KR20150040117A - 유기 발광 표시 장치 - Google Patents

유기 발광 표시 장치 Download PDF

Info

Publication number
KR20150040117A
KR20150040117A KR20130118721A KR20130118721A KR20150040117A KR 20150040117 A KR20150040117 A KR 20150040117A KR 20130118721 A KR20130118721 A KR 20130118721A KR 20130118721 A KR20130118721 A KR 20130118721A KR 20150040117 A KR20150040117 A KR 20150040117A
Authority
KR
South Korea
Prior art keywords
layer
electrode
insulating layer
pad
disposed
Prior art date
Application number
KR20130118721A
Other languages
English (en)
Other versions
KR102100373B1 (ko
Inventor
송정배
김다혜
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to KR1020130118721A priority Critical patent/KR102100373B1/ko
Publication of KR20150040117A publication Critical patent/KR20150040117A/ko
Application granted granted Critical
Publication of KR102100373B1 publication Critical patent/KR102100373B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명의 일 실시예는 활성층, 게이트 전극, 소스 전극과 드레인 전극, 상기 활성층과 게이트 전극 사이에 배치된 제1 절연층, 및 상기 게이트 전극과 상기 소스 전극 및 드레인 전극 사이에 배치된 제2 절연층을 포함하는 박막 트랜지스터; 상기 소스 전극 및 드레인 전극과 동일층에 배치된 제1 패드층과, 상기 제1 패드층 상에 배치된 제2 패드층을 구비한 패드 전극; 상기 소스 전극과 드레인 전극, 및 상기 패드 전극 단부를 덮고 유기 절연물을 포함하는 제3절연층; 반투과 금속층을 포함하고 상기 제3절연층에 형성된 개구에 배치된 화소 전극; 상기 화소 전극과 상기 제1 절연층 사이에 형성된 광특성 조절층; 상기 제3 절연층에 형성된 개구에 대응하는 위치에 개구가 형성되고, 상기 화소 전극의 단부를 덮는 제4절연층; 상기 화소 전극 상에 배치되고 유기 발광층을 포함하는 중간층; 및 상기 중간층 상에 배치되고 반사 금속층을 포함하는 대향 전극;을 포함하는 유기 발광 표시 장치를 제공한다.

