KR101460861B1 - Expression of bovine lactoferrin using transformed Chlorella - Google Patents

Expression of bovine lactoferrin using transformed Chlorella Download PDF

Info

Publication number
KR101460861B1
KR101460861B1 KR1020120129923A KR20120129923A KR101460861B1 KR 101460861 B1 KR101460861 B1 KR 101460861B1 KR 1020120129923 A KR1020120129923 A KR 1020120129923A KR 20120129923 A KR20120129923 A KR 20120129923A KR 101460861 B1 KR101460861 B1 KR 101460861B1
Authority
KR
South Korea
Prior art keywords
lactoferrin
chlorella
expression
recombinant
lane
Prior art date
Application number
KR1020120129923A
Other languages
Korean (ko)
Other versions
KR20140063045A (en
Inventor
구정모
박동준
Original Assignee
박복희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박복희 filed Critical 박복희
Priority to KR1020120129923A priority Critical patent/KR101460861B1/en
Publication of KR20140063045A publication Critical patent/KR20140063045A/en
Application granted granted Critical
Publication of KR101460861B1 publication Critical patent/KR101460861B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 미세조류 클로렐라를 이용하여 젖소 유래 락토페린 단백질을 발현하는 방법으로서, 더욱 정확하게는 클로렐라에 적합한 코돈으로 최적화된 락토페린 유전자를 dual CaMV35S 프로모터를 포함하는 발현 카세트에 삽입하고, 이 카세트를 발현벡터에 삽입하여 재조합 락토페린 발현벡터를 구축한다. 이와 같이 구축된 발현벡터를 클로렐라에 형질전환하여 재조합 락토페린 단백질을 발현하는 방법에 관한 것이다.
본 발명으로 인해 재조합 락토페린 발현 시스템이 포함된 클로렐라를 대량 배양한다면, 재조합 락토페린 생산량이 증가되어 동물용 항생제 대체제 등으로 용이하게 사용할 수 있다.
The present invention relates to a method for expressing a lactoferrin protein from a dairy cow using microalgae chlorella, more precisely by introducing a lactoferrin gene optimized with a codon suitable for chlorella into an expression cassette containing a dual CaMV35S promoter and expressing the cassette in an expression vector To construct a recombinant lactoferrin expression vector. And a method for expressing a recombinant lactoferrin protein by transforming the thus-constructed expression vector into chlorella.
If a large amount of chlorella containing the recombinant lactoferrin expression system is cultured according to the present invention, the production of recombinant lactoferrin is increased, so that it can be easily used as an antibiotic substitute for animals.

Description

형질전환된 클로렐라를 이용한 젖소 락토페린 발현{Expression of bovine lactoferrin using transformed Chlorella}Expression of bovine lactoferrin using transformed Chlorella using the transformed chlorella.

본 발명은 미세조류인 클로렐라에서 젖소 유래 재조합 락토페린을 발현에 관한 것으로서, 더욱 정확하게는 젖소 유래 락토페린 유전자를 클로렐라 뉴클레오타이드에 적합하게 코돈 최적화된 락토페린 유전자를 클로렐라에 형질전환하여 재조합 락토페린을 발현하는 것을 특징으로 하는 발현 방법이다.The present invention relates to the expression of recombinant lactoferrin from cow's milk in microalgae. More specifically, the present invention is characterized by expressing recombinant lactoferrin by transforming a cow-derived lactoferrin gene into chlorella with a codon-optimized lactoferrin gene suitable for chlorella nucleotides Lt; / RTI >

락토페린(lactoferrin)은 철과 결합하는 단백질인 트랜스페린(transferrin)의 일종으로 주로 모유나 우유, 혈액, 침, 눈물, 점액 분비물 등에 존재하고 있다. 최초의 락토페린은 소의 유즙으로부터 정제, 동정되었고 곧 여러 포유동물의 유즙에서도 차례로 분리, 정제되었다. 락토페린이 처음 발견되었을 때 붉은색을 띠는 단백질이라는 의미에서 '붉은 단백질(red protein)'이라고 불렸다. 이 붉은색은 락토페린이 철과 결합함으로써 나타나는 것으로 철 이온과 결합하지 않은 락토페린은 무색이며 철과 결합하는 락토페린의 성질은 이 단백질이 생체 내에서 여러가지 기능을 발휘하는 데 있어서 매우 중요한 특성이 되고 있다. 젓소 유래 락토페린은 분자량이 약 7만인 당단백질로서 은행잎과 같은 나뭇잎 모양의 로브(lobe) 2개가 약간 빗대어져 겹쳐진 모양을 하고 있으며 각 로브에는 철이온과 결합하는 결합부위가 1개씩 존재한다. 그러므로 락토페린 1분자는 개의 철이온과 결합하게 된다. 철이온과 결합하는 락토페린의 결합력은 트랜스페린에 비해 약 260배 정도 강하며 락토페린의 이러한 성질은 철의 수송이라는 의미보다는 철을 포획(capture)하는 것에 그 본질적인 기능이 있다. Lactoferrin is a type of transferrin, a protein that binds iron, and is mainly found in milk, milk, blood, saliva, tears, mucus secretions, and the like. The first lactoferrin was purified from bovine milk, and soon it was separated and purified in the milk of several mammals. When lactoferrin was first discovered, it was called 'red protein' in the sense that it was a reddish protein. This red color appears as a result of binding of lactoferrin to iron. The lactoferrin that is not bound to iron ion is colorless, and the property of lactoferrin bound to iron is a very important characteristic in the function of this protein in vivo. Lactoferrin derived from a cow is a glycoprotein with a molecular weight of about 70,000. It has two leaf-like lobes like ginkgo bilob, slightly overlapping each other, and each lobe has one binding site that binds with iron. Therefore, one molecule of lactoferrin is bound to the iron ion. The binding of lactoferrin to iron ion is about 260 times stronger than that of transferrin, and this property of lactoferrin has an essential function in capturing iron rather than the transport of iron.

