KR20150035337A - Slab track twist monitoring apparatus - Google Patents

Slab track twist monitoring apparatus Download PDF

Info

Publication number
KR20150035337A
KR20150035337A KR20130115735A KR20130115735A KR20150035337A KR 20150035337 A KR20150035337 A KR 20150035337A KR 20130115735 A KR20130115735 A KR 20130115735A KR 20130115735 A KR20130115735 A KR 20130115735A KR 20150035337 A KR20150035337 A KR 20150035337A
Authority
KR
South Korea
Prior art keywords
slab
strain
misalignment
displacement
train
Prior art date
Application number
KR20130115735A
Other languages
Korean (ko)
Other versions
KR101533226B1 (en
Inventor
강윤석
엄기영
이지하
윤희택
김은성
김유승
박영춘
장현재
최준성
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020130115735A priority Critical patent/KR101533226B1/en
Publication of KR20150035337A publication Critical patent/KR20150035337A/en
Application granted granted Critical
Publication of KR101533226B1 publication Critical patent/KR101533226B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • B61K9/10Measuring installations for surveying permanent way for detecting cracks in rails or welds thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • G01D5/165Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track
    • G01D5/1655Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance by relative movement of a point of contact or actuation and a resistive track more than one point of contact or actuation on one or more tracks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • G01L9/045Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges with electric temperature compensating means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

The present invention comprises: a plurality of strain rate sensors respectively measuring a strain rate of a slab track; and a twist measuring unit measuring a slab track by using displacement in a vertical direction from each measuring position after the displacement in the vertical direction is respectively calculated in the measuring position of the strain rate sensor through each strain rate measured by the strain rate sensor.

Description

슬라브 궤도면 면틀림 계측 장치{SLAB TRACK TWIST MONITORING APPARATUS}[0001] SLAB TRACK TWIST MONITORING APPARATUS [0002]

본 발명은 슬라브 궤도면 면틀림 계측 장치에 관한 것으로서, 보다 상세하게는 슬라브 궤도면의 면틀림을 계측하는 슬라브 궤도면 면틀림 계측 장치에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention [0002] The present invention relates to a slab track surface misalignment measuring apparatus, and more particularly, to a slab track misalignment measuring apparatus for measuring misalignment of a slab track surface.

일반적으로, 철도설계기준으로 열차의 탈선을 방지하기 위해 열차의 차륜과 레일의 접촉에 대한 안전규정으로서 면틀림이 제시된다. In general, misalignment is presented as a safety guideline for the contact between a rail and a wheel of a train in order to prevent derailment of the train by the railroad design standard.

면틀림은 주로 유지보수 업무의 하나로 검측차량에 의해 별도로 계측되는데, 기존의 면틀림 계측 방법에서는 실제 열차 운행시의 면틀림을 계측하는 것이 아니라 간접적으로 면틀림을 계측함으로써, 열차 운영 당시의 데이터를 정확하게 제공하지 못하는 문제점이 있었다. One of the main tasks of the maintenance is to measure the surface irregularity separately. In the conventional surface irregularity measurement method, the surface irregularity is indirectly measured rather than the actual surface irregularity. There is a problem that it can not be provided accurately.

게다가, 궤도검측차량으로 면틀림을 계측하는 방법은 궤도면의 정적인 상태를 검사할 뿐 실제 운영 열차에 의한 구조물의 응답특성을 정확하게 반영하지 못하는 문제점이 있었다. In addition, the method of measuring the misalignment with the tracked vehicle has a problem that it can not accurately reflect the response characteristic of the structure due to the actual running train, only checking the static condition of the track surface.

최근에는 열차 속도가 고속으로 상향되고 있어 열차 운행 중 궤도면의 거동 파악이 더욱 중요해지고 있는바, 종래의 면틀림 계측 방법을 개선할 필요성이 더욱 높아지고 있는 실정이다. Recently, as the train speed is increased to a high speed, it is becoming more important to grasp the behavior of the track surface during the train operation. Thus, there is a growing need to improve the conventional method of measuring the surface misalignment.