Description

유기 발광 표시 장치{Organic light-emitting display apparatus}
본 발명의 실시예들은 유기 발광 표시 장치에 관한 것이다.
유기 발광 표시 장치(organic light-emitting display apparatus)는 정공 주입 전극과 전자 주입 전극, 그리고 정공 주입 전극과 전자 주입 전극 사이에 형성되어 있는 유기 발광층을 포함하고, 정공 주입 전극에서 주입되는 정공과 전자 주입 전극에서 주입되는 전자가 유기 발광층에서 재결합하고 소멸하면서 빛을 내는 자발광형 표시 장치이다. 유기 발광 표시 장치는 낮은 소비 전력, 높은 휘도 및 높은 반응 속도 등의 고품위 특성을 나타내므로 차세대 표시 장치로 주목 받고 있다.
본 발명의 실시예들은 광효율이 높고, 수율이 높고, 표시 품질이 향상된 유기 발광 표시 장치를 제공한다.
본 발명의 일 실시예는 활성층, 게이트 전극, 소스 전극과 드레인 전극, 상기 활성층과 게이트 전극 사이에 배치된 제1 절연층, 및 상기 게이트 전극과 상기 소스 전극 및 드레인 전극 사이에 배치된 제2 절연층을 포함하는 박막 트랜지스터; 상기 소스 전극 및 드레인 전극과 동일층에 배치된 제1 패드층과, 상기 제1 패드층 상에 배치된 제2 패드층을 구비한 패드 전극; 상기 소스 전극과 드레인 전극, 및 상기 패드 전극 단부를 덮고 유기 절연물을 포함하는 제3절연층; 반투과 금속층을 포함하고 상기 제3절연층에 형성된 개구에 배치된 화소 전극; 상기 화소 전극과 상기 제1 절연층 사이에 형성된 광특성 조절층; 상기 제3 절연층에 형성된 개구에 대응하는 위치에 개구가 형성되고, 상기 화소 전극의 단부를 덮는 제4절연층; 상기 화소 전극 상에 배치되고 유기 발광층을 포함하는 중간층; 및 상기 중간층 상에 배치되고 반사 금속층을 포함하는 대향 전극;을 포함하는 유기 발광 표시 장치를 제공한다.
본 실시예에 있어서, 상기 중간층의 두께는 2500옴스트롱(Å) 이상 3500옴스트롱(Å) 이하일 수 있다.
본 실시예에 있어서, 상기 광특성 조절층의 두께는 10nm 이상 200nm 이하일 수 있다.
본 실시예에 있어서, 상기 광특성 조절층은 산화티탄(TiOx), 산화니오비움(Nb2O5), 인듐주석산화물(ITO), 실리콘 질화물(SiNx), 및 실리콘 산화물(SiO2)에서 선택된 물질이 단일층 또는 복수층으로 이루어질 수 있다.
본 실시예에 있어서, 상기 광특성 조절층은 상기 제2 패드층과 동일 재료로 형성될 수 있다.
본 실시예에 있어서, 상기 반투과 금속층은 은(Ag) 또는 은 합금으로 이루어질 수 있다.
본 실시예에 있어서, 상기 화소 전극은 상기 반투과 금속층과 상기 광특성 조절층 사이에 위치하는 제1 투명 도전성 산화물층을 더 포함할 수 있다.
본 실시예에 있어서, 상기 화소 전극은 상기 반투과 금속층과 상기 중간층 사이에 제2 투명 도전성 산화물층을 더 포함할 수 있다.
본 실시예에 있어서, 상기 소스 전극 및 드레인 전극은 전자 이동도가 다른 이종 금속이 복수층 적층될 수 있다.
본 실시예에 있어서, 상기 소스 전극 및 드레인 전극은 몰리브덴을 포함하는 층과 알루미늄을 포함하는 층을 가질 수 있다.
본 실시예에 있어서, 상기 활성층과 동일층에 배치된 제1 전극과, 상기 게이트 전극과 동일층에 배치된 제2 전극을 포함하는 커패시터를 더 구비할 수 있다.
본 실시예에 있어서, 상기 커패시터의 제1 전극은 이온 불순물이 도핑된 반도체 물질을 포함할 수 있다.
본 실시예에 있어서, 상기 커패시터의 제2 전극은 투명 도전성 산화물을 포함할 수 있다.
본 실시예에 있어서, 커패시터는 상기 소스 전극 및 드레인 전극과 동일층에 배치된 제3 전극을 더 포함할 수 있다.
본 실시예에 있어서, 상기 제1 패드층은 상기 소스 전극 및 드레인 전극과 동일 재료를 포함할 수 있다.
본 실시예에 있어서, 상기 제1 콘택층과 상기 제2 콘택층은 상기 제1 절연층과 상기 제2 절연층 사이에 위치할 수 있다.
본 실시예에 있어서, 상기 제1 콘택층은 투명 도전성 산화물을 포함할 수 있다.
본 실시예에 있어서, 상기 제1 콘택층의 단부는 상기 제2 콘택층의 단부보다 돌출될 수 있다.
본 실시예에 있어서, 상기 제2 절연층에 형성된 개구, 상기 제3 절연층에 형성된 개구, 및 상기 제4 절연층에 형성된 개구는 중첩적으로 형성되고, 상기 제3 절연층에 형성된 개구는 상기 제4 절연층에 형성된 개구보다 크고, 상기 제2 절연층에 형성된 개구보다 작을 수 있다.
본 실시예에 있어서, 상기 화소 전극의 단부는 상기 제3 절연층에 형성된 개구의 상단에 위치할 수 있다.
전술한 것 외의 다른 측면, 특징, 이점이 이하의 도면, 특허청구범위 및 발명의 상세한 설명으로부터 명확해질 것이다.
본 발명의 실시예들에 따른 유기 발광 표시 장치는 광효율이 높고, 수율이 높고, 표시 품질이 향상된 유기 발광 표시 장치를 제공한다.
도 1은 본 발명의 실시예에 따른 유기 발광 표시 장치(1)를 개략적으로 도시한 평면도이다.
도 2는 본 발명의 실시예에 따른 유기 발광 표시 장치(1)의 화소(P)와 패드부(PAD)의 일부를 개략적으로 도시한 단면도이다.
도 3은 중간층의 두께에 따른 청색의 y색좌표(By)와 시야각(angle)의 관계를 나타낸 그래프이다.
도 4는 광특성 조절층의 유무와 청색 y색좌표(By)-효율의 관계를 나타낸 그래프이다.
도 5는 광특성 조절층의 유무에 따른 청색의 y색좌표(By)와 시야각(angle)의 관계를 나타낸 그래프이다.
도 6a내지 도 6i는 본 발명의 실시예에 따른 유기 발광 표시 장치(1)의 제조 방법을 개략적으로 도시한 단면도들이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명하기로 하며, 도면을 참조하여 설명할 때 동일하거나 대응하는 구성 요소는 동일한 도면부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다.
이하의 실시예에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
이하의 실시예에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다.
이하의 실시예에서, 막, 영역, 구성 요소 등의 부분이 다른 부분 위에 또는 상에 있다고 할 때, 다른 부분의 바로 위에 있는 경우뿐만 아니라, 그 중간에 다른 막, 영역, 구성 요소 등이 개재되어 있는 경우도 포함한다.
도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.
도 1은 본 발명의 실시예에 따른 유기 발광 표시 장치(1)를 개략적으로 도시한 평면도이고, 도 2는 본 발명의 실시예에 따른 유기 발광 표시 장치(1)의 화소(P)와 패드부(PAD)의 일부를 개략적으로 도시한 단면도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 유기 발광 표시 장치(1)의 기판(10) 상에는 복수의 화소(P)가 포함되어 화상을 표시하는 표시 영역(DA)과 패드부(PAD)가 구비된다. 표시 영역(DA)은 밀봉 라인(SL) 내부에 형성되고, 밀봉 라인(SL)을 따라 표시 영역(DA)을 봉지하는 봉지 부재(미도시)가 구비된다.
도 2를 참조하면, 본 발명의 실시예에 따른 유기 발광 표시 장치(1)의 기판(10) 상에 적어도 하나의 유기 발광층(121)이 구비된 픽셀 영역(PXL1), 적어도 하나의 박막 트랜지스터가 구비된 트랜지스터 영역(TR1), 및 적어도 하나의 커패시터가 구비된 커패시터 영역(CAP1) 및 패드 영역(PAD1)이 구비된다.
기판(10)은 유리 기판뿐만 아니라, PET(Polyethylen terephthalate), PEN(Polyethylen naphthalate), 폴리이미드(Polyimide) 등을 포함하는 플라스틱 기판 등이 구비될 수 있다.
기판(10)의 상부에 평활한 면을 형성하고 불순 원소가 침투하는 것을 차단하기 위한 버퍼층(11)이 더 구비될 수 있다. 버퍼층(11)은 실리콘질화물 및/또는 실리콘산화물 등을 포함하는 단일층 또는 복수층으로 형성될 수 있다.
박막 트랜지스터(thin film transistor)는 활성층(212), 게이트 전극(215), 소스 전극(217a) 및 드레인 전극(217b)을 포함한다.
활성층(212)은 채널 영역(212c)과, 채널 영역(212c) 외측에 이온 불순물이 도핑된 소스 영역(212a)과 드레인 영역(212b)을 포함할 수 있다. 활성층(212)은 다양한 물질을 포함하도록 형성될 수 있다. 예를 들면, 활성층(212)은 비정질 실리콘 또는 결정질 실리콘과 같은 무기 반도체 물질을 포함할 수 있다. 다른 예로서, 활성층(212)은 산화물 반도체를 포함할 수 있다. 또 다른 예로서, 활성층(212)은 유기 반도체 물질을 포함할 수 있다.
활성층(212) 상에는 게이트 절연막인 제1 절연층(13)이 형성되고, 제1 절연층(13) 상에는 채널 영역(212c)에 대응되는 위치에 게이트 전극(215)이 구비된다.