락토페린의 생물학적 활성의 대표적인 역할을 항균 활성이며, 그 외에도 항바이러스 작용, 항암작용, 항염증작용 등 다방면에 효과적인 것으로 보고되었다(Y. K. Rye and W. S. Kim. Current trends in lactoferrin research and development. 2009. Korean J. Dairy Sci. Technol., Vol. 27(1), pp. 19~28). 이와 같은 훌륭한 기능을 가진 락토페린은 유즙에 함량이 많으며 그 중에서도 분만 후 며칠간 분비되는 노르스름하고 묽은 젖인 초유(colostrums)에 가장 많이 함유돼 있는데 사람의 초유에는 6∼8mg/ℓ가 들어있고 수유 기간에 분비되는 모유에도 약 2mg/ℓ가 들어있다. 우유의 초유는 1.2mg/ℓ 일반 우유에는 0.1~0.2mg/ℓ가 들어있다. 현재는 우유에서 락토페린을 정제하여 사용하고 있는 실정이다. It has been reported that lactoferrin is an antimicrobial activity that is representative of the biological activity of lactoferrin, and it is reported to be effective in various aspects such as antiviral action, anti-cancer activity, anti-inflammatory action (YK Rye and WS Kim. Dairy Sci. Technol., Vol. 27 (1), pp. 19-28). Lactoferrin, which has such a good function, has a high content in lactose, and is most abundant in colostrum, which is a yellowish and diluted milk which is secreted for a few days after labor. It is contained in human colostrum 6 to 8 mg / The breast milk contains about 2mg / l. Colostrum of milk contains 1.2mg / ℓ and 0.1 ~ 0.2mg / ℓ in general milk. Currently, lactoferrin is purified from milk and used.

이러한 다기능성 락토페린 생산량이 매우 적기 때문에 이 단백질을 재조합 단백질 생산하기 위한 연구 개발이 수행되었다. 인체 락토페린을 포유동물로 부터 재조합 락토페린을 발현하는 방법(대한민국 특허공보 0192718호)과 곤충세포를 이용하여 인체 락토페린을 발현한는 방법(대한민국 특허공보 0331981호)이 있지만, 재조합 락토페린을 생산하기 위한 비용이 높기 때문에 경제성이 약하다. 재조합 락토페린을 발현하기 위해서 미생물을 사용하기도 하였다. 원핵생물인 바실러스 균주를 이용한 재조합 락토페린 발현 방법(대한민국 특허공보 0543462호), 진핵 생물인 곰팡이 아스퍼질러스를 이용한 재조합 인간 락토페린 제조 방법(대한민국 특허공보 0383436호) 및 효모인 피치아를 이용한 인간 락토페린 생산 방법(대한민국 특허공보 0468593호) 등이 고안 되었다. 또한 식물을 재조합 락토페린 발현하기 위해 활용되었다. 식물세포 배양에서 인간락토페린을 대량 생산하는 방법(대한민국 특허공보 0551713호), 벼를 이용한 인간 락토페린 생산 방법(미국 특허 7,276,646)등이 고안되었다.  Because of the very low production of this multifunctional lactoferrin, research and development has been conducted to produce recombinant proteins of this protein. There is a method of expressing human lactoferrin by recombinant lactoferrin from a mammal (Korean Patent Publication No. 0192718) and a method of expressing human lactoferrin using insect cells (Korean Patent Publication No. 0331981), but the cost for producing recombinant lactoferrin It is not economical because it is high. Microorganisms have also been used to express recombinant lactoferrin. (Korean Patent Publication No. 0543462) using a prokaryotic Bacillus strain (Korean Patent Publication No. 0543462), a method for producing a recombinant human lactoferrin using a fungus aspergillus as a eukaryotic organism (Korean Patent Publication No. 0383436) and a human lactoferrin production using a yeast strain (Korean Patent Publication No. 0468593). Plants were also utilized to express recombinant lactoferrin. A method for mass production of human lactoferrin in plant cell culture (Korean Patent Publication No. 0551713), and a method for producing human lactoferrin using rice (U.S. Patent No. 7,276,646).

현재 락토페린은 재조합 락토페린보다 우유에서 정제한 락토페린이 시장을 점령하고 있다. 우선 락토페린에 대한 활용 용도가 다양하지만, 생산량이 너무 작기 때문에 락토페린의 생산량을 높이기 위해서 다양한 방법들이 시도 되고 있다.Currently, lactoferrin is lactoferrin purified from milk rather than recombinant lactoferrin. First, lactoferrin is used for a variety of applications, but because the production is too small, various methods have been tried to increase the production of lactoferrin.

USUS 00147970014797 A1A1

Si-Shen Li, Huai-Jen Tsai. Transgenic microalgae as a non-antibiotic bactericide producer to defind against bacterila pathogen infection in the fish digestive tract. Fish & Shellfish Immunology 2009; 26; 316-325 Si-Shen Li, Huai-Jen Tsai. Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish & Shellfish Immunology 2009; 26; 316-325

현재 상업적으로 구할 수 있는 재조합 단백질의 대부분은 세균이나 효모 또는 동물세포의 배양을 위해 설계된 생물반응기를 이용하여 생산되고 있다. 세균에 의한 단백질의 발현시스템에는 splicing, 당화, 단백질assembly 등의 전사 혹은 번역 후의 조정과정이 결핍되어 있다. 또한 세균성 endotoxin과 단백질 분해효소 등의 불순물도 혼재될 가능성이 높다. 진핵세포인 효모에 의한 발현시스템도 당화과정을 충실하게 실현하지는 못한다. 현재 의료 단백질의 대부분은 동물세포 배양을 통해 생산되고 있지만 대량 생산이 쉽지않고 배지가 고가이며 오염되기 쉬운데다가 발현량이 적어서 생산 비용이 높다. 형질전환 동물은 제조비용이 마리당 50만 달러가 소요되며 노동집약적인 관리가 필요하고 대량생산하기에 오랜 시간이 필요하다.Most of the commercial commercially available recombinant proteins are produced using bioreactors designed for the cultivation of bacteria, yeast or animal cells. Protein expression systems by bacteria are lacking in transcriptional or post-translational coordination processes such as splicing, glycation, and protein assembly. In addition, there is a high possibility that bacterial endotoxin and protease and other impurities are mixed. Eukaryotic expression system by yeast does not faithfully realize glycosylation process. Currently, most of the medical proteins are produced through animal cell cultivation, but mass production is not easy, the medium is expensive, is easily contaminated, and the expression amount is low and the production cost is high. Transgenic animals cost up to $ 500,000 per production, require labor-intensive management, and require a long time to mass-produce.