본 발명의 배경기술은 대한민국 특허공개번호 10-2010-88945호(2010.08.1)의 '철도 지반 침하 및 구조물 변형에 따른 레일 변위량 측정 장치 및 이를 이용한 레일 변위량 자동 계측 시스템과 그 방법'에 개시되어 있다.
The background art of the present invention is disclosed in Korean Patent Laid-Open Publication No. 10-2010-88945 (Aug. 1, 2010) entitled " Rail displacement measurement apparatus according to settlement of railroad ground and structural deformation, and automatic rail displacement measurement system and method using the rail displacement measurement apparatus & have.

본 발명은 상기와 같은 문제점을 개선하기 위해 창출된 것으로서, 본 발명의 목적은 열차 운행시 슬라브 궤도면의 각 측정 위치간 상대 변위를 계산하여 슬라브 궤도면의 면틀림을 계측하는 슬라브 궤도면 면틀림 계측 장치를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in order to overcome the above problems, and it is an object of the present invention to provide a method of measuring a slab track surface error by calculating a relative displacement between measurement positions of a slab track surface during a train operation, And to provide a measuring apparatus.

본 발명의 다른 목적은 열차 운행시 슬라브 궤도면의 미소변형을 계측하여 슬라브 궤도면의 면틀림을 실시간으로 정확하게 계측하는 슬라브 궤도면 면틀림 계측 장치를 제공하는 것이다.It is another object of the present invention to provide a slab track surface misalignment measuring apparatus for accurately measuring real-time misalignment of a slab raceway surface by measuring minute deformation of the slab raceway surface when a train is operated.

본 발명의 또 다른 목적은 열차 운행시 1개 대차에 존재하는 4개의 차륜이 같은 평면에서 벗어나는지 여부에 대한 안전도를 판단할 수 있도록 하는 슬라브 궤도면 면틀림 계측 장치를 제공하는 것이다.It is still another object of the present invention to provide a slab track surface misalignment measuring apparatus capable of judging the degree of safety of whether four wheels existing on a bogie on a train are deviated from the same plane.

본 발명의 또 다른 목적은 열차의 차륜과 레일의 접촉에 대한 안전을 확보하여 탈선 위험을 최소화하는 슬라브 궤도면 면틀림 계측 장치를 제공하는 것이다.It is still another object of the present invention to provide a slab track surface misalignment measuring apparatus which secures safety against contact between a wheel and a rail of a train to minimize the risk of derailment.

본 발명의 또 다른 목적은 궤도 면틀림에 대한 정량적인 판단기준을 제시할 수 있는 데이터를 지속적으로 확보하여 열차 운행의 안전율과 열차의 승차감을 확보할 수 있도록 하는 슬라브 궤도면 면틀림 계측 장치를 제공하는 것이다.
It is another object of the present invention to provide a slab track surface misalignment measuring device which can secure quantitative judgment criteria for track misalignment and secure data for ensuring safety of train operation and ride comfort of trains .

본 발명의 일 측면에 따른 슬라브 궤도면 면틀림 계측 장치는 복수 개가 설치되어 슬라브 궤도면의 변형률을 각각 측정하는 변형률 센서; 및 상기 변형률 센서에서 측정된 상기 변형률 각각을 통해 상기 변형률 센서의 측정 위치에서의 연직방향의 변위를 각각 구한 후, 상기 각 측정 위치에서의 연직방향의 변위를 이용하여 상기 슬라브 궤도면의 면틀림을 계산하는 면틀림 계산부를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a device for measuring slab orbital surface defects, comprising: a plurality of strain sensors, each of which is provided with a strain sensor for measuring a strain of a slab track surface; And a strain sensor for measuring a strain in the vertical direction at the measurement position of the strain sensor through each of the strains measured by the strain sensor and then using the displacement in the vertical direction at each measurement position to detect a misalignment of the slab- And a misalignment calculation unit for calculating the misalignment.

본 발명에서, 상기 변형률 센서는 열차 차륜의 배치 위치에 대응되게 직사각형의 꼭지점 위치에 각각 배치되는 것을 특징으로 한다.In the present invention, the strain sensors are respectively disposed at vertex positions of a rectangle corresponding to the arrangement positions of the train wheels.

