KR20150049423A - 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법 - Google Patents

통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법 Download PDF

Info

Publication number
KR20150049423A
KR20150049423A KR1020130129991A KR20130129991A KR20150049423A KR 20150049423 A KR20150049423 A KR 20150049423A KR 1020130129991 A KR1020130129991 A KR 1020130129991A KR 20130129991 A KR20130129991 A KR 20130129991A KR 20150049423 A KR20150049423 A KR 20150049423A
Authority
KR
South Korea
Prior art keywords
filter
impulse response
finite impulse
channel
data
Prior art date
Application number
KR1020130129991A
Other languages
English (en)
Inventor
김청섭
태기철
강흥용
손수호
김강희
최용석
최재익
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020130129991A priority Critical patent/KR20150049423A/ko
Publication of KR20150049423A publication Critical patent/KR20150049423A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03254Operation with other circuitry for removing intersymbol interference
    • H04L25/03261Operation with other circuitry for removing intersymbol interference with impulse-response shortening filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H2017/0072Theoretical filter design
    • H03H2017/0081Theoretical filter design of FIR filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

본 발명은, 통신 시스템에서 유한 임펄스 응답 필터 구현 방법에 있어서, 유한 임펄스 응답 필터를 구현하기 위한 필터 파라미터들을 설정하는 단계; 상기 설정된 필터 파라미터들에 근거하여 입력 데이터에 미리 설정된 배수의 제로 패딩을 하고, 윈도우 함수를 연산하는 단계; 상기 연산된 윈도우 함수에 근거하여 고속 퓨리에 변환을 수행하는 단계; 및 신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 상기 고속 퓨리에 변환을 이용한 유한 임펄스 응답 필터를 구현하는 단계를 포함하고, 상기 필터 파라미터를 설계하는 단계는 필터 파라미터들 중에서 채널 샘플링율을 채널 대역폭의 두 배로 설정하는 단계를 포함하는 것을 특징으로 한다.

