JP4710119B2 - Sensor circuit - Google Patents

Sensor circuit Download PDF

Info

Publication number
JP4710119B2
JP4710119B2 JP2000329511A JP2000329511A JP4710119B2 JP 4710119 B2 JP4710119 B2 JP 4710119B2 JP 2000329511 A JP2000329511 A JP 2000329511A JP 2000329511 A JP2000329511 A JP 2000329511A JP 4710119 B2 JP4710119 B2 JP 4710119B2
Authority
JP
Japan
Prior art keywords
temperature
zero
resistor
compensation
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000329511A
Other languages
Japanese (ja)
Other versions
JP2002131159A (en
Inventor
靖 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2000329511A priority Critical patent/JP4710119B2/en
Publication of JP2002131159A publication Critical patent/JP2002131159A/en
Application granted granted Critical
Publication of JP4710119B2 publication Critical patent/JP4710119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧力や加速度等の物理量を検出するセンサ回路に関し、例えば、流体等の圧力を検出する圧力センサや加速度センサに適用されるものである。
【0002】
【従来の技術】
従来、この種のセンサ回路としては、例えば図2の回路図に示されるものがある。
【0003】
図2のセンサ回路101は、歪ゲージR1〜R4を4辺の各々に接続してフルブリッジとしたブリッジ回路102で構成されたものである。
【0004】
ブリッジ回路102は、隣接2辺間に接続される4端子Vcc,GND,V+,V−の内向かい合う一方の端子Vcc,GND間に供給電圧を入力し、他方の端子V+,V−間から物理量の変化による歪に応じた歪ゲージR1〜R4の抵抗値変化に基づく出力電圧を出力する。
【0005】
このブリッジ回路102に用いられる歪ゲージR1〜R4は一般的に350Ω又は120Ωの抵抗値であり、ブリッジ回路102の出力は小さいものである。
【0006】
このため、ブリッジ回路102からの出力は後段で適度な増幅を伴うため、歪がない時のブリッジ回路102の出力が零に近いことが要求される。
【0007】
しかし、歪のない時にブリッジ回路102のバランスが失われて出力が零とならない場合があり、歪のない時が零点(出力値が零となる点)となるようなブリッジ回路102のバランス調整(零点補償)が必要不可欠である。また、零点は温度により変動するため、その変動も吸収する調整(零点温度補償)が必要である。
【0008】
しかも、これらの調整は、歪ゲージR1〜R4の抵抗のばらつきが大きく、各ブリッジ回路102毎の零点の移動量が異なることから、各センサ回路毎に個別に行う必要があった。
【0009】
このような調整を行ったセンサ回路としては、図3に示すものがある。
【0010】
図3のセンサ回路201は、まず、図2の状態の4辺の閉じたブリッジ回路202に電源から供給電圧を入力し、零点の移動量及び零点の温度による変動量を測定する。
【0011】
その後、ブリッジ回路202の1辺又は2辺の接続を開放し、零点補償として、低抵抗(歪ゲージR1〜R4に対し〜0.2%相当の抵抗値(約数mΩ〜0.7Ω程度))の電線(例えば、マンガニン線)をその零点の移動量に応じた長さに切り、その極性に応じたブリッジ回路202の1辺にはんだ付けして接続(歪ゲージに対し直列接続)する。
【0012】
また、零点温度補償として、温度によって抵抗値が変化する低抵抗の電線(例えば、銅線)をその零点の温度による変動量に応じた長さに切り、その極性に応じたブリッジ回路202の1辺にはんだ付けして接続(歪ゲージに対し直列接続)し、図3に示すセンサ回路201を作成していた。
【0013】
一方、調整を行ったセンサ回路としては、図3のセンサ回路201のようにブリッジ回路202の1辺に歪ゲージR4,R1と抵抗R6,R5とを直列に接続するだけでなく、図4のセンサ回路301のようにブリッジ回路302の1辺に歪ゲージR4と抵抗R5とを並列に接続ことも知られている。この図4に示すセンサ回路301では、図3の場合と異なり抵抗値が数十kΩ〜数百kΩの抵抗R5を並列接続していた。
【0014】
【発明が解決しようとする課題】
しかしながら、上記従来技術のセンサ回路では、以下のような問題があった。
【0015】
図3のセンサ回路201では、零点補償や零点温度補償を行う時に、一旦閉じているブリッジ回路202の辺を開放することや、電線を所定の長さに切り、はんだ付けすることが必要であり、複雑な作業工程のため、手間がかかっていた。また、電線の切断及びはんだ付けでは、抵抗値等がばらつき易く補償精度が安定していなかった。
【0016】
図4のセンサ回路301でも、零点補償や零点温度補償を行う時に、厚膜抵抗の一部をレーザで切除して抵抗値を増加調整するトリミング調整等が必要であり、手間がかかっていた。
【0017】
本発明は上記の従来技術の課題を解決するためになされたもので、その目的とするところは、容易に作成でき、補償精度を向上するセンサ回路を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために本発明にあっては、物理量の変化による歪に応じて抵抗値が変化する歪ゲージを4辺の各々に接続し、隣接2辺間に接続される4端子の内向かい合う一方の端子間に供給電圧を入力し、他方の端子間から出力電圧を出力するブリッジ回路を有するセンサ回路において、零点温度補償用に、温度に応じて抵抗値が変化する感温抵抗と、該感温抵抗と直列接続された所定抵抗値の第1抵抗と、前記ブリッジ回路のいずれか1辺の歪ゲージに並列接続されると共に、零点補償用に、第2抵抗が前記ブリッジ回路のいずれか1辺の歪ゲージに並列接続されるセンサ回路であって、所定の抵抗設置位置を有すると共に予め前記ブリッジ回路の隣接2辺に対して形成されてどちらの1辺に並列接続するか選択可能な配線を備え、該配線として零点温度補償用配線と零点補償用配線とを有し、前記ブリッジ回路の温度特性の測定結果に基づいて選定した前記感温抵抗及び前記第1抵抗を、前記零点温度補償用配線の所定の抵抗設置位置に設置すると共に、前記零点温度補償用配線を極性の違いに対応して選択した1辺に接続して零点温度補償し、前記零点温度補償用配線を1辺に並列接続した状態での前記ブリッジ回路の出力に基づいて選定した前記第2抵抗を、前記零点補償用配線の所定の抵抗設置位置に設置すると共に、前記零点補償用配線を極性の違いに対応して選択した1辺に接続して零点補償することを特徴とする。
【0019】
したがって、感温抵抗及び第1抵抗の温度による抵抗値変化で零点の温度による変化を相殺し、ブリッジ回路の零点温度補償ができる。
