KR20150018475A - 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치 - Google Patents

이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치 Download PDF

Info

Publication number
KR20150018475A
KR20150018475A KR1020140102602A KR20140102602A KR20150018475A KR 20150018475 A KR20150018475 A KR 20150018475A KR 1020140102602 A KR1020140102602 A KR 1020140102602A KR 20140102602 A KR20140102602 A KR 20140102602A KR 20150018475 A KR20150018475 A KR 20150018475A
Authority
KR
South Korea
Prior art keywords
information
macro cell
small cell
cell
base station
Prior art date
Application number
KR1020140102602A
Other languages
English (en)
Other versions
KR102222630B1 (ko
Inventor
김상범
김성훈
데르 벨데 힘케 반
장재혁
정경인
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52461709&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20150018475(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20150018475A publication Critical patent/KR20150018475A/ko
Application granted granted Critical
Publication of KR102222630B1 publication Critical patent/KR102222630B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치에 관한 것으로 본 발명의 이동 통신 시스템에서 스몰 셀(small cell) 기지국의 재설정 정보 전송 방법은 스몰 셀에 대한 재설정(reconfiguration) 결정 시, 매크로 셀 기지국으로부터 가장 최근의 매크로 셀 설정 정보를 획득하는 단계, 상기 획득한 매크로 셀 설정 정보에 기반하여 상기 스몰 셀에 대한 재설정 정보를 구성하는 단계, 및 상기 매크로 셀 기지국이 상기 재설정 정보를 단말에 전송할 수 있도록, 상기 재구성된 재설정 정보를 상기 매크로 셀 기지국에 전송하는 단계를 포함하는 것을 특징으로 한다.