게이트 전극(215)은, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 니켈(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 가운데 선택된 하나 이상의 금속이 단일층 또는 복수층으로 형성될 수 있다.
게이트 전극(215) 상에는 층간 절연막인 제2 절연층(16)이 형성되고, 제2 절연층(16) 상에는 소스 전극(217a)과 드레인 전극(217b)이 구비된다.
소스 전극(217a)과 드레인 전극(217b)은, 제2 절연층(16)에 형성된 개구(미도시)를 통하여 각각 활성층(212)의 소스 영역(212a)과 드레인 영역(212b)에 접속한다. 소스 전극(217a)과 드레인 전극(217b)은, 전자 이동도가 다른 이종의 금속이 2층 이상 적층된 것일 수 있다. 예를 들어, 소스 전극(217a)과 드레인 전극(217b)은, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 니켈(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 가운데 선택된 하나 이상의 금속층이 2층 이상 적층된 것일 수 있다.
도 2에는 도시되지 않았지만, 소스 전극(217a) 및 드레인 전극(217b)과 동일한 재료로 형성된, 데이터 배선(미도시) 및 전극전원 공급배선(미도시) 등의 배선이 소스 전극(217a)과 드레인 전극(217b)과 동일층에 형성될 수 있다.
제1 절연층(13) 및 제2 절연층(16)은 무기 절연막으로 구비될 수 있다. 제1 절연층(13) 및 제2 절연층(16)은 SiO2, SiNx, SiON, Al2O3, TiO2, Ta2O5, HfO2, ZrO2, BST, PZT 가운데 선택된 하나 이상의 절연막이 단일층 또는 복수층으로 형성될 수 있다.
제2 절연층(16) 상에는 소스 전극(217a)과 드레인 전극(217b)을 커버하도록 제3 절연층(19)이 형성된다.
제3 절연층(19)은 유기 절연막이 단일층 또는 복수층으로 형성될 수 있다. 제3 절연층(19)은 일반 범용고분자(PMMA, PS), phenol그룹을 갖는 고분자 유도체, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계고분자, p-자일렌계 고분자, 비닐알콜계 고분자 및 이들의 블렌드 등을 포함할 수 있다.
제3 절연층(19) 상에 제4 절연층(20)이 구비된다. 제4 절연층(20)은 유기 절연막으로 구비될 수 있다. 제4 절연층(20)은 일반 범용고분자(PMMA, PS), phenol그룹을 갖는 고분자 유도체, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계고분자, p-자일렌계 고분자, 비닐알콜계 고분자 및 이들의 블렌드 등을 포함할 수 있다.
픽셀 영역(PXL1)에는 화소 전극(120), 화소 전극(120)에 대향하여 위치하는 대향 전극(122), 및 화소 전극(120)과 대향 전극(122) 사이에 위치하는 유기 발광층(121)을 포함하는 중간층(미도시)이 형성된다.
도 1에 도시된 박막 트랜지스터는 유기 발광 소자를 구동시키는 구동 트랜지스터를 도시한 것이다. 도 1에는 구동 트랜지스터가 도시되어 있으나, 본 실시예에 따른 유기 발광 표시 장치(1)는 스위칭 트랜지스터(미도시) 또는 보상 트랜지스터(미도시)를 더 포함할 수 있다.
한편, 도 1에 도시된 박막 트랜지스터의 구조는 본 발명의 일 실시예에 따른 유기 발광 표시 장치(1)가 적용될 수 있는 하나의 예시이며, 본 발명은 도 1에 도시된 박막 트랜지스터의 구조에 한정되지 않는다.
본 실시예에서 화소 전극(120)은 반투과 물질을 포함한다. 상세히, 화소 전극(120)은 반투과 금속층(120b)을 포함한다. 반투과 금속층(120b)의 하부 및 상부에는 각각 투명 도전성 산화물을 포함하는 층 제1 투명도전성 산화물층(120a)과 제2 투명도전성 산화물층(120c)이 더 위치할 수 있다.
반투과 금속층(120b)은 은(Ag) 또는 은(Ag) 합금으로 형성될 수 있다. 반투과 금속층(120b)은 후술할 반사 전극인 대향 전극(122)과 함께 마이크로 캐비티(micro-cavity) 구조를 형성함으로써 유기 발광 표시 장치(1)의 광 효율을 향상시킬 수 있다.
제1 및 제2 투명도전성 산화물층(120a, 120c)은 인듐틴옥사이드(indium tin oxide: ITO), 인듐징크옥사이드(indium zinc oxide: IZO), 징크옥사이드(zinc oxide: ZnO), 인듐옥사이드(indium oxide: In2O3), 인듐갈륨옥사이드(indium gallium oxide: IGO), 및 알루미늄징크옥사이드(aluminum zinc oxide: AZO)을 포함하는 그룹에서 선택된 적어도 하나 이상을 포함할 수 있다.
반투과 금속층(120b) 하부에 위치하는 제1 투명도전성 산화물층(120a)은 화소 전극(120)과 제1 절연층(13) 사이의 접착력을 강화할 수 있다.
반투과 금속층(120b) 상부에 위치하는 제2 투명도전성 산화물층(120c)은 반투과 금속층(120b)을 보호하는 배리어층으로 기능할 수 있다.
반투과 금속층(120b)을 형성하는 은(Ag)과 같이 환원성이 강한 금속은, 화소 전극(120)의 패터닝을 위한 에칭 공정 중, 전자를 공급받게 되면 에천트에서 이온 상태로 존재하던 은(Ag) 이온이 다시 은(Ag)으로 석출되는 문제가 발생할 수 있다. 이렇게 석출된 은(Ag)은 화소 전극(120) 형성의 후속 공정에서 암점을 발생시키는 파티클성 불량 요인이 될 수 있다.
만약, 은(Ag)을 포함하는 화소 전극(120)을 에칭하는 공정에서, 소스 전극(217a)이나 드레인 전극(217b), 또는 소스 전극(217a) 및 드레인 전극(217b)과 동일한 재료로 형성된, 데이터 배선(미도시) 및 전극전원 공급배선(미도시) 등의 배선이 에천트에 노출될 경우, 환원성이 강한 은(Ag) 이온은 이들 금속 재료로부터 전자를 전달받아 은(Ag)으로 재석출 될 수 있다. 예를 들어, 이들 금속이 몰리브덴이나 알루미늄을 포함하고 있을 경우, 몰리브덴은 알루미늄으로부터 전달받은 전자를 다시 은(Ag) 이온에 제공함으로써 은(Ag)이 재석출 될 수 있다. 재석출된 은(Ag) 입자는 후속 공정에서 화소 전극(120)에 재부착되어 파티클성 오염원이 된다. 따라서 암점 불량 등의 불량요인이 될 수 있다.
그러나, 본 실시예에 따른 유기 발광 표시 장치(1)는 화소 전극(120)이 패터닝되는 동안, 후술할 유기막인 제3 절연층(19)으로 덮인 상태로 보호된다. 따라서, 화소 전극(120)을 에칭하는 동안 재석출된 은(Ag) 입자가 화소 전극(120)에 재부착되는 것을 방지하기 때문에, 암점 불량을 방지할 수 있다.
화소 전극(120)은 제3 절연층(19)에 형성된 개구(C5)에 배치된다. 유기 발광층(121)은 저분자 유기물, 고분자 유기물, 또는 저분자 유기물과 고분자 유기물이 혼합된 하이브리드 유기물을 포함할 수 있다.
제3 절연층(19)에 형성된 개구(C5)는 제4 절연층(20)에 형성된 개구(C8)보다 크고, 제2 절연층(16)에 형성된 개구(C1)보다 작게 형성된다. 제2 절연층(16)에 형성된 개구(C1), 제3 절연층(19)에 형성된 개구(C5) 및 제4 절연층(20)에 형성된 개구(C8)는 서로 중첩적으로 형성된다.
화소 전극(120)의 단부는 제4 절연층(20)으로 덮이고, 화소 전극(120)의 상면은 제4 절연층(20)에 형성된 개구(C8)에 노출된다. 제4 절연층(20)은 화소 정의막(pixel define layer)으로 기능한다.
한편, 제1 콘택층(117) 및 제1 패드층(417)은 각각 제3 절연층(19)에 형성된 콘택홀(C6) 및 콘택홀(C7)에 노출된 영역에 위치하고 있지만, 제1 콘택층(117) 및 제1 패드층(417) 상부에 각각 보호층인 제2 콘택층(118) 및 제2 패드층(418)을 형성하였기 때문에, 화소 전극(120)을 에칭하는 동안 제1 콘택층(117)과 제1 패드층(417)이 에천트에 노출되지 않는다. 따라서, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다.
도 1에는 도시되지 않았지만, 화소 전극(120)과 대향 전극(122) 사이에 유기 발광층(121)을 포함하는 중간층(미도시)이 구비된다. 중간층(미도시)은 유기 발광층(121) 외에 정공 주입층(HIL:hole injection layer), 정공 수송층(hole transport layer), 전자 수송층(electron transport layer) 및 전자 주입층(electron injection layer) 중 적어도 하나를 포함할 수 있다. 본 실시예는 이에 한정되지 아니하고, 중간층은 기타 다양한 기능층을 더 구비될 수 있다.