【0020】
ここで、直列に並ぶ感温抵抗及び第1抵抗の組み合わせによって、感温抵抗及び第1抵抗の合成抵抗は多種の抵抗値及び見かけ上の温度係数を作り出すことができる。特に、第1抵抗に固定抵抗を用いて、誤差が少ない設定どうりの抵抗値及び見かけ上の温度係数を得ることができる。
【0021】
このため、補償に必要な抵抗値及び見かけ上の温度係数を満たす感温抵抗及び第1抵抗を選定すればよく、従来のように切断等による抵抗値の調整は必要なくなり、手間がかからず、ブリッジ回路の辺を開放することもなく、センサ回路を容易に作成できると共に、設定どうりの抵抗値及び見かけ上の温度係数を得て、補償精度を向上することができる。
【0023】
零点補償用に、第2抵抗が前記ブリッジ回路のいずれか1辺の歪ゲージに並列接続されるので、零点の移動量並びに感温抵抗及び第1抵抗を1辺に並列接続して生じた零点のずれ量の合計量を第2抵抗で零点補償でき、補償精度を向上することができる。
【0025】
所定の抵抗設置位置を有すると共に予め前記ブリッジ回路の隣接2辺に対して形成されてどちらの1辺に並列接続するか選択可能な配線を備えることで、極性変更が選択可能となると共に零点温度補償及び零点補償のため抵抗(感温抵抗、第1抵抗、第2抵抗)の抵抗設置位置が決められており、補償の極性に対応するため2箇所にそれぞれ抵抗設置位置を設ける必要がなくなり省スペース化でき、抵抗を容易に装着できる抵抗設置位置を設けたり、センサ回路を用いたセンサで不必要なスペースに他の部品を配置してセンサの小型化が図れたり、スペースの有効利用ができる。
【0027】
該配線として零点温度補償用配線と零点補償用配線とを有し、前記ブリッジ回路の温度特性の測定結果に基づいて選定した前記感温抵抗及び前記第1抵抗を、前記零点温度補償用配線の所定の抵抗設置位置に設置すると共に、前記零点温度補償用配線を極性の違いに対応して選択した1辺に接続して零点温度補償し、前記零点温度補償用配線を1辺に並列接続した状態での前記ブリッジ回路の出力に基づいて選定した前記第2抵抗を、前記零点補償用配線の所定の抵抗設置位置に設置すると共に、前記零点補償用配線を極性の違いに対応して選択した1辺に接続して零点補償することで、設定どりの抵抗値及び見かけ上の温度係数を得て零点温度補償ができ、その後に零点の移動量及び零点温度補償により生じた零点のずれ量について零点補償ができ、センサ回路を容易に作成できると共に補償精度を向上することができる。
【0028】
【発明の実施の形態】
以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0029】
以下に、図1を用いて実施の形態を説明する。図1は実施の形態に係るセンサ回路を示す回路図である。
【0030】
センサ回路1は、歪ゲージR1〜R4(120Ωや350Ωの抵抗値)を4辺の各々に接続してフルブリッジとしたブリッジ回路2で構成されたものである。
【0031】
ブリッジ回路2は、隣接2辺間に接続される4端子Vcc,GND,V+,V−の内向かい合う一方の端子Vcc,GND間に供給電圧を入力し、他方の端子V+,V−間から物理量の変化による歪に応じた歪ゲージR1〜R4の抵抗値変化に基づく出力電圧を出力する。
【0032】
本実施の形態のブリッジ回路2には、零点温度補償用配線3が設けられている。
【0033】
零点温度補償用配線3は、端子VccからスイッチSW1を介して、端子V+又は端子V−のどちらかと接続される。つまり、端子Vccと端子V+とが接続された場合には、歪ゲージR4と並列接続され、端子Vccと端子V−とが接続された場合には、歪ゲージR1と並列接続される。
【0034】
この零点温度補償用配線3には、予め設定された抵抗設置位置に、感温抵抗THRと第1抵抗としての抵抗R6が設置される。
【0035】
感温抵抗THRと抵抗R6は直列接続されており、感温抵抗THRは温度に応じて抵抗値が変化するものであり、抵抗R6は所定抵抗値を有する金属皮膜抵抗等の固定抵抗である。感温抵抗THRと抵抗R6の抵抗値は、(歪ゲージ350Ωの時)数百kΩ程度である。
【0036】
零点温度補償用配線3の端子V+又は端子V−のどちらかと接続するためのスイッチSW1は、端子V+とつながった接続端子c又は端子V−とつながった接続端子dのどちらかに接続可能に設けられている。
【0037】
また、ブリッジ回路2には、零点補償用配線4も設けられている。
【0038】
零点補償用配線4は、零点温度補償用配線3と同様に、端子VccからスイッチSW2を介して、端子V+又は端子V−のどちらかと接続される。つまり、端子Vccと端子V+とが接続された場合には、歪ゲージR4と並列接続され、端子Vccと端子V−とが接続された場合には、歪ゲージR1と並列接続される。
【0039】
この零点補償用配線4には、予め設定された抵抗設置位置に、第2抵抗としての抵抗R5が設置される。抵抗R5の抵抗値は、(歪ゲージ350Ωの時)数百kΩ程度である。
【0040】
零点補償用配線4の端子V+又は端子V−のどちらかと接続するためのスイッチSW2は、端子V+とつながった接続端子a又は端子V−とつながった接続端子bのどちらかに接続可能に設けられている。
【0041】
次に、本実施の形態のセンサ回路1で零点温度補償及び零点補償を行う工程を説明する。
【0042】
まず、ブリッジ回路2に端子Vcc,GND間から供給電圧を入力し、端子V+,V−から出力電圧を出力させて、零点の移動量及び零点の温度による変動量(零点温度特性ともいう)を測定する。
【0043】
その測定結果の零点の温度による変動量を、感温抵抗THR及び抵抗R6を合成した合成抵抗の温度による抵抗値変化で相殺する感温抵抗THR及び抵抗R6を選定し、感温抵抗THR及び抵抗R6を零点温度補償用配線3の所定の抵抗設置位置にはんだ付けする。
【0044】
ここで、直列に並ぶ感温抵抗THR及び抵抗R6の組み合わせによって、感温抵抗THR及び抵抗R6の合成抵抗は多種の抵抗値及び見かけ上の温度係数を作り出すことができる。特に、抵抗R6に固定抵抗を用いているので、誤差が少ない設定どうりの抵抗値及び見かけ上の温度係数を得ることができる。
【0045】
このため、感温抵抗THR及び抵抗R6は、補償に必要な抵抗値及び見かけ上の温度係数を満たすものを選定すればよい。
【0046】
また、零点の温度による変動量の極性の違いに対応して、スイッチSWを接続端子c,dのどちらか一方に選択させ、はんだ付けする。
【0047】
これにより、感温抵抗THR及び抵抗R6を有する零点温度補償用配線3が歪ゲージR1,R4のどちらか一方に並列接続され、ブリッジ回路2の零点温度補償が行われる。
【0048】
なお、上記の零点温度補償での零点の温度による変動量を感温抵抗THR及び抵抗R6の合成抵抗の温度による抵抗値変化で相殺することについて詳しく説明する。
【0049】
抵抗R6は通常25ppm/℃や50ppm/℃の温度係数であり、感温抵抗THRの温度係数(3000ppm/℃以上)と比較して小さく、ほとんど無視できる。
【0050】
このため、合成抵抗(感温抵抗THR及び抵抗R6)では、
抵抗値=THR(感温抵抗THRの抵抗値)+R6(抵抗R6の抵抗値)
抵抗値変化=ΔTHR
とすることができる。
【0051】
そして、零点が温度によってプラス側に変動した場合には、R4(歪ゲージR4の抵抗値)がR4−ΔR4に変化したことと等価になる。
【0052】
よって、歪ゲージR4に合成抵抗を並列接続して零点温度補償すると、常温と温度変化時とで、
1/R4+1/(THR+R6)=1/(R4-ΔR4)+1/(THR+ΔTHR+R6)