Description

이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치 {method and apparatus to efficiently provide the reconfiguration for small sized cell in the mobile communication system}
본 발명은 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치에 관한 것이다.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 통신을 제공하기 위한 목적으로 개발되었다. 이러한 이동통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다. 근래에는 차세대 이동통신 시스템 중 하나로 3GPP에서 LTE-A(Long Term Evolution-Advanced)에 대한 규격 작업이 진행 중이다. LTE-A는 2010년 후반 즈음하여 표준 완성을 목표로 해서, 현재 제공되고 있는 데이터 전송률보다 높은 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다.
3GPP 표준이 진화함에 따라, 통신 속도를 높이려는 방안 이외에도 수월하게 무선망을 최적화시키려는 방안이 논의 중이다. 이동 통신 시스템에서 작은 크기의 서비스 영역을 가진 셀은 용량 증대 및 음영 지역 해소를 위해 자주 활용되었다. 작은 크기의 서비스 영역으로 말미암아 잦은 핸드오버 실패 등 이동성 지원에서 적지 않은 문제점들이 발생하였다. 그럼에도 불구하고, 작은 크기의 서비스 영역에 적합한 시스템 변수 적용 혹은 동작 메커니즘 개발 등은 구체적으로 마련되지 않았다.
발명은 상기와 같은 요구에 의해 도출된 것으로, 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치를 제공하는 것을 그 목적으로 한다.
상기와 같은 문제점을 해결하기 위한 본 발명의 이동 통신 시스템에서 스몰 셀(small cell) 기지국의 재설정 정보 전송 방법은 스몰 셀에 대한 재설정(reconfiguration) 결정 시, 매크로 셀 기지국으로부터 가장 최근의 매크로 셀 설정 정보를 획득하는 단계, 상기 획득한 매크로 셀 설정 정보에 기반하여 상기 스몰 셀에 대한 재설정 정보를 구성하는 단계, 및 상기 매크로 셀 기지국이 상기 재설정 정보를 단말에 전송할 수 있도록, 상기 재구성된 재설정 정보를 상기 매크로 셀 기지국에 전송하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 발명의 이동 통신 시스템에서 재설정 정보를 전송하는 스몰 셀(small cell) 기지국은 기지국 또는 단말과 신호를 송수신하는 송수신부, 및 스몰 셀에 대한 재설정(reconfiguration) 결정 시, 매크로 셀 기지국으로부터 가장 최근의 매크로 셀 설정 정보를 획득하고, 상기 획득한 매크로 셀 설정 정보에 기반하여 상기 스몰 셀에 대한 재설정 정보를 구성하며, 상기 매크로 셀 기지국이 상기 재설정 정보를 단말에 전송할 수 있도록 상기 재구성된 재설정 정보를 상기 매크로 셀 기지국에 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.
본 발명에 따르면, 스몰 셀 기지국은 스몰 셀에 대한 재설정 구성 정보를 효과적으로 단말에 전송할 수 있다.
도 1은 small cell 배치 안을 설명하기 위한 도면
도 2는 실시 예 1에서 제안하는 스몰 셀 재설정 개념도
도 3은 실시 예 1에서 제안하는 스몰 셀 재설정 과정을 설명하기 위한 동작 흐름도
도 4는 실시 예 1에서 매크로 셀의 재설정으로 인해, 스몰 셀이 재설정하는 과정을 설명하기 위한 동작 흐름도
도 5는 실시 예 1에서 제안하는 스몰 셀 재설정 과정에서 매크로 셀 기지국 동작을 설명하기 위한 도면
도 6은 실시 예 1에서 제안하는 스몰 셀 재설정 과정에서 스몰 셀 기지국 동작을 설명하기 위한 도면
도 7은 실시 예 2에서 제안하는 스몰 셀 재설정 개념도
도 8은 실시 예 2에서 제안하는 스몰 셀 재설정 과정을 설명하기 위한 동작 흐름도
도 9는 실시 예 2에서 매크로 셀의 재설정으로 인해, 스몰 셀이 재설정하는 과정을 설명하기 위한 동작 흐름도
도 10은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도
도 11은 본 발명에 따른 기지국의 구성을 나타낸 블록도
도 12은 실시 예 3에서 매크로 셀에 의해 트리거된 동작을 설명하기 위한 순서도
도 13은 실시 예 3에서 스몰 셀에 의해 트리거된 동작을 설명하기 위한 순서도
도 14는 본 발명의 실시예에 따라 스몰 셀이 재설정하는 과정을 설명하기 위한 도면
도 15는 OTDOA에서 단말의 위치를 파악하는 과정을 설명하기 위한 도면
도 16은 단말이 PRS 신호를 수신하기 위해 필요한 주파수 간 측정 갭(Inter-freq measurement gap) 정보를 기지국에 보고하는 시그널링 흐름도을 설명하기 위한 도면
도 17은 특정 주파수에서 주파수 간 측정 갭(Inter-freq measurement gap)이 시작하는 서브프레임의 위치를 지시하는 방법을 설명하기 위한 도면
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이 때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
이하에서 기술될 본 발명은 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치에 관한 것이다. 본 발명을 설명하기에 앞서, 셀 서비스 영역이 작은 셀의 배치 법에 대해 설명하도록 한다. 이하에서 기술되는 본 발명의 설명에서 셀 서비스 영역이 작은 셀을 스몰 셀 (small cell)로 통칭하기로 한다.
도 1은 스몰 셀 배치 방법을 설명하기 위한 도면이다.
첫번째 배치 방법은 매크로 셀 (100)의 서비스 영역 내에 스몰 셀 (105)을 듬성듬성(비교적 셀 간 거리를 멀리하여) 배치하는 것이다. 이러한 배치는 트래픽이 집중적으로 많이 발생하는 핫 스팟(hot spot) 지역이나, 서비스 음영 지역을 커버하는데 유용하다. 또한 상기 스몰 셀은 매크로 셀과 같은 혹은 다른 주파수 대역을 사용하냐에 따라, 단말이 매크로 셀에서 스몰 셀로 혹은 그 반대로 이동할 때, 주파수 내(intra-frequency) 혹은 주파수 간(inter-frequency) 핸드오버(handoverHO)가 발생한다.
또 다른 배치 방법은 복수 개의 스몰 셀들 (110~140)을 서로 인접하여, 밀집 형태로 배치하는 것이다. 이는 다소 넓은 지역에서 트래픽이 많이 발생할 때, 적용할 수 있다.
상기 스몰 셀들은 매크로 셀의 서비스 영역 내에 존재할 수도 있으며, 스몰 셀만으로도 서비스 영역을 모두 커버할 수 있으므로, 매크로 셀의 서비스 영역 내에 존재하지 않을 수도 있다. 스몰 셀들은 모두 동일한 주파수 대역을 사용할 수 있으며, 이 경우, 단말이 스몰 셀 사이를 이동하면, intra-frequency HO가 발생한다. 두 배치 안들에서 단말은 매크로 셀과 스몰 셀에 동시에 연결되어 데이터를 전송 받을 수 있다. 이를 이중 연결(Dual Connectivity) 라고 한다. 특히, 스몰 셀의 재설정을 위해, RRC 메시지를 처리하는 위치 (노드(node), 예를 들어 매크로 셀 혹은 스몰 셀)와 두 매크로 셀과 스몰 셀 모두로부터 RRC(Radio Resource Control) 메시지를 전송할 수 있는지에 따라, 스몰 셀 재설정 과정은 상이할 것이다. 여기서 재설정이란, 기지국이 특정 단말에 대한, 동작, 전송 설정, 채널 설정을 변경하는 것을 의미하며, 이를 위해, 기지국은 단말에게 재설정 정보를 RRC 메시지를 이용하여 제공한다.
본 발명에서는 첫 두 실시 예에서 RRC 메시지를 처리하는 위치에 따른 스몰 셀 재설정 과정을 제안한다. 마지막 실시 예에서는 스몰 셀에 SCell을 추가, 수정, 제거하기 위한 시그널링 과정을 제안한다. 여기서 SCell (Secondary Cell)이란, 추가적인 주파수 대역에서 무선 자원을 단말에게 제공하기 위해 사용되는 셀을 일컫는다. 상기 용어는 LTE-A 표준문서에서 반송파 결합(Carrier Aggregation)에서 통칭된다.
<실시 예 1>
실시 예 1에서는 스몰 셀의 재설정을 위한 RRC 메시지를 매크로 셀 기지국에 위치한 RRC에서 만든다. 또한, 상기 생성된 RRC 메시지는 매크로 셀 기지국을 통해, 단말에게 전달된다.
도 2는 실시 예 1에서 제안하는 스몰 셀 재설정 개념을 도시하는 도면이다.
스몰 셀 기지국 (205)에서는 RRM (Radio Resource Management)의 제한된 기능을 수행할 수 있다. 예를 들어, RRM의 고유 기능들로는 라디오 베어러 제어(Radio Bearer Control, RBC), 라디오 허가 제어(Radio Admission Control, RAC), 연결 이동성 제어(Connection Mobility Control, CMC), 동적 자원 제어(Dynamic Resource control, DRA), 셀 간 간섭 제어(Inter-cell interference coordination, ICIC) 이며, 이 중, RBC와 RAC 기능을 스몰 셀에 위치한 RRM에서 수행 가능하다.
RBC는 radio bearer의 형성(establishment), 유지(maintenance), 해제(release)를 담당하며, RAC는 새로운 radio bearer에 대한 establishment 요청에 대한, 승인 및 거절을 담당한다.
매크로 셀 기지국 (200)에서는 RRM 뿐만이 아니라, RRC와 L1/2 계층이 존재한다. 스몰 셀 기지국이 재설정이 필요하면 매크로 셀 기지국에 이를 요청한다. 이때, 상기 스몰 셀 기지국은 매크로 셀 기지국이 관련 RRC 메시지를 구성할 때 필요한 정보를 매크로 셀 기지국에 전달한다. 매크로 셀 기지국은 상기 재설정을 위한 스몰 셀의 RRC 메시지를 생성한 후, 단말 (210)에게 전송한다. 따라서, 본 실시 예에 RRC는 매크로 셀에만 위치하며, 쌍이 되는 RRC가 단말에도 존재한다.
도 3은 실시 예 1에서 제안하는 스몰 셀 재설정 과정을 설명하기 위한 동작 흐름도이다.
315 단계에서 매크로 셀 (305)은 사전의 특정 시점에 스몰 셀 (310)에게 단말의 능력(capability) 정보를 제공한다. 한 예로, 상기 단말 capability 정보로는 bandcombination 정보가 될 수 있다. 상기 bandcombination 정보는 단말이 지원 가능한 주파수 밴드의 조합 정보를 의미한다. 상기 특정 시점은 스몰 셀이 단말에게 하나의 서빙 셀로 제공되는 시점이 될 수 있다.
그리고 320 단계에서 스몰 셀은 재설정을 결정한다. 예를 들어, PUCCH 혹은 TM (Transmission Mode)등을 변경하기 위해, 재설정을 결정할 수 있다.
스몰 셀이 재설정 정보를 구성하기 위해서는 사전에 매크로 셀의 설정 정보를 알고 있어야 한다. 이는 스몰 셀의 재설정이 단말의 capability을 초과하지 않기 위해서이다. 본 발명에서는 매크로 셀의 설정 정보를 스몰 셀이 획득하는 방법으로 하기 두 가지 중 적어도 하나를 적용하는 것을 특징으로 한다.
1) 스몰 셀 기지국이 재설정을 원할 때마다, 매크로 셀 기지국에 최신의 매크로 셀 설정 정보를 요청하여 획득하는 방법
2) 스몰 셀에 영향을 미칠 것으로 판단되는 매크로 셀의 재설정이 발생하는 경우, 매크로 셀 기지국이 스몰 셀 기지국에게 상기 재설정 정보를 제공하는 방법
본 도면에서는 상기 방법들 중 첫 번째 방법을 나타내고 있다.
325 단계에서 스몰 셀 기지국은 매크로 셀 기지국에게 최신의 매크로 셀 설정 정보를 요청한다. 330 단계에서 매크로 셀 기지국은 스몰 셀 기지국에게 상기 매크로 셀 설정 정보를 제공한다. 상기 매크로 셀의 설정 정보는
- Number of serving cell: 매크로 셀에서 사용 중인 서빙 셀의 수
- DL bandwidth : 매크로 셀의 각 서빙 셀의 하향링크 주파수 대역폭 정보
- AntennaInfoCommon: 매크로 셀의 각 서빙 셀의 안테나 정보
- Mbsfn-subframeConfigList: 매크로 셀의 각 서빙 셀의 MBSFN (방송 채널) 서브프레임 설정 정보
- Phich-Config: 매크로 셀의 각 서빙 셀의 PHICH 채널 설정 정보
- Pdsch-ConfigCommon: 매크로 셀의 각 서빙 셀의 PDSCH 채널 설정 정보
- Tdd-Config: 매크로 셀의 각 서빙 셀의 TDD 설저 정보 (만약 상기 서빙 셀이 TDD 방식이라면)
- Ul-CarrierFreq: 매크로 셀의 각 서빙 셀의 상향링크 중심주파수 정보
- Ul-Bandwidth: 매크로 셀의 각 서빙 셀의 상향링크 주파수 대역폭 정보
- additionalSpectrumEmissionSCell: 매크로 셀의 각 서빙 셀의 스펙트럼 emission 정보
- P-Max: 단말 송신 전력 정보
- uplinkPowerControlCommonSCell: 매크로 셀의 각 서빙 셀의 상향링크 제어 채널 설정 정보
- soundingRS-UL-ConfigCommon: 매크로 셀의 각 서빙 셀의 sounding Reference Signal 설정 정보
- Ul-CyclicPrefixLength: 상향링크 Cyclic Prefix 길이 정보
- Prach-ConfigSCell: 매크로 셀의 각 서빙 셀의 PRACH 채널 설정 정보
- Pusch-ConfigCommon: 매크로 셀의 각 서빙 셀의 PUSCH 설정 정보
등을 포함할 수 있다. 본 발명에서의 매크로 셀의 설정 정보는 상기 설정 정보 중 적어도 하나를 가질 수 있다.