Description

통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법{Apparatus and method for design of finite impulse response filter in a communication system}
본 발명은 통신 시스템에 관한 것으로서, 특히 연산 속도가 감소된 간섭 경감 고속 퓨리에 변환 방식을 이용한 유한 임펄스 응답 필터 설계 장치 및 방법에 관한 것이다.
일반적으로, 무선으로 통신하는 통신 시스템에서 사용하는 수신기는 높은 샘플링율(sampling rate)를 갖는 광대역 데이터로부터 특정 신호의 기저대역 신호처리를 할 수 있다. 이때, 특정 신호의 기저대역 신호 처리를 위해서 수신기는 수신된 신호를 다수개의 협대역으로 필터링할 필요가 있다. 이를 위해, 수신기는 유한 임펄스 응답(Finite Impulse response, 이하 'FIR'이라 칭하기로 함) 필터를 이용한다. 하지만, 이와 같이 일반적인 FIR 필터는 입력 광대역 데이터가 높은 샘플링율을 가질 때, 계산량이 증가하여 연산 속도가 저하되기 때문에 구현하기 어렵다는 문제점이 있었다.
따라서, 본 발명의 목적은 연산 속도를 향상시켜 다수개의 채널을 지원할 수 있는 유한 임펄스 응답 필터 설계 장치 및 방법을 제공함에 있다.
상기한 목적들을 달성하기 위한 본 발명의 장치는 통신 시스템에서 유한 임펄스 응답 필터 구현 장치에 있어서, 입력된 신호를 하향 변환하는 하향 변환부; 하향 변환된 신호를 유한 임펄스 응답 필터를 이용하여 필터링하는 다중 유한 임펄스 응답 필터부; 유한 임펄스 응답 필터를 구현하기 위한 필터 파라미터들을 설정하는 필터 단위 결정부; 상기 설정된 필터 파라미터들에 근거하여 입력 데이터에 미리 설정된 배수의 제로 패딩을 통한 고속 퓨리에 변환을 수행하고, 신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 상기 고속 퓨리에 변환을 이용하여 상기 다중 유한 임펄스 응답 필터부 내부의 유한 임펄스 응답 필터를 구현하는 필터 구현부; 및 상기 필터 파라미터들의 설정 동작을 제어하고, 상기 필터 파라미터들 중에서 채널 샘플링율을 채널 대역폭의 두 배로 설정하도록 상기 필터 단위 결정부를 제어하는 제어부;를 포함한다.
상기한 목적들을 달성하기 위한 본 발명의 방법은, 통신 시스템에서 유한 임펄스 응답 필터 구현 방법에 있어서, 유한 임펄스 응답 필터를 구현하기 위한 필터 파라미터들을 설정하는 단계; 상기 설정된 필터 파라미터들에 근거하여 입력 데이터에 미리 설정된 배수의 제로 패딩을 하고, 윈도우 함수를 연산하는 단계; 상기 윈도우 함수 연산된 데이터를 이용하여 고속 퓨리에 변환을 수행하는 단계; 및 신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 상기 고속 퓨리에 변환을 이용한 유한 임펄스 응답 필터를 구현하는 단계;를 포함하고, 상기 필터 파라미터를 설계하는 단계는 필터 파라미터들 중에서 채널 샘플링율을 채널 대역폭의 두 배로 설정하는 단계;를 포함하는 것을 특징으로 한다.
본 발명은, 시간에 대해 중첩한 고속 퓨리에 변환 결과로 발생하는 새로운 채널 샘플링율을 채널 대역폭의 두 배로 설정함으로써, 계산량이 기존에 비해 감소된 형태의 유한 임펄스 응답 필터를 구현할 수 있다. 또한, 본 발명은 유한 임펄스 응답 필터 구현에 고속 퓨리에 변환 방식의 사용에 따른 인접 채널로 인한 간섭과 인접하지 않는 채널 간의 간섭도 제거할 수 있다. 또한, 본 발명은 윈도우 함수 사용시 발생하는 채널 대역폭의 확장에 대응할 수 있고, 간단하게 주파수 하향 변환이 가능한 구조의 설계가 가능하다.
도 1은 본 발명의 실시 예에 따른 유한 임펄스 응답 필터 설계 동작을 개략적으로 도시한 도면.
도 2는 본 발명의 실시 예에 따른 유한 임펄스 응답 필터 구현 장치를 개략적으로 도시한 도면.
도 3은 본 발명의 실시 예에 따른 다채널 FIR 필터의 시간과 주파수의 관계를 개략적으로 도시한 그래프.
도 4는 본 발명의 실시 예에 따른 고속 퓨리에 변환을 이용한 필터 구현 시 제로 패딩을 수행하지 않는 것을 개략적으로 도시한 도면.
도 5는 본 발명의 실시 예에 따른 고속 퓨리에 변환을 이용한 필터 구현 시 제로 패딩을 수행한 것을 개략적으로 도시한 도면.
이하, 본 발명에 따른 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩뜨리지 않도록 생략될 것이라는 것을 유의하여야 한다.
본 발명은 통신 시스템의 수신기에서 고속 퓨리에 변환에 근거한 필터의 구현은 인접 채널 간의 간섭 문제와 하향 주파수 변환 등으로 인해 연산 속도의 우수성을 가짐에도 특정 성능 이상에서 유한 임펄스 응답(FIR: Finite Impulse response, 이하 'FIR'이라 칭하기로 함) 필터 구현에 활용되지 못하였다. 이에 본 발명은 간섭을 제거할 수 있는 고속 퓨리에 변환(FFT: Fast Fourier Transform, 이하 'FFT'라 칭하기로 함)에 근거하여, FIR 필터 설계 방법을 제공한다. 이를 통해, 본 발명에서 제안된 FIR 필터 설계 방법은 인접 채널로 인한 간섭을 제거할 수 있다.
도 1은 본 발명의 실시 예에 따른 유한 임펄스 응답 필터 설계 동작을 개략적으로 도시한 도면이다.
도 1을 참조하면, FIR 필터 설계 동작은 크게 다섯 단계들로 구분될 수 있다. 이와 같은 다섯 가지 단계들(101, 102, 103, 104, 105)이 도시되어 있다.
우선, 단계 1(101)은 FFT 기반의 간섭 제거 다채널 필터를 설계하기 위해 입력 샘플링율(sampling rate)이
Figure pat00001
인 데이터를 M(M은 양의 정수)개 획득한 후 제 4 단계(104)의 파라미터를 받아 필터 설계를 위한 기본 단위를 결정한다.
단계 1(101)은 110단계와 120단계를 포함한다.
110단계에서, FFT에 기반하여 간섭을 제거한 다채널 필터를 설계하기 위해 입력 샘플링율이
Figure pat00002
인 데이터 M개를 획득한다.
120단계에서, 데이터 M개를 이용하여 타임 쉬프트를 결정한다. 이를 위해, 필터링할 신호의 캐리어 주파수 및 심볼율의 정보를 이용하여 N(N은 양의 정수), 간섭(