본 실시예에서 중간층의 두께는 두께는, 예를 들어 청색을 발광하는 화소의 경우, 2500옴스트롱(Å) 이상 3500옴스트롱(Å) 이하로 형성할 수 있다. 중간층의 두께가 얇으면 개별 색의 광효율 및 광특성은 좋아지나 암점(dark spot)이 많아지는 단점이 있다. 반면, 암점 발생을 줄이기 위하여 중간층의 두께를 증가시키게 되면, 광효율이 저하되는 단점이 있다. 만약, 광효율을 증가시키기 위하여 발광 화소를 마이크로 캐비티(micro-cavity) 구조로 형성할 경우 시야각에 따른 색편이(color shift) 현상이 발생할 수 있다.
도 3은 중간층의 두께에 따른 청색의 y색좌표(By)와 시야각(angle)의 관계를 나타낸 그래프이다.
①은 청색 발광 화소의 중간층의 두께를 2000옴스트롱(Å)으로 형성한 것이고, ②는 청색 발광 화소의 중간층의 두께를 3000옴스트롱(Å)으로 형성한 것이다. ①에 비하여 중간층의 두께가 두꺼운 ②의 경우, 시야각에 따른 y색좌표(By)의 편차가 크다. 즉, 중간층의 두께가 두꺼울수록 색편이(color shift) 현상이 증가한다는 것을 알 수 있다.
본 실시예에서, 마이크로 캐비티 구조에서 암점 불량을 줄이기 위해 중간층의 두께를 증가시킴에 따른 색편이를 줄이기 위하여, 화소 전극(120)과 제1 절연층(13) 사이에 광특성 조절층(119)이 구비된다.
광특성 조절층(119)은 제2 패드층(418) 및 화소 전극 콘택부(PECNT1)의 제2 콘택층(118)과 동일한 재료로 형성될 수 있다. 광특성 조절층(119)은 광특성 조절층(119)은 10nm 이상 200이하의 두께로, 산화티탄(TiOx), 산화니오비움(Nb2O5), 인듐주석산화물(ITO), 실리콘 질화물(SiNx), 및 실리콘 산화물(SiO2)에서 선택된 물질이 단일층 또는 복수층으로 이루어질 수 있다.
하기 표 1는 본 실시예의 광특성 조절층(119)에 적용될 수 있는 층 구조와 그에 따른 청색 y색좌표(By) 값의 다양한 예를 도시한 것이다.
(a) (b) (c) (d) (e) (f) (g)
- TiOx TiOx/ITO TiOx/ITO/SiNx ITO ITO/SiO2 ITO/SiNx
By 0.061 0.045 0.046 0.046 0.049 0.049 0.050
(a)는 광특성 조절층이 구비되지 않은 경우로서 청색 y색좌표(By)는 0.061이다. (b)는 광특성 조절층(119)이 TiOx 1개층으로 구비된 경우, (c)는 광특성 조절층(119)이 TiOx/ITO 2개층으로 구비된 경우, (d)는 광특성 조절층(119)이 TiOx/ITO/SiNx 3개층으로 구비된 경우, (e)는 광특성 조절층(119)이 ITO 1개층으로 구비된 경우, (f)는 광특성 조절층(119)이 광특성 조절층(119)이 ITO/SiO2 2개층으로 구비된 경우, (g)는 광특성 조절층(119)이 ITO/SiNx 2개층으로 구비된 경우이다(여기서, TiOx/ITO의 경우 화소전극(120) 가까운 측에 TiO가 구비되고, TiOx하부에 ITO가 구비된 것을 의미한다). (b)~(g)의 경우, (a)에 비하여 청색 y색좌표(By)가 감소된 것을 알 수 있다.
도 4는 광특성 조절층의 유무와 청색 y색좌표(By)-효율의 관계를 나타낸 그래프이다.
③은 광특성 조절층을 형성하지 않은 경우, ④는 광특성 조절층의 두께가 150옴스트롱(Å)인 경우, ⑤은 광특성 조절층의 두께가 300옴스트롱(Å)인 경우를 도시한 것이다. 광특성 조절층을 형성한 경우 색좌표의 범위가 넓어지고 효율이 증가하는 것을 알 수 있다
도 5는 광특성 조절층의 유무에 따른 청색의 y색좌표(By)와 시야각(angle)의 관계를 나타낸 그래프이다.
⑥은 광특성 조절층을 형성하지 않은 경우, ⑦은 광특성 조절층의 두께가 300옴스트롱(Å)인 경우를 도시한 것이다. 광특성 조절층을 형성한 경우 색편이 현상이 줄어든 것을 알 수 있다.
따라서, 본 실시예에 따른 유기 발광 표시 장치는 중간층의 두께를 증가시켜 암점 발생을 줄일 수 있고, 마이크로 캐비티 구조를 채용하여 광효율을 향상시킬 수 있고, 광특성 조절층을 이용하여 색편이 현상을 줄일 수 있다.
도 1에 도시된 유기 발광 소자(OLED)는 단위 화소(unit pixel)를 구성하는 하나의 부화소(sub-pixel)의 일 예를 도시한 것으로서, 부화소는 다양한 색의 빛을 방출할 수 있다. 예를 들어, 부화소는 적색, 녹색 또는 청색의 빛을 방출할 수 있다.
또 다른 예로서, 부화소는 백색의 빛을 방출할 수 있다. 부화소가 백색의 빛을 방출하는 경우, 유기 발광 표시 장치(1)는 백색의 빛을 컬러의 빛으로 변환하는 색변환층(color converting layer)이나, 컬러 필터(color filter)를 더 포함할 수 있다. 백색의 빛을 방출하는 부화소는 다양한 구조를 가질 수 있는데, 예를 들면 적어도 적색 빛을 방출하는 발광 물질, 녹색 빛을 방출하는 발광 물질 및 청색 빛을 방출하는 발광 물질의 적층된 구조를 포함할 수 있다.
백색의 빛을 방출는 부화소의 또 다른 예로서, 적어도 적색 빛을 방출하는 발광 물질, 녹색 빛을 방출하는 발광 물질 및 청색 빛을 방출하는 발광 물질의 혼합된 구조를 포함할 수 있다.
상기 적색, 녹색 및 청색은 하나의 예시로서, 본 실시예는 이에 한정되지 아니한다. 즉, 백색의 빛을 방출할 수 있다면 적색, 녹색 및 청색의 조합외에 기타 다양한 색의 조합을 이용할 수 있음은 물론이다.
유기 발광층(121) 상에는 전체 화소에 공통으로 형성되는 공통 전극으로서 대향 전극(122)이 위치한다. 본 실시예에 따른 유기 발광 표시 장치(1)의 경우, 화소 전극(120)은 애노드로 사용되고, 대향 전극(122)은 캐소드로 사용되었다. 물론 전극의 극성은 반대로 적용될 수 있음은 물론이다.
대향 전극(122)은 반사 물질을 포함하는 반사 전극이다. 대향 전극(122)은 알루미늄(Al), 마그네슘(Mg), 니켈(Li), 칼슘(Ca), 및 불화니켈(LiF) 등에서 선택된 하나 이상의 금속층이 단일층 또는 복수층으로 형성될 수 있다.
화소 전극(120)은 제3 절연층(19)에 형성된 콘택홀(C6)을 통해 화소 전극 콘택부(PECNT1)에 연결된다. 화소 전극 콘택부(PECNT1)는 구동 트랜지스터의 소스 전극 및 드레인 전극 중 하나와 전기적으로 접속되어 화소 전극(120)을 구동한다.
화소 전극 콘택부(PECNT1)는 전술한 소스 전극(217a) 및 드레인 전극(217b)과 동일한 재료를 포함하는 제1 콘택층(117)과, 투명 도전성 산화물을 포함하는 제2 콘택층(118)과, 투명 도전 산화물을 포함하는 제3 콘택층(114)과, 게이트 전극(215)과 동일 재료를 포함하는 제4 콘택층(115a)을 포함한다.
제3 콘택층(114)은 제2 절연층(16)이 형성하는 개구(C1) 및 제3 절연층(19)이 형성하는 개구(C5)의 식각면에서 돌출되어 형성된다. 따라서, 화소 전극(120)은 돌출된 제3 콘택층(114)과 직접 접촉되고, 제3 콘택층(114)은 제4 콘택층(115a)과 접촉된다. 제4 콘책층(115a)과 제1 콘택층(117)은 제2 절연층(16)에 형성된 콘택홀(C2)을 통하여 접촉하게 된다.
즉, 본 실시예에 따르면, 화소 전극(120)과 구동 소자를 전기적으로 연결하는 방법에 있어서, 제3 절연층(19)에 형성된 콘택홀(C6), 즉 제1 콘택층(117) 및 제2 콘택층(118)을 통한 방법으로만 접속할 경우, 반투과 금속층으로 사용되는 화소 전극(120)의 두께가 얇아 스텝 커버리지가 불량하여, 제3 절연층(19)의 식각면이나 콘택홀(C6)에 안정적인 접속이 힘들 수 있다. 그러나 본 실시예 따르면 제3 절연층에 형성된 콘택홀(C6)을 통한 접속이 실패하더라도 개구(C5)의 바닥부에서 화소 전극(120)이 제3 콘택층(114)에 직접 접촉할 수 있기 때문에 구동 소자로부터의 신호를 정상적으로 받을 수 있는 장점이 있다.
커패시터 영역(CAP1)에는 기판(10) 및 버퍼층(11) 상에, 활성층(212)과 동일층에 배치된 제1 전극(312)과, 게이트 전극(215)과 동일층에 배치된 제2 전극(314)과, 소스 전극(217a) 및 드레인 전극(217b)과 동일층에 배치된 제3 전극(317)을 구비한 커패시터가 배치된다.
커패시터의 제1 전극(312)은 활성층(212)의 소스 영역(212a) 및 드레인 영역(212b)과 같이 이온 불순물이 도핑된 반도체로 형성될 수 있다.
커패시터의 제2 전극(314)은 비록 게이트 전극(215)과 동일하게 제1 절연층(13) 상에 위치하지만 그 재료는 상이하다. 제2 전극(314)의 재료는 투명 도전성 산화물을 포함할 수 있다. 제2 전극(314)을 통하여 1 전극(312)에 이온 불순물이 도핑된 반도체를 형성함으로써 커패시터를 MIM(Metal-insulator-Metal) 구조로 형성할 수 있다.
커패시터의 제3 전극(317)은 소스 전극(217a) 및 드레인 전극(217b)과 동일한 재료로 형성될 수 있다. 전술한 바와 마찬가지로 제3 전극(317)은 유기막인 제3 절연층(19)로 덮인 상태로 있기 때문에, 은(Ag)을 포함하는 화소 전극(120)을 에칭하는 동안 제3 전극(317)이 은(Ag) 이온이 포함된 에천트에 노출되지 않는다. 따라서, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다. 또한 제1 전극 및 제2 전극과 함께 커패시터를 병렬 연결함으로써 커패시터의 면적 증가 없이 유기 발광 표시 장치의 정전 용량을 증가시킬 수 있다. 따라서, 증가된 정전 용량만큼 커패시터의 면적을 줄일 수 있으므로 개구율을 증가시킬 수 있다.