형질전환 식물은 안정성과 기능성을 갖춘 단백질의 대량생산을 위해 비교적 많은 장점을 지닌 발현 시스템이다. 백신, 항체, 효소, 호르몬, 의료단백질 등의 상업화를 위해서는 발현량이 세포 내 수용성 단백질총량의 최소 5%까지 차지하여야 하는데 일반적으로는 0.00146.1% 범위이다. 일반적으로 Pseudomonas aeruginosa 등 일부 독성 세균이나 곰팡이를 제외한 나머지 주요 인간병원체들은 식물을 숙주로 삼지 않는다. 식물성 바이러스는 인체나 동물을 감염시키지 않으며 동물성 바이러스도 식물체에 작동하지 않는다고 알려져 있다. 유전자변형식물에 의한 환경오염 식물성분에 대한 엘레르기 반응, 단백질의 오염, 의약 단백질의 허가 규제 등의 문제점도 있다.      Transgenic plants are an expression system with relatively many advantages for the mass production of proteins with stability and functionality. For commercialization of vaccines, antibodies, enzymes, hormones, and medical proteins, the expression level should be at least 5% of the total amount of water-soluble proteins in the cell, generally 0.00146.1%. In general, the major human pathogens, except for some toxic bacteria and fungi, such as Pseudomonas aeruginosa, do not host the plant. Plant viruses do not infect humans or animals, and animal viruses are known to not work on plants. Environmental pollution caused by genetically modified plants There are also problems such as an enzyme reaction on plant components, contamination of proteins, regulation of permission of pharmaceutical proteins.

지난 십년 이상 관련된 유전공학적 기술이 개발되고 연구되어 온 진핵성 미세조류가 다른 종류의 균주가 가지는 문제점들을 해결하기 위해 대안적인 발현시스템이 될 수 있다. 최근에 미세조류에 의한 항체, 살충제, 백신의 생산에 관한 연구가 많이 진행되고 있다. 미세조류는 일반 농작물에는 적합하지 않는 생육조건에서도 대규모로 배양할 수 있다는 잠재성 때문에 천연성분의 생산성 증가, 신규 물질의 합성 등을 위한 유전자 조작의 대상이 된다. 미세조류에 대한 유전자 조작기술은 아직 초보수준에 머물러 있으며 미세조류로부터 생산된 재조합 생산물들 중 상용화된 것은 아직 없다.      Eukaryotic microalgae, which have been developed and studied for over a decade or more, can be an alternative expression system to solve the problems of other strains. Recently, studies on the production of antibodies, insecticides and vaccines by microalgae have been conducted. Microalgae are subject to genetic manipulation for increased productivity of natural ingredients and synthesis of new substances because of the potential for large-scale cultivation under conditions of growth that are not suitable for general crops. Genetic engineering techniques for microalgae are still at a novice level and none of the recombinant products produced from microalgae have been commercialized yet.

상기 목적을 달성하기 위한 본 발명은 미세조류 클로렐라에서 젖소 락토페린 유전자를 발현하기 위해서 클로렐라 핵 유전자 코돈에 적합하게 코돈 최적화를 하였다. 또한 코돈 최적화시 락토페린의 항균 코어인 N loop 부분은 990bp(LfB-N)를 최적화하였다. 이와 같이 최적화된 락토페린 유전자를 dual CaMV35S 프로모터를 포함하는 발현카세트(expression cassette)에 삽입하여 락토페린 발현 카세트를 구추고, 이를 pCAMBIA1304 벡터에 삽입하여 발현 벡터를 구축했다. 이 발현 벡터를 클로렐라에 형질전환하여 재조합 락토페린 단백질을 발현하는 것을 특징으로 할 수 있다.In order to accomplish the above object, the present invention provides codon optimization suitable for the chlorella nuclear gene codon in order to express the cow lactoferrin gene in microalgae chlorella. In the codon optimization, the N loop part of the antimicrobial core of lactoferrin optimized 990 bp (LfB-N). The optimized lactoferrin gene was inserted into an expression cassette containing a dual CaMV35S promoter to construct a lactoferrin expression cassette, which was then inserted into the pCAMBIA1304 vector to construct an expression vector. And the expression vector is transformed into chlorella to express the recombinant lactoferrin protein.

본 발명은 미세조류인 Chlorella vulgaris에서 젖소 유래 락토페린을 발현하는 방법을 제공하는 효과가 있다. 본 발명은 미세조류인 클로렐라에서 dual CaMV35S 프로모터를 포함하는 발현카세트(expression cassette)에 클로렐라 코돈 최적화된 LfB-N 유전자를 삽입하고, 이를 pCAMBIA1304에 삽입하여 발현벡터를 구축한다. 이 발현벡터를 클로렐라에 형질전환시켜 재조합 락토페린을 발현할 수 있으며, 항균 효과도 확인되었다. 따라서 본 발명에서 제시한 방법으로 재조합 락토페린 생산하는 클로렐라를 대량 배양하고, 추출물을 얻는다면 새로운 항생제 대체물질이 될 수 있을 것을 기대된다. The present invention is effective in providing a method for expressing lactoferrin derived from cow in microalgae, Chlorella vulgaris. The present invention constructs an expression vector by inserting a chlorella codon-optimized LfB-N gene into an expression cassette containing a dual CaMV35S promoter in a microalga, chlorella, and inserting it into pCAMBIA1304. This expression vector was transformed into chlorella to express recombinant lactoferrin, and the antibacterial effect was also confirmed. Therefore, it is expected that a large amount of chlorella producing recombinant lactoferrin can be cultured by the method of the present invention, and a new antibiotic substitute can be obtained if an extract is obtained.