Figure pat00003
)의 값을 결정한다. 또한, FFT를 사용하기 위해 사용된 윈도우 함수의 3dB 대역 정보를 이용하여 채널 대역폭(
Figure pat00004
)를 결정한다.
여기서, 윈도우 함수를 사용하지 않는 FFT 채널 대역폭을 1이라고 가정한다. 그리하면, 일반적으로 사용하는 윈도우 함수에 따라 대역폭이 증가하므로, 1 이상의 값을 설정하여야 한다. 여기서는 채널 대역폭을 2로 설정(
Figure pat00005
=2)하여 FIR 필터 설계를 위한 FFT 채널의 샘플링율을 2배로 만들어 샘플링 이론을 충족하도록 한다. 또한, M은 광대역 데이터의 개수이고, 계산량이 적은 FFT 방식을 사용한다. k 값이 정수인 2K의 값으로 설정한다.
윈도우 함수를 제안한 중첩 원리는 하기의 수학식 1 나타내었다.
Figure pat00006
수학식 2의 중첩 원리에 따라 시간적인 이동을 통해 최종 발생되는 채널 대역폭은 시간적으로 발생하는 샘플링율의 1/2이 된다. 또한, 각 채널의 샘플링율이 2배라는 것을 이용하여 하기에서 설명될 단계 5(105)의 하향 주파수 변환 동작의 알고리즘을 최소화할 수 있다.
다음으로, 단계 2(102)와 단계 3(103)은 실제로 동시에 수행되나 개념 설명을 위해 분리한다.
단계 2(102)는 FFT 수행에 따른 인접 채널 간섭을 최소화한다. 단계 2(102)는 130단계와 140단계를 포함한다.
130단계에서, 간섭을 최소화하기 위해 3배의 제로 패딩 데이터를 삽입한 후 윈도우 함수를 연산한다. 여기서, 제로 패딩을 하면 FFT를 수행할 데이터의 전력은 유지되고, 주파수 영역에서 이웃 채널로 인한 간섭은 채널 간 간격이 감소하여 감소한다. 여기서, 중심 주파수를 중심으로 이웃 채널 4개의 결과 값을 합하여 제로 패딩을 수행하지 않은 결과 값과 비교하면 채널 대역폭 및 채널 시간 샘플링율이 동일하나 이웃하는 채널간 간섭 영향은 대폭 감소한다. 이로 인해, 본 발명에서 제안된 간섭이 제거된 FFT 방식을 구현할 수 있다.
140단계에서 윈도우 함수 연산된 데이터를 (M*4) FFT를 수행한다.
150단계에서 M/N의 값을 2로 모듈로 연산(M/N % 2)에 따른 데이터 배치를 한다.
또한, 데이터 배치 동작은 다채널 FIR 필터를 생성하기 위해 사용되지는 않지만, 인접하지 않는 채널 간의 간섭을 최소화하기 위해 사용된다. 일부 윈도우 함수는 인접 채널 밖에서는 정지(stop) 대역이 급격히 감소하므로 이것을 이용하여 정지 대역폭(
Figure pat00007
)을 2로 설정하면, 시간 영역에서 2부분의 위상(Phase)으로 분리가 가능하다. 제 1 위상은 채널 번호를 정지 대역폭(
Figure pat00008
)으로 나누어 나머지가 0인 채널들로 구성하고, 제 2 위상은 정지 대역폭으로 나누어 나머지가 1인 채널을 구성하여 전체 채널 데이터를 구성한다. 그리하면, 이웃하지 않는 채널 간의 간섭은 이 방식을 사용하지 않는 채널들의 간섭보다 훨씬 작아지게 된다.
150단계는 M값을 최소화한 광대역 필터 알고리즘으로 설계할 경우, 이웃 채널 간섭 외 이웃하지 않는 채널 간섭도 상당히 큰 값으로 해당 채널에 영향을 줄 수 있다. 따라서, 전체 채널 데이터 배치 동작을 통해 간섭을 감소시키는 효과를 가질 수 있다. 또한, 작은 M값을 이용한 광대역 채널을 설계한 이후, 해당 광대역 채널에서 150단계의 데이터 배치 동작을 수행하여 최종 협대역 FIR 필터 채널을 생성하는 방법도 가능하다.
단계 3(103)은 FIR 필터 구현을 나타낸다. 단계 3(103)은 160단계를 포함한다.
160단계는 필터링하고자 하는 신호의 특성에 따라 적응하는 심볼들의 중첩 개수 N과 적절한 개수의 채널 합을 설정하여 FFT 방식의 FIR 필터를 구현한다. 즉, M 포인트 FFT를 수행하고, M/N개의 채널 합을 설정한다. 여기서, N은 채널 합의 개수인 동시에 심볼들이 중첩하는 시간적인 단위이며, M이 증가할수록 필터 대역이 증가하고, 샘플링 이론을 충족하기 위해 중첩하는 빈도도 증가한다.
단계 4(104)는 필터의 제어 동작을 한다. 단계 4(104)는 170단계를 포함한다.
170단계는 필터링할 신호의 정보(예를 들어, 심볼율, 중심 주파수 등)를 입력받고, 입력된 정보를 사용하여 필터 생성을 위한 파라미터를 생성한다. 여기서, 생성되는 파라미터는 광대역 데이터의 개수를 나타내는 M, 신호의 심볼율에 따라 설정하는 채널들 간 합의 개수(M보다 작은 값으로 시간적으로 중첩하는 개수) N, 다채널 필터의 간섭을 최소화하기 위한 M에 대한 제로 패딩 배수(값이 증가할수록 간섭은 감소)인
Figure pat00009
, 채널 합의 대역폭이 샘플링 이론에 어긋나지 않게 설정하는 값(여기서는 2)인
Figure pat00010
, 인접하지 않는 채널들 간의 간섭을 최소화하기 위해 설정하는 값인
Figure pat00011
(여기서는 2로 설정, 사용하지 않을 경우 1로 설정) 등이 있다. 여기서 설정된 정보는 단계 1(101)로 피드백되어 FIR 필터 구현에 이용될 수 있다.
또한, 170단계는 FIR 필터의 정밀한 구현을 위해, 저속의 샘플링 데이터에 대한 FIR 필터의 개수를 조절할 수 있다. 이를 위해, 하기에 설명되는 단계 5의 FIR 필터의 제어가 가능하다. 이러한 유한 임펄스 필터는 저속의 샘플링율을 입력으로 사용함으로 계산량이 적다.
단계 5(105)는 FIR 필터의 구현 동작을 도시한 도면이다. 단계 5는 180단계와 190단계를 포함한다.
180단계에서, 입력 신호를 하향 변환한다. 여기서, 하향 변환은 단계 150단계에서 사용될 수 있고, 하향 변환 후 샘플링 속도가 낮은 데이터를 이용하여 정밀한 협대역 FIR 필터의 사용도 가능하다.
190단계에서, 멀티 FIR 필터링 동작을 수행한다. 필터 설계 시 사용하는 FFT는 각 채널마다 고유의 주파수가 존재하여 하향 변환이 각 주파수 별로 필요하다. 그러나, 제안된 발명에서는 각 채널마다 시간적인 샘플링율이 채널 대역폭의 2배로 설계하였으므로 간단히
Figure pat00012
의 벡터를 이용하여 하기의 수학식 2와 지수함수의 성질을 이용한다.
Figure pat00013
이를 통해, 각 채널의 고유 주파수 제거가 가능하다. 여기서, 채널의 위치번호[0~FFT 포인트 -1]를 2로 나눈 나머지가 0일 경우 적용하고, 나머지 값이 1인 경우 분리해서 적용한다.