본 발명에서, 상기 변형률 센서는 열차 진행 방향으로 제1설정범위 이내의 거리로 배치되고, 열차 진행 방향과 직각 방향으로 제2설정범위 이내의 거리로 배치되는 것을 특징으로 한다.In the present invention, the strain sensors are disposed at distances within a first set range in a train traveling direction and at distances within a second setting range in a direction perpendicular to a train traveling direction.

본 발명에서, 상기 연직방향의 변위는 하기의 수학식

Figure pat00001
로 계산되어지고, 상기 δ는 연직방향의 변위이며, 상기 θ는 상기 슬라브 궤도면의 변형량인 것을 특징으로 한다.In the present invention, the displacement in the vertical direction is expressed by the following equation
Figure pat00001
, The delta is a displacement in the vertical direction, and theta is a deformation amount of the slab raceway surface.

본 발명에서, 상기 변형률 센서는 브릿지 회로로 구성되어 슬라브 궤도면의 굽힘에 대한 인장방향 스트레인을 보상하는 것을 특징으로 한다.In the present invention, the strain sensor is constituted by a bridge circuit and compensates for tensile strain against bending of the slab raceway surface.

본 발명에서, 상기 변형률 센서는 슬라브 궤도면의 온도에 따른 변동성을 보상하는 것을 특징으로 한다.
In the present invention, the strain sensor compensates for variations in temperature of the slab raceway surface.

본 발명은 열차 운행시 슬라브 궤도면의 각 측정 위치간 상대 변위를 계산하여 슬라브 궤도면의 면틀림을 계측한다. In the present invention, the relative displacement between the measurement positions on the slab orbital plane at the time of train operation is calculated to measure the plane defects of the slab orbital plane.

본 발명은 열차 운행시 슬라브 궤도면의 미소변형을 계측하여 면틀림을 실시간으로 정확하게 계측한다. The present invention measures the minute deformation of the slab raceway surface while the train is running, and accurately measures the surface defects in real time.

본 발명은 열차 운행시 1개 대차에 존재하는 4개의 차륜이 같은 평면에서 벗어나는지 여부에 대한 안전도를 판단할 수 있도록 한다. The present invention makes it possible to judge the safety of whether four wheels existing in a bogie on a train are out of the same plane.

본 발명은 열차의 차륜과 레일의 접촉에 대한 안전을 확보하여 탈선 위험을 최소화하고, 궤도 면틀림에 대한 정량적인 판단기준을 제시할 수 있는 데이터를 지속적으로 확보하여 열차 운행의 안전율과 열차의 승차감을 확보할 수 있도록 한다.
The present invention minimizes the risk of derailment by ensuring the safety of the contact between the wheel and the rail of a train and continuously provides data that can provide a quantitative judgment criterion against the misalignment of the track so that the safety of the train and the ride comfort .

도 1 은 본 발명의 일 실시예에 따른 슬라브 궤도면 면틀림 계측 장치의 블럭 구성도이다.
도 2 는 도 1 의 변형률 센서의 배치 위치를 나타낸 사시도이다.
도 3 은 도 1 의 변형률 센서의 배치 위치를 나타낸 측단면도이다.
도 4 는 철도설계기준에서 명시하는 면틀림에 대한 정의를 개념적으로 나타낸 도면이다.
도 5 는 재료의 탄성 변형시 미소변형량, 곡률, 곡률반경 및 변형각의 기하학적 관계를 나타낸 도면이다.
FIG. 1 is a block diagram of an apparatus for measuring slab track surface misalignment according to an embodiment of the present invention.
2 is a perspective view showing an arrangement position of the strain sensor of FIG.
3 is a side cross-sectional view showing an arrangement position of the strain sensor of FIG.
Fig. 4 is a conceptual view showing definition of plane misalignment specified in the railway design standard.
Fig. 5 is a diagram showing the geometric relationship of the amount of micro strain, the curvature, the radius of curvature, and the deformation angle when the material is elastically deformed.