が成立する。
【0053】
この式では、温度変化時のΔTHRの影響度がR6の値で変化するので、零点の温度による変動(零点温度特性)の傾きをR6の値で変化させることができ、これによって、零点温度補償する(なお、極性が変わった場合には、歪ゲージR1を対象とする)。
【0054】
したがって、抵抗値及び温度係数の異なる感温抵抗THRの数が少なくても、安価な抵抗R6によって見かけ上の温度係数を変更でき、様々なブリッジ回路2の零点温度特性に対応することができる。
【0055】
次に、測定結果の零点の移動量及び零点温度補償により計算される零点のずれ量の合計量を相殺する抵抗値の抵抗R5を選定し、抵抗R5を零点補償用配線4の所定の抵抗設置位置にはんだ付けする。
【0056】
ここで、零点の移動量及びずれ量の合計量は、ブリッジ回路2に零点温度補償用配線3を接続した状態で、再度、零点の移動量を測定することでも求めることができる。
【0057】
また、零点の移動量及びずれ量の極性の違いに対応して、スイッチSWを接続端子a,bのどちらか一方に選択させ、はんだ付けする。
【0058】
これにより、抵抗R5を有する零点補償用配線4が歪ゲージR1,R4のどちらか一方に並列接続され、ブリッジ回路2の零点補償が行われ、センサ回路1が完成する。
【0059】
なお、零点補償用配線4が零点温度補償用配線3と並列接続する場合もあるが、抵抗R5は通常25ppm/℃や50ppm/℃の温度係数であり、感温抵抗THRの温度係数(3000ppm/℃以上)と比較して小さく、ほとんど無視できるため、零点補償用配線4が零点温度補償用配線3と並列接続することによる零点の温度による変動は生じない。
【0060】
このような本実施の形態は、零点温度補償で、補償に必要な抵抗値及び見かけ上の温度係数を満たす感温抵抗THR及び抵抗R6を選定すればよく、従来のように切断等による抵抗値の調整は必要なくなり、手間がかからず、ブリッジ回路2の辺を開放することもなく、センサ回路1を容易に作成できると共に、設定どうりの抵抗値及び見かけ上の温度係数を得て、零点温度補償の補償精度を向上することができる。
【0061】
また、零点補償では、零点の移動量及び零点温度補償で生じた零点のずれ量の合計量を抵抗R5で零点補償でき、零点補償の補償精度を向上することができる。
【0062】
さらに、零点温度補償用配線3と零点補償用配線4は、抵抗(感温抵抗THR、抵抗R6、抵抗R5)の抵抗設置位置が決められており、補償の極性に対応するため2箇所にそれぞれ抵抗設置位置を設ける必要がなくなり省スペース化でき、抵抗を容易に装着できる抵抗設置位置を設けたり、センサ回路1を用いたセンサで不必要なスペースに他の部品を配置してセンサの小型化が図れたり、スペースの有効利用ができる。
【0063】
なお、零点温度補償用配線3と零点補償用配線4は、ブリッジ回路2の隣接2辺のどちらの1辺に並列接続するか選択可能であればどの隣接2辺に形成されてもよい。
【0064】
【発明の効果】
以上説明したように、本発明にあっては、零点温度補償用に、温度に応じて抵抗値が変化する感温抵抗と、感温抵抗と直列接続された所定抵抗値の第1抵抗と、をブリッジ回路のいずれか1辺の歪ゲージに並列接続したことで、感温抵抗及び第1抵抗の温度による抵抗値変化で零点の温度による変化を相殺し、ブリッジ回路の零点温度補償ができる。
【0065】
ここで、直列に並ぶ感温抵抗及び第1抵抗の組み合わせによって、感温抵抗及び第1抵抗の合成抵抗は多種の抵抗値及び見かけ上の温度係数を作り出すことができる。特に、第1抵抗に固定抵抗を用いて、誤差が少ない設定どうりの抵抗値及び見かけ上の温度係数を得ることができる。
【0066】
このため、補償に必要な抵抗値及び見かけ上の温度係数を満たす感温抵抗及び第1抵抗を選定すればよく、従来のように切断等による抵抗値の調整は必要なくなり、手間がかからず、ブリッジ回路の辺を開放することもなく、センサ回路を容易に作成できると共に、設定どうりの抵抗値及び見かけ上の温度係数を得て、補償精度を向上することができる。
【0067】
零点補償用に、第2抵抗をブリッジ回路のいずれか1辺の歪ゲージに並列接続したことで、零点の移動量並びに感温抵抗及び第1抵抗を1辺に並列接続して生じた零点のずれ量の合計量を第2抵抗で零点補償でき、補償精度を向上することができる。
【0068】
所定の抵抗設置位置を有すると共に予めブリッジ回路の隣接2辺に対して形成されてどちらの1辺に並列接続するか選択可能な配線を備えたことで、極性変更が選択可能となると共に零点温度補償及び零点補償のため抵抗(感温抵抗、第1抵抗、第2抵抗)の抵抗設置位置が決められており、補償の極性に対応するため2箇所にそれぞれ抵抗設置位置を設ける必要がなくなり省スペース化でき、抵抗を容易に装着できる抵抗設置位置を設けたり、センサ回路を用いたセンサで不必要なスペースに他の部品を配置してセンサの小型化が図れたり、スペースの有効利用ができる。
【0069】
配線として零点温度補償用配線と零点補償用配線とを有し、ブリッジ回路の温度特性の測定結果に基づいて選定した感温抵抗及び第1抵抗を、零点温度補償用配線の所定の抵抗設置位置に設置すると共に、零点温度補償用配線を極性の違いに対応して選択した1辺に接続して零点温度補償し、零点温度補償用配線を1辺に並列接続した状態でのブリッジ回路の出力に基づいて選定した第2抵抗を、零点補償用配線の所定の抵抗設置位置に設置すると共に、零点補償用配線を極性の違いに対応して選択した1辺に接続して零点補償することで、設定どうりの抵抗値及び見かけ上の温度係数を得て零点温度補償ができ、その後に零点の移動量及び零点温度補償により生じた零点のずれ量について零点補償ができ、センサ回路を容易に作成できると共に補償精度を向上することができる。
【図面の簡単な説明】
【図1】実施の形態に係るセンサ回路を示す回路図である。
【図2】従来のセンサ回路を示す回路図である。
【図3】従来のセンサ回路を示す回路図である。
【図4】従来のセンサ回路を示す回路図である。
【符号の説明】
1 センサ回路
2 ブリッジ回路
3 零点温度補償用配線
4 零点補償用配線
R1〜R4 歪ゲージ
R5,R6 抵抗
THR 感温抵抗
SW1,SW2 スイッチ
a,b,c,d 接続端子
Vcc,GND,V+,V− 端子
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensor circuit that detects a physical quantity such as pressure or acceleration, and is applied to, for example, a pressure sensor or acceleration sensor that detects pressure of a fluid or the like.
[0002]
[Prior art]
Conventionally, as this type of sensor circuit, for example, there is one shown in the circuit diagram of FIG.
[0003]
The sensor circuit 101 in FIG. 2 is configured by a bridge circuit 102 in which strain gauges R1 to R4 are connected to each of the four sides to form a full bridge.
[0004]