표시 영역(DA)의 외곽에는 외장 드라이버의 접속 단자인 패드 전극(417, 718)이 배치되는 패드 영역(PAD1)이 위치한다.
제1 패드층(417)은 전술한 소스 전극(217a) 및 드레인 전극(217b)과 마찬가지로 전자 이동도가 다른 복수의 금속층을 포함할 수 있다. 예를 들어, 제1 패드층(417)은 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 니켈(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 가운데 선택된 하나 이상의 금속이 다층으로 형성될 수 있다.
제2 패드층(418)은 인듐틴옥사이드(indium tin oxide: ITO), 인듐징크옥사이드(indium zinc oxide: IZO), 징크옥사이드(zinc oxide: ZnO), 인듐옥사이드(indium oxide: In2O3), 인듐갈륨옥사이드(indium gallium oxide: IGO), 및 알루미늄징크옥사이드(aluminum zinc oxide: AZO)을 포함하는 그룹에서 선택된 적어도 하나 이상을 포하는 투명 도전성 산화물로 형성될 수 있다. 제1 패드층(417)이 수분과 산소에 노출되는 것을 방지하여 패드의 신뢰성 저하를 방지할 수 있다.
전술한 바와 같이, 제1 패드층(417)은 제3 절연층(19)에 형성된 콘택홀(C7)에 노출된 영역에 위치하지만, 제1 패드층(417) 상부에 보호층인 제2 패드층(418)이 형성되어 있기 때문에, 화소 전극(120)을 에칭하는 동안 제1 패드층(417)이 에천트에 노출되지 않는다.
더욱이 수분이나 산소 등 외부 환경에 민감한 제1 패드층(417)의 단부가 제3 절연층(19)에 의해 덮여있기 때문에, 화소 전극(120)을 에칭하는 동안 제1 패드층(417)의 단부도 에천트에 노출되지 않는다.
따라서, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있고 패드 전극의 신뢰성 저하를 방지할 수 있다.
한편, 도 2에는 도시되어 있지 않으나, 본 실시예에 따른 유기 발광 표시 장치(1)는 픽셀 영역(PXL1), 커패시터 영역(CAP1), 및 박막 트랜지스터 영역(TR1)을 포함하는 표시 영역을 봉지하는 봉지 부재(미도시)를 더 포함할 수 있다. 봉지 부재는 글라스재를 포함하는 기판, 금속 필름, 또는 유기 절연막 및 무기 절연막이 교번하여 배치된 봉지 박막 등으로 형성될 수 있다.
이하, 도 3a 내지 3i을 참조하여 본 실시예에 따른 유기 발광 표시 장치(1)의 제조 방법을 설명한다.
도 3a는 본 실시예에 따른 유기 발광 표시 장치(1)의 제1 마스크 공정을 개략적으로 도시한 단면도이다.
도 3a를 참조하면, 기판(10) 상에 버퍼층(11)을 형성하고, 버퍼층(11) 상에 반도체층(미도시)을 형성한 후, 반도체층(미도시)을 패터닝하여 박막 트랜지스터의 활성층(212)과 커패시터의 제1 전극(312)을 형성한다.
상기 도면에는 도시되어 있지 않지만, 반도체층(미도시) 상에 포토레지스터(미도시)가 도포된 후, 제1 포토마스크(미도시)를 이용한 포토리소그라피 공정에 의해 반도체층(미도시)을 패터닝하여, 전술한 활성층(212)과 제1 전극(312)이 형성된다. 포토리소그라피에 의한 제1 마스크 공정은 제1 포토마스크(미도시)에 노광 장치(미도시)로 노광 후, 현상(developing), 식각(etching), 및 스트립핑(stripping) 또는 에싱(ashing) 등과 같은 일련의 공정을 거쳐 진행된다.
반도체층(미도시)은 비정질 실리콘(amorphous silicon) 또는 결정질 실리콘(poly silicon)으로 구비될 수 있다. 이때, 결정질 실리콘은 비정질 실리콘을 결정화하여 형성될 수도 있다. 비정질 실리콘을 결정화하는 방법은 RTA(rapid thermal annealing)법, SPC(solid phase crystallization)법, ELA(excimer laser annealing)법, MIC(metal induced crystallization)법, MILC(metal induced lateral crystallization)법, SLS(sequential lateral solidification)법 등 다양한 방법에 의해 결정화될 수 있다. 한편, 반도체층(미도시)은 비정질 실리콘 또는 결정질 실리콘에만 한정되지는 않으며, 산화물 반도체를 포함할 수 있다.
도 3b는 본 실시예에 따른 유기 발광 표시 장치(1)의 제2 마스크 공정을 개략적으로 도시한 단면도이다.
도 3a의 제1 마스크 공정의 결과물 상에 제1 절연층(13)을 형성하고, 제1 절연층(13) 상에 투명도전성 산화물층(미도시)을 형성한 후 이를 패터닝한다.
패터닝 결과, 제1 절연층(13) 상에 화소 전극 콘택부의 제3 콘택층(114)과 커패시터의 제2 전극(314)이 형성된다.
도 3c는 본 실시예에 따른 유기 발광 표시 장치(1)의 제3 마스크 공정을 개략적으로 도시한 단면도이다.
도 3b의 제2 마스크 공정의 결과물 상에 제1 금속층(미도시)을 적층한 후 이를 패터닝한다. 이때, 제1 금속층(미도시)은 전술한 바와 같이, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 니켈(Li), 칼슘(Ca), 몰리브덴(Mo), 타이타늄(Ti), 텅스텐(W), 구리(Cu) 가운데 선택된 하나 이상의 금속으로 단층 또는 다층으로 형성될 수 있다.
패터닝 결과, 제1 절연층(13) 상에 게이트 전극(215) 및 상기 제3 콘택층(114)을 덮는 게이트 금속층(115)이 형성된다.
상기와 같은 구조물 위에 이온 불순물이 도핑 된다. 이온 불순물은 B 또는 P 이온을 도핑할 수 있는데, 1×1015 atoms/㎠ 이상의 농도로 박막 트랜지스터의 활성층(212) 및 커패시터으 제1 전극(312)을 타겟으로 하여 도핑한다.
게이트 전극(215)을 셀프-얼라인(self-align) 마스크로 사용하여 활성층(212)에 이온불순물을 도핑함으로써 활성층(212)은 이온불순물이 도핑된 소스 영역(212a) 및 드레인 영역(212b)과, 그 사이에 채널 영역(212c)을 구비하게 된다. 이때, 커패시터의 제1 전극(312)도 이온 불순물로 도핑되어 MIM CAP을 형성하는 전극이 된다.
따라서, 1회의 도핑 공정으로 활성층(212) 뿐만 아니라, 커패시터의 제1 전극(312)도 동시에 도핑함으로써 도핑 공정의 감소에 대한 제조 비용을 감소시킬 수 있다.
도 3d는 본 실시예에 따른 유기 발광 표시 장치(1)의 제4 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3d를 참조하면, 도 3c의 제3 마스크 공정의 결과물 상에 제2 절연층(16)을 형성하고, 제2 절연층(16)을 패터닝하여 활성층(212)의 소스 영역(212a) 및 드레인 영역(212b)을 노출시키는 개구(C3, C4)와, 후술할 화소 전극(120)이 배치될 영역으로 활성층(212)의 측면으로 이격된 영역에 개구(C1)를 형성한다.
도 3e는 본 실시예에 따른 유기 발광 표시 장치(1)의 제5 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3e를 참조하면, 도 3d의 제4 마스크 공정의 결과물 상에 제2 금속층(미도시)을 형성하고, 제2 금속층(미도시)을 패터닝하여 소스 전극(217a)과 드레인 전극(217b), 화소 전극 콘택부의 제1 콘택층(117), 및 패드 전극의 제1 패드층(417)을 동시에 형성한다.
제2 금속층(미도시)은 전자 이동도가 다른 이종의 금속층이 2층 이상 형성된 것일 수 있다. 예를 들어, 알루미늄(Al), 백금(Pt), 팔라듐(Pd), 은(Ag), 마그네슘(Mg), 금(Au), 니켈(Ni), 네오디뮴(Nd), 이리듐(Ir), 크롬(Cr), 니켈(Li), 칼슘(Ca), 몰리브덴(Mo), 티타늄(Ti), 텅스텐(W), 구리(Cu) 및 이들의 합금 가운데 선택된 금속층이 2층 이상 형성된 것일 수 있다.
제2 금속층(미도시)의 구성을 예시적으로 나타내기 위하여 제1 패드층(417)의 구성을 상세히 도시하였다. 예를 들어, 본 실시예의 제2 금속층(미도시)은 몰리브덴(Mo)을 포함하는 제1 층(417a), 알루미늄(Al)을 포함하는 제2 층(417b), 및 몰리브덴(Mo)을 포함하는 제3층(417c)으로 형성될 수 있다.
알루미늄(Al)을 포함하는 제2 층(417b)은 저항이 작고 전기적 특성이 우수한 금속층이고, 제2 층(417b)의 하부에 위치한 몰리브덴(Mo)을 포함하는 제1 층(417a)은 제2 절연층(16) 간의 접착력을 강화하고, 제2 층(417b)의 상부에 위치한 몰리브덴(Mo)을 포함하는 제3 층(417c)는 제2 층(417b)에 포함된 알루미늄의 힐락(heel lock) 방지, 산화 방지, 및 확산을 방지하는 배리어층으로서 기능할 수 있다.