이하에서는 본 발명의 일 실시예에 따른 슬라브 궤도면 면틀림 계측 장치를 첨부된 도면을 참조하여 상세하게 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a slab track surface misalignment measuring apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In this process, the thicknesses of the lines and the sizes of the components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, the terms described below are defined in consideration of the functions of the present invention, which may vary depending on the intention or custom of the user, the operator. Therefore, definitions of these terms should be made based on the contents throughout this specification.

도 1 은 본 발명의 일 실시예에 따른 슬라브 궤도면 면틀림 계측 장치의 블럭 구성도이고, 도 2 는 도 1 의 변형률 센서의 배치 위치를 나타낸 사시도이며, 도 3 은 도 1 의 변형률 센서의 배치 위치를 나타낸 측단면도이며, 도 4 는 철도설계기준에서 명시하는 면틀림에 대한 정의를 개념적으로 나타낸 도면이며, 도 5 는 재료의 탄성 변형시 미소변형량, 곡률, 곡률반경 및 변형각의 기하학적 관계를 나타낸 도면이다. FIG. 1 is a block diagram of a slab track surface misalignment measuring apparatus according to an embodiment of the present invention, FIG. 2 is a perspective view showing a placement position of the strain sensor of FIG. 1, Fig. 4 is a conceptual view of definition of plane misalignment specified in the railway design standard, and Fig. 5 is a graph showing the geometric relationship of the amount of micro strain, curvature, radius of curvature, Fig.

도 1 을 참조하면, 본 발명의 일 실시예에 따른 슬라브 궤도면 면틀림 계측 장치는 변형률 센서(10), 수집부(20) 및 면틀림 계산부(30)를 포함한다.Referring to FIG. 1, an apparatus for measuring slab track surface defects according to an embodiment of the present invention includes a strain sensor 10, a collecting unit 20, and a surface defect calculating unit 30.

변형률 센서(10)는 복수 개가 설치되며, 각 변형률 센서(10)는 열차 운행시 x축과 y축으로 변형되는 슬라브 궤도면(43)의 변형률을 측정한다. A plurality of strain sensors 10 are provided, and each strain sensor 10 measures a strain of the slab raceway surface 43 deformed in the x-axis and the y-axis when the train is running.

이러한 변형률 센서(10)는 도 2 및 도 3 에 도시된 바와 같이 4개가 설치되며 각각은 슬라브 궤도면(43)에 부착된다. 참고로 도면부호(42)는 침목이다. As shown in Figs. 2 and 3, four such strain sensors 10 are installed, and each is attached to the slab raceway surface 43. Fig. Reference numeral 42 denotes a sleeper.

각 변형률 센서(10)는 슬라브 궤도면(43)에 고정된 레일(41)의 아래에 설치되며, 1개 대차의 각 차륜간 거리에 대응되게 직사각형의 꼭지점 위치에 각각 배치된다. Each strain sensor 10 is installed under the rail 41 fixed to the slab raceway surface 43 and is disposed at the vertex position of the rectangle corresponding to the distance between the wheels of one car.

이 경우, 변형률 센서(10)는 열차 진행 방향으로 제1설정범위 이내의 거리로 배치되며, 열차 진행 방향과 직각 방향으로는 제2설정범위 이내의 거리로 배치된다. 이와 같은 변형률 센서(10) 간의 거리는 열차 차륜의 중심 간 거리에 따라 다양하게 결정될 수 있다. In this case, the strain sensor 10 is disposed at a distance within the first setting range in the traveling direction of the train, and at a distance within the second setting range in the direction perpendicular to the traveling direction of the train. The distance between the strain sensors 10 can be variously determined according to the center-to-center distance of the train wheel.

또한, 변형률 센서(10)는 브릿지 회로로 구성되어 굽힘에 대한 인장방향 스트레인을 보상하고 슬라브 궤도면(43)의 온도에 따른 변동성을 보상함으로써, 측정된 변형률의 정확도를 향상시키고, 변형률을 통해 계산되어지는 면틀림에 대한 신뢰도를 높인다. Further, the strain sensor 10 is constituted by a bridge circuit to compensate for the strain in the tensile direction with respect to the bending and to compensate for the variation in temperature of the slab raceway surface 43, thereby improving the accuracy of the measured strain, Thereby increasing the reliability of misalignment.