The bridge circuit 102 inputs a supply voltage between one terminal Vcc, GND among the four terminals Vcc, GND, V +, V− connected between two adjacent sides, and a physical quantity from between the other terminals V +, V−. The output voltage based on the resistance value change of the strain gauges R1 to R4 according to the strain due to the change in the output is output.
[0005]
The strain gauges R1 to R4 used in the bridge circuit 102 generally have a resistance value of 350Ω or 120Ω, and the output of the bridge circuit 102 is small.
[0006]
For this reason, since the output from the bridge circuit 102 is accompanied by appropriate amplification in the subsequent stage, the output of the bridge circuit 102 when there is no distortion is required to be close to zero.
[0007]
However, there is a case where the balance of the bridge circuit 102 is lost when there is no distortion and the output does not become zero, and the balance adjustment of the bridge circuit 102 (the point at which the output value becomes zero) becomes zero when there is no distortion. Zero compensation) is essential. Further, since the zero point varies depending on the temperature, adjustment (zero point temperature compensation) that absorbs the variation is required.
[0008]
In addition, these adjustments have a large variation in resistance of the strain gauges R <b> 1 to R <b> 4, and the amount of movement of the zero point for each bridge circuit 102 is different.
[0009]
FIG. 3 shows a sensor circuit that performs such adjustment.
[0010]
The sensor circuit 201 in FIG. 3 first inputs a supply voltage from the power supply to the bridge circuit 202 having the four sides closed in the state of FIG. 2, and measures the amount of movement of the zero point and the amount of variation due to the temperature of the zero point.
[0011]
After that, the connection of one side or two sides of the bridge circuit 202 is opened, and low resistance (resistance value equivalent to about 0.2% with respect to the strain gauges R1 to R4 (about several mΩ to about 0.7Ω) as zero compensation. ) (For example, manganin wire) is cut to a length corresponding to the amount of movement of the zero point, and soldered to one side of the bridge circuit 202 corresponding to the polarity (connected in series to the strain gauge).
[0012]
In addition, as zero point temperature compensation, a low-resistance electric wire (for example, copper wire) whose resistance value changes with temperature is cut to a length corresponding to the amount of fluctuation due to the temperature of the zero point, and 1 of the bridge circuit 202 corresponding to the polarity thereof. The sensor circuit 201 shown in FIG. 3 was created by soldering and connecting to the sides (in series connection with the strain gauge).
[0013]
On the other hand, as an adjusted sensor circuit, not only the strain gauges R4 and R1 and the resistors R6 and R5 are connected in series to one side of the bridge circuit 202 as in the sensor circuit 201 of FIG. It is also known that a strain gauge R4 and a resistor R5 are connected in parallel to one side of the bridge circuit 302 like the sensor circuit 301. In the sensor circuit 301 shown in FIG. 4, unlike the case of FIG. 3, a resistor R5 having a resistance value of several tens kΩ to several hundreds kΩ is connected in parallel.