도 1은 LfB-N을 pRTL2 벡터에 삽입하여 Expression casstte 구축 모식도
도 2는 PCR analysis를 통한 pRTL2-LfB-N 라이브러리 확인
lane 1 : pRTL2 , lane 2 ~ 10 : Transformant (pRTL2-LfB-N)
도 3은 Expression cassette를 pCAMBIA1304 벡터에 삽입하여 발현 벡터(pGG12) 구축 모식도
도 4는 PCR analysis를 통한 pGG12 라이브러리 확인
lane 1: T1, lane 2: T3, lane 3: T4, lane 4: T5, lane 5: T6, lane 6: T7, lane 7: T8, lane8: T9, lane 9: T10, lane 10: T12, lane 11: T17, lane 12: T20
도 5는 PCR analysis를 통한 클로렐라 형질전환체 screening
lane 1: CT1, lane 2: CT2, lane 3: CT4, lane 4: CT5, lane 5: T6, lane 6: CT7, lane 7: CT9, lane8: CT13
도 6은 재조합 락토페린의 SDS-PAGE(A) 및 Immunodetection(B)
lane 1: Non-transformant, lane 2: Transformant(pCAMBIA1304)
lane 3: Transformant(pGG12-CN7), lane 4: Transformant(pGG12-CN9)
도 7은 재조합 락토페린의 항균 활성
Figure 1 shows the expression casstte construction by inserting LfB-N into the pRTL2 vector.
Figure 2 shows the pRTL2-LfB-N library identification by PCR analysis
lane 1: pRTL2, lane 2 to 10: Transformant (pRTL2-LfB-N)
FIG. 3 shows the expression vector (pGG12) construction diagram by inserting an expression cassette into pCAMBIA1304 vector
Figure 4 shows the pGG12 library confirmation by PCR analysis
lane 1: T1, lane 2: T3, lane 3: T4, lane 4: T5, lane 5: T6, lane 6: T7, lane 7: T8, lane8: T9, lane 9: T10, lane 10: 11: T17, lane 12: T20
FIG. 5 is a graph showing the results of screening of chlorella transformants by PCR analysis
lane 1: CT1, lane 2: CT2, lane 3: CT4, lane 4: CT5, lane 5: T6, lane 6: CT7, lane 7: CT9, lane8: CT13
Figure 6 shows SDS-PAGE (A) and immunodetection (B) of recombinant lactoferrin
lane 1: Non-transformant, lane 2: Transformant (pCAMBIA1304)
lane 3: Transformant (pGG12-CN7), lane 4: Transformant (pGG12-CN9)
Figure 7 shows the antimicrobial activity of recombinant lactoferrin

(1) 락토페린 유전자 코돈 최적화(1) Lactoferrin gene codon optimization

미세조류에서 외래 유전자를 도입하여 재조합 단백질을 발현하기 위해서는 발현하고자 하는 미세조류 핵 유전자에 적합하게 코돈을 최적화시켜주는 것이 재조합 단백질의 발현율을 높일 수 있는 방법 중에 하나이다. 그러한 이유로 젖소 락토페린 유전자를 클로렐라 유전자에 적합하게 코돈 최적화를 수행하였다. 이 최적화는 (주)바이오니아의 유전자합성 서비스에 의뢰하여 항균활성 코어인 락토페리신이 포함되어 있는 락토페린 N loop부분(990bp)을 코돈 최적하였다. 유전자 합성시 5'말단에 Nco I site와 시작코돈(ATG)을 삽입하고 3'말단에 종료코돈(TGA)와 Kpn I site를 삽입하도록 유전자 합성을 의뢰하였다. 코돈 최적화된 락토페린 유전자(LfB-N)은 pGEM T easy 벡터에 클로닝 되었다.In order to express a recombinant protein by introducing a foreign gene in microalgae, optimizing the codon for the microalgae nucleus gene to be expressed is one of methods for increasing the expression rate of the recombinant protein. For this reason, the cow lactoferrin gene was subjected to codon optimization to suit the chlorella gene. This optimization was commissioned by Biona 's gene synthesis service to optimize the lactoferrin N loop part (990 bp) containing the antimicrobial active core, lactoferricin. Nco I site and start codon (ATG) were inserted at the 5 'end of the gene synthesis, and the gene was synthesized to insert the end codon (TGA) and the Kpn I site at the 3' end. The codon-optimized lactoferrin gene (LfB-N) was cloned into the pGEM T easy vector.

(2) Expression cassette 구축(2) Construction of Expression cassette

pGEM T easy LfB-N에서 Nco I / Kpn I 제한효소 절단으로 Lfb-N을 분리한 후 gel purification kit로 정제하였다. Dual CaMV35S 프로모터가 포함되어 있는 pRTL2벡터를 Nco I / Kpn I 제한효소 절단하여 backbone을 준비하였고, LfB-N을 T4 DNA ligase로 backbone에 삽입하여 pRTL2-LfB-N을 구축하였다(도 1). E. coli XL1 blue에 클로닝하여 라이브러리를 구축하였다. 구축된 라이브러리는 프라이머 998-F / 998-R 를 사용하여 PCR analysis로 확인하였다. 사용된 프라이머는 표 1과 같다. PCR 조건은 초기 변성반응 95℃ 2분, 30cycle에 변성반응 94℃ 1분, 부착반응 64℃ 2분, 확장반응 72℃ 3분, 최종 확장반응 72℃ 7분으로 수행하였다. 그 결과는 도 2와 같이 약 1.0kb의 PCR product인 LfB-N을 확인하였다. LFb-N was isolated from pGEM T easy LfB-N by digestion with Nco I / Kpn I restriction enzyme and purified with gel purification kit. The pRTL2 vector containing the dual CaMV35S promoter was digested with Nco I / Kpn I restriction enzyme to prepare a backbone. LfB-N was inserted into the backbone using T4 DNA ligase to construct pRTL2-LfB-N (FIG. The library was constructed by cloning into E. coli XL1 blue. The constructed library was confirmed by PCR analysis using primer 998-F / 998-R. Table 1 shows the primers used. PCR was carried out at 95 ° C for 2 min, 30 cycles of denaturation at 94 ° C for 1 min, adherence at 64 ° C for 2 min, extension at 72 ° C for 3 min and final expansion at 72 ° C for 7 min. As a result, LfB-N, which is a PCR product of about 1.0 kb, was identified as shown in FIG.