수집부(20)는 각 변형률 센서(10)에 의해 측정된 변형률을 수집하여 면틀림 계산부(30)에 입력한다. The collecting unit 20 collects the strains measured by the respective strain sensors 10 and inputs them to the surface defects calculating unit 30. [

면틀림 계산부(30)는 변형률 센서(10) 각각으로부터 입력받은 측정 위치에서의 변형률을 이용하여 각 측정위치에서의 연직방향의 변위를 계산하고, 계산된 각 측정위치에서의 연직방향의 변위를 이용하여 슬라브 궤도면(43)의 상대 변위 즉, 면틀림을 계산한다.The surface misalignment calculation unit 30 calculates the displacement in the vertical direction at each measurement position by using the strain at the measurement position input from each of the strain sensors 10 and calculates the displacement in the vertical direction at each calculated measurement position The relative displacement of the slab raceway surface 43, that is, the misalignment, is calculated.

도 4 를 참조하면, 면틀림은 차륜과 레일(41)의 접촉에 대한 안전을 확보하여 탈선 위험을 최소화하기 위한 것으로 교량의 교축직각방향 회전에 의한 캔트 변화(비틀림 각변화) 제한규정이다.Referring to FIG. 4, the plane misalignment is a restriction of cant change (twist angle change) due to rotation of the bridge in the direction perpendicular to the throttle in order to secure the safety of contact between the wheel and the rail 41 to minimize the risk of derailment.

면틀림에 대한 규정은 1개 대차에 존재하는 4개 차륜이 같은 평면에서 벗어나지 않도록 제한하기 위한 것이다. The rule for plane misalignment is to limit the four wheels present in a bogie to not deviate from the same plane.

통상, 슬라브 궤도면(43)의 휨은 탄성범위 내에 있고, 측정 위치는 같은 곡률반경을 갖는다. 레일(41)을 고정하고 있는 슬라브는 2방향 보로 거동하며, 슬라브의 연직방향 거동과 레일(41)의 연직방향 거동은 동일하다. 각 변형률 센서(10)로부터 해당 측정점의 미소변형량을 얻을 수 있으며, 이로부터 곡률을 계산할 수 있고, 각 측정점의 곡률의 차이로부터 각 측정점의 연직방향으로의 상대 변위를 구할 수 있다. Usually, the warpage of the slab raceway surface 43 is within the elastic range, and the measurement position has the same radius of curvature. The slab fixing the rail 41 behaves as a two-directional beam, and the vertical direction behavior of the slab and the vertical direction behavior of the rail 41 are the same. The micro strain amount of the corresponding measurement point can be obtained from each strain sensor 10 and the curvature can be calculated therefrom and the relative displacement in the vertical direction of each measurement point can be obtained from the difference in curvature of each measurement point.

이러한 특성에 기반하여 면틀림 계산부는 다음과 같이 각 측정지점에서의 연직방향의 변위를 계산한다. Based on this characteristic, the misalignment calculation unit calculates the displacement in the vertical direction at each measurement point as follows.

도 5 를 참조하면, 면틀림은 미소변형에 대한 곡률(ρ), 곡률반경(k) 및 변형량(dθ)에 대한 기하학적 관계식을 통해 계산되어지는데, 곡률(ρ), 곡률반경(k) 및 변형량(dθ)의 기하학적 관계식은 하기의 수학식1과 다음과 같다. 참고로, 도 5 의 O는 곡률의 원점이다. 5, plane misalignment is calculated through a geometric relationship with respect to a curvature p, a radius of curvature k, and a deformation amount d &thetas; with respect to a micro strain. The curvature p, the curvature radius k, (d &thetas;) is expressed by Equation (1) below. For reference, O in Fig. 5 is the origin of the curvature.