[0014]
[Problems to be solved by the invention]
However, the conventional sensor circuit has the following problems.
[0015]
In the sensor circuit 201 of FIG. 3, when performing zero point compensation or zero point temperature compensation, it is necessary to open the side of the bridge circuit 202 that is once closed, or to cut and wire the wire to a predetermined length. Because of the complicated work process, it took time and effort. Further, in the cutting and soldering of the electric wires, the resistance value and the like are likely to vary, and the compensation accuracy is not stable.
[0016]
Also in the sensor circuit 301 of FIG. 4, when performing zero point compensation or zero point temperature compensation, trimming adjustment or the like for increasing the resistance value by cutting off a part of the thick film resistor with a laser is necessary, which is troublesome.
[0017]
The present invention has been made in order to solve the above-described problems of the prior art, and an object of the present invention is to provide a sensor circuit that can be easily created and improves the compensation accuracy.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, a strain gauge whose resistance value changes in accordance with strain due to a change in physical quantity is connected to each of the four sides, and among the four terminals connected between two adjacent sides. In a sensor circuit having a bridge circuit that inputs a supply voltage between one terminal facing each other and outputs an output voltage from the other terminal, a temperature-sensitive resistor whose resistance value changes according to temperature for zero temperature compensation; a first resistor having a predetermined resistance value which is temperature sensitive resistor connected in series, with is connected in parallel to the strain gauge of any one side of the bridge circuit, for compensating the zero point, the second resistor of the bridge circuit A sensor circuit connected in parallel to any one of the strain gauges, which has a predetermined resistance installation position and is formed in advance with respect to two adjacent sides of the bridge circuit, and selects which one side is connected in parallel With possible wiring The wiring includes a zero-point temperature compensation wiring and a zero-point compensation wiring, and the temperature-sensitive resistance and the first resistance selected based on the measurement result of the temperature characteristics of the bridge circuit are connected to the zero-point temperature compensation wiring. Installed at a predetermined resistance installation position, connected the zero temperature compensation wiring to one side selected corresponding to the difference in polarity to compensate for the zero temperature, and connected the zero temperature compensation wiring in parallel to one side. The second resistor selected based on the output of the bridge circuit in a state is installed at a predetermined resistance installation position of the zero compensation wire, and the zero compensation wire is selected according to the difference in polarity. It is characterized by connecting to one side and compensating for zero .
[0019]
Therefore, the change in the resistance value due to the temperature of the temperature-sensitive resistor and the first resistor cancels the change due to the temperature of the zero point, and the zero point temperature compensation of the bridge circuit can be performed.
[0020]
Here, by combining the temperature-sensitive resistor and the first resistor arranged in series, the combined resistor of the temperature-sensitive resistor and the first resistor can create various resistance values and apparent temperature coefficients. In particular, by using a fixed resistor as the first resistor, it is possible to obtain a resistance value and an apparent temperature coefficient with a small error.
[0021]
For this reason, it is only necessary to select the resistance value necessary for compensation and the temperature-sensitive resistor and the first resistor satisfying the apparent temperature coefficient, and it is not necessary to adjust the resistance value by cutting or the like as in the prior art, and it is not time-consuming. The sensor circuit can be easily created without opening the sides of the bridge circuit, and the resistance value and the apparent temperature coefficient as set can be obtained to improve the compensation accuracy.
[0023]
Since the second resistor is connected in parallel to the strain gauge on any one side of the bridge circuit for zero compensation, the zero point generated by connecting the zero point movement amount and the temperature-sensitive resistor and the first resistor in parallel on one side. The total amount of deviations can be zero-compensated by the second resistor, and the compensation accuracy can be improved.
[0025]
A polarity change can be selected and a zero point temperature by providing a wiring having a predetermined resistor installation position and previously formed on two adjacent sides of the bridge circuit and capable of selecting which side is connected in parallel. Resistance installation positions for resistors (temperature sensitive resistance, first resistance, second resistance) are determined for compensation and zero point compensation, and it is not necessary to provide resistance installation positions at two locations in order to correspond to the polarity of compensation. Space can be provided, and a resistor installation position where resistors can be easily attached is provided, or other parts can be placed in unnecessary spaces with a sensor using a sensor circuit to reduce the size of the sensor, or the space can be used effectively. .
[0027]
The wiring includes a zero-point temperature compensation wiring and a zero-point compensation wiring, and the temperature-sensitive resistance and the first resistance selected based on the measurement result of the temperature characteristics of the bridge circuit are connected to the zero-point temperature compensation wiring. Installed at a predetermined resistance installation position, connected the zero temperature compensation wiring to one side selected corresponding to the difference in polarity to compensate for the zero temperature, and connected the zero temperature compensation wiring in parallel to one side. The second resistor selected based on the output of the bridge circuit in a state is installed at a predetermined resistance installation position of the zero compensation wire, and the zero compensation wire is selected according to the difference in polarity. by connecting and compensated zero point on one side, setting etc. can Contact Rino resistance and zero temperature compensation to obtain the temperature coefficient of the apparent shift of the subsequent zero point caused by the moving amount and the zero point temperature compensation of the zero point Zero for quantity Amortization can, a sensor circuit can be improved compensation accuracy with easily created.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Exemplary embodiments of the present invention will be described in detail below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified. Absent.
[0029]
The embodiment will be described below with reference to FIG. FIG. 1 is a circuit diagram showing a sensor circuit according to an embodiment.
[0030]
The sensor circuit 1 is composed of a bridge circuit 2 in which strain gauges R1 to R4 (resistance values of 120Ω and 350Ω) are connected to each of the four sides to form a full bridge.
[0031]
The bridge circuit 2 inputs a supply voltage between one terminal Vcc, GND among four terminals Vcc, GND, V +, V− connected between two adjacent sides, and a physical quantity from the other terminal V +, V−. The output voltage based on the resistance value change of the strain gauges R1 to R4 according to the strain due to the change in the output is output.
[0032]
The bridge circuit 2 of the present embodiment is provided with a zero temperature compensation wiring 3.
[0033]
The zero temperature compensation wiring 3 is connected from the terminal Vcc to either the terminal V + or the terminal V− via the switch SW1. That is, when the terminal Vcc and the terminal V + are connected, they are connected in parallel with the strain gauge R4, and when the terminal Vcc and the terminal V− are connected, they are connected in parallel with the strain gauge R1.
[0034]
In the zero point temperature compensation wiring 3, a temperature sensitive resistor THR and a resistor R 6 as a first resistor are installed at a preset resistor installation position.
[0035]
The temperature-sensitive resistor THR and the resistor R6 are connected in series. The temperature-sensitive resistor THR has a resistance value that changes according to the temperature. The resistor R6 is a fixed resistor such as a metal film resistor having a predetermined resistance value. The resistance values of the temperature sensitive resistor THR and the resistor R6 are about several hundred kΩ (when the strain gauge is 350Ω).
[0036]
The switch SW1 for connecting to either the terminal V + or the terminal V− of the zero temperature compensation wiring 3 is provided so as to be connectable to either the connection terminal c connected to the terminal V + or the connection terminal d connected to the terminal V−. It has been.
[0037]
The bridge circuit 2 is also provided with a zero compensation wire 4.
[0038]
Similar to the zero temperature compensation wiring 3, the zero compensation wiring 4 is connected from the terminal Vcc to either the terminal V + or the terminal V− via the switch SW2. That is, when the terminal Vcc and the terminal V + are connected, they are connected in parallel with the strain gauge R4, and when the terminal Vcc and the terminal V− are connected, they are connected in parallel with the strain gauge R1.
[0039]
The zero compensation wire 4 is provided with a resistor R5 as a second resistor at a preset resistor installation position. The resistance value of the resistor R5 is about several hundreds kΩ (when the strain gauge is 350Ω).
[0040]
The switch SW2 for connecting to either the terminal V + or the terminal V− of the zero compensation wiring 4 is provided so as to be connectable to either the connection terminal a connected to the terminal V + or the connection terminal b connected to the terminal V−. ing.
[0041]
Next, a process of performing zero point temperature compensation and zero point compensation in the sensor circuit 1 of the present embodiment will be described.
[0042]
First, a supply voltage is input to the bridge circuit 2 from between the terminals Vcc and GND, and an output voltage is output from the terminals V + and V−, so that the amount of movement due to the zero point and the fluctuation amount due to the temperature of the zero point (also referred to as zero point temperature characteristics). taking measurement.
[0043]
A temperature-sensitive resistor THR and a resistor R6 are selected to cancel the amount of variation due to the temperature of the zero point of the measurement result with a resistance value change due to the temperature of the combined resistor obtained by synthesizing the temperature-sensitive resistor THR and the resistor R6. R6 is soldered to a predetermined resistance installation position of the zero temperature compensation wiring 3.
[0044]
Here, by combining the temperature-sensitive resistor THR and the resistor R6 arranged in series, the combined resistance of the temperature-sensitive resistor THR and the resistor R6 can produce various resistance values and apparent temperature coefficients. In particular, since a fixed resistor is used for the resistor R6, it is possible to obtain a resistance value and an apparent temperature coefficient with a small error.
[0045]
For this reason, the temperature-sensitive resistor THR and the resistor R6 may be selected to satisfy the resistance value necessary for compensation and the apparent temperature coefficient.
[0046]
Further, the switch SW1 is selected as one of the connection terminals c and d in accordance with the difference in polarity of the fluctuation amount due to the temperature of the zero point, and is soldered.
[0047]
As a result, the zero temperature compensation wiring 3 having the temperature sensitive resistance THR and the resistance R6 is connected in parallel to one of the strain gauges R1 and R4, and the zero temperature compensation of the bridge circuit 2 is performed.
[0048]
It will be described in detail that the amount of variation due to the temperature of the zero point in the above-described zero point temperature compensation is canceled out by the resistance value change due to the temperature of the combined resistance of the temperature sensitive resistor THR and the resistor R6.
[0049]
The resistance R6 has a temperature coefficient of 25 ppm / ° C. or 50 ppm / ° C., and is small compared to the temperature coefficient of the temperature sensitive resistance THR (3000 ppm / ° C. or more) and can be almost ignored.
[0050]
For this reason, in the combined resistance (temperature-sensitive resistance THR and resistance R6),
Resistance value = THR (resistance value of temperature-sensitive resistor THR) + R6 (resistance value of resistor R6)
Resistance value change = ΔTHR
It can be.
[0051]
When the zero point fluctuates on the plus side due to temperature, this is equivalent to the change of R4 (resistance value of the strain gauge R4) to R4-ΔR4.
[0052]
Therefore, when the composite resistor is connected in parallel to the strain gauge R4 and the zero point temperature is compensated, at normal temperature and when the temperature changes,
1 / R4 + 1 / (THR + R6) = 1 / (R4-ΔR4) + 1 / (THR + ΔTHR + R6)
Is established.
[0053]
In this equation, since the influence degree of ΔTHR at the time of temperature change changes with the value of R6, the slope of the fluctuation due to the temperature of the zero point (zero point temperature characteristic) can be changed with the value of R6. (Note that when the polarity changes, the strain gauge R1 is targeted).
[0054]
Therefore, even if the number of temperature sensitive resistors THR having different resistance values and temperature coefficients is small, the apparent temperature coefficient can be changed by the inexpensive resistor R6, and various zero-point temperature characteristics of the bridge circuit 2 can be dealt with.
[0055]
Next, a resistance R5 having a resistance value that cancels the total amount of zero shift and zero shift calculated by the zero temperature compensation is selected, and the resistance R5 is set to a predetermined resistance of the zero compensation wiring 4. Solder into position.
[0056]
Here, the total amount of the zero point moving amount and the deviation amount can also be obtained by measuring the zero point moving amount again in a state where the zero point temperature compensating wiring 3 is connected to the bridge circuit 2.
[0057]
Further, in response to the polarity difference of the amount of movement and the deviation amount of zero, connects the switch SW 2 terminals a, either to select one of b, soldering.
[0058]
As a result, the zero compensation wire 4 having the resistor R5 is connected in parallel to one of the strain gauges R1 and R4, the zero compensation of the bridge circuit 2 is performed, and the sensor circuit 1 is completed.
[0059]
Although the zero compensation wire 4 may be connected in parallel with the zero temperature compensation wire 3, the resistor R5 usually has a temperature coefficient of 25 ppm / ° C. or 50 ppm / ° C., and the temperature coefficient of the temperature sensitive resistor THR (3000 ppm / The zero point compensation wiring 4 is connected in parallel with the zero point temperature compensation wiring 3 so that fluctuation due to the temperature of the zero point does not occur.
[0060]
In this embodiment, in the zero-point temperature compensation, the resistance value necessary for compensation and the temperature-sensitive resistor THR and the resistor R6 that satisfy the apparent temperature coefficient may be selected. Adjustment is not required, takes time, and does not open the side of the bridge circuit 2. The sensor circuit 1 can be easily created, and the resistance value and the apparent temperature coefficient as set are obtained. The compensation accuracy of the zero point temperature compensation can be improved.
[0061]
In the zero point compensation, the total amount of the zero point movement amount and the zero point deviation amount caused by the zero point temperature compensation can be zero compensated by the resistor R5, and the compensation accuracy of the zero point compensation can be improved.
[0062]
Furthermore, the zero point temperature compensation wiring 3 and the zero point compensation wiring 4 have the resistance installation positions of the resistors (temperature-sensitive resistance THR, resistance R6, resistance R5) determined at two locations to correspond to the compensation polarity. There is no need to provide a resistor installation position, saving space and providing a resistor installation position where resistance can be easily mounted, or by placing other parts in an unnecessary space in the sensor using the sensor circuit 1 to reduce the size of the sensor. Can be used and the space can be used effectively.
[0063]
The zero point temperature compensation wiring 3 and the zero point compensation wiring 4 may be formed on any two adjacent sides as long as it can be selected which of the two adjacent sides of the bridge circuit 2 is connected in parallel.
[0064]
【The invention's effect】
As described above, in the present invention, for the zero point temperature compensation, the temperature-sensitive resistor whose resistance value changes according to the temperature, the first resistor having a predetermined resistance value connected in series with the temperature-sensitive resistor, Is connected in parallel to the strain gauge on either side of the bridge circuit, the resistance value change due to the temperature of the temperature-sensitive resistor and the first resistor cancels the change due to the temperature of the zero point, and the zero point temperature compensation of the bridge circuit can be performed.
[0065]
Here, by combining the temperature-sensitive resistor and the first resistor arranged in series, the combined resistor of the temperature-sensitive resistor and the first resistor can create various resistance values and apparent temperature coefficients. In particular, by using a fixed resistor as the first resistor, it is possible to obtain a resistance value and an apparent temperature coefficient with a small error.
[0066]
For this reason, it is only necessary to select the resistance value necessary for compensation and the temperature-sensitive resistor and the first resistor satisfying the apparent temperature coefficient, and it is not necessary to adjust the resistance value by cutting or the like as in the prior art, and it is not time-consuming. The sensor circuit can be easily created without opening the sides of the bridge circuit, and the resistance value and the apparent temperature coefficient as set can be obtained to improve the compensation accuracy.
[0067]
For the zero compensation, the second resistor is connected in parallel to the strain gauge on any one side of the bridge circuit, so that the amount of movement of the zero point, the temperature sensitive resistance, and the first resistor are connected in parallel to the one side. The total amount of deviation can be compensated for zero by the second resistor, and the compensation accuracy can be improved.
[0068]
It has a predetermined resistance installation position and is provided with wiring that is formed in advance for two adjacent sides of the bridge circuit and can select which one of them is connected in parallel, so that the polarity change can be selected and the zero temperature Resistance installation positions for resistors (temperature sensitive resistance, first resistance, second resistance) are determined for compensation and zero point compensation, and it is not necessary to provide resistance installation positions at two locations in order to correspond to the polarity of compensation. Space can be provided, and a resistor installation position where resistors can be easily attached is provided, or other parts can be placed in unnecessary spaces with a sensor using a sensor circuit to reduce the size of the sensor, or the space can be used effectively. .
[0069]
A wiring having a zero point temperature compensation wiring and a zero point compensation wiring as the wiring, and the temperature sensing resistance and the first resistance selected based on the measurement result of the temperature characteristics of the bridge circuit are set to a predetermined resistance installation position of the zero point temperature compensation wiring. The zero point temperature compensation wiring is connected to one side selected corresponding to the difference in polarity to compensate for the zero point temperature, and the zero point temperature compensation wiring is connected in parallel to one side. The second resistor selected based on the zero point is installed at a predetermined resistance installation position of the zero compensation wire, and the zero compensation wire is connected to one side selected corresponding to the difference in polarity to compensate the zero point. The zero point temperature compensation can be obtained by obtaining the resistance value and apparent temperature coefficient as set, and the zero point can be compensated for the zero point displacement and the zero point deviation caused by the zero point temperature compensation. If you can create It is possible to improve the compensation accuracy.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a sensor circuit according to an embodiment.
FIG. 2 is a circuit diagram showing a conventional sensor circuit.
FIG. 3 is a circuit diagram showing a conventional sensor circuit.
FIG. 4 is a circuit diagram showing a conventional sensor circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sensor circuit 2 Bridge circuit 3 Zero point temperature compensation wiring 4 Zero point compensation wiring R1-R4 Strain gauge R5, R6 Resistance THR Temperature sensitive resistance SW1, SW2 Switch a, b, c, d Connection terminal Vcc, GND, V +, V − Terminal

Claims (1)

物理量の変化による歪に応じて抵抗値が変化する歪ゲージを4辺の各々に接続し、隣接2辺間に接続される4端子の内向かい合う一方の端子間に供給電圧を入力し、他方の端子間から出力電圧を出力するブリッジ回路を有するセンサ回路において、
零点温度補償用に、温度に応じて抵抗値が変化する感温抵抗と、該感温抵抗と直列接続された所定抵抗値の第1抵抗と、前記ブリッジ回路のいずれか1辺の歪ゲージに並列接続されると共に、
零点補償用に、第2抵抗が前記ブリッジ回路のいずれか1辺の歪ゲージに並列接続されるセンサ回路であって、
所定の抵抗設置位置を有すると共に予め前記ブリッジ回路の隣接2辺に対して形成されてどちらの1辺に並列接続するか選択可能な配線を備え、
該配線として零点温度補償用配線と零点補償用配線とを有し、
前記ブリッジ回路の温度特性の測定結果に基づいて選定した前記感温抵抗及び前記第1抵抗を、前記零点温度補償用配線の所定の抵抗設置位置に設置すると共に、前記零点温度補償用配線を極性の違いに対応して選択した1辺に接続して零点温度補償し、
前記零点温度補償用配線を1辺に並列接続した状態での前記ブリッジ回路の出力に基づいて選定した前記第2抵抗を、前記零点補償用配線の所定の抵抗設置位置に設置すると共に、前記零点補償用配線を極性の違いに対応して選択した1辺に接続して零点補償することを特徴とするセンサ回路。
A strain gauge whose resistance value changes according to strain due to a change in physical quantity is connected to each of the four sides, and a supply voltage is input between one of the four terminals connected between two adjacent sides, and the other In a sensor circuit having a bridge circuit that outputs an output voltage between terminals,
For zero temperature compensation, and the temperature sensitive resistor whose resistance value varies with temperature, the first resistor of the temperature sensitive resistor connected in series with a predetermined resistance value, either one side strain gauge of the bridge circuit Connected in parallel ,
A sensor circuit in which a second resistor is connected in parallel to a strain gauge on one side of the bridge circuit for zero compensation,
A wiring having a predetermined resistance installation position and formed in advance with respect to two adjacent sides of the bridge circuit and capable of selecting which side to be connected in parallel is provided.
The wiring has a zero temperature compensation wiring and a zero compensation wiring,
The temperature-sensitive resistor and the first resistor selected based on the measurement result of the temperature characteristics of the bridge circuit are installed at a predetermined resistance installation position of the zero-point temperature compensation wiring, and the zero-point temperature compensation wiring is polar Connect to one side selected corresponding to the difference of zero temperature compensation,
The second resistor selected based on the output of the bridge circuit in a state in which the zero point temperature compensation wiring is connected in parallel to one side is installed at a predetermined resistance installation position of the zero point compensation wiring, and the zero point A sensor circuit, wherein a compensation wiring is connected to one side selected corresponding to a difference in polarity to compensate for a zero point .
JP2000329511A 2000-10-27 2000-10-27 Sensor circuit Expired - Lifetime JP4710119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329511A JP4710119B2 (en) 2000-10-27 2000-10-27 Sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329511A JP4710119B2 (en) 2000-10-27 2000-10-27 Sensor circuit

Publications (2)

Publication Number Publication Date
JP2002131159A JP2002131159A (en) 2002-05-09
JP4710119B2 true JP4710119B2 (en) 2011-06-29

Family

ID=18806170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329511A Expired - Lifetime JP4710119B2 (en) 2000-10-27 2000-10-27 Sensor circuit

Country Status (1)

Country Link
JP (1) JP4710119B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913829A (en) * 2015-07-07 2015-09-16 国网上海市电力公司 Single crystal silicon piezoresistive type online oil level detector
CN109287049A (en) * 2018-10-16 2019-01-29 中国航发南方工业有限公司 Formation light temperature drift compensation circuit, formation lamp control circuit and formation lamp control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508001B2 (en) * 2005-06-22 2010-07-21 株式会社デンソー Temperature correction circuit
KR101533226B1 (en) * 2013-09-27 2015-07-02 한국철도기술연구원 Slab track twist monitoring apparatus
CN104535252A (en) * 2014-11-20 2015-04-22 武汉中航传感技术有限责任公司 Automatic compensation device of silicon piezoresistive sensors and parameter coupling program-control switching device
CN104458121B (en) * 2014-12-15 2017-04-19 中国燃气涡轮研究院 Silicon pressure sensor temperature excursion compensating circuit and circuit establishing method
JP6489081B2 (en) * 2016-08-05 2019-03-27 株式会社デンソー Sensor device
CN115855327B (en) * 2023-02-22 2023-06-09 成都凯天电子股份有限公司 Adjustable resistance ceramic substrate applied to silicon piezoresistive pressure sensor and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104913829A (en) * 2015-07-07 2015-09-16 国网上海市电力公司 Single crystal silicon piezoresistive type online oil level detector
CN109287049A (en) * 2018-10-16 2019-01-29 中国航发南方工业有限公司 Formation light temperature drift compensation circuit, formation lamp control circuit and formation lamp control device

Also Published As

Publication number Publication date
JP2002131159A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP3071202B2 (en) Semiconductor pressure sensor amplification compensation circuit
JP4736508B2 (en) Physical quantity detection method and sensor device
JPS61176830A (en) Circuit device for temperature compensation of piezoresistance type pressure sensor
JPS6142876B2 (en)
EP1441206B1 (en) Sensor temperature control in a thermal anemometer
JPH08510549A (en) Strain gauge sensor with integrated temperature signal output
JP4710119B2 (en) Sensor circuit
JP2008151596A (en) Load cell and mass meter
JP2002527767A (en) Circuit arrangement for temperature non-linearity compensation of the characteristic curve of a piezoresistive measuring resistor connected in a bridge circuit
JP5437654B2 (en) Temperature measuring device
JP7407617B2 (en) Acceleration measurement device and acceleration measurement method
JP2674095B2 (en) Zero adjustment circuit of bridge circuit
JPS6336447B2 (en)
JPS6122766B2 (en)
JPH08166297A (en) Temperature compensating method for load cell type balance
JPH04131721A (en) Stress sensor
JPS6348293B2 (en)
JP2536822B2 (en) Temperature compensation circuit for weighing device
JPH09229962A (en) Acceleration sensor circuit
JP2000214030A (en) Pressure sensor circuit
JP2948958B2 (en) Transducer circuit
JP2000105145A (en) Span-temperature compensation device for weighing apparatus and weighing apparatus
JP2000241271A (en) Pressure detector
JPH09236617A (en) Adjustment method for acceleration sensor
JP2516647Y2 (en) Temperature compensation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Ref document number: 4710119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term