상술한 바와 같이, 본 발명은 시간에 대해 중첩한 FFT 결과로 발생하는 새로운 채널 샘플링율을 채널 대역폭의 두 배로 설정한다. 이를 통해, 본 발명은 무선 통신 시스템에서 신호 수신 시 간섭 제거 FFT 방식을 이용하면 계산량이 기존에 비해 감소된 형태의 FIR 필터의 구현이 가능하다. 또한, FFT를 이용한 단순 채널 합에 의한 다채널 FIR 필터를 구성할 시 발생하는 이웃 채널 간섭 문제를 해결할 수 있다.
또한, 본 발명은 데이터의 중첩 횟수를 두 배 증가시키고, 증가한 횟수마다 채널 재배치를 통해 인접하지 않는 채널간의 간섭도 최대한 억제할 수 있다.
도 2는 본 발명의 실시 예에 따른 유한 임펄스 응답 필터 구현 장치를 개략적으로 도시한 도면이다.
도 2를 참조하면, 필터 단위 결정부(220)는 제어부(210)의 제어에 따라 FIR 필터를 구현하기 위한 필터 단위를 결정한다. 필터 단위 결정부(220)는 입력 샘플링율이
Figure pat00014
인 데이터 M개를 획득한다. 필터 단위 결정부(220)는 채널들 간의 합의 개수 N과 M에 대한 제로 패딩 배수인
Figure pat00015
를 결정한다. 필터 단위 결정부(220)는 FFT를 사용하기 위해 사용된 윈도우 함수의 3dB 대역 정보를 이용하여 채널 대역폭을 결정한다. 필터 단위 결정부(220)는 채널 합의 대역폭을 결정하기 위한
Figure pat00016
와 채널 간의 간섭을 최소화하기 위해 설정하는 값인
Figure pat00017
을 결정한다.
필터 구현부(230)는 간섭이 감소된 FFT를 위한 FIR 필터를 구현한다. 필터 구현부(230)는 간섭 감소부(231)와 FIR 필터 구현부(232)를 포함한다. 하지만, 간섭 감소부(231)와 필터 구현부(232)의 구성은 동작 설명을 위해 구분된 것으로 동시에 동작할 수 있다.
간섭 감소부(231)는 인접 채널로 인한 간섭을 최소화시킨다. 이를 위해, 미리 설정된 배수의 제로 패딩 데이터를 삽입 한 후 윈도우 함수 연산을 한다. 여기서, 간섭 감소부(231)는 윈도우 함수 연산된 데이터를 M의 배수(일 예로, M*4)로 FFT를 수행한다. 이를 통해, 수신기에서는 데이터의 전력을 유지한 상태에서 이웃하는 채널간 간섭을 감소시킬 수 있다.
또한, 간섭 감소부(231)는 윈도우 함수의 정지 대역의 값을 2로 설정하여 시간 영역에서 2개의 위상으로 분리시켜 채널을 구성한다. 이를 통해, 간섭 감소부(231)는 이웃하지 않는 채널 간의 간섭까지 감소시킬 수 있다.
FIR 필터 구현부(232)는 신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 FFT 방식의 FIR 필터를 구현한다.
여기서, N은 채널 합의 개수인 동시에 심볼들이 중첩하는 시간적인 단위이고, N이 증가할수록 필터 대역이 증가하고 샘플링 이론을 충족하기 위해 중첩하는 빈도가 증가한다.
필터 구현부(230)는 구현된 FIR 필터 정보를 하향 변환부(240)(또는, 다중 FIR 필터부(250))로 출력하여 FIR 필터를 구현한다. 또는 필터 구현부(230)는 제어부(210)를 통해 FIR 필터를 구현할 수도 있다.
하향 변환부(240)는 입력된 신호를 하향 변환한다. 하향 변환된 신호는 다중 FIR 필터부(250)로 출력된다.
다중 FIR 필터부(250)는 구현된 FIR 필터에 의해 하향 변환된 신호를 필터링한다. 이때, 다중 FIR 필터부(250)는 제어부(210)의 제어에 따라 필터의 개수가 조절될 수도 있다. 일 예로, 제어부(210)는 정밀한 필터 구현을 위해 저속의 샘플링 데이터 등에 대해서 FIR 필터의 개수를 조절할 수 있다.
기존에는 특정 주파수를 발생하는 로컬 오실레이터를 이용하여 주파수 하향 변환 후 생성한 높은 샘플링율의 데이터를 FIR 필터 계수를 이용하여 협대역 필터링하는 일반적인 구조의 필터 설계 방식(일 예로, DDC)이 사용된다. 하지만, 본 발명에서 제안된 FIR 필터 설계 동작은 일반적인 구조의 필터 설계 방식보다 계산량의 감소 효과로 인해 연산 속도가 향상된다. FFT 기법을 이용함에 따라 발생될 수 있는 간섭 억제(인접 채널 간의 간섭 억제 또는 인접하지 않는 채널들 간의 간섭 억제)를 통해 FIR 필터를 구현할 수 있다.
도 3은 본 발명의 실시 예에 따른 다채널 FIR 필터의 시간과 주파수의 관계를 개략적으로 도시한 그래프이다.
도 3을 참조하면, x축은 시간(time)을 나타내고, y축은 주파수(frequency)를 나타내고, z축은 진폭(amplitude)을 나타낸다. 여기서, FFT 단위(310)가 x축을 기준으로 형성되어 있으며, 윈도우(320)는 윈도우 함수 연산에 이용된다. 또한, 주파수 해상도(330)가 y축을 기준으로 형성된다. 또한, FFT에 따른 타임 쉬프트(340)가 x축을 기준으로 형성된다.
이때, 윈도우 함수를 제안한 중첩 원리(M/N*interfere*BW2*BWstop)에 따른 타임 쉬프트(340)에 따라 시간적인 이동을 통해 최종적으로 발생된 채널 대역폭은 시간적으로 발생하는 샘플링율이 2배가 된다.
도 4는 본 발명의 실시 예에 따른 고속 퓨리에 변환을 이용한 필터 구현 시 제로 패딩을 수행하지 않는 것을 개략적으로 도시한 도면이다.
도 5는 본 발명의 실시 예에 따른 고속 퓨리에 변환을 이용한 필터 구현 시 제로 패딩을 수행한 것을 개략적으로 도시한 도면이다.
도 4와 도 5를 참조하면, 제로 패딩을 한 도 5의 도면에서 제로 패딩을 수행하고, 증가된 샘플들을 M값으로 나눈 수만큼 채널 합(421,422,423)을 한다. 그리하면, 도 4의 채널 대역폭과 동일하고, 간섭은 4배 정도 떨어진 구간에서 영향을 미치므로 인접 채널 간섭 억제 효과가 있음을 확인(410과 비교)할 수 있다.
본 발명에서 제안된 간섭 제거 FFT 방식은 기존의 FIR 필터를 이용한 방식보다 계산량을 감소시킬 수 있다. 또한, FFT 방식의 사용에 따른 인접 채널로 인한 간섭과 인접하지 않는 채널 간의 간섭도 제거할 수 있다. 또한, 윈도우 함수 사용시 발생하는 채널 대역폭의 확장에 대응할 수 있고, 간단하게 주파수 하향 변환이 가능한 구조의 설계가 가능하다.
한편, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (10)