335 단계에서 스몰 셀은 제공받은 매크로 셀 설정 정보를 이용하여, 단말 capability을 초과하지 않은 선에서 스몰 셀의 재설정 정보를 구성한다.
340 단계에서 스몰 셀은 매크로 셀에게 상기 재설정 정보를 전송하다.
345 단계에서 매크로 셀은 상기 스몰 셀의 재설정 정보를 저장한다.
350 단계에서 매크로 셀은 상기 재설정 정보를 포함한 하나의 RRC 메시지를 구성하고, 단말에게 포워딩한다.
355 단계에서 상기 재설정 정보를 포함한 하나의 RRC 메시지가 단말에게 전송된다.
360 단계에서 단말은 상기 재설정 정보를 적용한다.
365 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 매크로 셀 기지국으로 전송한다.
370 단계에서 매크로 셀 기지국은 스몰 셀 기지국에게 상기 응답 메시지를 전송한다. 상기 메시지는 스몰 셀의 재설정 정보가 단말에게 성공적으로 전달되었음을 알린다.
따라서, 375 단계에서 스몰 셀 기지국은 상기 재설정 정보를 적용한다.
상기 기술된 과정을 보면, 단말이 스몰 셀의 재설정 정보를 획득하여, 적용하는 시점과, 스몰 셀이 재설정 정보를 적용하는 시점이 상이함을 알 수 있다. 이러한 재설정을 적용하는 시점들의 불일치는 스몰 셀 기지국과 단말 사이의 통신에서 오류를 일으킬 수 있다. 따라서, 가급적 비슷한 시점에서 상기 재설정 정보가 각 스몰 셀 기지국과 단말에서 적용될 필요가 있다. 이를 개선할 수 있는 방법은 여러 가지가 있을 수 있다.
1) 첫번째 방법: 스몰 셀 기지국이 재설정을 결정하는 시점 혹은 스몰 셀의 재설정 정보를 매크로 셀 기지국에 전달하는 시점부터 스몰 셀의 SCell을 deactivation 시킨 후, 매크로 셀 기지국을 경유해, 단말의 응답 메시지를 수신하는 시점에서 스몰 셀의 SCell을 activation 시킨다.
2) 두번째 방법: Explicit 혹은 implicit하게 재설정 정보를 적용하는 시점을 정의한다. 예를 들어, modification period의 다음 첫 시작 시점에서 스몰 셀의 재설정을 적용시킨다. 즉, implicit하게 미리 정의된 시점을 기준으로 스몰 셀과 단말이 재설정 정보를 적용하는 것이다.
3) 세번쩨 방법: 단말이 매크로 셀 기지국으로부터 재설정 정보를 수신한 후, 단말은 랜덤 엑세스 (random access) 과정을 스몰 셀에 수행한다. 그리고, 적용될 준비가 되었음을 스몰 셀 기지국에 알린다. 상기 랜덤 엑세스 과정 이 후, 스몰 셀과 단말은 동시에 상기 재설정을 적용한다.
도 4은 실시 예 1에서 매크로 셀의 재설정으로 인해, 스몰 셀이 재설정하는 과정을 설명하기 위한 동작 흐름도이다. 415 단계에서 매크로 셀 (405)은 사전의 특정 시점에 스몰 셀 (410)에게 단말의 능력(capability) 정보를 제공한다.
도 3과는 달리, 420 단계에서 매크로 셀 기지국이 재설정을 결정한다.
425 단계에서 매크로 셀 기지국은 재설정 정보를 구성한다. 본 발명에서는 설정에 대한 우선 순위가 매크로 셀에 있다고 가정한다. 따라서, 매크로 셀이 구성한 재설정 정보가 스몰 셀의 설정 정보의 변경을 강요할 수 있다.
상기한 과정의 매크로 셀의 재설정 정보로 인해, 스몰 셀의 설정 정보가 변경되어야 한다면, 매크로 셀 기지국은 430 단계에서 상기 매크로 셀의 재설정 정보와 함께, 스몰 셀에게 단말의 capability을 초과하지 않도록 이에 맞는 재설정을 요청한다.
435 단계에서 스몰 셀은 재설정을 구성한다.
440 단계에서 스몰 셀 기지국은 매크로 셀 기지국에게 스몰 셀의 재설정 정보를 전송한다.
445 단계에서 매크로 셀 기지국은 상기 수신한 재설정 정보를 저장한 후, 450 단계에서 상기 매크로 셀의 재설정 정보와 스몰 셀의 재설정 정보를 함께 포함한 RRC 메시지를 구성한다.
상기 두 재설정 정보는 각기 분리된 RRC 메시지로도 전송 가능할 수 있다.
455 단계에서 상기 재설정 정보를 포함한 RRC 메시지가 단말에게 전송된다. 460 단계에서 단말은 상기 재설정 정보를 적용한다.
465 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 매크로 셀 기지국으로 전송한다.
470 단계에서 매크로 셀 기지국은 스몰 셀 기지국에게 상기 응답 메시지를 전송한다.
상기 메시지는 매크로 셀과 스몰 셀의 재설정 정보가 단말에게 성공적으로 전달되었음을 지시함으로 475, 480 단계에서 매크로 셀과 스몰 셀 기지국은 상기 재설정 정보를 적용한다.
도 5는 실시 예 1에서 제안하는 스몰 셀 재설정 과정에서 매크로 셀 기지국 동작 순서를 도시하는 순서도이다.
500 단계에서 매크로 셀 기지국은 단말 capability 정보를 스몰 셀 기지국에 전송한다.
505 단계에서 매크로 셀 기지국은 스몰 셀 기지국으로부터 매크로 셀의 설정 정보를 요청 받았는지 여부를 판단한다. 만약 요청받았다면, 510 단계에서 매크로 셀 기지국은 스몰 셀 기지국에게 매크로 셀의 설정 정보를 전송한다.
515 단계에서 매크로 셀 기지국은 스몰 셀 기지국으로부터 스몰 셀의 재설정 정보를 수신받는다. 520 단계에서 매크로 셀 기지국은 수신한 스몰 셀의 재설정 정보를 저장할 수 있다. 상기 정보는 차후, 매크로 셀의 재설정을 위해 사용될 수 있다.
525 단계에서 매크로 셀 기지국은 스몰 셀의 재설정 정보를 포함하는 하나의 RRC 메시지를 생성한다. 530 단계에서 매크로 셀 기지국은 상기 RRC 메시지를 단말에게 전송한다.
535 단계에서 매크로 셀 기지국은 단말로부터 상기 RRC 메시지에 대한 응답 메시지를 수신하였는지 여부를 판단한다. 수신하였다면, 540 단계에서 매크로 셀 기지국은 상기 응답 메시지를 스몰 셀 기지국에게 전송한다.
도 6는 실시 예 1에서 제안하는 스몰 셀 재설정 과정에서 스몰 셀 기지국 동작 순서를 도시하는 순서도이다.
600 단계에서 스몰 셀 기지국은 매크로 셀 기지국으로부터 단말 capability 정보를 수신 받는다. 605 단계에서 스몰 셀 기지국은 단말을 서비스하는데 있어, 재설정이 요구되는지 여부를 판단한다. 만약 필요하다면, 610 단계에서 스몰 셀 기지국은 매크로 셀 기지국에게 현재 적용되고 있는 매크로 셀의 설정 정보를 요청한다. 615 단계에서 스몰 셀 기지국은 매크로 셀 기지국으로부터 상기 재설정 정보를 수신 받는다. 620 단계에서 스몰 셀 기지국은 재설정 정보를 생성한다. 625 단계에서 스몰 셀은 매크로 셀 기지국에게 상기 재설정 정보를 전송한다. 630 단계에서 스몰 셀 기지국은 매크로 셀 기지국으로부터 응답 메시지를 수신하였는지 여부를 판단한다. 만약 수신하였다면, 635 단계에서 스몰 셀 기지국은 상기 재설정 정보를 적용한다.
<실시 예 2>
실시 예 2에서는 스몰 셀의 재설정을 위한 RRC 메시지를 스몰 셀 기지국에 위치한 RRC에서 만든다. 또한, 상기 생성된 RRC 메시지는 스몰 셀 기지국을 통해, 단말에게 전달된다. 즉 본 발명의 실시예 2에서는 각 매크로 셀 기지국과 스몰 셀 기지국에서 필요한 재설정은 각기 보유한 RRC에서 관련 RRC 메시지를 생성하여, 단말에게 직접 전송하는 것을 특징으로 한다.
도 7는 실시 예 2에서 제안하는 스몰 셀 재설정 개념을 도시하는 도면이다.
본 발명의 실시예 2에 따른 스몰 셀 기지국 (705)에서는 제한된 기능을 하는 RRM 뿐 아니라, 독립적인 RRC와 L1/2 계층을 가지고 있다. 따라서, 상기 스몰 셀 기지국은 매크로 셀 기지국 (700)에서와 마찬가지로, 필요하면 직접 관련 RRC 메시지를 구성하여 단말 (710)에게 전송할 수 있다.
도 8은 실시 예 2에서 제안하는 스몰 셀 재설정 과정을 설명하기 위한 동작 흐름을 도시하는 순서도이다.
815 단계에서 매크로 셀 (805)은 사전의 특정 시점에 스몰 셀 (810)에게 단말의 capability 정보를 제공한다.
820 단계에서 스몰 셀은 재설정을 결정한다. 예를 들어, PUCCH 혹은 TM (Transmission Mode)등을 변경하기 위해, 재설정을 결정할 수 있다. 스몰 셀이 재설정 정보를 구성하기 위해서는 사전에 매크로 셀의 설정 정보를 알고 있어야 한다. 이는 스몰 셀의 재설정이 단말의 capability을 초과하지 않기 위해서이다. 매크로 셀의 설정 정보를 스몰 셀이 획득하는 방법은 상기 도 3을 설명하면서 제안하였으므로 본 도면에서는 구체적인 설명은 생략하기로 한다. 본 도면에서는 상기 방법들 중 첫번째 방법을 나타내고 있다.
825 단계에서 스몰 셀 기지국은 매크로 셀 기지국에게 최신의 매크로 셀 설정 정보를 요청한다. 830 단계에서 매크로 셀 기지국은 스몰 셀 기지국에게 상기 매크로 셀 설정 정보를 제공한다. 상기 매크로 셀의 설정 정보는 도 3을 설명하면서 이미 상세히 설명하였다.
본 발명에서의 매크로 셀의 설정 정보는 상기 설정 정보 중 적어도 하나를 가진다.
835 단계에서 스몰 셀은 제공받은 매크로 셀 설정 정보를 이용하여, 단말 capability을 초과하지 않은 선에서 스몰 셀의 재설정 정보를 구성한다.
840 단계에서 스몰 셀은 매크로 셀에게 상기 재설정 정보를 전송하다.
845 단계에서 매크로 셀은 상기 스몰 셀의 재설정 정보를 저장한다.
850 단계에서 스몰 셀은 상기 재설정 정보를 포함한 하나의 RRC 메시지를 구성하고, 단말에게 전송한다. 상기한 바와 같이, 본 발명의 실시예 2는 스몰 셀이 자신이 구성한 재설정 정보를 직접 단말에게 전송한다는 점에서 실시예 1과 차이점이 있다.
855 단계에서 단말은 상기 재설정 정보를 적용한다. 860 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 스몰 셀 기지국으로 전송한다. 865 단계에서 스몰 셀 기지국은 상기 재설정 정보를 적용한다.
도 9는 실시 예 2에서 매크로 셀의 재설정으로 인해, 스몰 셀이 재설정하는 과정을 설명하기 위한 동작을 도시하는 순서도이다.
915 단계에서 매크로 셀 (905)은 사전의 특정 시점에 스몰 셀 (910)에게 단말의 capability 정보를 제공한다. 도 8과는 달리, 920 단계에서 매크로 셀 기지국이 재설정을 결정한다.
925 단계에서 매크로 셀 기지국은 재설정 정보를 구성한다. 본 발명에서는 설정에 대한 우선 순위가 매크로 셀에 있다고 가정한다. 따라서, 매크로 셀이 구성한 재설정 정보가 스몰 셀의 설정 정보의 변경을 강요할 수 있다.
매크로 셀의 재설정 정보로 인해, 스몰 셀의 설정 정보가 변경되어야 한다면, 매크로 셀 기지국은 930 단계에서 상기 매크로 셀의 재설정 정보와 함께, 스몰 셀에게 단말의 capability을 초과하지 않도록 이에 맞는 재설정을 요청한다.
935 단계에서 스몰 셀은 재설정을 결정한다.
940 단계에서 스몰 셀 기지국은 스몰 셀의 재설정 정보를 재구성한다.
945 단계에서 스몰 셀 기지국은 매크로 셀 기지국에게 스몰 셀의 재설정 정보를 전송한다.
950 단계에서 매크로 셀 기지국은 상기 수신한 재설정 정보를 저장한 후, 955 단계에서 매크로 셀 기지국은 상기 매크로 셀의 재설정 정보를 단말에게 전송한다.
960 단계에서 스몰 셀 기지국은 스몰 셀의 재설정 정보를 단말에게 전송한다. 즉, 상기 두 재설정 정보는 각 기지국들이 생성한 RRC 메시지로도 전송된다.
965 단계에서 단말은 상기 재설정 정보를 적용한다.
970 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 매크로 셀 기지국으로 전송한다.
975 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 스몰 셀 기지국으로 전송한다. 상기 메시지들은 매크로 셀과 스몰 셀의 재설정 정보가 단말에게 성공적으로 전달되었음을 지시함으로 980, 985 단계에서 매크로 셀과 스몰 셀 기지국은 상기 재설정 정보를 적용한다.
도 10은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
단말은 상위 계층 (1010)과 데이터 등을 송수신하며, 제어 메시지 처리부 (1015)를 통해 제어 메시지들을 송수신한다. 그리고 상기 단말은 기지국으로 제어 신호 또는 데이터 송신 시, 제어부 (1020)의 제어에 따라 다중화 장치 (1005)을 통해 다중화 후 송신기 (1000)를 통해 데이터를 전송한다. 반면, 수신 시, 단말은 제어부 (1020)의 제어에 따라 수신기 (1000)로 물리신호를 수신한 후, 역다중화 장치 (1005)으로 수신 신호를 역다중화하고, 각각 메시지 정보에 따라 상위 계층 (1010) 혹은 제어메시지 처리부 (1015)로 전달한다.
도 11는 본 발명에 따른 기지국의 구성을 나타낸 블록도로서, 도 11의 기지국 장치는 송수신부 (1105), 제어부(1110), 다중화 및 역다중화부 (1120), 제어 메시지 처리부 (1135), 각 종 상위 계층 처리부 (1125, 1130), 스케줄러(1115)를 포함한다. 송수신부(1105)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(1105)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다. 다중화 및 역다중화부(1120)는 상위 계층 처리부(1125, 1130)나 제어 메시지 처리부(1135)에서 발생한 데이터를 다중화하거나 송수신부(1105)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(1125, 1130)나 제어 메시지 처리부(1135), 혹은 제어부 (1110)로 전달하는 역할을 한다. 상위 계층 처리부(1125, 1130)는 단말 별 서비스 별로 구성될 수 있으며, FTP나 VoIP 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(1120)로 전달하거나 다중화 및 역다중화부(1120)로부터 전달한 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다. 스케줄러(1115)는 단말의 버퍼 상태, 채널 상태 및 단말의 Active Time 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