한편, 상기 도면에는 상세히 도시하지 않았으나 제5 마스크 공정에서 제2 금속층(미도시)을 패터닝하여 데이터 배선을 함께 형성할 수 있다.
도 3f는 본 실시예에 따른 유기 발광 표시 장치(1)의 제6 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3f를 참조하면, 도 3e의 제5 마스크 공정의 결과물 상에 제2 콘택층(118), 제2 패드층(418), 및 광특성 조절층(119)을 동시에 형성한다.
도 3g는 본 실시예에 따른 유기 발광 표시 장치(1)의 제7 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3g를 참조하면, 도 3f의 제6 마스크 공정의 결과물 상에 제3 절연층(19)을 형성하고, 제3 절연층(19)을 패터닝하여 제2 콘택층(118)의 상부를 노출시키는 콘택홀(C6), 제2 패드층(418)의 상부를 노출시키는 콘택홀(C7), 및 후술할 화소 전극(120)이 배치될 픽셀 영역(PXL1)에 개구(C5)를 형성한다.
제3 절연층(19)은 소스 전극(217a)과 드레인 전극(217b)을 완전히 감싸도록 형성되어, 후술할 은(Ag)을 포함하는 화소 전극(120)의 에칭 시 전위차가 다른 이종 배선이 은 이온이 용해된 에천트에 접촉되는 것을 차단한다.
제3 절연층(19)에 형성된 개구(C5)와 제2 절연층(16)에 형성된 개구(C1)는 중첩되도록 형성하되, 제3 절연층(19)에 형성된 개구(C5)는 제2 절연층(16)에 형성된 개구(C1)는 보다 작게 형성한다.
도 3h는 본 실시예에 따른 유기 발광 표시 장치(1)의 제8 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3h를 참조하면, 도 3g의 제7 마스크 공정의 결과물 상에 반투과 금속층(미도시)을 형성하고, 반투과 금속층(미도시)을 패터닝하여 화소 전극(120)을 형성한다.
화소 전극(120)은 화소 전극 콘택부(PEDOT1)를 통해 구동 트랜지스터와 접속하고, 제3 절연층(19)에 형성된 개구(C5)에 배치되고, 광특성 조절층(119) 상에 형성된다.
화소 전극(120)은 반투과 금속층(120b)으로 형성된다. 또한, 화소 전극(120)은 반투과 금속층(120b)의 상부 및 하부에 각각 형성되어 반투과 금속층(120b)을 보호하는 제1 및 제2 투명도전성 산화물층(120a, 120c)를 더 포함할 수 있다.
반투과 금속층(120b)은 은(Ag) 또는 은 합금으로 형성될 수 있다. 투명 도전성 산화물을 포함하는 층(120a, 120c)은 인듐틴옥사이드(indium tin oxide: ITO), 인듐징크옥사이드(indium zinc oxide: IZO), 징크옥사이드(zinc oxide: ZnO), 인듐옥사이드(indium oxide: In2O3), 인듐갈륨옥사이드(indium gallium oxide: IGO), 및 알루미늄징크옥사이드(aluminum zinc oxide: AZO)을 포함하는 그룹에서 선택된 적어도 하나 이상을 포함할 수 있다. 반투과 금속층(120b)은 후술할 반사 전극인 대향 전극(122)과 함께 마이크로 캐비티(micro-cavity) 구조를 형성함으로써 유기 발광 표시 장치(1)의 광 효율을 향상시킬 수 있다.
은(Ag)과 같이 환원성이 강한 금속은, 화소 전극(120)의 패터닝을 위한 에칭 공정 중, 전자를 공급받게 되면 에천트에서 이온 상태로 존재하던 은(Ag) 이온이 다시 은(Ag)으로 석출되는 문제가 발생할 수 있다. 만약, 은(Ag)을 포함하는 화소 전극(120)을 에칭하는 공정에서, 소스 전극(217a)이나 드레인 전극(217b), 화소 전극 콘택부의 제1 콘택층(117), 제1 패드층(417), 또는 이들과 동일 재료로 형성되는 데이터 배선(미도시)이 에천트에 노출되었다면, 환원성이 강한 은(Ag) 이온은 이들 금속 재료로부터 전자를 전달받아 은(Ag)으로 재석출 되었을 것이다.
그러나, 본 실시예에서 소스 전극(217a)이나 드레인 전극(217b)은 화소 전극(120)을 패터닝하는 제8 마스크 공정 전에 이미 패터닝 되어 유기막인 제3 절연층(19)로 덮인 상태로 있기 때문에, 은(Ag)을 포함하는 화소 전극(120)을 에칭하는 동안 소스 전극(217a)이나 드레인 전극(217b)이 은(Ag) 이온이 포함된 에천트에 노출되지 않는다. 따라서, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다.
또한, 본 실시예에서 화소 전극 콘택부의 제1 콘택층(117), 및 제1 패드층(417)은 각각 제3 절연층(19)에 형성된 콘택홀(C6), 및 콘택홀(C7)에 노출된 영역에 위치하지만, 화소 전극 콘택부의 제1 콘택층(117), 및 제1 패드층(417) 상부에 각각 보호층인 화소 전극 콘택부의 제2 콘택층(118), 및 제2 패드층(418)을 형성하였기 때문에 화소 전극(120)을 에칭하는 동안 화소 전극 콘택부의 제1 콘택층(117)과 제1 패드층(417)은 에천트에 노출되지 않는다. 따라서, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다.
만약 화소 전극(120)과 제1 절연층(13) 사이에 광특성 조절층(119)이 없으면, 반투과 금속층(120b) 하부에 얇게 형성된 보호층(120a)의 핀홀(pin hole)을 통하여, 반투과 금속층(120b)에 포함된 은(Ag)이 실리콘 질화막의 표면에 생성된 실리콘 산화막과 반응하여 확산된다. 이로 인하여 반투과 금속층(120b)은 보이드(void)가 발생하고, 확산된 은(Ag)은 공정 중 암점 불량의 원인이 된다.
그러나 본 발명의 실시예에 따르면, 제1 절연층(13)과 화소 전극(120) 사이에 투명 보호층(199)이 형성되어 있기 때문에, 제1 절연층(13)에 은(Ag)과 반응하기 쉬운 물질이 형성되더라도 투명 보호층(19)이 차단할 수 있다. 따라서, 은(Ag) 입자의 반응성을 제어함으로써 은(Ag) 입자에 의한 암점 불량 발생을 현저히 개선할 수 있다.
도 3i는 본 실시예에 따른 유기 발광 표시 장치(1)의 제9 마스크 공정의 결과를 개략적으로 도시한 단면도이다.
도 3i를 참조하면, 도 3h의 제8 마스크 공정의 결과물 상에 제4 절연층(20)을 형성한 후, 화소 전극(120) 상부를 노출시키는 개구(C8)를 노출시키는 개구(C10) 형성하는 제9 마스크 공정을 실시한다.
제4 절연층(20)은 화소 정의막(pixel define layer) 역할을 하는 것으로, 예를 들어, 일반 범용고분자(PMMA, PS), phenol그룹을 갖는 고분자 유도체, 아크릴계 고분자, 이미드계 고분자, 아릴에테르계 고분자, 아마이드계 고분자, 불소계고분자, p-자일렌계 고분자, 비닐알콜계 고분자 및 이들의 블렌드 등을 포함하는 유기 절연막으로 형성될 수 있다.
도 3h의 제8 마스크 공정의 결과물 상에 유기 발광층(121, 도 2 참조)을 포함하는 중간층(미도시)을 형성하고, 대향 전극(122, 도 2참조)을 형성한다.
상술한 본 발명의 실시예에 따른 유기 발광 표시 장치와 그 제조 방법에 따르면, 화소 전극(120)을 반투과 금속층(120b)으로 형성함으로써 마이크로 캐비티(micro-cavity)에 의한 유기 발광 표시 장치(1)의 광 효율을 향상시킬 수 있다.
또한, 소스 전극(217a)이나 드레인 전극(217b)을 유기막인 제3 절연층(19)으로 덮는 구조로서, 소스 전극(217a)이나 드레인 전극(217b)이 은(Ag) 이온이 포함된 에천트에 노출되지 않도록 함으로써, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다.
또한, 화소 전극 콘택부의 제1 콘택층(117), 및 제1 패드층(417) 상부에 각각 보호층인 화소 전극 콘택부의 제2 콘택층(118), 및 제2 패드층(418)을 형성하여, 화소 전극(120)을 에칭하는 동안 화소 전극 콘택부의 제2 콘택층(117)과, 제1 패드층(417)이 에천트에 노출되지 않도록 함으로써, 은(Ag)의 재석출에 의한 파티클성 불량을 방지할 수 있다.
또한, 화소 전극(120) 하부에 광특성 조절층(119)이 형성되어 있기 때문에, 제1 절연층(13)에 은(Ag)과 반응하기 쉬운 물질이 형성되더라도 광특성 조절층(119)이 차단함으로써, 은(Ag) 입자의 반응성을 제어하여 은(Ag) 입자에 의한 암점 불량 발생을 현저히 개선할 수 있다.
본 발명은 도면에 도시된 실시 예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
1: 유기 발광 표시 장치 10: 기판
11: 버퍼층 13: 제1 절연층
16: 제2 절연층 20: 제3 절연층
114: 제1 콘택층 115: 제2 콘택층
119: 광특성 조절층 120: 화소 전극
121: 유기 발광층 122: 대향 전극
212: 활성층 215: 게이트 전극
217a: 소스 전극 217b: 드레인 전극
312: 커패시터의 제1 전극 314: 커패시터의 제2 전극
317: 커패시터의 제3 전극