프라이머primer 염기서열(5`→3`)The base sequence (5` → 3`) 비고Remarks 998-F998-F ATG GTT CGA TGG TGC ACC ATT TC ATG GTT CGA TGG TGC ACC ATT TC Start codonStart codon 998-R998-R TCA TTC CCT CAG GTT CTT CAG G TCA TTC CCT CAG GTT CTT CAG G Stop codonStop codon

(1) 발현 벡터 구축 및 아그로박테리움 형질 전환(1) Construction of expression vector and transformation of Agrobacterium

클로렐라를 형질전환하기 위해서 발현벡터 pCAMBIA1304의 multicloning site를 Hind III / EcoR I 제한 효소 절단하여 backbone을 제작하였다. pRTL2-Lfb-N을 주형으로 하여 프라이머 rtl21304-F / rtl21304-R로 LfB-N이 포함된 발현카세트를 PCR로 합성하였다. 사용된 프라이머는 표 2와 같다. PCR 조건은 초기 변성반응 95℃ 2분, 30cycle에 변성반응 94℃ 1분, 부착반응 67℃ 2분, 확장반응 72℃ 3분, 최종 확장반응 72℃ 7분으로 수행하였다. 합성된 약 2.3 kb 발현카세트는 gel purification kit로 정제하여 pCAMBIA1304 backbone에 infusion cloning method를 통하여 벡터에 삽입하였다(도 3). 그리고 이 발현벡터를 pGG12로 명명하였다. 구축된 벡터는 E. coli XL1 blue에 클로닝하여 라이브러리를 구축하였으며, 이 라이브러리 확인은 PCR analysis를 통해 프라이머 rtl21304-F / rtl21304-R로 약 2.3kb PCR product로 확인하였다. 그 결과는 도 4와 같으며 T7, 8, 9, 17, 20이 pGG12임을 확인하였다. 구축된 발현 벡터 pGG12를 electroporation으로 Agrobacterium에 형질전환 하였다.In order to transform chlorella, the multicloning site of the expression vector pCAMBIA1304 was digested with HindIII / EcoRI restriction enzymes to make a backbone. An expression cassette containing LfB-N as a primer rtl21304-F / rtl21304-R was synthesized by PCR using pRTL2-Lfb-N as a template. Table 2 shows the primers used. PCR was performed at 95 ° C for 2 minutes, 30 cycles of denaturation at 94 ° C for 1 minute, adhesion reaction at 67 ° C for 2 minutes, extension reaction at 72 ° C for 3 minutes, and final expansion reaction at 72 ° C for 7 minutes. The synthesized approximately 2.3 kb expression cassette was purified with a gel purification kit and inserted into the vector via the infusion cloning method in the pCAMBIA1304 backbone (FIG. 3). This expression vector was named pGG12. The constructed vector was cloned into E. coli XL1 blue to construct a library. The confirmation of this library was confirmed by PCR analysis using the primer rtl21304-F / rtl21304-R as a 2.3 kb PCR product. The results are shown in FIG. 4, and T7, 8, 9, 17, and 20 were found to be pGG12. The constructed expression vector pGG12 was transformed into Agrobacterium by electroporation.

프라이머primer 염기서열(5'→3')The base sequence (5 '- > 3') rtl21304-Frtl21304-F CCA TGA TTA CGA ATT CGC ATG CCT GCA GGT CAA CAT GGCCA TGA TTA C GA ATT C GC ATG CCT GCA GGT CAA CAT GG EcoR IEcoR I rtl21304-Rrtl21304-R GGC CAG TGC CAA GCT TGG GGA TGT GCT GCA AGG CGAGGC CAG TGC C AA GCT T GG GGA TGT GCT GCA AGG CGA Hind IIIHind III

(1) 클로렐라 배양 조건(1) Chlorella culture conditions

클로렐라 액상 배양의 경우 BG11 액상 배지에 클로렐라 종균을 약 1.0 × 105 cfu/ml의 농도에서 배양을 시작하였고, 광량은 약 1,000 lux를 유지하였으며, 낮:밤=16:8 시간의 광주기를 유지하였다. In the case of chlorella liquid culture, the culture of chlorella seeds was started at a concentration of about 1.0 × 10 5 cfu / ml in the liquid medium of BG11, the light amount was maintained at about 1,000 lux, and the light period of day: night = 16: 8 hours was maintained .

클로렐라 고체 배양의 경우 BG11 고체 배지에 클로렐라 배양액 0.1ml을 BG11 고체 배지에 분주하여 도말하였다. 도말된 페트리디쉬를 이산화탄소 가스팩이 있는 투명배양용기에 넣고 배양하였다. 배양온도는 25℃를 유지하며, 배양시 광량은 약 1000lux를 유지하였고, 낮:밤=16:8 시간의 광주기를 유지하였다.In the case of chlorella solid culture, 0.1 ml of the chlorella culture was dispensed into the BG11 solid medium and plated on the BG11 solid medium. The smoked petri dishes were placed in a clear culture container containing a carbon dioxide gas pack and cultured. The incubation temperature was maintained at 25 ° C, and the light intensity was maintained at about 1000 lux during incubation, and maintained the light period of day: night = 16: 8 hours.