<실시 예 3>
본 발명의 실시예 3에서는 SeNB에 SCell을 추가, 수정, 제거하기 위한 시그널링 과정을 제안한다.
본 발명에서 매크로 셀은 스몰 셀에 대한 RRM 측정을 단말에게 설정하고, 단말로부터 측정 결과를 보고받는다. 또한, 보고받은 정보를 토대로, 매크로 셀은 스몰 셀에 SCell을 추가할지 여부를 결정한다. SCell을 추가할 때, 매크로 셀은 단말에게 SCell의 추가를 지시하는 RRCConnectionReconfiguration 메시지를 단말에게 보내기 전에 미리 스몰 셀과 접속하여 사전에 SCell의 추가를 조율한다. 상기 조율 과정을 통해, 스몰 셀은 매크로 셀에게 상기 단말을 서비스하기 위해 필요한 설정 정보를 전달할 것이다. 매크로 셀은 상기 설정 정보를 포함한 RRCConnectionReconfiguration 메시지를 단말에게 전송하고, SCell을 추가시킨다.
또 다른 차선책으로, SCell이 추가되기 위해 걸리는 시간을 줄이기 위해, 매크로 셀은 스몰 셀과 조율하기 전에 미리 단말에게 SCell의 추가를 지시하는 RRCConnectionReconfiguration 메시지를 전송할 수도 있다. 이 때, RRCConnectionReconfiguration에는 초기 혹은 디폴트(default) 설정 정보만을 포함시킬 것이다. 기존의 설정되어 사용 중이던 스몰 셀의 SCell의 사용 빈도가 낮아지거나, 무선 채널 상태가 양호하지 않을 경우, 매크로 셀과 스몰 셀 모두 기존의 사용 중이던 스몰 셀의 SCell을 제거 (release)시킬 수 있다. 이는 RAN-split 혹은 CN-split 등의 사용자 평면 아키텍쳐(user plane architecture)에 따라 제거 여부를 지시하는 주체가 달라질 수 있다. 여기서, RAN-split 구조란 스몰 셀에서 단말에게 전송할 데이터가 먼저 매크로 셀을 경유하여, 백홀(backhual)을 통해 스몰 셀에 전달된 후, 스몰 셀이 이를 단말에게 전달되는 것을 일컫는다. 반면, CN-split이란, 스몰 셀에서 단말에게 전송할 데이터가 Serving GW (Gateway)에서 스몰 셀로 직접 전달되는 것을 일컫는다. 무선 채널의 상태가 양호한지 여부는 매크로 셀이 단말로부터 보고받는 RRM 측정 정보, 혹은 매크로 셀 또는 스몰 셀이 단말로부터 보고 받은 CQI 정보를 토대로 판단할 수 있다. 매크로 셀이 스몰 셀의 SCell을 제거하도록 지시하는 경우, 매크로 셀은 이를 지시하는 RRCConnectionReconfiguration 메시지를 단말에 전송하기 전에 스몰 셀과 접속하여, 이를 조율할 것이다.
매크로 셀과 스몰 셀은 SCell 설정을 변경할 수 있다. 예를 들어, 매크로 셀이 단말 능력(UE capability)에서 좀 더 많은 부분을 활용하고 싶다면 (말하자면, 단말이 지원 가능한 SCell들이 모두 매크로 셀과 스몰 셀에 의해 사용 중이고, 이 때, 매크로 셀이 더 많은 SCell을 사용하고 싶다면), 매크로 셀은 스몰 셀의 SCell 설정을 변경할 수 있다. SCell 추가 및 제거는 동일한 시그널링 시퀀스 (예를 들어, SCellToAddModList) 를 사용하여, 복잡도를 줄일 수 있다. CN-split 구조의 경우, 스몰 셀은 주어진 SCell로 자신에게 할당된 모든 데이터를 처리하기 버거울 수가 있다. 이 경우, 스몰 셀은 매크로 셀에게 SCell을 추가적으로 할당해줄 것을 요청할 수도 있을 것이다.
도 12는 실시 예 3에서 매크로 셀에 의해 트리거된 동작을 설명하기 위한 도면순서도이다.
단말 (1200)은 스몰 셀 (1210)에서 제공 가능한 SCell에 대한 측정 정보를 MeasurementReport (1215)을 이용하여 매크로 셀 (1205)에 보고한다. 상기 측정 보고는 사전에 매크로 셀이 단말에게 설정하여 수행한다. 또한, 매크로 셀은 스몰 셀로부터 직접 스몰 셀의 부하(load) 정보 및 무선 채널 상태를 보고 받을 수 있다. 스몰 셀은 상기 정보를 포함하는 ResourceStatusUpdate (1217) 메시지를 매크로 셀에 직접 보고한다. 상기 메시지는 특정 트리거 조건이 만족하면, 매크로 셀에 전송될 것이다.
예를 들어, 스몰 셀의 load가 미리 정해진 임계값이 이상으로 증가하거나, 스몰 셀의 특정 SCell의 무선 채널 상태 (e.g. based on CQI)가 특정 임계값보다 나빠지면, 스몰 셀은 이러한 사실을 매크로 셀에 알린다. 상기 언급된 임계값들 및 트리거 조건은 미리 정해져 있거나, 매크로 셀이 사전에 설정하여, 스몰 셀에 알려줄 수도 있다. 만약 매크로 셀이 사전에 설정할 경우에는, 자원 상태 요청(ResourceStatusRequest) 메시지를 새로 정의하며, 이 메시지에는 스몰 셀 보고와 관련된 설정 정보, 즉, 보고 트리거 이벤트/조건, 관련 임계값 등이 포함될 것이다. 매크로 셀과 스몰 셀은 Xn 인터페이스 (interface)로 연결되며, 상기 인터페이스를 통해, 필요한 정보를 교환할 수 있다. Xn 인터페이스를 위해 새로 정의되는 메시지들은 하기 표 1에서 다시 정리한다.
상기 보고 정보를 이용하여, 매크로 셀은 스몰 셀에 SCell을 추가할지 혹은 사용 중인 SCell을 제거할지 여부를 판단한다. 다른 한편으로 매크로 셀에서 추가적으로 SCell이 필요할 경우에도, 스몰 셀이 사용 중인 SCell을 제거할 수도 있다. 매크로 셀은 단말에게 상기 SCell의 추가 혹은 제거를 설정하기 이전에 스몰 셀에 접속하여, SCellCommand (1220) 메시지를 전송한다. 스몰 셀에 SCell을 추가하는 경우, 상기 메시지에는 추가할 Scell의 아이디, 주파수 정보를 포함한다. 또한, 스몰 셀에 설정할 수 있는 상한선 정보를 포함할 수 있다. 상기 상한선 정보란 스몰 셀이 설정할 수 있는 설정 정보 혹은 UE capability 의 상한선을 의미한다. 단말의 능력은 제한되어 있으며, 매크로 셀과 스몰 셀이 이를 분할하여 이용해야 한다. 또한, 매크로 셀과 스몰 셀의 설정 정보가 단말의 능력을 초과해서는 안된다. 예를 들어, 만약 특정 단말이 총 2개의 주파수 밴드를 사용할 수 있는 능력이 있다면, 매크로 셀과 스몰 셀이 사용하는 주파수 밴드는 상기 두 밴드를 초과할 수 없을 것이다. 또한 특정 셀이 다른 셀이 사용하는 밴드를 사용해서도 안될 것이다. 즉, 매크로 셀은 스몰 셀에게 특정 하나의 주파수 밴드 내에서 사용하도록 상한선 정보를 제공하여, 매크로 셀 자신이 사용하는 주파수 밴드를 스몰 셀이 침범하지 않도록 해야할 것이다. 만약 매크로 셀이 상한선 정보를 제공하지 않는다면, 이전에 매크로 셀이 제공했던 상한선 정보를 계속 적용할 수도 있다. 스몰 셀은 매크로 셀이 제공한 상기 정보를 이용하여, SCell 설정 정보를 구성하고, 이를 매크로 셀에 제공한다. 상기 SCell 설정 정보의 예는 도 3을 설명하면서 이미 나열하였다. SCell 설정 정보는 SCellConfig (1225) 메시지의 SCellToAddModList IE을 이용하여 매크로 셀에 전달된다. 매크로 셀이 스몰 셀의 SCell을 제거하는 경우도 추가하는 경우와 과정이 동일하다. 매크로 셀은 제거하고자하는 SCell의 아이디와 주파수 정보를 스몰 셀에 전송한다. 매크로 셀이 스몰 셀에 적용되는 상한선 정보를 변경하고 싶을 때도, 동일한 과정이 이용된다. 스몰 셀은 상기 변경된 상한선 정보를 반영한 새로운 Scell 설정 정보를 SCellConfig 메시지 내의 SCellToAddModList IE을 이용하여 매크로 셀에게 제공한다. 매크로 셀은 스몰 셀과의 조율 후, 스몰 셀로부터 전달받은 SCell 설정보를 RRCConnectionReconfiguration 메시지 (1230)을 이용하여, 단말에게 전송한다. 단말은 응답 메시지로 RRCConnectionReconfigurationComplete 메시지 (1235)을 매크로 셀에 전송한다. 동시에, 매크로 셀과 스몰 셀은 SCellCommand 메시지와 SCellConfig 메시지에 대한 응답메시지들, 즉, SCellConfigAck (1240)과 SCellCommandAck (1245) 메시지를 교환한다.
도 13은 실시 예 3에서 스몰 셀에 의해 트리거된 동작을 설명하기 위한 도면순서도이다.
스몰 셀 (1310)은 상기 언급하였듯이, SCell 설정 정보를 변경하거나, 제거시킬 수 있다. 스몰 셀이 상기 동작을 원할 경우, SCellConfig 메시지 (1315)를 이용하여 매크로 셀 (1305)에 전달한다. 매크로 셀은 상기 설정에 대한 가공없이, 단말 (1300)에게 RRCConnectionReconfiguration 메시지 (1320)을 이용하여 전달한다. 이에 단말은 RRCConnectionReconfigurationComplete 메시지 (1325)를 이용하여 응답메시지를 매크로 셀에 전송한다. 동시에 매크로 셀은 스몰 셀에 SCellConfig 메시지에 대한 응답 메시지, 즉, SCellConfigAck 메시지 (1330)를 전송한다.
상기 과정들에서 새로 정의되는 Xn 인터페이스의 메시지들은 하기 표 1에 정리한다. Class 1 procedure는 상기 과정들을 설명하면서 이미 언급하였으며, SCell을 추가, 수정, 제거하는데 필요한 정보를 포함하고 있다. 또한, 목적에 따라, 포함되는 IE는 달라질 것이다. 본 발명에서는 SCellCommand에는 상한선 정보 (Restriction)을 포함하여, 매크로 셀과 스몰 셀의 설정 정보가 단말 능력 (UE capability)을 초과하지 않도록 스몰 셀이 설정할 수 있는 한계치를 스몰 셀에 알려주는 것을 특징으로 한다. 단말 능력을 보장해주는 또 다른 대안으로는 매크로 셀이 현재 적용 중인 매크로 설정 정보 및 또 다른 스몰 셀의 설정 정보, 그리고 단말 능력을 스몰 셀에 알려주는 방안도 있을 수 있다. 이 경우, 스몰 셀은 이러한 정보를 바탕으로 단말 능력을 초과하지 않는 선에서 자신의 설정 정보를 결정할 수 있을 것이다.
Xn message Description Contents Comment
SCellCommand(Ack) Class 1 procedure (new) RRC: SCellCommand Restrictions/ grant are very radio related, and hence this is best specified in RRC (inter node message)
SCellConfig(Ack) Class 1 procedure (new) RRC: SCellConfiguration SCell configuration is very ratio related, and hence this is best specified in RRC (inter node message)
ResourceStatusRequest Configuration parameters for additional reporting
ResourceStatusUpdate Additional reporting information Load information, radio problem indication
본 발명에서는 Uu 시그널링 구조를 제안한다. Uu interface는 단말과 기지국 사이를 의미하며, Uu 시그널링은 단말과 기지국 사이의 시그널링을 의미한다. 즉, 상기 동작 과정들을 설명하면서 언급된 RRCConnectionReconfiguration 메시지에 새로운 IE (Information Element)가 포함될 것이다. 새로 포함되는 IE는 스몰 셀의 SCell에 대한 설정 정보를 포함한다. 상기 설정 정보에는 physical 설정 정보 및 MAC 설정 정보가 포함될 것이다. 본 발명에서는 상기 RRCConnectionReconfiguration 메시지에 새로운 IE을 구성하는 방안을 제안한다. 크게 두 가지의 방안이 있다.
a) 기존의 시그널링 구조를 재사용하는 방안 (하기 방안 a) 참고)
b) 새로운 상위 레벨의 필드를 정의하는 방안 (하기 방안 b) 참고)
방안 a) 에서는 default extension 위치에 상기 IE을 추가시키는 것이다. 방안 b)에서는 스몰 셀의 SCell을 위한 새로운 ASN.1 구조를 복제하는 것이다. 방안 a)와 b)의 구체적인 ASN.1 포멧은 하기 표기한다. 하기 ASN.1 포맷은 RRC 메시지 중 하나인 RRCConnectionReconfiguration 메시지에 대한 것이다. 기존의 ASN.1 포맷에서 본 발명에서 새로 추가되는 부분에 대해서는 각 표의 설명에서 기술한다.
방안 a) Re-use (and extend) the existing signalling structure for SCells controlled by an SeNB
(하기의 표 2에서, ([[sCellToAddModExt1-vxy0 SCellToAddModExt1-vxy0OPTIONAL-- Need ON]], [[ radioResourceConfigCommonSCell-vxy0 RadioResourceConfigCommonSCell-vxy0 OPTIONAL -- Need ON]] 부분이 새로 추가된 부분임)
RRCConnectionReconfiguration-v1020-IEs ::= SEQUENCE {
sCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON
sCellToAddModList-r10 SCellToAddModList-r10 OPTIONAL, -- Need ON
nonCriticalExtension RRCConnectionReconfiguration-v1130-IEs OPTIONAL -- Need OP
}

SCellToAddModList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellToAddMod-r10

SCellToAddMod-r10 ::= SEQUENCE {
sCellIndex-r10 SCellIndex-r10,
cellIdentification-r10 SEQUENCE {
physCellId-r10 PhysCellId,
dl-CarrierFreq-r10 ARFCN-ValueEUTRA
} OPTIONAL, -- Cond SCellAdd
radioResourceConfigCommonSCell-r10 RadioResourceConfigCommonSCell-r10 OPTIONAL, -- Cond SCellAdd
radioResourceConfigDedicatedSCell-r10 RadioResourceConfigDedicatedSCell-r10 OPTIONAL, -- Cond SCellAdd2
...,
[[ dl-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Cond EARFCN-max
]],
[[ sCellToAddModExt1-vxy0 SCellToAddModExt1-vxy0 OPTIONAL -- Need ON
]]
}

SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10

RadioResourceConfigCommonSCell-r10 ::= SEQUENCE {
-- DL configuration as well as configuration applicable for DL and UL
nonUL-Configuration-r10 SEQUENCE {
-- 1: Cell characteristics
dl-Bandwidth-r10 ENUMERATED {n6, n15, n25, n50, n75, n100},
-- 2: Physical configuration, general
antennaInfoCommon-r10 AntennaInfoCommon,
mbsfn-SubframeConfigList-r10 MBSFN-SubframeConfigList OPTIONAL, -- Need OR
-- 3: Physical configuration, control
phich-Config-r10 PHICH-Config,
-- 4: Physical configuration, physical channels
pdsch-ConfigCommon-r10 PDSCH-ConfigCommon,
tdd-Config-r10 TDD-Config OPTIONAL -- Cond TDDSCell
},
-- UL configuration
ul-Configuration-r10 SEQUENCE {
ul-FreqInfo-r10 SEQUENCE {
ul-CarrierFreq-r10 ARFCN-ValueEUTRA OPTIONAL, -- Need OP
ul-Bandwidth-r10 ENUMERATED {n6, n15,
n25, n50, n75, n100} OPTIONAL, -- Need OP
additionalSpectrumEmissionSCell-r10 AdditionalSpectrumEmission
},
p-Max-r10 P-Max OPTIONAL, -- Need OP
uplinkPowerControlCommonSCell-r10 UplinkPowerControlCommonSCell-r10,
-- A special version of IE UplinkPowerControlCommon may be introduced
-- 3: Physical configuration, control
soundingRS-UL-ConfigCommon-r10 SoundingRS-UL-ConfigCommon,
ul-CyclicPrefixLength-r10 UL-CyclicPrefixLength,
-- 4: Physical configuration, physical channels
prach-ConfigSCell-r10 PRACH-ConfigSCell-r10 OPTIONAL, -- Cond TDD-OR-NoR11
pusch-ConfigCommon-r10 PUSCH-ConfigCommon
} OPTIONAL, -- Need OR
...,
[[ ul-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Need OP
]],
[[ rach-ConfigCommonSCell-r11 RACH-ConfigCommonSCell-r11 OPTIONAL, -- Cond UL
prach-ConfigSCell-r11 PRACH-Config OPTIONAL, -- Cond UL
tdd-Config-v1130 TDD-Config-v1130 OPTIONAL, -- Cond TDD2
uplinkPowerControlCommonSCell-v1130
UplinkPowerControlCommonSCell-v1130 OPTIONAL -- Cond UL
]],
[[ radioResourceConfigCommonSCell-vxy0 RadioResourceConfigCommonSCell-vxy0 OPTIONAL -- Need ON
]]
}

RadioResourceConfigDedicatedSCell-r10 ::= SEQUENCE {
-- UE specific configuration extensions applicable for an SCell
physicalConfigDedicatedSCell-r10 PhysicalConfigDedicatedSCell-r10 OPTIONAL, -- Need ON
...,
[[ mac-MainConfigSCell-r11 MAC-MainConfigSCell-r11 OPTIONAL -- Cond SCellAdd
]],
[[ radioResourceConfigDedicatedSCell-vxy0 RadioResourceConfigDedicatedSCell-vxy0 OPTIONAL -- Need ON
]]
}

방안 b) Introduce new top level fields for the SCells configured by an SeNB
(하기의 표 3에서, (RRCConnectionReconfiguration-v12x0-IEs}RRCConnectionReconfiguration-v12x0-IEs ::= SEQUENCE {ssCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON ssCellToAddModList-r10 SSCellToAddModList-r12 OPTIONAL, -- Need ON nonCriticalExtension SEQUENCE {} OPTIONAL -- Need OP,
SCellToAddModList-r10 ::=SEQUENCE (SIZE (1..maxSCell-r10)) OF SSCellToAddMod-r12,
SSCellToAddMod-r10 ::= SEQUENCE {sCellToAddMod-r12 SCellToAddMod-r10 OPTIONAL, -- Need ON sCellToAddModExt1-v12x0 SCellToAddModExt1-v12x0 OPTIONAL -- Need ON},
의 부분이 새로 추가된 부분이다)
RRCConnectionReconfiguration-v1020-IEs ::= SEQUENCE {
sCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON
sCellToAddModList-r10 SCellToAddModList-r10 OPTIONAL, -- Need ON
nonCriticalExtension RRCConnectionReconfiguration-v1130-IEs OPTIONAL -- Need OP
}

RRCConnectionReconfiguration-v1130-IEs ::= SEQUENCE {
systemInfomationBlockType1Dedicated-r11 OCTET STRING (CONTAINING SystemInformationBlockType1) OPTIONAL, -- Need ON
nonCriticalExtension RRCConnectionReconfiguration-v12x0-IEs OPTIONAL -- Need OP
}

RRCConnectionReconfiguration-v12x0-IEs ::= SEQUENCE {
ssCellToReleaseList-r10 SCellToReleaseList-r10 OPTIONAL, -- Need ON
ssCellToAddModList-r10 SSCellToAddModList-r12 OPTIONAL, -- Need ON
nonCriticalExtension SEQUENCE {} OPTIONAL -- Need OP
}

SCellToAddModList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellToAddMod-r10

SCellToAddModList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SSCellToAddMod-r12

SCellToAddMod-r10 ::= SEQUENCE {
sCellIndex-r10 SCellIndex-r10,
cellIdentification-r10 SEQUENCE {
physCellId-r10 PhysCellId,
dl-CarrierFreq-r10 ARFCN-ValueEUTRA
} OPTIONAL, -- Cond SCellAdd
radioResourceConfigCommonSCell-r10 RadioResourceConfigCommonSCell-r10 OPTIONAL, -- Cond SCellAdd
radioResourceConfigDedicatedSCell-r10 RadioResourceConfigDedicatedSCell-r10 OPTIONAL, -- Cond SCellAdd2
...,
[[ dl-CarrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL -- Cond EARFCN-max
]]
}

SSCellToAddMod-r10 ::= SEQUENCE {
sCellToAddMod-r12 SCellToAddMod-r10 OPTIONAL, -- Need ON
sCellToAddModExt1-v12x0 SCellToAddModExt1-v12x0 OPTIONAL -- Need ON
}

SCellToReleaseList-r10 ::= SEQUENCE (SIZE (1..maxSCell-r10)) OF SCellIndex-r10

SecurityConfigHO ::= SEQUENCE {
handoverType CHOICE {
intraLTE SEQUENCE {
securityAlgorithmConfig SecurityAlgorithmConfig OPTIONAL, -- Cond fullConfig
keyChangeIndicator BOOLEAN,
nextHopChainingCount NextHopChainingCount
},
interRAT SEQUENCE {
securityAlgorithmConfig SecurityAlgorithmConfig,
nas-SecurityParamToEUTRA OCTET STRING (SIZE(6))
}
},
...
}

<실시 예4>
본 실시 예에서는 매크로 셀 기지국이 스몰 셀의 재설정 정보를 수신할 때, 상기 재설정 정보가 매크로 셀이 요청하여 보내진 것인지 혹은 스몰 셀 스스로 생성하여 보내진 것인지를 구분하기 위한 방법을 제안한다.
도 14는 본 발명의 실시예에 따라 스몰 셀이 재설정하는 과정을 설명하기 위한 도면이다.
스몰 셀 (1410)이 매크로 셀 (1405)에게 스몰 셀의 재설정 정보를 보내는 경우는 크게 2 가지로 구분될 수 있다.
하나는 매크로 셀이 스몰 셀의 재설정을 요청하는 경우이다. 1415 단계에서 도시되는 바와 같이, 스몰 셀의 SCell을 추가하거나, 제거 혹은 스몰 셀에 허용하는 단말 능력(UE capability)을 변경할 때, 매크로 셀은 스몰 셀에게 재설정을 요청할 수 있다. 이를 위해, 스몰 셀 그룹 설정 요청(SCG-ConfigReq) 메시지가 이용되며, 상기 메시지에는 추가 혹은 제거되는 SCell의 아이디, 스몰 셀에 허용되는 UE capability 정보 등이 포함될 수 있다.
이에, 스몰 셀(1410)은 1420 단계에서 스몰 셀 그룹 설정 요청 확인(SCG-ConfigReqAck) 메시지를 이용하여, 상기 SCG-ConfigReq 메시지를 성공적으로 받았다는 것을 지시하는 하나의 응답 메시지를 매크로 셀에 전송한다.
그리고 1425 단계에서 스몰 셀은 매크로 셀에 스몰 셀의 재설정 정보를 전송한다. 매크로 셀은 상기 재설정 정보를 반드시 디코딩하여 이해할 필요는 없으며, 1430 단계에서 단말 (1400)에게 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지를 이용하여, 포워딩 한다.
1435 단계에서 단말은 상기 RRC 메시지에 대한 응답 메시지를 전송한다. 1440 단계에서 매크로 셀은 SCG-ConfigAck 메시지를 이용하여, 상기 스몰 셀의 재설정이 성공적으로 이루어졌음을 스몰 셀에 알린다.
한편, 스몰 셀은 매크로 셀의 요청 없이 스몰 셀의 재설정 정보를 보낼 수도 있다. 또한, 스몰 셀의 재설정으로 인해, 매크로 셀이 특정 동작을 수행해야 할 경두도 있다. 예를 들어, 스몰 셀의 마지막 SCell을 제거하는 경우, 매크로 셀에 경로 전환(path switch)이 필요하다. 따라서, 매크로 셀은 상기 수신한 재설정 정보가 매크로 셀이 요청하여 보내진 것인지 혹은 스몰 셀 스스로 보내진 것인지를 파악해야 할 필요가 있다.
상기 언급하였듯이, 매크로 셀이 요청할 경우, 스몰 셀의 재설정정보를 굳이 디코딩하여, 이해할 필요가 없다. 그러나, 스몰 셀이 스스로 보낸 재설정의 경우, 매크로 셀이 디코딩하여, 관련 동작을 수행해야 할 수도 있다. 따라서, 본 실시 예에서는 이를 구분하기 위한 방법을 제안한다.
가능한 방법은 하나의 식별자(transaction identifier)를 관련 메시지에 포함시키는 방법을 고려해볼 수 있다. 스몰 셀은 SCG-ConfigReq 메시지와 SCG-Config 메시지에 동일한 transaction identifier을 포함시킨다.
또 다른 방법은 상기 식별자(transaction identifier) 대신에 한 비트의 지시자를 SCG-Config 메시지에 포함시키는 것이다. 상기 지시자는 매크로 셀의 요청에 의한 재설정 정보인지 혹은 스몰 셀이 스스로 구성하여 보낸 재설정 정보인지를 나타내기 위해 사용될 수 있다.
<실시 예 5>
이하에서 기술되는 본 발명은 OTDOA(Observed Time Difference Of Arrival)을 수행하는 단말이, 주변 셀들이 전송하는 PRS(Positioning Reference Signals) 신호의 위치를 서빙 셀에 보고할 때, PRS 신호의 위치를 제공하는 방법에 대한 것이다.
도 15는 OTDOA에서 단말의 위치를 파악하는 과정을 설명하기 위한 도면이다.
기본적인 개념은 단말이 인접 기지국들로부터 PRS 신호를 수신하여, 이 신호를 이용하여, 자신의 위치를 파악할 수 있다. 인접 기지국들은 상기 PRS 신호를 정해진 패턴에 따라, 전송한다. 따라서, 단말은 상기 PRS 신호를 수신하기 위해서는 PRS 신호를 전송하는 주파수와 PRS 신호 패턴 정보를 알고 있어야 한다.
네트워크 상의 위치 서버 (Location Server, 1500)는 단말 (1525)에게 PRS 신호를 전송하고 있는 주변 기지국의 아이디, PRS 신호가 전송되는 주파수, PRS 패턴 정보를 제공한다 (1510). 상기 정보는 기지국 (1505)을 경유하여 단말에게 전달되나, 기지국에게는 transparent하게 지나가므로, 상기 기지국은 상기 PRS 관련 정보를 이해할 수 없다.
서빙 기지국이 주파수 F1을 사용하고, PRS 신호를 전송하는 인접 기지국 (1535, 1545)들 각각 주파수 F2, F3을 사용하고 있다. 상기 단말은 현재 서빙 기지국의 주파수 F1에 맞춰져 있기 때문에, 상기 단말이 인접 기지국들이 전송하는 PRS 신호 (1530, 1540)를 수신하기 위해서는 측정 갭(measurement gap)을 이용하여야 한다. 상기 measurement gap이란, 단말이 다른 주파수를 측정할 수 있도록, 상기 단말이 특정 시간 구간동안, 서빙 주파수에서의 송수신을 중지하는 것으로, 서빙 기지국이 상기 시간 구간을 설정한다.
그러나, 상기 설정된 measurement gap이 인접 기지국이 전송하는 PRS 신호의 패턴과 일치되지 않는다면, 단말은 성공적으로 PRS 신호를 수신할 수 없다.
따라서, 단말은 상기 위치 서버로부터 제공받은 PRS 관련 정보를 기반으로 PRS 신호를 수신하기 위해 필요한 주파수 간 측정 갭(Inter-freq measurement gap) 정보를 상기 서빙 기지국 (1505)에 InterFreqRSTD(Reference Signal Time Difference)MeasurementIndication 메시지를 이용하여 보고한다 (1515). 이를 수신한 상기 서빙 기지국은 PRS 신호를 성공적으로 수신할 수 있도록 적절한 measurement gap을 설정할 수 있다 (1520).
도 16은 단말이 PRS 신호를 수신하기 위해 필요한 주파수 간 측정 갭(Inter-freq measurement gap) 정보를 기지국에 보고하는 시그널링 흐름도을 설명하기 위한 도면이다.
단말 (1600)은 InterFreqRSTDMeasurementIndication 메시지 (1610)를 기지국 (1605)에게 보고한다. 상기 InterFreqRSTDMeasurementIndication 메시지에는 PRS 신호를 전송되는 주파수와 Inter-freq measurement gap 패턴 정보를 포함하고 있다.
본 발명에서는 특정 주파수에서 필요한 Inter-freq measurement gap 패턴의 위치를 PCell의 SFN과 서브프레임을 기준으로 구성하는 것을 특징으로 한다. PCell은 3GPP LTE 표준문서에 정의된 특정 셀을 일컬으며, establishment, re-establishment, 핸드오버 등을 수행하는 셀이다. 구체적인 정의는 하기의 표 4와 같다.
Primary Cell: The cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure, or the cell indicated as the primary cell in the handover procedure.
단말은 하나 이상의 PRS 신호를 전송되는 주파수와 Inter-freq measurement gap 패턴의 위치를 보고한다.
즉, carrierFreq IE에서는 주파수 정보가 포함되며, measPRS-Offset IE에서는 상기 주파수에서 Inter-freq measurement gap 패턴의 위치가 포함된다.
본 발명의 특징은 상기 패턴의 위치가 상기 PRS 신호가 전송되는 주파수에서의 서브프레임으로 나타내는 것이 아니라, PCell의 서브프레임으로 지시되는 것이다. 상기 measPRS-Offset IE은 0 부터 39 사이의 정수 값을 가지며, 상기 정수 값은 PCell의 SFN=0부터 시작하는 서브프레임의 인덱스 값과 일치된다.
SFN은 radio frame을 지시하는 인덱스 값이며, 0부터 1023 사이의 값을 가진다. 각 radio frame은 10개의 서브프레임 (index 0 ~ 9)으로 구성된다. 즉, 상기 정수값이 5이라면, PCell의 SFN = 0인 radio frame의 6 번째 서브프레임 (=서브프레임 #5)에서 상기 Inter-freq measurement gap이 시작되고 있음을 지시한다. 상기 gap 동안, 단말은 PRS 신호가 전송되는 다른 주파수를 측정하여, 상기 PRS 신호를 획득한다.
상기 패턴은 4 radio frame (40 서브프레임)마다 반복된다.
상기한 상기 InterFreqRSTDMeasurementIndication 메시지에 대한 구체적인 규격은 하기의 표 5 및 표 6과 같이 설명될 수 있다.
- InterFreqRSTDMeasurementIndication
The InterFreqRSTDMeasurementIndication message is used to indicate that the UE is going to either start or stop OTDOA inter-frequency RSTD measurement which requires measurement gaps as specified in TS 36.133 [16, 8.1.2.6].
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: UE to E UTRAN
InterFreqRSTDMeasurementIndication message
-- ASN1START