Claims (20)

  1. 활성층, 게이트 전극, 소스 전극과 드레인 전극, 상기 활성층과 게이트 전극 사이에 배치된 제1 절연층, 및 상기 게이트 전극과 상기 소스 전극 및 드레인 전극 사이에 배치된 제2 절연층을 포함하는 박막 트랜지스터;
    상기 소스 전극 및 드레인 전극과 동일층에 배치된 제1 패드층과, 상기 제1 패드층 상에 배치된 제2 패드층을 구비한 패드 전극;
    상기 소스 전극과 드레인 전극, 및 상기 패드 전극 단부를 덮고 유기 절연물을 포함하는 제3절연층;
    반투과 금속층을 포함하고 상기 제3절연층에 형성된 개구에 배치된 화소 전극;
    상기 화소 전극과 상기 제1 절연층 사이에 형성된 광특성 조절층;
    상기 제3 절연층에 형성된 개구에 대응하는 위치에 개구가 형성되고, 상기 화소 전극의 단부를 덮는 제4절연층;
    상기 화소 전극 상에 배치되고 유기 발광층을 포함하는 중간층; 및
    상기 중간층 상에 배치되고 반사 금속층을 포함하는 대향 전극;을 포함하는 유기 발광 표시 장치.
  2. 제 1 항에 있어서,
    상기 중간층의 두께는 2500옴스트롱(Å) 이상 3500옴스트롱(Å) 이하인 유기 발광 표시 장치.
  3. 제 1 항에 있어서,
    상기 광특성 조절층의 두께는 10nm 이상 200nm 이하인 유기 발광 표시 장치.
  4. 제 1 항에 있어서,
    상기 광특성 조절층은 산화티탄(TiOx), 산화니오비움(Nb2O5), 인듐주석산화물(ITO), 실리콘 질화물(SiNx), 및 실리콘 산화물(SiO2)에서 선택된 물질이 단일층 또는 복수층으로 이루어진 유기 발광 표시 장치.
  5. 제 1 항에 있어서,
    상기 광특성 조절층은 상기 제2 패드층과 동일 재료로 형성된 유기 발광 표시 장치.
  6. 제 1 항에 있어서,
    상기 반투과 금속층은 은(Ag) 또는 은 합금으로 이루어진 유기 발광 표시 장치.
  7. 제 1 항에 있어서,
    상기 화소 전극은 상기 반투과 금속층과 상기 광특성 조절층 사이에 위치하는 제1 투명 도전성 산화물층을 더 포함하는 유기 발광 표시 장치.
  8. 제 1 항에 있어서,
    상기 화소 전극은 상기 반투과 금속층과 상기 중간층 사이에 제2 투명 도전성 산화물층을 더 포함하는 유기 발광 표시 장치.
  9. 제 1 항에 있어서,
    상기 소스 전극 및 드레인 전극은 전자 이동도가 다른 이종 금속이 복수층 적층된 유기 발광 표시 장치.
  10. 제 9 항에 있어서,
    상기 소스 전극 및 드레인 전극은 몰리브덴을 포함하는 층과 알루미늄을 포함하는 층을 갖는 유기 발광 표시 장치
  11. 제1 항에 있어서,
    상기 활성층과 동일층에 배치된 제1 전극과, 상기 게이트 전극과 동일층에 배치된 제2 전극을 포함하는 커패시터를 더 구비하는 유기 발광 표시 장치.
  12. 제11 항에 있어서,
    상기 커패시터의 제1 전극은 이온 불순물이 도핑된 반도체 물질을 포함하는 유기 발광 표시 장치.
  13. 제11 항에 있어서,
    상기 커패시터의 제2 전극은 투명 도전성 산화물을 포함하는 유기 발광 표시 장치.
  14. 제11 항에 있어서,
    커패시터는 상기 소스 전극 및 드레인 전극과 동일층에 배치된 제3 전극을 더 포함하는 유기 발광 표시 장치.
  15. 제1 항에 있어서,
    상기 제1 패드층은 상기 소스 전극 및 드레인 전극과 동일 재료를 포함하는 유기 발광 표시 장치.
  16. 제 1 항에 있어서,
    상기 제1 콘택층과 상기 제2 콘택층은 상기 제1 절연층과 상기 제2 절연층 사이에 위치하는 유기 발광 표시 장치.
  17. 제 1 항에 있어서,
    상기 제1 콘택층은 투명 도전성 산화물을 포함하는 유기 발광 표시 장치.
  18. 제 1 항에 있어서,
    상기 제1 콘택층의 단부는 상기 제2 콘택층의 단부보다 돌출된 유기 발광 표시 장치.
  19. 제1 항에 있어서,
    상기 제2 절연층에 형성된 개구, 상기 제3 절연층에 형성된 개구, 및 상기 제4 절연층에 형성된 개구는 중첩적으로 형성되고,
    상기 제3 절연층에 형성된 개구는 상기 제4 절연층에 형성된 개구보다 크고, 상기 제2 절연층에 형성된 개구보다 작은 유기 발광 표시 장치.
  20. 제19 항에 있어서,
    상기 화소 전극의 단부는 상기 제3 절연층에 형성된 개구의 상단에 위치하는 유기 발광 표시 장치.