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

여기서, ds는 호의 길이이다. 그리고, dx는 ds를 직선으로 근사화한 값인데, 이는 슬라브 궤도면(43)의 변형이 미소 변형되기 때문에 ds를 직선으로 가정할 수 있다. Where ds is the length of the arc. Here, dx is a value obtained by approximating ds to a straight line. This is because the deformation of the slab raceway surface 43 is slightly deformed, so that ds can be assumed to be a straight line.

도 5 의 e점과 f점 사이의 길이를 L1이라 하고, 중립축(s)로부터 떨어진 길이를 y로 하여 정리하면, 하기의 수학식2가 된다.When the length between point e and point f in FIG. 5 is L 1 and the distance from the neutral axis (s) is y, the following equation (2) is obtained.

Figure pat00004
Figure pat00004

이며, 여기서

Figure pat00005
이다., Where
Figure pat00005
to be.

한편, dx의 길이 변화량 L1-dx는 하기의 수학식 3과 같이 정리된다.On the other hand, the length variation L 1 -dx of dx is summarized as the following equation (3).

Figure pat00006
Figure pat00006

여기서, εx는 dx의 길이 변화량 L1-dx로써, 변형률 센서(10)에서 측정된 변형률을 기초로 y에 의해 보정된 값이다. Here, epsilon x is a length change amount L 1 -dx of dx, which is a value corrected by y based on the strain measured by the strain sensor 10.

이러한 수학식1,2,3과 같은 기하학적 관계식을 바탕으로, 각 측정위치에서의 연직방향의 변위는 하기의 수학식 4를 통해 계산된다. Based on the geometric relations such as Equations (1), (2) and (3), the displacement in the vertical direction at each measurement position is calculated by the following Equation (4).

Figure pat00007
Figure pat00007

여기서, δ는 연직방향의 변위이고, θ는 변형량으로써 θ는 슬라브 궤도가 미소변형되므로, dθ와 근사화된다. Here,? Is the displacement in the vertical direction,? Is the amount of deformation, and? Is approximated to d? Since the slab orbit is slightly deformed.

또한, 미소변형에 대해 θ를 구하기 위해 근사적으로 크기가 같은 sinθ를 하기의 수학식 2로 구할 수 있으며, 이를 cos값으로 산정할 수 있다. 이는 하기의 수학식5와 같다.Further, in order to obtain? With respect to the microscopic distortion, sin? Having an approximate magnitude can be obtained by the following equation (2), and it can be estimated as a cos value. This is expressed by the following equation (5).

Figure pat00008
Figure pat00008

여기서, L은 보의 길이다. Where L is the length of the beam.

또한, 곡률(ρ)은 하기의 수학식 6을 통해 계산될 수 있다.Further, the curvature? Can be calculated through the following equation (6).

Figure pat00009
Figure pat00009

면틀림 계산부(30)는 상기한 바와 같이, 각 변형률 센서(10)로부터 수집된 변형율을 이용하여 각 측정 위치에서의 연직방향의 변위를 구하고, 이러한 각 측정 위치에서의 연직방향의 변위를 통해 슬라브 궤도면(43)의 면틀림을 구한다. As described above, the misalignment calculation section 30 obtains the displacement in the vertical direction at each measurement position by using the strain rates collected from the respective strain sensors 10, And finds the surface skew of the slab raceway surface 43.

이와 같이, 본 발명은 열차 운행시 슬라브 궤도면(43)의 각 측정 위치간 상대 변위를 계산하여 슬라브 궤도면(43)의 면틀림을 계측한다. As described above, the present invention calculates the relative displacement between the respective measurement positions of the slab raceway surface 43 when the train is running, and measures the surface skew of the slab raceway surface 43.

본 발명은 열차 운행시 슬라브 궤도면(43)의 미소변형을 계측하여 면틀림을 실시간으로 계산한다. In the present invention, micro-deformation of the slab raceway surface (43) is measured at the time of train operation to calculate surface defects in real time.

본 발명은 열차 운행시 1개 대차에 존재하는 4개의 차륜이 같은 평면에서 벗어나는지 여부에 대한 안전도를 판단할 수 있도록 한다. The present invention makes it possible to judge the safety of whether four wheels existing in a bogie on a train are out of the same plane.

본 발명은 열차의 차륜과 레일(41)의 접촉에 대한 안전을 확보하여 탈선 위험을 최소화하고, 궤도 면틀림에 대한 정량적인 판단기준을 제시할 수 있는 데이터를 지속적으로 확보하여 열차 운행의 안전율과 열차의 승차감을 확보할 수 있도록 한다. The present invention minimizes the risk of derailment by ensuring the safety of the contact between the wheels of the train and the rail (41), and continuously secures the data that can provide quantitative criteria for the faulty track, Thereby ensuring the ride comfort of the train.

본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나 이는 예시적인 것에 불과하며 당해 기술이 속하는 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 아래의 특허청구범위에 의하여 정해져야할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. will be. Accordingly, the true scope of the present invention should be determined by the following claims.

10: 변형률 센서 20: 수집부
30: 면틀림 계산부 41: 레일
42: 침목 43: 슬라브 궤도면
10: strain sensor 20:
30: face misalignment calculation unit 41: rail
42: sleeper 43: slab raceway face

Claims (6)

복수 개가 설치되어 슬라브 궤도면의 변형률을 각각 측정하는 변형률 센서;및
상기 변형률 센서에서 측정된 상기 변형률 각각을 통해 상기 변형률 센서의 측정 위치에서의 연직방향의 변위를 각각 구한 후, 상기 각 측정 위치에서의 연직방향의 변위를 이용하여 상기 슬라브 궤도면의 면틀림을 계산하는 면틀림 계산부를 포함하는 슬라브 궤도면 면틀림 계측 장치.
A strain sensor provided with a plurality of strain gauges each for measuring a strain rate of the slab raceway surface;
Calculating a displacement in the vertical direction at the measurement position of the strain sensor through each of the strains measured by the strain sensor, and calculating a misalignment of the slab raceway surface using the displacement in the vertical direction at each measurement position And a misalignment calculation section for calculating a misalignment of the slab orbit.
제 1 항에 있어서, 상기 변형률 센서는 열차 차륜의 배치 위치에 대응되게 직사각형의 꼭지점 위치에 각각 배치되는 것을 특징으로 하는 슬라브 궤도면 면틀림 계측 장치.
The apparatus according to claim 1, wherein the strain sensors are disposed at vertexes of a rectangular shape corresponding to positions of train wheels.
제 2 항에 있어서, 상기 변형률 센서는 열차 진행 방향으로 제1설정범위 이내의 거리로 배치되고, 열차 진행 방향과 직각 방향으로 제2설정범위 이내의 거리로 배치되는 것을 특징으로 하는 슬라브 궤도면 면틀림 계측 장치.
3. The slab rail according to claim 2, wherein the strain sensors are disposed at a distance within a first setting range in a train traveling direction and at a distance within a second setting range in a direction perpendicular to a traveling direction of a train, Incorrect measuring device.
제 1 항에 있어서, 상기 연직방향의 변위는 하기의 수학식
Figure pat00010

로 계산되어지고, 상기 δ는 연직방향의 변위이며, 상기 θ는 상기 슬라브 궤도면의 변형량인 것을 특징으로 하는 슬라브 궤도면 면틀림 계측 장치.
2. The method according to claim 1, wherein the displacement in the vertical direction is expressed by the following equation
Figure pat00010

, The delta is a displacement in a vertical direction, and theta is a deformation amount of the slab raceway surface.
제 1 항에 있어서, 상기 변형률 센서는 브릿지 회로로 구성되어 슬라브 궤도면의 굽힘에 대한 인장방향 스트레인을 보상하는 것을 특징으로 하는 슬라브 궤도면 면틀림 계측 장치.
The apparatus of claim 1, wherein the strain sensor comprises a bridge circuit to compensate strain in the tensile direction with respect to bending of the slab raceway surface.
제 1 항에 있어서, 상기 변형률 센서는 슬라브 궤도면의 온도에 따른 변동성을 보상하는 것을 특징으로 하는 슬라브 궤도면 면틀림 계측 장치. The apparatus according to claim 1, wherein the strain sensor compensates for variations in temperature of the slab raceway surface according to temperature.
KR1020130115735A 2013-09-27 2013-09-27 Slab track twist monitoring apparatus KR101533226B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130115735A KR101533226B1 (en) 2013-09-27 2013-09-27 Slab track twist monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130115735A KR101533226B1 (en) 2013-09-27 2013-09-27 Slab track twist monitoring apparatus

Publications (2)

Publication Number Publication Date
KR20150035337A true KR20150035337A (en) 2015-04-06
KR101533226B1 KR101533226B1 (en) 2015-07-02

Family

ID=53030328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130115735A KR101533226B1 (en) 2013-09-27 2013-09-27 Slab track twist monitoring apparatus

Country Status (1)

Country Link
KR (1) KR101533226B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779457A (en) * 2019-12-03 2020-02-11 中铁科学技术开发有限公司 Track slab deformation monitoring device and method and online monitoring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102500879B1 (en) 2022-10-21 2023-02-17 손인규 Real Time Track Distortion Measuring System and Its Method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4710119B2 (en) * 2000-10-27 2011-06-29 Nok株式会社 Sensor circuit
JP4966616B2 (en) * 2006-09-19 2012-07-04 大成建設株式会社 Shape variation monitoring method and shape variation monitoring system
KR20120106038A (en) * 2011-03-17 2012-09-26 현대건설주식회사 Measuring method and apparatus of bridge displacement by measure of strain
KR101271688B1 (en) * 2011-11-03 2013-06-05 삼성중공업 주식회사 Device and method for measuring motion of floating dock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779457A (en) * 2019-12-03 2020-02-11 中铁科学技术开发有限公司 Track slab deformation monitoring device and method and online monitoring system
CN110779457B (en) * 2019-12-03 2024-05-10 中铁科学技术开发有限公司 Track slab deformation monitoring device and method and online monitoring system

Also Published As

Publication number Publication date
KR101533226B1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
CN106794851B (en) Method for the track geometry shape for measuring and showing track equipment
US10352831B2 (en) Method for measuring wear of railroad vehicle wheel flange
US7681443B2 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
JP7037948B2 (en) How to calculate the optimal orbit
KR101004782B1 (en) Device for measuring the roundness of a railroad wheel
US10429180B2 (en) Versine trolley-type equipment for inspecting track irregularity
US9205850B2 (en) Displacement detecting apparatus for railroad rails
KR101026350B1 (en) System for measuring cross-level irregularity of track using inertial sensor, and method thereof
KR101827485B1 (en) Trolly apparatus for measuring track irregularity having track guidance member of hydraulic type, and method for the same
JP2021512813A (en) How to inspect railcars and track sections
JP7146814B2 (en) Track Inspection Vehicles and Methods for Detecting Vertical Track Position
CN201746752U (en) Track detection device
JP6663267B2 (en) Method and apparatus for measuring longitudinal creep force between wheel and rail of railway vehicle
KR101533226B1 (en) Slab track twist monitoring apparatus
JP4067761B2 (en) Simple orbit inspection vehicle
US20230406377A1 (en) Method and system for determining correction values for correcting the position of a track
KR101480808B1 (en) Apparatus for measuring elevation of track using laser gun and graph reflection plate, and method for the same
CN110904751B (en) Railway gauge detection method and device
KR101392454B1 (en) Apparatus for measuring gauge and cant of track using laser gun and graph reflection plate, and method for the same
CN111780687B (en) Calibrating device of profile detection system and working method thereof
RU2276216C2 (en) Method of measuring horizontal irregularities (levering) and curvature in plan of rail lines
JP7207148B2 (en) Railroad vehicle track condition evaluation method and railroad vehicle bogie
CN217403666U (en) Wheel rail acting force test sensor positioning device
JP3800548B2 (en) Measurement error correction method for orbit inspection equipment
CN115307599A (en) Railway track smoothness adjusting method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180504

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 6