  1. 통신 시스템에서 유한 임펄스 응답 필터 구현 방법에 있어서,
    유한 임펄스 응답 필터를 구현하기 위한 필터 파라미터들을 설정하는 단계;
    상기 설정된 필터 파라미터들에 근거하여 입력 데이터에 미리 설정된 배수의 제로 패딩을 하고, 윈도우 함수를 연산하는 단계;
    상기 연산된 윈도우 함수에 근거하여 고속 퓨리에 변환을 수행하는 단계; 및
    신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 상기 고속 퓨리에 변환을 이용한 유한 임펄스 응답 필터를 구현하는 단계;를 포함하며,
    상기 필터 파라미터를 설계하는 단계는, 필터 파라미터들 중에서 채널 샘플링율을 채널 대역폭의 두 배로 설정하는 단계;를 포함하는 것을 특징으로 하는 유한 임펄스 응답 필터 구현 방법.
  2. 제 1 항에 있어서, 상기 필터 파라미터들을 결정하는 단계는,
    입력 샘플링율에 따른 데이터 M개를 획득하는 단계;
    신호의 심볼율에 따라 설정되는 채널들 간 합의 개수 N을 결정하는 단계;
    다채널 필터의 간섭을 최소화하기 위한 상기 제로 패딩의 M 배수(ineterferi)를 결정하는 단계;
    상기 채널 합의 대역폭(
    Figure pat00018
    )을 결정하는 단계; 및
    정지 대역폭을 결정하는 단계(
    Figure pat00019
    );를 포함하는 유한 임펄스 응답 필터 구현 방법.
  3. 제 2 항에 있어서, 상기 필터 파라미터들을 결정하는 단계는,
    상기 획득된 M개의 데이터를 이용하여 고속 퓨리에 변환 포인트 타임 쉬프트를 하기의 수학식을 이용하여 결정하는 단계;를 더 포함하고,
    [수학식]
    Figure pat00020

    인 것을 특징으로 하는 유한 임펄스 응답 필터 구현 방법.
  4. 제 2 항에 있어서,
    상기 고속 퓨리에 변환을 수행하는 단계 이후에,
    상기 채널 합의 대역폭(
    Figure pat00021
    )을 2로 설정한 후, 두 개의 위상으로 나뉘어진 두 개의 채널로 전체 채널 데이터를 구성하여, 이웃하지 않는 채널 간의 간섭을 제거하는 단계;를 더 포함하는 유한 임펄스 응답 필터 구현 방법.
  5. 통신 시스템에서 유한 임펄스 응답 필터 구현 장치에 있어서,
    입력된 신호를 하향 변환하는 하향 변환부;
    하향 변환된 신호를 유한 임펄스 응답 필터를 이용하여 필터링하는 다중 유한 임펄스 응답 필터부;
    유한 임펄스 응답 필터를 구현하기 위한 필터 파라미터들을 설정하는 필터 단위 결정부;
    상기 설정된 필터 파라미터들에 근거하여 입력 데이터에 미리 설정된 배수의 제로 패딩을 통한 고속 퓨리에 변환을 수행하고, 신호의 특성에 따라 적응하는 데이터의 중첩 개수와 미리 설정된 개수의 채널 합을 설정하여 상기 고속 퓨리에 변환을 통해 상기 다중 유한 임펄스 응답 필터부 내부의 유한 임펄스 응답 필터를 구현하는 필터 구현부; 및
    상기 필터 파라미터들의 설정 동작을 제어하고, 상기 필터 파라미터들 중에서 채널 샘플링율을 채널 대역폭의 두 배로 설정하도록 상기 필터 단위 결정부를 제어하는 제어부;를 포함하는 유한 임펄스 응답 필터 구현 장치.
  6. 제 5 항에 있어서,
    상기 필터 단위 결정부는, 입력 샘플링율에 따른 데이터 M개를 획득하고, 신호의 심볼율에 따라 설정되는 채널들 간 합의 개수 N을 결정하고, 다채널 필터의 간섭을 최소화하기 위한 상기 제로 패딩의 M 배수(ineterferi)를 결정하고, 상기 채널 합의 대역폭(
    Figure pat00022
    )을 결정하고, 정지 대역폭(
    Figure pat00023
    )을 결정하는 것을 특징으로 하는 유한 임펄스 응답 필터 구현 장치.
  7. 제 6 항에 있어서,
    상기 필터 단위 결정부는, 상기 획득된 M개의 데이터를 이용하여 고속 퓨리에 변환 포인트 타임 쉬프트를 하기의 수학식을 이용하여 결정하고,
    [수학식]
    Figure pat00024