KR1020130118721A 2013-10-04 2013-10-04 유기 발광 표시 장치 KR102100373B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130118721A KR102100373B1 (ko) 2013-10-04 2013-10-04 유기 발광 표시 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130118721A KR102100373B1 (ko) 2013-10-04 2013-10-04 유기 발광 표시 장치

Publications (2)

Publication Number Publication Date
KR20150040117A true KR20150040117A (ko) 2015-04-14
KR102100373B1 KR102100373B1 (ko) 2020-04-14

Family

ID=53031654

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130118721A KR102100373B1 (ko) 2013-10-04 2013-10-04 유기 발광 표시 장치

Country Status (1)

Country Link
KR (1) KR102100373B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110051858A (ko) * 2009-11-11 2011-05-18 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR20130060915A (ko) * 2011-11-30 2013-06-10 삼성디스플레이 주식회사 박막트랜지스터 어레이 기판, 이를 포함하는 유기 발광 표시 장치 및 박막트랜지스터 어레이 기판의 제조 방법
KR20130080642A (ko) * 2012-01-05 2013-07-15 삼성디스플레이 주식회사 박막트랜지스터 기판 및 이를 포함하는 유기 발광 표시 장치
KR20130091204A (ko) * 2012-02-07 2013-08-16 삼성디스플레이 주식회사 박막 트랜지스터 어레이 기판, 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110051858A (ko) * 2009-11-11 2011-05-18 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR20130060915A (ko) * 2011-11-30 2013-06-10 삼성디스플레이 주식회사 박막트랜지스터 어레이 기판, 이를 포함하는 유기 발광 표시 장치 및 박막트랜지스터 어레이 기판의 제조 방법
KR20130080642A (ko) * 2012-01-05 2013-07-15 삼성디스플레이 주식회사 박막트랜지스터 기판 및 이를 포함하는 유기 발광 표시 장치
KR20130091204A (ko) * 2012-02-07 2013-08-16 삼성디스플레이 주식회사 박막 트랜지스터 어레이 기판, 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법

Also Published As

Publication number Publication date
KR102100373B1 (ko) 2020-04-14

Similar Documents

Publication Publication Date Title
KR102203100B1 (ko) 유기 발광 표시 장치
KR102131963B1 (ko) 유기 발광 표시 장치
KR102137474B1 (ko) 패드 전극 구조물 및 상기 패드 전극 구조물을 포함하는 유기 발광 표시 장치
KR102077143B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
TWI629767B (zh) 有機發光顯示設備
KR102077144B1 (ko) 유기발광표시장치 및 그 제조 방법
KR20150033444A (ko) 유기 발광 표시 장치 및 유기 발광 장치의 제조 방법
KR102081289B1 (ko) 유기 발광 표시 장치
US9570528B2 (en) Organic light-emitting display apparatus
KR102126380B1 (ko) 유기발광표시장치
KR20150040668A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
TW201503360A (zh) 有機發光顯示設備
CN109994518B (zh) 有机发光显示设备
KR102113177B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
KR102098742B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
KR20150048508A (ko) 표시 장치, 표시 장치의 제조 방법, 및 유기 발광 표시 장치
KR102100373B1 (ko) 유기 발광 표시 장치
KR20160009771A (ko) 유기 발광 표시 장치
KR20160009772A (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant