agctcctcag caaggcacag gagaagtttg ggaagaacaa gtcgcggagc 840 tttcagctct tcggctctcc gccgggccag cgggacctgc tgttcaagga ctccgcactg 900 ggatttttgc gtattccgtc gaaggtggac tcggcgctgt acctgggctc ccgctacttg 960 accaccctga agaacctcag ggaacaccac caccaccacc actga 1005

Claims (6)

서열 1의 염기서열로 클로렐라의 코돈에 최적화된 락토페린 N lobe 유전자
The nucleotide sequence of SEQ ID NO: 1 is a lactoferrin N lobe gene optimized for the codon of chlorella
서열 1의 유전자를 포함하는 도 1의 유전자 지도와 같은 특징을 갖는 발현 벡터
An expression vector having the same characteristics as the gene map of Fig. 1 including the gene of SEQ ID NO: 1
4,000~5,000V/cm의 전기적쇼크로 클로렐라 형질전환하는 전기천공법
Electric puncture that transforms chlorella with electric shock of 4,000 ~ 5,000V / cm
제 3항의 방법으로 락토페린 유전자를 함유하고 있는 형질전환된 클로렐라
The method of claim 3, wherein the transformed chlorella containing the lactoferrin gene
제 4항의 형질전환된 클로렐라가 생산하는 재조합 락토페린
The recombinant lactoferrin produced by the transformed chlorella of claim 4
제 5항의 재조합 락토페린을 함유하는 인체 및 동물용 의약품 또는 사료첨가제Human and veterinary medicines or feed additives containing the recombinant lactoferrin of paragraph 5
KR1020130136574A 2013-11-11 2013-11-11 Method to transform bovine lactoferrin to Chlorella by electroporation KR20150054302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130136574A KR20150054302A (en) 2013-11-11 2013-11-11 Method to transform bovine lactoferrin to Chlorella by electroporation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130136574A KR20150054302A (en) 2013-11-11 2013-11-11 Method to transform bovine lactoferrin to Chlorella by electroporation

Publications (1)

Publication Number Publication Date
KR20150054302A true KR20150054302A (en) 2015-05-20

Family

ID=53390487

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130136574A KR20150054302A (en) 2013-11-11 2013-11-11 Method to transform bovine lactoferrin to Chlorella by electroporation

Country Status (1)

Country Link
KR (1) KR20150054302A (en)

Similar Documents

Publication Publication Date Title
WO2024031921A1 (en) Pichia pastoris with enhanced lactoferrin expression, method for constructing same, and use thereof
Huet et al. Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots
CN107236755A (en) Method of cecropin AD and preparation method thereof is expressed using bacillus subtilis
CN111018960B (en) Antibacterial peptide ID13, and preparation method and application thereof
JP5662363B2 (en) Method for clarifying protein fusion factor (TFP) for secretion of difficult-to-express protein, method for producing protein fusion factor (TFP) library, and method for recombinant production of difficult-to-express protein
CN108148123B (en) Natural antibacterial peptide of burned soil hypha fungi and application thereof
CN101223275B (en) Method for extracellular production of target proteins by co-expression of ompf and target proteins
KR101460861B1 (en) Expression of bovine lactoferrin using transformed Chlorella
KR102556868B1 (en) Transformed Bacillus subtilis strains producing endolysin
CN110468143A (en) The preparation method and application of antibacterial peptide NZX
KR20150054302A (en) Method to transform bovine lactoferrin to Chlorella by electroporation
CN101538318A (en) Signal peptide, coding genes thereof and application
CN104418945A (en) Preparation method of peptide and application of peptide in preparation of medicine and feed additive
CN108771028B (en) Animal feed additive and preparation method and application thereof
KR102208028B1 (en) Salt inducible promoter from Chlorella vulgaris and uses thereof
KR20150056009A (en) Expression of bovine lactoferrin by the microalga, Chlamydomonas
KR100530988B1 (en) Method for producing target proteins by deleting or amplifying ibpA and/or ibpB gene coding for inclusion body-associated proteins
WO2018099063A1 (en) Method for efficiently secreting and expressing foreign protein using bacillus
KR100798894B1 (en) Translational fusion partner for producing recombinant proteins
CN106146629B (en) Trypsin resistant antibacterial peptides and preparation method thereof
KR102242665B1 (en) Heat inducible promoter from Chlorella vulgaris HSP70 and uses thereof
CN117903295B (en) Kluyveromyces marxianus for secretory expression of lactoferrin and construction method and application thereof
CN118256543A (en) Lactoferrin peptide high-expression strain, construction method thereof and application of recombinant human lactoferrin peptide
Yang et al. Expression of secreted antimicrobial peptide in a marine diatom—Phaeodactylum tricornutum
KR20070101190A (en) Translational fusion partner for producing recombinant proteins

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application