    인 것을 특징으로 하는 유한 임펄스 응답 필터 구현 장치.
  8. 제 5 항에 있어서,
    상기 필터 구현부는, 제로 패딩된 데이터를 윈도우 함수를 연산하고, 윈도우 함수가 연산된 데이터에 근거하여 상기 고속 퓨리에 변환을 수행하는 것을 특징으로 하는 유한 임펄스 응답 필터 구현 장치.
  9. 제 5 항에 있어서,
    상기 필터 구현부는, 상기 채널 합의 대역폭(
    Figure pat00025
    )을 2로 설정하여 두 개의 위상으로 나뉘어진 두 개의 채널로 전체 채널 데이터를 구성하는 것을 특징으로 하는 유한 임펄스 응답 필터 구현 장치.
  10. 제 5 항에 있어서,
    상기 제어부는, 저속의 샘플링 데이터에 대해서 상기 다중 유한 임펄스 응답 필터부의 유한 임펄스 응답 필터의 개수를 조절하는 것을 특징으로 하는 유한 임펄스 응답 필터 구현 장치.
KR1020130129991A 2013-10-30 2013-10-30 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법 KR20150049423A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130129991A KR20150049423A (ko) 2013-10-30 2013-10-30 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130129991A KR20150049423A (ko) 2013-10-30 2013-10-30 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법