(2) 클로렐라 형질전환(2) Chlorella transformation

클로렐라 형질전환은 아그로박테리움을 이용한 클로렐라 형질전환 방법(Thye San Cha, Willy Yee, Ahmad Aziz(2012). Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgarils. World J. Microbiol. Biotchnol. 28: 1771-1779)을 참고로 하여 수행하였다. 먼저 클로렐라를 50ml BG11 액상배지에서 OD600 값 0.7 정도의 농도로 배양한 후 150 μM acetosyringone(AS)이 함유된 BG11 고체 배지(pH 5.5)에 클로렐라 배양액 100 ㎕를 도말하여 약 3일간 배양한다. 클로렐라 배양과 동시에 pGG12로 형질전환된 아그로박데리움을 배양한다. 5ml LB 액상 배지에 형질전환된 아그로박테리움을 접종하고 25℃에서 OD600 값 1.0 정도로 배양한다. 아그로박테리움 배양 종료 후 원심분리하여 균체를 회수하고 BG11 액상 배지로 회수된 균체를 현탁시킨다. 3일 동안 배양한 클로렐라 고체 배지위에 형질전환된 아그로박테리움 현탁액 약 200㎕를 접종하여 도말 한다. 도말된 고체 배지를 약 3일 동안 25℃에서 공배양(co-cultivation)한다. 공배양이 끝난 후 고체배지에서 균체를 회수하여 BG11 액상배지로 12000rpm 10분간 원심분리로 세척하여 회수한다. 균체 세척은 3회 정도 실시한다. 회수된 클로렐라 균체를 cefotaxime(100㎍/ml)이 함유된 BG11 액상배지에서 25℃, 암조건에서 16시간동안 정치 배양한다. 정치 배양 종료 후 클로렐라 형질전환체 선택배지인 hygromycin(10㎍/ml)이 함유된 BG11 고체 배지에 접종하여 약 7~10일 동안 25℃에서 배양한다. Chlorella transformation is carried out by transforming chlorella using Agrobacterium (Thye San Cha, Willy Yee, Ahmad Aziz (2012). Assessment of factors affecting Agrobacterium-mediated genetic transformation of unicellular green alga, Chlorella vulgarils. World J. Microbiol. Biotchnol. 28: 1771-1779). First, after culturing chlorella 50ml in BG11 liquid medium at a concentration of about OD 600 value of 0.7 150 μM acetosyringone (AS) 100 plated on BG11 agar ㎕ chlorella culture medium (pH 5.5) containing the incubation will be for about 3 days. Agrobacterium transformed with pGG12 is cultured simultaneously with chlorella culture. Inoculated with transformed Agrobacterium in 5ml LB liquid medium and cultured OD 600 value of about 1.0 at 25 ℃. After completion of the Agrobacterium culture, the cells are recovered by centrifugation, and the recovered cells are suspended in the BG11 liquid medium. About 200 μl of the transformed Agrobacterium suspension is inoculated onto the chlorella solid medium cultured for 3 days and plated. The smoldered solid medium is co-cultivated at 25 DEG C for about 3 days. After co-cultivation, the cells were recovered from the solid medium and recovered by washing with BG11 liquid medium at 12,000 rpm for 10 minutes by centrifugation. Cell washing is carried out about 3 times. The recovered chlorella cells are cultured in a BG11 liquid medium containing cefotaxime (100 μg / ml) at 25 ° C. for 16 hours under dark conditions. After completion of the culture, the cells are inoculated into a BG11 solid medium containing hygromycin (10 μg / ml), a chlorella transformant selection medium, and cultured at 25 ° C. for about 7 to 10 days.

(1) 클로렐라 형질전환체 PCR 분석를 통한 형질전환된 클로렐라 선별(1) Chlorella transformant Chlorella screening transformed through PCR analysis

형질 전환된 콜로니를 hygromycin(10㎍/ml)이 함유된 BG11 액체 배지(10ml)에 접종하여 실시예 3과 같은 방법으로 배양하였다. 배양농도 OD600 > 1.0인 시점에 배양액을 12,000rpm 10분동안 원심분리 하여 균체를 회수한다. 회수된 균체를 DNeasy Plant Mini kit(QIAGEN)을 이용하여 핵산을 추출하였다. 추출된 핵산을 표 1에서 제시한 프라이머로 PCR 반응시켜 아가로스 전기영동을 통해서 1.0kb 밴드가 확인되는 콜로니를 형질전환체로 선별하였다(도 5). 그 결과 CT7와 CT9가 형질전환된 클로렐라로 확인되었다. The transformed colonies were inoculated into BG11 liquid medium (10 ml) containing hygromycin (10 / / ml) and cultured in the same manner as in Example 3. At a culture concentration of OD 600 > 1.0, the culture was centrifuged at 12,000 rpm for 10 minutes to collect the cells. The recovered cells were extracted with DNeasy Plant Mini kit (QIAGEN). The extracted nucleic acid was subjected to PCR reaction with the primer shown in Table 1, and a 1.0 kb band-confirmed colony was selected as a transformant through agarose electrophoresis (FIG. 5). As a result, CT7 and CT9 were identified as transformed chlorella.

(1)형질전환된 클로렐라에서 재조합 락토페린 발현(1) Recombinant lactoferrin expression in transformed chlorella

Hygromycin(10ug/ml)이 첨가된 50ml BG11 액상배지에 CT 7 과 CT 9을 25, 광조건은 광주기 16 : 8(day : night), 광량 100 mol/m2/s에서 7일 동안 배양하였다. 종료된 배양액(1.0 x 107cfu/ml)을 12,000 rpm 10분 동안 원심분리하여 균체를 회수 한 후, 2ml total protein extraction buffer(50mM Hepes, 250mM KCl, 0.1mM EDTA, 1mM DTT, 0.5mM phenylmethylsulfonyl fluride)로 현탁시켰다. 이 균체 현탁액을 sonication (30W, 10min)으로 세포를 파쇄한 후 12,000 rpm 10분 동안 원심분리하여 상등액을 회수하였다. 회수된 상등액을 10kDa membrane filter로 농축한 후 30ug의 total protein을 SDS-PAGE로 분리하였다(도 6-A). SDS-PAGE 결과 CT 7과 CT 9에서 약 33kDa의 밴드가 확인되었다.The Hygromycin CT 7 and CT 9 to 50ml BG11 liquid medium supplemented with (10ug / ml) is added 25, light condition is photoperiod 16: cultured at: (night day), the amount of light 100 mol / m 2 / s for 7 days 8. The end the culture (1.0 x 10 7 cfu / ml ) to 12,000 rpm and then the cells were collected by centrifugation for 10 minutes, 2ml total protein extraction buffer (50mM Hepes, 250mM KCl, 0.1mM EDTA, 1mM DTT, 0.5mM phenylmethylsulfonyl fluride ). The cell suspension was sonicated (30 W, 10 min) to disrupt the cells and centrifuged at 12,000 rpm for 10 min to recover the supernatant. The recovered supernatant was concentrated using a 10 kDa membrane filter, and 30 ug of total protein was separated by SDS-PAGE (Fig. 6-A). SDS-PAGE revealed a band of approximately 33 kDa on CT7 and CT9.

또한 western blotting한 후 immunodection을 수행하였다(도 6-B). 1차 항체는 goat anti-bovine Lf (polyclonal)을 사용하였고, 2차 항체로는 donkey anti-goat IgG-AP를 사용하였다. 그 결과 CT 7과 CT 9에서 약 33kDa의 밴드가 확인되었다.After western blotting, immunodiplication was performed (Fig. 6-B). Goat anti-bovine Lf (polyclonal) was used as the primary antibody and donkey anti-goat IgG-AP was used as the secondary antibody. As a result, a band of about 33 kDa was confirmed in CT 7 and CT 9.

(1) 재조합 락토페린에 대한 생물학적 검정(1) Biological assay for recombinant lactoferrin

재조합 락토페린을 함유한 클로렐라 형질전환체 CT7과 CT9을 hygromycin(10ug/ml) 함유된 100ml BG11 배지에서 7일 동안 배양한다. 배양액(1.0 x 107cfu/ml)을 12000 rpm, 10분 동안 원심분리 하여 균체를 회수하였다. 회수된 균체에 10 ml PBS 용액을 첨가하여 12000 rpm, 10분동안 원심분리 하여 균체를 세척하였다. 이 세척 과정을 3회 수행하였다. 2ml total protein extraction buffer(50mM Hepes, 250mM KCl, 0.1mM EDTA, 1mM DTT, 0.5mM phenylmethylsulfonyl fluride)로 현탁시켰다. 이 균체 현탁액을 sonication (30W, 10min)으로 세포를 파쇄한 후 14,000 rpm 10분 동안 원심분리하여 상등액을 회수하였다. 회수된 상등액을 10kDa membrane filter로 농축하여 total protein 500ug을 준비하였다.Chlorella transformants CT7 and CT9 containing recombinant lactoferrin were cultured for 7 days in 100 ml of BG11 medium containing hygromycin (10 ug / ml). The cells were recovered by centrifuging the culture (1.0 x 10 7 cfu / ml) at 12000 rpm for 10 minutes. 10 ml of PBS solution was added to the recovered cells, and the cells were washed by centrifugation at 12,000 rpm for 10 minutes. This washing procedure was performed three times. Suspended in 2 ml total protein extraction buffer (50 mM Hepes, 250 mM KCl, 0.1 mM EDTA, 1 mM DTT, 0.5 mM phenylmethylsulfonyl fluride). The cell suspension was sonicated (30 W, 10 min) to disrupt the cells and centrifuged at 14,000 rpm for 10 min to recover the supernatant. The recovered supernatant was concentrated with a 10 kDa membrane filter to prepare 500 ug of total protein.

피검균으로는 대장균을 선택하였고, 5ml LB broth에 배양하였다. 재조합 락토페린이 함유된 클로렐라 total protein 500ug을 사용하였고, 8mm paper disc에 추출물 접종하여 병원균 억제환을 확인하였다. 양성 대조구로 bovine lactoferrin(LfB, Sigma) 500ug을 사용하였다. Paper disc에 80㎕을 접종하였다. 그 결과 도 7과 같이 형질전환되지 않은 클로렐라(Non-TF)에서는 대장균 억제환이 확인되지 않았으며, LfB에서는 약 15 mm 억제환, CT7에서는 약 10.5 mm, CT9에서는 약 9 mm 억제환이 확인되었다. Escherichia coli was selected as a test strain and cultured in 5 ml of LB broth. Chlorella total protein (500 ug) containing recombinant lactoferrin was used and inoculated with 8 mm paper discs. As a positive control, 500 ug of bovine lactoferrin (LfB, Sigma) was used. The paper disc was inoculated with 80 μl. As a result, E. coli inhibition was not observed in the non-transformed chlorella (Non-TF) as shown in Fig. 7, and inhibition of 15 mM inhibition was observed in LfB, 10.5 mM in CT7 and 9 mM in CT9.

cfu/ml; colony forming unitcfu / ml; colony forming unit

<110> PARK, BOK HEE <120> Expression of bovine lactoferrin using transformed Chlorella <130> 1 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 998 <212> DNA <213> bovine <400> 1 ccatggttcg atggtgcacc atttcccagc ccgagtggtt caaatgccgc cgatggcagt 60 ggcggatgaa gaagctgggc gctccctcta tcacctgcgt ccgcagggcc ttcgcgcttg 120 agtgcattcg ggccatcgcg gagaagaagg cggacgcggt gaccctggat ggtggcatgg 180 tgtttgaggc gggccgtgac ccctacaagc tgcgccccgt tgcagcagag atctacggga 240 cgaaggagtc cccccagacc cactactacg ccgtggccgt ggtgaagaag ggcagcaatt 300 ttcagctgga ccagctgcaa ggccggaagt cctgccatac gggccttggc cgctccgctg 360 gttggatcat ccctatgggc atcttgcgcc cgtacctaag ctggacagag tccctcgagc 420 ccctccaggg agctgtggcc aagttcttct cagcaagctg cgtaccgtgc attgacagac 480 aagcataccc taacctgtgt cagctgtgca agggggaggg ggagaaccag tgcgcctgct 540 cctcacggga gccatacttc ggttactctg gtgccttcaa gtgtctgcaa gacggggctg 600 gcgacgtggc tttcgtcaag gagactacag tgttcgagaa cttgccagag aaggctgacc 660 gcgaccagta tgagttgctt tgcctgaaca acagccgcgc cccggtggat gcgttcaagg 720 aatgccacct ggcccaggtc ccgtcgcacg ccgtcgtggc gcgaagtgtg gatggcaagg 780 aggacctgat ctggaagctc ctcagcaagg cacaggagaa gtttgggaag aacaagtcgc 840 ggagctttca gctcttcggc tctccgccgg gccagcggga cctgctgttc aaggactccg 900 cactgggatt tttgcgtatt ccgtcgaagg tggactcggc gctgtacctg ggctcccgct 960 acttgaccac cctgaagaac ctcagggaat gaggatcc 998 <110> PARK, BOK HEE <120> Expression of bovine lactoferrin using transformed Chlorella <130> 1 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 998 <212> DNA <213> bovine <400> 1 ccatggttcg atggtgcacc atttcccagc ccgagtggtt caaatgccgc cgatggcagt 60 ggcggatgaa gaagctgggc gctccctcta tcacctgcgt ccgcagggcc ttcgcgcttg 120 agtgcattcg ggccatcgcg gagaagaagg cggacgcggt gaccctggat ggtggcatgg 180 tgtttgaggc gggccgtgac ccctacaagc tgcgccccgt tgcagcagag atctacggga 240 cgaaggagtc cccccagacc cactactacg ccgtggccgt ggtgaagaag ggcagcaatt 300 ttcagctgga ccagctgcaa ggccggaagt cctgccatac gggccttggc cgctccgctg 360 gttggatcat ccctatgggc atcttgcgcc cgtacctaag ctggacagag tccctcgagc 420 ccctccaggg agctgtggcc aagttcttct cagcaagctg cgtaccgtgc attgacagac 480 aagcataccc taacctgtgt cagctgtgca agggggaggg ggagaaccag tgcgcctgct 540 cctcacggga gccatacttc ggttactctg gtgccttcaa gtgtctgcaa gacggggctg 600 gcgacgtggc tttcgtcaag gagactacag tgttcgagaa cttgccagag aaggctgacc 660 gcgaccagta tgagttgctt tgcctgaaca acagccgcgc cccggtggat gcgttcaagg 720 aatgccacct ggcccaggtc ccgtcgcacg ccgtcgtggc gcgaagtgtg gatggcaagg 780 aggacctgat ctggaagctc ctcagcaagg cacaggagaa gtttgggaag aacaagtcgc 840 ggagctttca gctcttcggc tctccgccgg gccagcggga cctgctgttc aaggactccg 900 cactgggatt tttgcgtatt ccgtcgaagg tggactcggc gctgtacctg ggctcccgct 960 acttgaccac cctgaagaac ctcagggaat gaggatcc 998

Claims (6)

서열 1의 염기서열로 Chlorella vulgaris의 코돈에 최적화된 락토페린 유전자
The nucleotide sequence of SEQ ID NO: 1 is the codon optimized lactoferrin gene of Chlorella vulgaris
서열 1의 유전자를 포함하는 도 1의 유전자 지도와 같은 특징을 갖는 발현카세트(expression cassette)An expression cassette having the same characteristics as the gene map of Fig. 1 including the gene of SEQ ID NO: 1, 제 2항의 발현카세트(expession cassette)를 포함하는 도 3의 유전자 지도와 같은 특징을 갖는 발현 벡터An expression vector having the same characteristics as the gene map of Figure 3, including the expression cassette of claim 2 제 3항의 발현벡터로 형질전환된 클로렐라에서 발현한 것을 특징으로 하는 재조합 락토페린 단백질

A recombinant lactoferrin protein characterized by expression in chlorella transformed with the expression vector of claim 3

삭제delete 삭제delete
KR1020120129923A 2012-11-16 2012-11-16 Expression of bovine lactoferrin using transformed Chlorella KR101460861B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120129923A KR101460861B1 (en) 2012-11-16 2012-11-16 Expression of bovine lactoferrin using transformed Chlorella

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120129923A KR101460861B1 (en) 2012-11-16 2012-11-16 Expression of bovine lactoferrin using transformed Chlorella

Publications (2)

Publication Number Publication Date
KR20140063045A KR20140063045A (en) 2014-05-27
KR101460861B1 true KR101460861B1 (en) 2014-11-11

Family

ID=50891131

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120129923A KR101460861B1 (en) 2012-11-16 2012-11-16 Expression of bovine lactoferrin using transformed Chlorella

Country Status (1)

Country Link
KR (1) KR101460861B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4379057A1 (en) * 2021-07-26 2024-06-05 Green Mineral Inc. Vector system for transformation of chlorella vulgaris, and transformation method for chlorella vulgaris
KR20230016452A (en) * 2021-07-26 2023-02-02 그린미네랄 주식회사 Biomineralization vector and transformant for transformation of Chlorella vulgaris

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GenBank Accession Number JX294418 (2012.09.02.) *
미국 특허출원공개공보 US2011/0014708호(2011.01.20.) *

Also Published As

Publication number Publication date
KR20140063045A (en) 2014-05-27

Similar Documents

Publication Publication Date Title
US11034970B2 (en) Production of protein from hairy roots of a Brassicaceae plant utilizing rhizobium comprising rol genes
WO2024031921A1 (en) Pichia pastoris with enhanced lactoferrin expression, method for constructing same, and use thereof
CN113831395B (en) Recombinant antibacterial peptide Trsub, preparation method and application thereof
Huet et al. Production and secretion of a heterologous protein by turnip hairy roots with superiority over tobacco hairy roots
TW200914611A (en) Pig edema disease vaccine
CN111420037B (en) Application of phage lyase Lysep3 in preparation of broad-spectrum antibacterial drugs
KR101460861B1 (en) Expression of bovine lactoferrin using transformed Chlorella
CN108148123B (en) Natural antibacterial peptide of burned soil hypha fungi and application thereof
KR101321890B1 (en) Plant producing human enterokinase light chain protein and uses thereof
CN110468143A (en) The preparation method and application of antibacterial peptide NZX
CN116196393A (en) Application of antibacterial peptide AP138 in preparation of antibacterial drugs
CN115969956A (en) Application of antibacterial peptide A24 in preparation of antibacterial drugs
Sohrabi et al. Isolation and expression of antimicrobial Camel lactoferrin ('cLf') gene in tobacco
CN108342400B (en) Genetic engineering bacterium for recombinant expression of oxalate oxidase and construction method and application thereof
KR102208028B1 (en) Salt inducible promoter from Chlorella vulgaris and uses thereof
KR101574554B1 (en) Method for producing recombinant human trypsin using rice suspension culture
KR20150054302A (en) Method to transform bovine lactoferrin to Chlorella by electroporation
KR102242665B1 (en) Heat inducible promoter from Chlorella vulgaris HSP70 and uses thereof
KR20150056009A (en) Expression of bovine lactoferrin by the microalga, Chlamydomonas
KR102435211B1 (en) Plant cell lines producing recombinant albumin with high yield and uses thereof
CN109810956B (en) Gossypol degrading enzyme HIGD and coding gene and application thereof
JP2015518723A (en) Trichoderma hydrophobin production
CN113234137B (en) Application of CXCL20a protein isolated from grass carp as antibacterial peptide
US20240209387A1 (en) Novel expression system for production of industrial enzymes
CN107326040A (en) Efficient expression antimicrobial peptides PG 1 method and its application in repair tissue damage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170911

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 5