InterFreqRSTDMeasurementIndication-r10 ::= SEQUENCE {
criticalExtensions CHOICE {
c1 CHOICE {
interFreqRSTDMeasurementIndication-r10 InterFreqRSTDMeasurementIndication-r10-IEs,
spare3 NULL, spare2 NULL, spare1 NULL
},
criticalExtensionsFuture SEQUENCE {}
}
}

InterFreqRSTDMeasurementIndication-r10-IEs ::= SEQUENCE {
rstd-InterFreqIndication-r10 CHOICE {
start SEQUENCE {
rstd-InterFreqInfoList-r10 RSTD-InterFreqInfoList-r10
},
stop NULL
},
lateNonCriticalExtension OCTET STRING OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

RSTD-InterFreqInfoList-r10 ::= SEQUENCE (SIZE(1..maxRSTD-Freq-r10)) OF RSTD-InterFreqInfo-r10

RSTD-InterFreqInfo-r10 ::= SEQUENCE {
carrierFreq-r10 ARFCN-ValueEUTRA,
measPRS-Offset-r10 INTEGER (0..39),
...,
[[ carrierFreq-v1090 ARFCN-ValueEUTRA-v9e0 OPTIONAL
]]
}

-- ASN1STOP
InterFreqRSTDMeasurementIndication field descriptions
carrierFreq
The EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-frequency RSTD measurements. If the UE includes carrierFreq-v1090, it shall set carrierFreq-r10 to maxEARFCN.
measPRS-Offset
Indicates the requested gap offset for performing inter-frequency RSTD measurements. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the PCell of the requested gap for measuring PRS positioning occasions in the carrier frequency carrierFreq for which the UE needs to perform the inter-frequency RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of measPRS-Offset is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in PCell and is calculated as the PCell? number of subframes from SFN=0 mod 40.
The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the measPRS-Offset.
NOTE: Figure 6.2.2-1 illustrates the measPRS-Offset field.
rstd-InterFreqIndication
Indicates the inter-frequency RSTD measurement action, i.e. the UE is going to start or stop inter-frequency RSTD measurement.
도 17은 특정 주파수에서 주파수 간 측정 갭(Inter-freq measurement gap)이 시작하는 서브프레임의 위치를 지시하는 방법을 설명하기 위한 도면이다.
단말이 measPRS-Offset IE 값을 5로 지시한다면, PCell (1700)의 SFN=0 (1720)부터 시작하는 6번째 서브프레임부터 상기 Inter-freq measurement gap이 시작한다. 단말은 다른 주파수를 모니터링하기 위해서는 일정 준비 시간이 필요하다 (1715). 따라서, 상기 준비 시간과 PRS 신호가 전송되는 다른 주파수의 서브프레임 위치 (1730)를 고려하여, 상기 measPRS-Offset 값을 결정해야 할 것이다.
상기 gap 동안, 단말은 다른 주파수 F2에서 PRS 신호 (1730)를 측정한다. 상기 gap의 위치는 PCell의 SFN과 서브프레임을 기준으로 지시하기 때문에, 다른 주파수에서 이에 대응하는 SFN 및 서브프레임은 당연히 PCell과 다를 수 있다 (1735). 상기 패턴은 4 radio frame마다 반복될 것이다.
단말은 복수 개의 서빙 셀 (serving cell)을 가질 수 있다. 예를 들어, Carrier Aggregation, dual connectivity 의 경우에 그러하다. 참고로 PCell은 서빙 셀 중 하나이다.
반송파 결합(Carrier Aggregation)에서는 모든 서빙 셀이 동일한 SFN과 서브프레임을 가진다고 가정한다. 따라서, Carrier Aggregation의 경우, PCell 대신 서빙 셀로 정의를 확장할 수 있다.
이중 연결(Dual Connectivity)의 경우에는 서빙 셀마다 SFN과 서브프레임이 다를 수 있다. 따라서, 정확하게 어느 셀을 지시하는지 정의할 필요가 있다. 상기 언급하였듯이, PCell의 SFN 및 서브프레임을 기준으로 gap을 정의할 수 있다. 혹은 MCG (Master Cell Group)에 속한 서빙 셀의 SFN 및 서브프레임을 기준으로 gap을 정의할 수 있다. 이럴 경우, 상기 필드 설명(field description)은 하기의 표 6과 같이 수정될 수 있다.
InterFreqRSTDMeasurementIndication field descriptions
carrierFreq
The EARFCN value of the carrier received from upper layers for which the UE needs to perform the inter-frequency RSTD measurements. If the UE includes carrierFreq-v1090, it shall set carrierFreq-r10 to maxEARFCN.
measPRS-Offset
Indicates the requested gap offset for performing inter-frequency RSTD measurements. It is the smallest subframe offset from the beginning of subframe 0 of SFN=0 of the serving cell belonging to MCG of the requested gap for measuring PRS positioning occasions in the carrier frequency carrierFreq for which the UE needs to perform the inter-frequency RSTD measurements. The PRS positioning occasion information is received from upper layers. The value of measPRS-Offset is obtained by mapping the starting subframe of the PRS positioning occasion in the measured cell onto the corresponding subframe in the serving cell belonging to MCG and is calculated as the the serving cell belonging to MCG? number of subframes from SFN=0 mod 40.
The UE shall take into account any additional time required by the UE to start PRS measurements on the other carrier when it does this mapping for determining the measPRS-Offset.
NOTE: Figure 6.2.2-1 illustrates the measPRS-Offset field.
rstd-InterFreqIndication
Indicates the inter-frequency RSTD measurement action, i.e. the UE is going to start or stop inter-frequency RSTD measurement.
본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (10)

  1. 이동 통신 시스템에서 스몰 셀(small cell) 기지국의 재설정 정보 전송 방법에 있어서,
    스몰 셀에 대한 재설정(reconfiguration) 결정 시, 매크로 셀 기지국으로부터 가장 최근의 매크로 셀 설정 정보를 획득하는 단계;
    상기 획득한 매크로 셀 설정 정보에 기반하여 상기 스몰 셀에 대한 재설정 정보를 구성하는 단계; 및
    상기 매크로 셀 기지국이 상기 재설정 정보를 단말에 전송할 수 있도록, 상기 재구성된 재설정 정보를 상기 매크로 셀 기지국에 전송하는 단계를 포함하는 것을 특징으로 하는 재설정 정보 전송 방법.
  2. 제1항에 있어서, 상기 매크로 셀 설정 정보는,
    매크로 셀에서 사용 중인 서빙 셀의 수, 매크로 셀의 각 서빙 셀의 하향링크 주파수 대역폭 정보, 매크로 셀의 각 서빙 셀의 안테나 정보, 또는 매크로 셀의 각 서빙 셀의 MBSFN (방송 채널) 서브프레임 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 재설정 정보 전송 방법.
  3. 제1항에 있어서, 전송 단계는,
    상기 매크로 셀 기지국이 RRC(Radio Resource Control) 메시지를 통해, 상기 재설정 정보를 상기 단말에 전송하는 것을 특징으로 하는 재설정 정보 전송 방법.
  4. 제1항에 있어서,
    상기 매크로 셀 기지국으로부터 상기 단말의 능력(capability) 정보를 수신하는 단계를 더 포함하는 것을 특징으로 하는 재설정 정보 전송 방법.
  5. 제4항에 있어서, 상기 능력 정보는,
    단말이 지원 가능한 주파수 밴드의 조합 정보를 포함하는 것을 특징으로 하는 재설정 정보 전송 방법.
  6. 이동 통신 시스템에서 재설정 정보를 전송하는 스몰 셀(small cell) 기지국에 있어서,
    기지국 또는 단말과 신호를 송수신하는 송수신부; 및
    스몰 셀에 대한 재설정(reconfiguration) 결정 시, 매크로 셀 기지국으로부터 가장 최근의 매크로 셀 설정 정보를 획득하고, 상기 획득한 매크로 셀 설정 정보에 기반하여 상기 스몰 셀에 대한 재설정 정보를 구성하며, 상기 매크로 셀 기지국이 상기 재설정 정보를 단말에 전송할 수 있도록 상기 재구성된 재설정 정보를 상기 매크로 셀 기지국에 전송하도록 제어하는 제어부를 포함하는 것을 특징으로 하는 스몰 셀 기지국.
  7. 제6항에 있어서, 상기 매크로 셀 설정 정보는,
    매크로 셀에서 사용 중인 서빙 셀의 수, 매크로 셀의 각 서빙 셀의 하향링크 주파수 대역폭 정보, 매크로 셀의 각 서빙 셀의 안테나 정보, 또는 매크로 셀의 각 서빙 셀의 MBSFN (방송 채널) 서브프레임 설정 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 스몰 셀 기지국.
  8. 제6항에 있어서,
    상기 매크로 셀 기지국이 RRC(Radio Resource Control) 메시지를 통해, 상기 재설정 정보를 상기 단말에 전송하는 것을 특징으로 하는 스몰 셀 기지국.
  9. 제6항에 있어서, 상기 제어부는,
    상기 매크로 셀 기지국으로부터 상기 단말의 능력(capability) 정보를 수신하도록 제어하는 것을 특징으로 하는 스몰 셀 기지국.
  10. 제9항에 있어서, 상기 능력 정보는,
    단말이 지원 가능한 주파수 밴드의 조합 정보를 포함하는 것을 특징으로 하는 스몰 셀 기지국.
KR1020140102602A 2013-08-09 2014-08-08 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치 KR102222630B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130094735 2013-08-09
KR1020130094735 2013-08-09
KR1020130115568 2013-09-27
KR20130115568 2013-09-27
KR20130135648 2013-11-08
KR1020130135648 2013-11-08

Publications (2)

Publication Number Publication Date
KR20150018475A true KR20150018475A (ko) 2015-02-23
KR102222630B1 KR102222630B1 (ko) 2021-03-05

Family

ID=52461709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140102602A KR102222630B1 (ko) 2013-08-09 2014-08-08 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 설정 정보를 효과적으로 제공하는 방법 및 장치

Country Status (5)

Country Link
US (2) US10136423B2 (ko)
EP (1) EP2963963B1 (ko)
KR (1) KR102222630B1 (ko)
CN (1) CN105165050B (ko)
WO (1) WO2015020493A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10045228B2 (en) * 2013-08-09 2018-08-07 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
EP2963963B1 (en) * 2013-08-09 2018-10-03 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
JP2017523733A (ja) * 2014-08-08 2017-08-17 インテル アイピー コーポレイション 非同期デュアルコネクティビティにおける1つの測定ギャップ
US10187169B2 (en) * 2016-03-24 2019-01-22 Qualcomm Incorporated Synchronization signal optimizations for symbol index detection
CN108886726B (zh) * 2016-04-01 2020-11-03 华为技术有限公司 移动性管理的方法、装置和系统
US11044701B2 (en) * 2016-05-10 2021-06-22 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Communication method and communication apparatus
KR102324214B1 (ko) * 2017-01-06 2021-11-12 삼성전자 주식회사 차세대 이동 통신 시스템에서 이중 접속의 데이터 처리를 가속화하는 방법 및 장치
CN108924941B (zh) * 2017-03-24 2023-09-08 中兴通讯股份有限公司 信息传输方法和基站
WO2019066478A1 (en) * 2017-09-28 2019-04-04 Samsung Electronics Co., Ltd. METHOD AND NETWORK NODE FOR PERFORMING DATA TRANSMISSION AND MEASUREMENTS ON MULTIPLE BANDWIDTH PARTS
US11259203B2 (en) 2018-01-07 2022-02-22 Htc Corporation Device and method of handling communication device capabilities
US10880857B2 (en) 2018-04-02 2020-12-29 Intel Corporation Inter-radio access technology positioning measurements in new radio systems
CN110868761A (zh) * 2019-12-16 2020-03-06 北京码牛科技有限公司 一种基于音频特征的异常信息采集方法及预警系统
CN113853023B (zh) * 2021-10-28 2023-05-12 上海移远通信技术股份有限公司 无线通信的方法及装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160591B2 (en) * 2009-08-04 2012-04-17 Motorola Mobility, Inc. In a radio network environment, reducing interference among overlapping cells
US8526362B2 (en) * 2009-10-01 2013-09-03 At&T Intellectual Property I, L.P. Dynamic reconfiguration of cell site service(s)
US8923190B2 (en) * 2009-11-02 2014-12-30 Nokia Corporation Method and apparatus for synchronizing resources for coordinated network deployment
KR101676013B1 (ko) * 2010-05-03 2016-11-14 삼성전자주식회사 무선 통신 시스템에서 제어 채널을 재설정하는 방법 및 장치
WO2012060655A2 (ko) 2010-11-05 2012-05-10 엘지전자 주식회사 무선 통신 시스템에서 핸드 오버를 수행하는 방법
CN102469595B (zh) * 2010-11-18 2015-08-12 中兴通讯股份有限公司 一种可重配无线系统的重配触发方法及装置
KR20120099568A (ko) 2011-01-18 2012-09-11 삼성전자주식회사 무선 통신 시스템에서 단말기 내에 복수 개의 이종 통신 모듈이 있을 경우 간섭을 측정하는 방법 및 장치
WO2013075284A1 (zh) * 2011-11-22 2013-05-30 华为技术有限公司 一种lte基带资源池的实现方法及装置
KR20130068049A (ko) * 2011-12-15 2013-06-25 한국전자통신연구원 스몰 셀 기지국 관리 시스템 및 스몰 셀 기지국 관리 방법
CN104584633B (zh) * 2012-08-23 2018-12-18 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
US9072021B2 (en) * 2012-12-19 2015-06-30 Blackberry Limited Method and apparatus for hybrid automatic repeat request operation in a heterogeneous network architecture
CN103906053B (zh) * 2012-12-28 2019-09-10 北京三星通信技术研究有限公司 配置和传输加密密匙的方法
WO2014107086A1 (en) * 2013-01-07 2014-07-10 Samsung Electronics Co., Ltd. Methods and apparatus for inter-enb carrier aggregation
US9173147B2 (en) * 2013-01-18 2015-10-27 Blackberry Limited Communicating data using a local wireless access network node
KR101568310B1 (ko) * 2013-02-01 2015-11-12 주식회사 케이티 스몰 셀 환경에서의 사용자 플레인 데이터 전송 방법 및 장치
US8989755B2 (en) * 2013-02-26 2015-03-24 Blackberry Limited Methods of inter-cell resource sharing
US9526044B2 (en) * 2013-05-08 2016-12-20 Lg Electronics Inc. Method of configuring dual connectivity to UE in heterogeneous cell deployment
WO2014206445A1 (en) 2013-06-25 2014-12-31 Nokia Solutions And Networks Oy Control of resources
US20160295597A1 (en) * 2013-07-26 2016-10-06 Intel IP Corporation Signaling interference information for user equipment assistance
US9125112B2 (en) * 2013-08-06 2015-09-01 Blackberry Limited Communicating radio resource configuration information
EP2963963B1 (en) * 2013-08-09 2018-10-03 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
US10045228B2 (en) * 2013-08-09 2018-08-07 Samsung Electronics Co., Ltd. Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
WO2015023067A1 (ko) * 2013-08-12 2015-02-19 삼성전자 주식회사 다중 기지국 연결 기반의 무선 통신 시스템에서의 무선 링크 실패 처리 방법 및 그 장치
US10362615B2 (en) * 2013-10-30 2019-07-23 Kt Corporation Method and apparatus for configuring dual connection in mobile communication network
JP6190058B2 (ja) * 2013-11-01 2017-08-30 エルジー エレクトロニクス インコーポレイティド 異種ネットワークにおいて2重接続の動作を実行するための方法及び装置
WO2015076639A1 (ko) * 2013-11-25 2015-05-28 엘지전자 주식회사 단말이 기지국에게 보고하는 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP R2-131108* *
3GPP R2-131672* *

Also Published As

Publication number Publication date
US20160143027A1 (en) 2016-05-19
EP2963963A4 (en) 2016-03-23
US10136423B2 (en) 2018-11-20
KR102222630B1 (ko) 2021-03-05
US20190090234A1 (en) 2019-03-21
EP2963963A1 (en) 2016-01-06
CN105165050A (zh) 2015-12-16
WO2015020493A1 (ko) 2015-02-12
US10827483B2 (en) 2020-11-03
EP2963963B1 (en) 2018-10-03
CN105165050B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
US10827483B2 (en) Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
RU2742911C1 (ru) Радиотерминал, узел сети радиодоступа и способ для этого
EP3668145B1 (en) Terminal device, communication method, integrated circuit, and base station apparatus system
CN110419233B (zh) 终端装置和通信方法
US10368393B2 (en) Methods and apparatuses for enhancing the setup of carrier aggregation, dual connectivity, multi connectivity, license assisted access, or LTE-WLAN in communications networks
CN110402594B (zh) 终端装置以及通信方法
WO2016072495A1 (ja) 端末装置、基地局装置および方法
WO2016072497A1 (ja) 基地局装置、端末装置および方法
JP2023078164A (ja) 測定レポートの方法および装置
US10045228B2 (en) Method and apparatus, in mobile communication system, for effectively providing configuration information about small cell that has small cell service region
KR20140095777A (ko) 이동 통신 시스템에서 셀 서비스 영역이 작은 셀에 대한 이동성을 제어하는 방법 및 장치
KR20150090704A (ko) 이동 통신 시스템에서 단말이 복수의 캐리어들을 이용하는 데이터 송수신 방법 및 장치
KR102003273B1 (ko) 이중연결을 지원하는 무선 통신 시스템에서 단말 식별자 구성 방법 및 그 장치
KR20140133463A (ko) 이중 연결성 설정 방법
KR20230105314A (ko) 셀 변경 동작 제공 방법 및 장치
WO2016072488A1 (ja) 基地局装置、端末装置および方法
KR102622573B1 (ko) 무선 이동 통신 시스템에서 갭 설정 정보에 따라 스몰 갭을 설정하고 스몰 갭 동작을 수행하는 방법 및 장치
KR102598901B1 (ko) 무선 이동 통신 시스템에서 갭 유형 정보에 기반해서 갭을 설정하는 방법 및 장치
KR102507117B1 (ko) 무선 이동 통신 시스템에서 갭 설정 정보에 따라 갭 또는 스몰 갭을 설정하는 방법 및 장치
KR102496521B1 (ko) 무선 이동 통신 시스템에서 동시 갭에 대한 단말 능력 정보를 제공하는 방법 및 장치
KR102507103B1 (ko) 무선 이동 통신 시스템에서 갭 설정 정보에 따라 주기적 갭 또는 비주기적 갭을 설정하는 방법 및 장치
KR102496525B1 (ko) 무선 이동 통신 시스템에서 지원되는 갭패턴과 지원되는 갭조합을 보고하는 방법 및 장치
KR102517299B1 (ko) 무선 이동 통신 시스템에서 대역폭 부분과 관련된 갭 설정을 요청하고 설정하는 방법 및 장치
KR102517298B1 (ko) 무선 이동 통신 시스템에서 랜덤 액세스 절차와 관련하여 갭을 활성화하거나 비활성화하는 방법 및 장치
WO2023068355A1 (ja) 通信装置、基地局、及び通信方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right