Publications (1)

Publication Number Publication Date
KR20150049423A true KR20150049423A (ko) 2015-05-08

Family

ID=53387510

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130129991A KR20150049423A (ko) 2013-10-30 2013-10-30 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법

Country Status (1)

Country Link
KR (1) KR20150049423A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122285A (ko) * 2017-05-01 2018-11-12 삼성디스플레이 주식회사 고속 통신을 유지하기 위한 시스템 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180122285A (ko) * 2017-05-01 2018-11-12 삼성디스플레이 주식회사 고속 통신을 유지하기 위한 시스템 및 방법

Similar Documents

Publication Publication Date Title
Renfors et al. Analysis and design of efficient and flexible fast-convolution based multirate filter banks
KR102063140B1 (ko) 블록 기반 파고율 저감
JP4927585B2 (ja) 送信機
CN106911624B (zh) 一种通道补偿校准方法与系统
CN106899393B (zh) 噪声方差估计和干扰检测
US8446202B2 (en) Power limiting circuit
EP2952916B1 (en) Dominant signal detection method and apparatus
EP3175594B1 (en) Crest factor reduction
JP2004521579A (ja) 適応フィルタを有する受信器及びそのフィルタを最適化する方法
CN108763720B (zh) 采样率可任意下调的ddc的实现方法
US20060087461A1 (en) System and method for spur cancellation
CN115473512A (zh) 一种基于多相滤波器组结构的并行定时同步方法
US11283661B2 (en) Method and apparatus for signal processing
JP2015089125A (ja) マルチキャリア変調信号の定時同期化装置及び方法
EP2947780B1 (en) Peak suppression apparatus and peak suppression method
EP3355610A1 (en) Method and device for eliminating co-channel interference
KR20150049423A (ko) 통신 시스템에서 유한 임펄스 응답 필터 설계 장치 및 방법
JP2007318808A (ja) 移動体無線システム送信機のパフォーマンスを最適化する方法
Pei et al. Design of variable comb filter using FIR variable fractional delay element
US9036724B2 (en) Data signal correction circuit, receiver, and data signal correction method
US8750363B2 (en) Methods and apparatus for weighted equalization
US8855254B2 (en) Systems and methods for pre-averaged staggered convolution decimating filters
Li et al. Compensation method for the CIC filter in digital down converter
WO2011132299A1 (ja) 受信装置及び受信方法
CN109314534B (zh) 无线电通信接收机和用于配置无线电通信接收机的陷波滤波器的方法

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination