KR20150000258A - Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion - Google Patents

Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion Download PDF

Info

Publication number
KR20150000258A
KR20150000258A KR20130072485A KR20130072485A KR20150000258A KR 20150000258 A KR20150000258 A KR 20150000258A KR 20130072485 A KR20130072485 A KR 20130072485A KR 20130072485 A KR20130072485 A KR 20130072485A KR 20150000258 A KR20150000258 A KR 20150000258A
Authority
KR
South Korea
Prior art keywords
udp
stevioside
glucose
rebaudioside
leu
Prior art date
Application number
KR20130072485A
Other languages
Korean (ko)
Other versions
KR101559478B1 (en
Inventor
김중수
김영민
김차영
이상준
우미희
이우송
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020130072485A priority Critical patent/KR101559478B1/en
Publication of KR20150000258A publication Critical patent/KR20150000258A/en
Application granted granted Critical
Publication of KR101559478B1 publication Critical patent/KR101559478B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/10Natural spices, flavouring agents or condiments; Extracts thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/30Foods or foodstuffs containing additives; Preparation or treatment thereof containing carbohydrate syrups; containing sugars; containing sugar alcohols, e.g. xylitol; containing starch hydrolysates, e.g. dextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea

Abstract

The present invention relates to a manufacturing method of rebaudioside A from stevioside hugely included in stevia extracts. Specifically, the manufacturing method of the present invention is allowed to manufacture rebaudioside A from stevioside by making a reaction solution react wherein the reaction solution includes (a) maltodextrin, UMP, ATP, stevioside, phosphoric acid compound, maltodextrin phosphorylase, glucose-1-phophate thymidylytrasferase, inorganic pyrophosphatase, acetate kinase, uridylate kinase, and UDP-glucosyltransferase. According to the present invention, the cost of production of stevia sweetener can be reduced since rebaudioside A is economically manufactured from stevioside without using high-priced UDP-glucose.

Description

효소전환법을 이용한 천연 고감미료의 제조방법{Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion}[0001] The present invention relates to a method for preparing a natural high-sweetener using an enzyme conversion method,

본 발명은 스테비아 추출물에 다량 함유된 스테비오사이드로부터 레바우디오사이드 A를 제조하는 방법에 관한 것으로, 더욱 자세하게는 (a) 말토덱스트린(maltodextrin),UMP, ATP, 스테비오사이드, 인산화합물, 말토덱스트린 포스포릴레이즈, 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈, 무기 피로포스파타아제, 아세테이트 키나아제, 유리딜레이트 카이네이즈 및 UDP-글리코실트랜스퍼라제를 포함하는 반응액을 반응시켜 레바우디오사이드 A를 생성시키는 것을 특징으로 하는 스테비오사이드로부터 레바우디오사이드 A를 제조하는 방법에 관한 것이다.
The present invention relates to a method for preparing rebaudioside A from stevioside, which is contained in a large amount of stevia extract, and more particularly, to a method for producing rebaudioside A from a stevia extract which comprises (a) maltodextrin, UMP, ATP, stevioside, A reaction solution containing a cellulase, glucose-1-phosphate thymidyl transferase, inorganic pyrophosphatase, acetate kinase, free delayed kinase and UDP-glycosyltransferase is reacted to generate rebaudioside A ≪ RTI ID = 0.0 > A < / RTI > from stevioside.

설탕(자당)은 가장 많이 알려지고 범용하게 사용되고 있는 감미료로서, 인스탄트 커피를 비롯한 커피 음료, 쥬스류나 탄산 음료 등의 청량 음료수에 다량으로 사용되고 있다. 그러나 웰빙을 추구하는 사회적 기류에 따라 비만 당뇨등 성인병과 충치의 원인이 되는 설탕을 줄이거나 설탕을 대신할 수 있는 고감미도의 감미료를 사용하는 경향이 증가하고 있으나, 사카린, 아프파르탐과 같은 인공감미료는 독성, 알러지 유발 등의 유해성과 안정성의 문제로 인하여 사용이 점차 규제되는 추세에 있어 새로운 기능성 당전이 당질 소재에 대한 필요성이 대두되고 있다.Sugar (sucrose) is the most commonly known and widely used sweetener, and is used in large quantities in soft drinks such as instant coffee, coffee drinks, juices and carbonated drinks. However, according to social trends for well-being, there is an increasing tendency to use sugar-rich sweeteners that can reduce sugar or cause sugar-causing diseases such as obesity and diabetes, and artificial sweeteners such as saccharin, The use of sweeteners is becoming increasingly regulated due to the toxicity and allergenic hazards and stability problems, and the need for new functional sugar derivatives is increasing.

스테비아 감미료는 남미 파라과이를 원산지로 하는 국화과의 다년생식물인 스테비아에서 추출한 고감미 물질이다. 스테비아 감미료의 세계적인 소비처는 한국이 약 30%, 일본 27%, 중국이 30% 나머지 13%가 기타 나라로 되어있다. 그리고 한국에서 식품으로서의 소비 형태는 거의 효소를 이용하여 포도당을 부가해 감미질을 개량한 제품, 즉, 효소처리 스테비아(식품첨가물 공전상의 공식명칭) 제품이 전체의 약 80% 이상을 차지하고 있다. 스테비아 감미료 중에서 효소처리 스테비아가 가지는 장점은 ① 감미질이 설탕에 가깝고, 쓴 맛이 없으며, 감미도가 설탕의 100∼250배로 높으나 실질적으로 무칼로리이다. ② 열과 산에 안정하여 가공, 보존중의 감미 변화가 적다. ③ 미생물의 영양원이 되기 어렵고, 구강에서는 실질적으로 비우식성이다. ④ 메일라드 반응을 일으키지 않고, 식품가공으로 갈변되기 어렵다. ⑤ 젓갈의 맛을 완화시킨다. ⑥ 산미를 완화시킨다. ⑦ 빙점 강하가 작다. ⑧ 침투압을 올리지 않는다. ⑨ 다른 감미료와의 상승효과가 있어서 감미 코스트의 저감에 유효하다. ⑩ 산뜻한 감미질이며 당질 감미료의 걸죽한 맛을 완화한다는 것이다. 그러나 상기와 같은 장점과 스테비아 잎 추출물에서의 정제공정 및 효소반응에 의한 감미질 보완에도 불구하고 효소처리 스테비아는 타 당질감미료(설탕, 과당 등)와 비교하여 감미의 상승이 느리고, 뒷맛(後味)의 감미가 비교적 오래 남아, 이른바 감미의 마무리가 나쁘다는 특징이 있다. 또 상기 스테비아 감미료에 다량 포함되는 스테비오사이드에는 감미와는 별도로 뒷맛에 독특한 떫은맛이나 쓴맛을 수반하므로, 커피 음료, 청량 음료수, 알콜 음료에 이용하면 명확히 위화감을 주는 단점이 있다 (대한민국 등록특허 제0,888,694호).Stevia Sweetener is a high-sweetening substance extracted from Stevia, a perennial plant of Asteraceae originating in South American Paraguay. Worldwide consumption of stevia sweeteners is about 30% in Korea, 27% in Japan, 30% in China, and 13% in other countries. In Korea, consumption of food as an ingredient is almost the same as that of enzyme-treated stevia (the official name for food additives), which is a product that improves the sweetness by adding glucose using enzymes. Among the stevia sweeteners, the enzyme-treated stevia has the following advantages: (1) The sweetness is close to sugar, no bitter taste, and the sweetness is as high as 100 to 250 times that of sugar, but is virtually calorie. ② It is stable to heat and acid, and there is little change in sweetness during processing and preservation. ③ It is difficult to become a nutrient source of microorganisms, and it is practically non-oozing in the oral cavity. ④ It does not cause a mail rod reaction, and it is hard to be browned by food processing. ⑤ Relieves the taste of salted fish. ⑥ Relieve sickness. ⑦ Freezing point is small. ⑧ Do not increase infiltration pressure. ⑨ There is synergy with other sweeteners, which is effective in reducing sweetness cost. ⑩ It is refreshing taste and it relaxes the rough taste of carbohydrate sweetener. However, despite the above advantages and the refining process and enzyme reaction in the stevia leaf extract, the enzyme-treated stevia has a slow rise in sweetness compared to other sugar sweeteners (sugar, fructose, etc.) There is a characteristic that the sweetness remains relatively long, and the so-called sweetness finish is bad. In addition, the stevioside, which is contained in a large amount in the above-mentioned stevia sweetener, is accompanied by a bitter taste or a bitter taste distinctive to the aftertaste apart from the sweetness, and thus has disadvantages that it gives a sense of discomfort when used in coffee beverages, soft drinks and alcoholic beverages (Korean Patent No. 0,888,694 ).

스테비아의 감미성분 중 미질이 설탕에 가깝고 감미도가 높은 성분은 레바우디오사이드 A (rebaudioside A)이다. 레바우디오사이드 A는 최근에 FDA에 의해서 식품으로의 사용이 허가됨에 따라 코카콜라와 펩시에서 감미료로서 사용이 되고 있다. 스테비아의 추출물 중 레바우디오사이드 A가 차지하는 함량은 30%정도이며, 스테비오사이드가 약 50%를 차지하고 있다 (대한민국 공개특허공보 제2001-0111560호). 따라서 감미가 우수한 레바우디오사이드 A를 고동도로 함유하는 제품의 수요가 증가하고 있으나, 고(高) 레바우디오사이드 A만을 분리할 경우 필연적으로 부산물인 스테비오사이드가 발생할 수 밖에 없는 실정이며, 레바우디오사이드 A 수요가 증가함에 따라 레바우디오사이드 A 보다 감미질이 좋지 않은 스테비오사이드를 처리하는 문제가 제품화에 있어서 과제로 대두되고 있다.The sweetness component of stevia is close to sugar and high in sweetness is rebaudioside A. Rebaudioside A has recently been used as a sweetener in Coca Cola and Pepsi as it is licensed for use as food by the FDA. The content of rebaudioside A in stevia extract is about 30%, and stevioside is about 50% (Korean Patent Laid-Open Publication No. 2001-0111560). As a result, the demand for products containing high-grade rebaudioside A having an excellent sweetness is increasing. However, when only high-rebaudioside A is separated, stevioside, which is a by-product, As the demand for Boudioside A increases, the problem of treating stevioside, which has less good quality than Rebaudioside A, is becoming a challenge for commercialization.

이러한 문제들을 해결하기 위해 많은 업체들이 스테비오사이드를 이용한 감미료 개발을 진행하여 왔다. 이와 관련된 연구는 스테비오사이드를 주성분으로 한 스테비아추출물과 β-1,4-갈락토실 당화합물을 포함하는 수용액상에서 β-1,4-갈락토실 전이효소를 작용시켜 스테비오사이드에 갈락토실기를 주성분으로 하는 제조방법 (일본특허공개 제58-94367호), 스테비오사이드와 설탕을 포함하는 수용액상에서 덱스트란수크라아제를 작용시켜 스테비오사이드 올리고 배당체를 합성하는 방법(한국 등록특허10-1199821호), 레바우디오사이드 A의 생산공정에서 나오는 부산물인 스테비오사이드 함유 스테비올을 효소전환법(-1,3-글루카나제)으로 레바우디오사이드 A로 전환하는 방법(한국 공개특허 제 10-2011-0115699호), 스테비오사이드의 미질 개선방법으로 물과 소수성 유기용매를 혼합한 반응계에서 스테비오사이드를 효소반응에 의하여 당전이 스테비오사이드로 전환하여 스테비오사이드의 미질을 개선하는 방법(한국등록특허 특1994-528호), 스테비오사이드와 레바우디오사이드 A 혼합물로부터 스테비오사이드와 레바우디오사이드 A의 알코올과 물에 대한 용해도 차이를 이용하여 각각을 결정형으로 분리하는 방법(일본공개특허 제56-121453호, 대한민국 공개특허공보 제10-2004-0102322호), 스테비아 식물에 감마광선을 조사하여 레바우디오사이드 A를 다량 함유케 하는 식물로 유전적 변형을 유발시키는 방법(일본특허공개 제2002-34502호) 등이 개시되어 있다. 또한 감미질이 우수한 특정 성분인 ST-G1, ST-G2를 분리하기 위한 연구로는 스테비아추출물과 α-글루코실당 화합물을 함유한 수용액에 사이클로덱스트린글루카노트랜스페라제(cyclodextrin glucanotransferase, 이하 "CGTase"라 칭함)를 가하여 α-글루코실화 스테비아추출물을 수득하는 단계를 포함하는 고감미당 부가 스테비아감미료의 제조방법(한국공개특허 제1992-252호), 스테비아추출물에 CGTase와 β-아밀라아제를 처리한 미질이 좋은 고감미당 부가 스테비아 감미료 및 제조방법(일본특허등록 제2798433호) 등이 있으나, 이들 고감미당부가 스테비아 감미료의 제조방법의 경우 총 스테비올 배당체 함량에 대해 고감미질 성분인 ST-G1, ST-G2, RA-G1, RA-G2 총 함량이 40~60% 정도 수준으로 낮아서 만족할 만한 감미질을 발휘하지 못하게 되어 결과적으로 상기 방법들로부터 얻은 효소처리 스테비아가 여전히 쓴맛 또는 불쾌감을 가지고 있어, 커피나 음료에 사용하는데 어려운 문제가 있다.  To solve these problems, many companies have developed sweeteners using stevioside. In this study, β-1,4-galactosyltransferase was acted in an aqueous solution containing stevia extract as a main component and β-1,4-galactosyl sugar compound to produce a galactosyl group on the stevioside (Japanese Patent Laid-Open No. 58-94367), a method of synthesizing a stevioside oligosaccharide by the action of dextran sucrase in an aqueous solution containing stevioside and sugar (Korean Patent No. 10-1199821) , A method of converting stevioside containing stevioside, which is a by-product obtained from the production process of rebaudioside A, to rebaudioside A by an enzyme conversion method (-1,3-glucanase) (Korean Patent Laid- -0115699), a method for improving the quality of stevioside by converting stevioside into stevioside by enzymatic reaction in a reaction system in which water and a hydrophobic organic solvent are mixed (Korean Patent Registration No. 1994-528), a method of improving solubility of stevioside and rebaudioside A in a mixture of stevioside and rebaudioside A, (Japanese Patent Application Laid-Open No. 56-121453, Korean Patent Laid-Open Publication No. 10-2004-0102322), a method of irradiating a stevia plant with a gamma ray to produce a large amount of rebaudioside A, (Japanese Patent Application Laid-Open No. 2002-34502) and the like are disclosed. In order to separate ST-G1 and ST-G2, which are excellent in sweetness, cyclodextrin glucanotransferase (hereinafter referred to as "CGTase") was added to an aqueous solution containing stevia extract and α-glucosyl sugar compound (Korean Unexamined Patent Publication No. 1992-252), a method of producing a stevia sweetener, which comprises treating the stevia extract with CGTase and < RTI ID = 0.0 > ss-amylase < / RTI & ST-G1, ST-G2, and ST-G2, which are high-sweetness components with respect to the total steviol glycoside contents in the case of the preparation method of stevia sweetener, , The total content of RA-G1 and RA-G2 is as low as 40 to 60%, resulting in unsatisfactory sweetness, There is an enzyme treated stevia still have a bitter taste or unpleasant, it is difficult to use in coffee or drinks.

이에, 본 발명자들은 스테비아 추출물에서 스테비오사이드를 저감하는 효율적인 처리법을 개발하고자 예의 노력한 결과, 스테비아추출물에 포함된 스테비오사이드를 효소처리를 통하여 경제적으로 레바우디오사이드 A로 전환시킬 수 있는 공정을 개발하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have made intensive efforts to develop an effective treatment method for reducing stevioside in the stevia extract, and as a result, have developed a process for economically converting stevioside contained in the stevia extract into enzymatic treatment to rebaudioside A , Thereby completing the present invention.

본 발명의 목적은 스테비오사이드로부터 레바우디오사이드 A로 제조하는 방법을 제공하는 데 있다.
It is an object of the present invention to provide a process for preparing stevioside from rebaudioside A.

상기 목적을 달성하기 위하여, 본 발명은 UDP-글리코실트랜스퍼라제의 존재 하에 스테비오사이드(stevioside) 및 UDP-glucose로부터 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법에 있어서, In order to achieve the above object, the present invention provides a method for preparing rebaudioside A from stevioside and UDP-glucose in the presence of UDP-glycosyltransferase,

말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase)로 구성된 효소와 아세틸포스페이트(acetylphosphate), 말토덱스트린(maltodextrin), UMP 및 ATP로 구성된 기질을 첨가하여 UDP-glucose를 재생하는 것을 특징으로 하는 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법을 제공한다.
Maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, and glass delayed canine (Rebaudioside A) which is characterized in that UDP-glucose is regenerated by adding a substrate composed of uridylate kinase and a substrate composed of acetylphosphate, maltodextrin, UMP and ATP. . ≪ / RTI >

발명에 따르면, 고가의 UDP 글루코오스를 사용하지 않고, 경제적으로 스테비오사이드로부터 레바우디오사이드 A를 제조할 수 있어, 스테비아 감미료 생산 단가를 낮출 수 있다.
According to the invention, rebaudioside A can be produced economically from stevioside without using expensive UDP glucose, and the cost of producing stevia sweetener can be lowered.

도 1은 Stevioside 로부터 Rebaudioside A를 합성하는 경로를 나타낸 것이다.
도 2는 스테비아 유래 UDP-glucosyltransferase의 정제결과를 SDS-PAGE로 나타낸 것이다.
도 3은 효소반응에 의해 생성된 Rebaudioside A를 HPLC로 확인한 것이다.
도 4는 UDP-glucosyltransferase 활성의 온도에 대한 영향 (A)과 pH에 대한 영향 (B)을 나타낸 것이다.
도 5는 Escherichia coli K-12 substr. MG1655 유래 유전자들의 발현을 SDS-PAGE로 확인한 것이다(1 : total protein without induction, 2 : total protein with induction, 3 : souble protein, 4 : purified protein)
도 6은 표준물질 UDP-glucose (A)와 반응액 (B)의 HPLC 분석 결과를 나타낸 것이다.
도 7은 효소 양에 따른 UDP-Glucose 생성량(A)과 rebaudiosideA 생성의 상대적 활성(B)을 나타낸 것이다.
도 8은 본 발명의 효소를 이용한 반응액의 반응시간에 따른 stevioside와 rebaudiosideA의 농도를 나타낸 것이다.
Figure 1 shows the route of synthesis of Rebaudioside A from Stevioside.
Fig. 2 shows the result of purification of UDP-glucosyltransferase derived from Stevia by SDS-PAGE.
FIG. 3 shows Rebaudioside A produced by an enzyme reaction by HPLC.
Figure 4 shows the effect of temperature (A) on UDP-glucosyltransferase activity and the effect on pH (B).
Figure 5 is a graph coli K-12 substr. Expression of MG1655-derived genes was confirmed by SDS-PAGE (1: total protein without induction, 2: total protein with induction, 3: souble protein,
FIG. 6 shows the HPLC analysis results of the reference material UDP-glucose (A) and the reaction solution (B).
7 shows the amount of UDP-glucose produced (A) and the relative activity of rebaudioside A production (B) according to the amount of enzyme.
FIG. 8 shows the concentrations of stevioside and rebaudiosideA depending on the reaction time of the reaction solution using the enzyme of the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

일 관점에서, 본 발명은 UDP-글리코실트랜스퍼라제의 존재 하에 스테비오사이드(stevioside) 및 UDP-glucose로부터 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법에 있어서, In one aspect, the present invention provides a method for preparing rebaudioside A from stevioside and UDP-glucose in the presence of UDP-glycosyltransferase,

말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase)로 구성된 효소와 아세틸포스페이트(acetylphosphate), 말토덱스트린(maltodextrin), UMP 및 ATP로 구성된 기질을 첨가하여 UDP-glucose를 재생하는 것을 특징으로 하는 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법에 관한 것이다. Maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, and glass delayed canine (Rebaudioside A) which is characterized in that UDP-glucose is regenerated by adding a substrate composed of uridylate kinase and a substrate composed of acetylphosphate, maltodextrin, UMP and ATP. .

스테비아 추출물에 포함된 스테비오사이드를 효소처리를 통하여 고감미를 가지는 레바우디오사이드 A로 전환시키는 반응을 도 1에 나타내었다.The conversion of stevioside contained in the stevia extract to rebaudioside A having high sweetness through enzyme treatment is shown in Fig.

그러나, 기존의 효소처리를 통한 전환반응에서는 당 공여체로서 고가의 UDP-glucose 를 사용하게 되어, 산업적으로 이용하는데 있어 경제력이 떨어졌다. However, in the conversion reaction through the conventional enzymatic treatment, expensive UDP-glucose was used as a saccharide donor, and the economical power for industrial use was lowered.

이러한 단점을 보완하기 위하여 본 발명에서는 저가의 maltodextrin, UTP, phosphate를 이용하여 UDP-glucose를 합성하는 시스템을 도입하였다. 상기 UDP-glucose 합성 시스템에는 maltodextrin phosphorylase, glucose-1-phophate thymidylytrasferase, inorganic pyrophosphatase, acetate kinase 및 uridylate kinase의 여러 효소들이 관여하므로(도 1), 본 발명에서는 이들 효소를 클로닝하여 형질전환제를 구축하고 발현시킨 후, 상기 효소들을 정제하여 UDP-glucose 합성에 적용하였다.To overcome these disadvantages, the present invention introduces a system for synthesizing UDP-glucose using low-cost maltodextrin, UTP, and phosphate. Since various enzymes such as maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, and uridylate kinase are involved in the UDP-glucose synthesis system (FIG. 1), the present invention clones these enzymes to construct a transformant After expression, the enzymes were purified and applied to the synthesis of UDP-glucose.

본 발명의 일양태에서는 스테비오사이드를 레바우디오사이드 A로 전환하는 효소로 Stevia rebaudiana 유래의 UDP-글리코실트랜스퍼라제(UDP-glycosyltransferase)를 사용하였으며, UDP-글리코실트랜스퍼라제(UDP-glycosyltransferase)를 코딩하는 유전자를 함유하는 재조합 플라스미드를 제작하고 이를 대장균 BL21에 클로닝하여, 효소를 대량발현시킨 후, 정제하여 사용하였다. In one aspect of the invention, an enzyme that converts stevioside to rebaudioside A is Stevia rebaudiana (UDP-glycosyltransferase) derived from UDP-glycosyltransferase was prepared and a recombinant plasmid containing a gene encoding UDP-glycosyltransferase was prepared and cloned into E. coli BL21 to obtain a large amount of enzyme And then purified and used.

따라서, 본 발명의 UDP-글리코실트랜스퍼라제(UDP-glycosyltransferase)는 Stevia rebaudiana 유래인 것을 특징으로 할 수 있다. Thus, the UDP-glycosyltransferase of the present invention can be used as a carrier for Stevia rebaudiana . ≪ / RTI >

본 발명에 있어서, 상기 UDP-글리코실트랜스퍼레라제(UDP-glycosyltransferase)는 서열번호 1의 염기서열에 의해 코딩되는 것임을 특징으로 할 수 있다.In the present invention, the UDP-glycosyltransferase may be characterized in that the UDP-glycosyltransferase is encoded by the nucleotide sequence of SEQ ID NO: 1.

본 발명의 다른 양태에서는 상기 말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase) 으로 구성된 군에서 선택되는 효소를 코딩하는 유전자로 Escherichia coli K-12 substr. MG1655 유래의 유전자를 사용하여, 상기 각각의 유전자를 함유하는 재조합 플라스미드를 제작하고 이를 대장균 BL21에 클로닝하여, 효소를 대량발현시킨 후, 정제하여 사용하였다. In another embodiment of the present invention, the maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase kinase) and uridylate kinase ( Escherichia coli K-12 substr.). Using the gene derived from MG1655, a recombinant plasmid containing each of the above genes was prepared and cloned into Escherichia coli BL21 to express a large amount of the enzyme, followed by purification.

따라서, 본 발명에 있어서, 말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase) 는 Escherichia coli K-12 substr. MG1655 유래인 것을 특징으로 할 수 있다. Thus, in the present invention, maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, kinase) and uridylate kinase Escherichia coli K-12 substr. MG1655. ≪ / RTI >

본 발명의 또 다른 양태에서는 반응조건은 5% maltodextrin, 2 mM UMP, 2 mM ATP, 1 mM MgCl2, 100 mM sodium phosphate buffer (pH 7.5), 0.1 mg/ml Stevioside, 2 mM acetyl phosphate에 malP 80 mU, galU 100 mU, ppa 50 mU, UGT76G1 100 mU, ackA 50 mU, pyrH 100 ㎍을 넣고 총 1ml 이 되도록 한 후 30℃에서 8시간 반응시킨 결과, 90% 이상의 수율로 레바우디오사이드 A가 생성되는 것을 확인하였다(도 8).
In another embodiment of the present invention, the reaction conditions include 5% maltodextrin, 2 mM UMP, 2 mM ATP, 1 mM MgCl 2 , 100 mM sodium phosphate buffer (pH 7.5), 0.1 mg / ml Stevioside, 100 μl of galU, 100 mU of ppa, 100 mU of UGT76G1, 50 mU of ackA and 100 μg of pyrH were added to make 1 ml total, and reacted at 30 ° C for 8 hours. Rebaudioside A was produced at a yield of 90% (Fig. 8).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1:  One: SteviaStevia rebaudianarebaudiana 유래의 Derived UDPUDP -- glycosyltransferaseglycosyltransferase 형질전환제 구축 및 발현 Construction and expression of transformants

Stevia rebaudiana 유래의 UDP-glycosyltransferase (accession number; AY345974) (UGT76G1)를 pET41a 벡터(novagen, 미국)의 NcoI/BamHI 사이트에 클로닝함으로써 pET41a/UGT76G1 재조합 플라스미드를 구축하였다. 효소 활성을 측정하기 위하여 재조합 플라스미드를 E. coli BL21에 도입하여 형질전환체를 구축하였다. Stevia rebaudiana A pET41a / UGT76G1 recombinant plasmid was constructed by cloning the UDP-glycosyltransferase (accession number; AY345974) (UGT76G1) from the Nco I / Bam HI site of the pET41a vector (novagen, USA). In order to measure the enzyme activity, a recombinant plasmid was introduced into E. coli BL21 to construct a transformant.

형질전환체를 50 ㎍/㎖ kanamycin이 첨가된 LB 액체배지에 37℃에서 OD600의 값이 0.5가 될 때까지 진탕배양하여 0.1 mM의 IPTG를 첨가하고 25℃에서 12시간 동안 180rpm으로 진탕 배양함으로써 효소의 과발현을 유도하였다. 배양체를 원심분리하여 침전된 균체를 회수하고, 0.85% NaCl로 두 번 세척하였다. 회수된 균체에 1 mM PMSF, 1x protease inhibitor cocktail 이 첨가된 50 mM Tris-HCl (pH 7.5)를 가하여 초음파로 파쇄한 후, 원심분리하여 회수한 상등액을 반응에 사용하였다. Hisp-tag을 이용한 정제를 위해 상등액을 Ni-NTA agarose 담체를 통과시켜 크로마토그래피를 수행하였다. 효소의 용출시 250 mM imidazole, 300 mM NaCl, 20 mM Tris-Cl (pH 8.0)을 포함하는 용출액으로 효소활성 분획을 취하여 정제여부를 SDS-PAGE로 확인하였다(도 2). 정제된 효소는 Amicon Ultra-15 (Millipore, 5K NMWL device)으로 농축 및 염을 제거하였다. The transformant was cultured in an LB liquid medium supplemented with 50 μg / ml kanamycin at 37 ° C. until the OD 600 value reached 0.5, 0.1 mM IPTG was added, and the mixture was cultured at 25 ° C. for 12 hours with shaking at 180 rpm Overexpression of the enzyme was induced. The cultures were centrifuged to recover precipitated cells and washed twice with 0.85% NaCl. The recovered cells were sonicated with 50 mM Tris-HCl (pH 7.5) supplemented with 1 mM PMSF and 1x protease inhibitor cocktail, and centrifuged to recover the supernatant. For purification using Hisp-tag, the supernatant was passed through a Ni-NTA agarose carrier and chromatographed. When the enzyme was eluted, the enzyme active fraction was eluted with an eluent containing 250 mM imidazole, 300 mM NaCl and 20 mM Tris-Cl (pH 8.0), and the purification was confirmed by SDS-PAGE (FIG. The purified enzyme was concentrated and desalted with Amicon Ultra-15 (Millipore, 5K NMWL device).

UGT76G1의 활성을 측정하기 위하여 stevioside를 기질로 하여 반응시켰다. 50 mM Tris-HCl (pH 7.5), 2 mM UDP-glucose, 1 mM MgCl2, 1 mg/ml Stevioside, 효소 상등액 100 ㎍을 합하여 최종 1 ml이 되도록 하여 30에서 1시간 반응시켰다. 반응물은 ZORBAX NH2 (4.6 x 250 5μm, Agilent) 컬럼이 장착된 HPLC를 사용하여 분석하였다. 이동상으로는 30% 물과 70% acetonitrile을 유속 1㎖/min로 흘려주고, 컬럼 온도 30℃의 조건에서 분석하였으며 210nm에서 흡광도를 측정하였으며, 효소반응을 통해 stevioside로부터 rebaudioside A가 생성된 것을 확인할 수 있었다(도 3).To measure the activity of UGT76G1, stevioside was used as a substrate. 1 mM MgCl 2 , 1 mg / ml Stevioside, and 100 μg of the enzyme supernatant were added to a final volume of 1 ml, and the mixture was reacted at 30 ° C for 1 hour. The reaction was analyzed using HPLC equipped with ZORBAX NH 2 (4.6 x 250 5 μm, Agilent) column. As a mobile phase, 30% water and 70% acetonitrile were flowed at a flow rate of 1 ml / min and analyzed at a column temperature of 30 ° C., and absorbance was measured at 210 nm. Rebaudioside A was generated from stevioside through enzyme reaction (Fig. 3).

효소의 유닛(U)은 단위시간 당 (1min) 1 μmol의 rebaudioside A를 생성하는데 필요한 효소의 양으로 정의하였다. The unit of enzyme (U) was defined as the amount of enzyme required to produce 1 μmol of rebaudioside A per unit time (1 min).

UGT76G1의 정제단계에 따른 활성 및 회수율Activity and recovery rate of UGT76G1 according to the purification step Total vol. (ml)Total vol. (ml) Total protein (mg)Total protein (mg) Total activity (U)Total activity (U) Specific activity (U/mg)Specific activity (U / mg) Purification
(Fold)
Purification
(Fold)
Yield (%)Yield (%)
Crude extractCrude extract 33 4.484.48 3.173.17 0.710.71 1.01.0 100100 Ni-NTA affinity chromatographyNi-NTA affinity chromatography 0.50.5 0.610.61 0.540.54 0.890.89 1.261.26 17.0317.03

실시예Example 2:  2: SteviaStevia rebaudianarebaudiana 유래의  Derived UDPUDP -- glycosyltransferase 의glycosyltransferase 특성 조사 Investigate characteristics

실시예 1에서 분리 정제한 UGT76G1 효소의 Stevioside를 기질로한 최적반응조건을 알아보기 위해 반응온도, 반응 pH에 대한 조사를 하였다. Reaction temperature and reaction pH were investigated to determine the optimal reaction conditions of UGT76G1 enzyme purified from Streptomyces sp.

과발현 후 파쇄한 효소를 사용하여 20 ~ 80℃에서 10℃ 간격으로 상대적인 활성을 측정하였으며, 37℃가 반응 최적온도인 것을 알 수 있었다(도 3의 A). 또한 재조합 효소의 최적 pH를 조사하기 위해 50 mM Citrate-NaOH 버퍼 (pH 3.0-6.0), 50 mM Tris-HCl 버퍼 (pH 5.0-8.5), 50 mM Sodium phosphate 버퍼 (pH 5.0-8.0), 50 mM Glycine-NaOH 버퍼 (pH 8.0-11.0)의 완충용액을 사용하였다. 각 완충용엑에서 반응시킨 후 상대적인 활성을 조사한 결과 50mM Sodium phosphate 버퍼 pH 7.5에서 최대 활성을 나타내었다(도 4의 B).
Relative activity was measured at 20 ° C to 80 ° C at 10 ° C intervals using the enzyme digested after overexpression, and it was found that 37 ° C was the optimal reaction temperature (FIG. 3A). 50 mM citrate-NaOH buffer (pH 3.0-6.0), 50 mM Tris-HCl buffer (pH 5.0-8.5), 50 mM sodium phosphate buffer (pH 5.0-8.0) and 50 mM A buffer solution of Glycine-NaOH buffer (pH 8.0-11.0) was used. As a result of measuring the relative activity after reacting in each buffer solution, the activity was maximum at 50 mM sodium phosphate buffer pH 7.5 (FIG. 4B).

실시예Example 3:  3: UDPUDP -- glucoseglucose regenerationregeneration systemsystem 에 관여하는 Involved in EscherichiaEscherichia colicoli K-12 K-12 substsubst . . MG1655MG1655 균주 유래 효소들의 특성 조사 Investigation of the characteristics of strain-derived enzymes

경제적인 공정을 위하여 UDP-glucose를 생산하는 시스템을 적용하는데 필요한 효소들은 Escherichia coli K-12 substr. MG1655로부터 PCR을 이용하여 증폭한 후 발현 벡터에 클로닝하였다. 그리하여 maltodextrin phosphorylase (accession NO. EG10560)의 활성을 가진 pET41a/malP, glucose-1-phophate thymidylytrasferase (accession NO. EG11319) 활성을 가진 pET302/galU, inorganic pyrophosphatase (accession NO. EG10755) 활성을 가진 pET302/ppa, acetate kinase (accession NO. EG10027) 활성을 가진 pET302/ackA, uridylate kinase (accession NO. EG11539) 활성을 가진 pET302/pyrH 재조합 플라스미드를 각각 구축하였다.The enzymes required for the UDP-glucose production system for economical processing are Escherichia coli K-12 substr. Amplified from MG1655 using PCR, and cloned into an expression vector. Thus, pET302 / ppA with activity of pET30a / malP, glucose-1-phophate thymidylytrasferase (accession NO. EG11319) activity and maltodextrin phosphorylase (accession NO. EG10560) activity and pET302 / galU and inorganic pyrophosphatase (accession NO. EG10755) , pET302 / ackA, and uridylate kinase (accession NO. EG11539), respectively, with the activity of acetate kinase (accession NO. EG10027).

상기 재조합 플라스미드들을 대장균 [BL21(DE3)]에 도입하여 형질전환체를 구축하였다. 항생제가 첨가된 LB 액체배지에서 37℃에서 1시간 30분 동안 진탕 배양하여, 600nm에서 흡광도 값이 0.5가 되었을 때 0.5 mM이 되도록 IPTG를 첨가하여 효소의 과발현을 유도하여 20℃에서 16시간 동안 180rpm으로 진탕 배양하였다. 배양체를 원심분리하여 침전된 균체를 회수하고, 0.85% NaCl로 두 번 세척하였다. 회수된 균체에 1 mM PMSF, 1x protease inhibitor cocktail 이 첨가된 50 mM Tris-HCl (pH 7.5)를 가하여 초음파로 파쇄한 후, 원심분리하여 상등액을 회수하였다. 회수한 효소 상등액의 발현유무를 SDS-PAGE를 통해 확인한 후(도 5), 효소반응 실험에 사용하였다. The recombinant plasmids were introduced into Escherichia coli [BL21 (DE3)] to construct a transformant. The cells were cultured in LB liquid medium supplemented with antibiotics at 37 ° C for 1 hour and 30 minutes. When the absorbance at 600 nm reached 0.5, IPTG was added to induce overexpression of the enzyme. Lt; / RTI > The cultures were centrifuged to recover precipitated cells and washed twice with 0.85% NaCl. To the recovered cells, 50 mM Tris-HCl (pH 7.5) supplemented with 1 mM PMSF and 1x protease inhibitor cocktail was added to the recovered cells, disrupted by ultrasonication, and centrifuged to recover the supernatant. The presence or absence of expression of the recovered enzyme supernatant was confirmed by SDS-PAGE (Fig. 5) and used for the enzyme reaction experiment.

상기 정제한 Escherichia coli K-12 substr. MG1655 유래 효소들(maltodextrin phosphorylase, glucose-1-phophate thymidylytrasferase, inorganic pyrophosphatase, acetate kinase 및 uridylate kinase)의 각각의 활성을 알아보기 위해 다음과 같은 표준반응실험을 하였다. The purified Escherichia coli K-12 substr. The following standard reaction experiments were performed to examine the activities of the MG1655-derived enzymes (maltodextrin phosphorylase, glucose-1-phophate thymidylytrasferase, inorganic pyrophosphatase, acetate kinase and uridylate kinase).

(ⅰ) malP : malP 의 활성은 maltodextrin을 기질로 하여 반응시켜 생성된 UDP-glucose 양으로 나타낼 수 있다. 반응조건은 100 mM phosphate (pH 7.5), 5% maltodextrin, 5 mM MgCl2, 5 mM UTP, 0.25 U galU, 1 U ppa를 넣고 1㎎의 malP protein 을 넣어 최종 1 ml이 되도록 한 후 30℃에서 30분간 반응시켰다. 반응 생성물인 UDP-glucose는 NH2 column (5um, 4.6x250mm, aglient사) 이 장착된 HPLC를 이용하여 분석하였다. 이동상으로는 67 mM Na2HPO4-KH2PO4 (pH 5.3)를 1.5 ml/min의 속도로 흘려주면서 260nm에서 측정하였다. 효소의 유닛은 1분당 1 μmol의 기질을 변화시키는데 필요한 효소의 양으로 정의하였다(표 2).
(I) malP: The activity of malP can be expressed as the amount of UDP-glucose produced by reacting maltodextrin as a substrate. The reaction conditions were as follows: 100 mM phosphate (pH 7.5), 5% maltodextrin, 5 mM MgCl 2 , 5 mM UTP, 0.25 U galU and 1 U ppa, And reacted for 30 minutes. The reaction product, UDP-glucose, was analyzed by HPLC equipped with NH 2 column (5 μm, 4.6 × 250 mm, aglient). The mobile phase was measured at 260 nm while flowing 67 mM Na 2 HPO 4 -KH 2 PO 4 (pH 5.3) at a flow rate of 1.5 ml / min. Enzyme units were defined as the amount of enzyme required to change 1 μmol substrate per minute (Table 2).

Escherichia coli K-12 substr. MG1655 유래 malP의 정제단계에 따른 활성 및 회수율 Escherichia coli K-12 substr. Activity and recovery rate of MG1655-derived malP according to purification steps Total vol. (ml)Total vol. (ml) Total protein (mg)Total protein (mg) Total activity (U)Total activity (U) Specific activity (U/mg)Specific activity (U / mg) Purification
(Fold)
Purification
(Fold)
Yield (%)Yield (%)
Crude extractCrude extract 1One 8.048.04 2.172.17 0.270.27 1.01.0 100100 Ni-NTA affinity chromatographyNi-NTA affinity chromatography 0.10.1 0.640.64 0.290.29 0.460.46 1.701.70 13.5613.56

(ⅱ) galU : galU의 표준반응액은 50 mM phosphate (pH 7.5), 5 mM MgCl2, 5 mM glucose-1-phosphate, 2 mM UTP, 1 ㎎의 galU protein 을 넣어 최종 1 ml이 되도록 한 후 30℃에서 1분간 반응시켰다. 생성물인 UDP-glucose는 NH2 column 이 장착된 HPLC를 이용하여 분석하였다 (표 3).
(Ii) galU: The standard reaction solution was prepared by adding 50 mM phosphate (pH 7.5), 5 mM MgCl 2 , 5 mM glucose-1-phosphate, 2 mM UTP and 1 mg of galU protein to 1 ml The reaction was carried out at 30 DEG C for 1 minute. The product, UDP-glucose, was analyzed by HPLC with NH 2 column (Table 3).

Escherichia coli K-12 substr. MG1655 유래 galU의 정제단계에 따른 활성 및 회수율 Escherichia coli K-12 substr. Activity and recovery rate of MG1655-derived galU according to purification step Total vol. (ml)Total vol. (ml) Total protein (mg)Total protein (mg) Total activity (U)Total activity (U) Specific activity (U/mg)Specific activity (U / mg) Purification
(Fold)
Purification
(Fold)
Yield (%)Yield (%)
Crude extractCrude extract 1One 10.1910.19 68.2768.27 6.706.70 1.01.0 100100 Ni-NTA affinity chromatographyNi-NTA affinity chromatography 0.10.1 2.802.80 27.3827.38 9.779.77 1.461.46 40.1040.10

(ⅲ) ppa : ppa의 표준반응액은 50 mM Tris-HCl (pH 7.5), 5 mM MgCl2, 10 mM Na4P2O7, 1 mg 의 ppa protein 을 넣어 최종 1 ml이 되도록 한 후 30℃에서 1분간 반응시켰다. 반응이 끝나면 반응액 중 20 ㎕를 500 ㎕의 phosphorus-determining reagent solution(17% H2SO4 : 2.5% Na2MoO4-(NH4)2SO4 : 10% L-ascortbic acid : H2O = 1:1:1:2)에 넣고 480 ㎕ H2O를 넣어 45℃에서 10분간 반응시켰다. 생성물은 660nm에서의 흡광도로 확인하였다(표 4). (Iii) Standard reaction solution of ppa: ppa was prepared by adding 50 mM Tris-HCl (pH 7.5), 5 mM MgCl 2 , 10 mM Na 4 P 2 O 7 and 1 mg of ppa protein Followed by reaction at 30 ° C for 1 minute. After the reaction was completed, 20 μl of the reaction solution was added to 500 μl of a phosphorus-determining reagent solution (17% H 2 SO 4 : 2.5% Na 2 MoO 4 - (NH 4 ) 2 SO 4 : 10% L-ascorbic acid: : 1: 1: 2), and 480 μl of H 2 O was added thereto, followed by reaction at 45 ° C for 10 minutes. The product was identified by its absorbance at 660 nm (Table 4).

Escherichia coli K-12 substr. MG1655 유래 ppa의 정제단계에 따른 활성 및 회수율 Escherichia coli K-12 substr. Activity and Recovery Rate of Purified Stage of pp16 from MG1655 Total vol. (ml)Total vol. (ml) Total protein (mg)Total protein (mg) Total activity (U)Total activity (U) Specific activity (U/mg)Specific activity (U / mg) Purification
(Fold)
Purification
(Fold)
Yield (%)Yield (%)
Crude extractCrude extract 1One 14.0214.02 56.0856.08 4.004.00 1.01.0 100100 Ni-NTA affinity chromatographyNi-NTA affinity chromatography 0.10.1 4.914.91 28.5328.53 5.815.81 1.451.45 50.8750.87

(ⅳ) ackA : 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 10mM ATP, 800 mM potassium acetate, 700 mM neutralized hydroxylamine 1 ㎎의 ackA protein 을 넣어 최종 1 ml이 되도록 한 후 30℃에서 5분간 반응시켰다. 반응종료 후에는 10% trichloroacetic acid 1 ml과 1 N HCl에 녹인 1.25% FeCl3 1 ml을 넣어준 후 30℃에서 5분간 반응시킨다. 540nm의 흡광도에서 hydroxamate acetate생성을 측정하였다 (표 5). (Iv) ackA: AckA protein was added to 50 mM Tris-HCl (pH 7.5), 10 mM MgCl 2 , 10 mM ATP, 800 mM potassium acetate, and 700 mM neutralized hydroxylamine to make 1 ml of final ackA protein. Lt; / RTI > After completion of the reaction, 1 ml of 10% trichloroacetic acid and 1 ml of 1.25% FeCl 3 dissolved in 1 N HCl are added and reacted at 30 ° C for 5 minutes. Hydroxamate acetate production was measured at an absorbance of 540 nm (Table 5).

Escherichia coli K-12 substr. MG1655 유래 ackA의 정제단계에 따른 활성 및 회수율 Escherichia coli K-12 substr. Activity and Recovery Rate of Purified Stage of ackA Derived from MG1655 Total vol. (ml)Total vol. (ml) Total protein (mg)Total protein (mg) Total activity (U)Total activity (U) Specific activity (U/mg)Specific activity (U / mg) Purification
(Fold)
Purification
(Fold)
Yield (%)Yield (%)
Crude extractCrude extract 1One 12.3512.35 1808.661808.66 146.45146.45 1.01.0 100100 Ni-NTA affinity chromatographyNi-NTA affinity chromatography 0.10.1 3.893.89 869.61869.61 223.55223.55 1.531.53

실시예Example 4:  4: UDPUDP -- glucoseglucose 의 생합성Biosynthesis of

실시예 3에서 제조한 Escherichia coli K-12 substr. MG1655 유래 효소들을 Maltodextrin, UTP와 반응시켜 UDP-glucose의 생산여부를 확인하였다. 실험방법은 5% maltodextrin, 2mM UMP, 2 mM ATP, 5 mM acetyl phosphate, 1 mM MgCl2, 100 mM sodium phosphate buffer (pH 7.5)에 malP 효소액 10ug, galU 50ug, ppa 15ug, pyrH 50 ug을 넣고 총 1ml이 되도록 한 후 30℃에서 6시간 반응시켰다. 반응생성물의 분석은 NH2 column (5um, 4.6x250mm, aglient사) 을 이용하여 67mM Na2HPO4-KH2PO4 (pH 5.3)를 30℃에서 1.5ml/min의 속도로 흘려주고 260nm에서 측정한다. 그 결과 99.9%의 수율로 UDP-glucose를 얻을 수 있었다 (도 6).
Escherichia < / RTI > prepared in Example 3 coli K-12 substr. The production of UDP-glucose was confirmed by reacting MG1655-derived enzymes with Maltodextrin and UTP. 10 μg malP enzyme solution, 10 μg galU, 15 μg ppa and 50 μg pyrH were added to 5% maltodextrin, 2 mM UMP, 2 mM ATP, 5 mM acetyl phosphate, 1 mM MgCl 2 and 100 mM sodium phosphate buffer And allowed to react at 30 ° C for 6 hours. The reaction product was analyzed by using a NH 2 column (5 μm, 4.6 × 250 mm, aglient) at 67 ° C. Na 2 HPO 4 -KH 2 PO 4 (pH 5.3) at a flow rate of 1.5 ml / min at 30 ° C. do. As a result, UDP-glucose was obtained at a yield of 99.9% (FIG. 6).

실시예Example 5:  5: UDPUDP -- glucoseglucose regenerationregeneration systemsystem 을 이용한 Using SteviosideStevioside 당전이The party 반응 reaction

UDP-glucose regeneration system의 효율적인 작용을 위하여 각각의 효소들의 최적 반응 유닛(U)을 구하는 실험을 하였다. 실험방법은 5% maltodextrin, 2 mM UMP, 2 mM ATP, 1 mM MgCl2, 0.1 mg/ml Stevioside, 5 mM acetyl phosphate, 100 mM sodium phosphate buffer (pH 7.5)에 malP, galU, ppa, ackA, pyrH, UGT76G1 효소의 양을 달리하여 넣고 총 1 ml이 되도록 한 후 30에서 3시간 반응시켰다. 반응물은 ZORBAX NH2 (4.6x250 5um, Agilent) 컬럼이 장착된 HPLC를 사용하여 분석하였다. 이동상으로는 30% 물과 70% acetonitrile을 유속 1 /min 로 흘려주고, 칼럼온도 30의 조건에서 분석하였으며 210nm에서 흡광도를 측정하였다. For the efficient operation of the UDP-glucose regeneration system, the optimal reaction unit (U) of each enzyme was obtained. GalU, ppa, ackA, and pyrH were added to 5 mM maltodextrin, 2 mM UMP, 1 mM MgCl 2 , 0.1 mg / ml stevioside, 5 mM acetyl phosphate and 100 mM sodium phosphate buffer , And the amount of UGT76G1 enzyme was changed to 1 ml in total, followed by reaction at 30 for 3 hours. The reaction was analyzed using HPLC equipped with ZORBAX NH 2 (4.6 x 250 5 um, Agilent) column. In the mobile phase, 30% water and 70% acetonitrile were flown at a flow rate of 1 / min and analyzed under the condition of a column temperature of 30, and the absorbance was measured at 210 nm.

그 결과 malP, galU, ppa의 경우 UDP-glucose를 생성함에 있어 가장 효율적인 효소의 최적 반응 유닛(U)으로 malP 80 mU, galU 100 mU, ppa 50 mU로 정하였고, ackA와 pyrH의 경우 rebaudiosideA를 생성함에 있어 상대적인 활성을 측정하였을 때 가장 효율적인 효소의 최적 반응 유닛(U)으로 ackA 50 mU, pyrH 100 으로 정하였다(도 7). As a result, in the case of malP, galU and ppa, malP 80 mU, gal U 100 mU and ppa 50 mU were selected as the most efficient enzymatic reaction unit (U) for producing UDP-glucose. In case of ackA and pyrH, rebaudiosideA was produced When relative activity was measured, ackA 50 mU, pyrH 100 was selected as the most efficient enzyme reaction unit (U) (Fig. 7).

구축한 UDP-glucose regeneration system을 stevioside 당전이 반응에 도입하였을 때 rebaudioside A를 생성하는지 알아보았다. 반응조건은 5% maltodextrin, 2 mM UMP, 2 mM ATP, 1 mM MgCl2, 100 mM sodium phosphate buffer (pH 7.5), 0.1 mg/ml Stevioside, 2 mM acetyl phosphate에 malP 80 mU, galU 100 mU, ppa 50 mU, UGT76G1 100 mU, ackA 50 mU, pyrH 100 ㎍을 넣고 총 1ml 이 되도록 한 후 30℃에서 반응시켰다. 반응물의 분석은 ZORBAX NH2 (4.6 x 250 5um, Agilent) 컬럼이 장착된 HPLC를 사용하여 분석하였다. 이동상으로는 30% 물과 70% acetonitrile을 유속 1㎖/min 로 흘려주고, column 온도 30℃의 조건에서 분석하였으며 210nm에서 흡광도를 측정하였다. 그 결과, 8시간이면 90% 이상의 수율로 rebaudioside A가 생성되는 것을 확인할 수 있었다 (도 8).
We investigated whether the UDP-glucose regeneration system produced rebaudioside A when stevioside was introduced into the reaction. The reaction conditions were maltodextrin, 2 mM UMP, 2 mM ATP, 1 mM MgCl 2 , 100 mM sodium phosphate buffer (pH 7.5), 0.1 mg / ml stevioside, 2 mM acetyl phosphate, malP 80 mU, galU 100 mU, ppa 50 mU, UGT76G1 100 mU, ackA 50 mU, and pyrH 100 ㎍ were added to make 1 ml total, and then reacted at 30 ° C. Analysis of the reactants was performed using HPLC equipped with ZORBAX NH 2 (4.6 x 250 5 um, Agilent) column. In the mobile phase, 30% water and 70% acetonitrile were flowed at a flow rate of 1 ml / min and analyzed under the conditions of a column temperature of 30 ° C. and absorbance was measured at 210 nm. As a result, it was confirmed that rebaudioside A was produced at a yield of 90% or more in 8 hours (FIG. 8).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시의 일예일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion <130> p13-b139 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 458 <212> PRT <213> Artificial Sequence <220> <223> Stevia rebaudiana UDP glycosyltransferase <400> 1 Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile 1 5 10 15 Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu 20 25 30 Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr 35 40 45 Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg 50 55 60 Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro 65 70 75 80 Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His 85 90 95 Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser 100 105 110 Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr 115 120 125 Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu 130 135 140 Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln 145 150 155 160 Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu 165 170 175 Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser 180 185 190 Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile 195 200 205 Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu 210 215 220 Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro 225 230 235 240 Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser 245 250 255 Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro 260 265 270 Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp 275 280 285 Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln 290 295 300 Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp 305 310 315 320 Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val 325 330 335 Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala 340 345 350 Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu 355 360 365 Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn 370 375 380 Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn 385 390 395 400 Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val 405 410 415 Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln 420 425 430 Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu 435 440 445 Glu Ser Leu Val Ser Tyr Ile Ser Ser Leu 450 455 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for Preparing Natural High Intensity Sweetener Rebaudiside          A by Using Enzymatic Conversion <130> p13-b139 <160> 1 <170> Kopatentin 2.0 <210> 1 <211> 458 <212> PRT <213> Artificial Sequence <220> <223> Stevia rebaudiana UDP glycosyltransferase <400> 1 Met Glu Asn Lys Thr Glu Thr Thr Val Arg Arg Arg Arg Arg Ile Ile   1 5 10 15 Leu Phe Pro Val Pro Phe Gln Gly His Ile Asn Pro Ile Leu Gln Leu              20 25 30 Ala Asn Val Leu Tyr Ser Lys Gly Phe Ser Ile Thr Ile Phe His Thr          35 40 45 Asn Phe Asn Lys Pro Lys Thr Ser Asn Tyr Pro His Phe Thr Phe Arg      50 55 60 Phe Ile Leu Asp Asn Asp Pro Gln Asp Glu Arg Ile Ser Asn Leu Pro  65 70 75 80 Thr His Gly Pro Leu Ala Gly Met Arg Ile Pro Ile Ile Asn Glu His                  85 90 95 Gly Ala Asp Glu Leu Arg Arg Glu Leu Glu Leu Leu Met Leu Ala Ser             100 105 110 Glu Glu Asp Glu Glu Val Ser Cys Leu Ile Thr Asp Ala Leu Trp Tyr         115 120 125 Phe Ala Gln Ser Val Ala Asp Ser Leu Asn Leu Arg Arg Leu Val Leu     130 135 140 Met Thr Ser Ser Leu Phe Asn Phe His Ala His Val Ser Leu Pro Gln 145 150 155 160 Phe Asp Glu Leu Gly Tyr Leu Asp Pro Asp Asp Lys Thr Arg Leu Glu                 165 170 175 Glu Gln Ala Ser Gly Phe Pro Met Leu Lys Val Lys Asp Ile Lys Ser             180 185 190 Ala Tyr Ser Asn Trp Gln Ile Leu Lys Glu Ile Leu Gly Lys Met Ile         195 200 205 Lys Gln Thr Lys Ala Ser Ser Gly Val Ile Trp Asn Ser Phe Lys Glu     210 215 220 Leu Glu Glu Ser Glu Leu Glu Thr Val Ile Arg Glu Ile Pro Ala Pro 225 230 235 240 Ser Phe Leu Ile Pro Leu Pro Lys His Leu Thr Ala Ser Ser Ser Ser                 245 250 255 Leu Leu Asp His Asp Arg Thr Val Phe Gln Trp Leu Asp Gln Gln Pro             260 265 270 Pro Ser Ser Val Leu Tyr Val Ser Phe Gly Ser Thr Ser Glu Val Asp         275 280 285 Glu Lys Asp Phe Leu Glu Ile Ala Arg Gly Leu Val Asp Ser Lys Gln     290 295 300 Ser Phe Leu Trp Val Val Arg Pro Gly Phe Val Lys Gly Ser Thr Trp 305 310 315 320 Val Glu Pro Leu Pro Asp Gly Phe Leu Gly Glu Arg Gly Arg Ile Val                 325 330 335 Lys Trp Val Pro Gln Gln Glu Val Leu Ala His Gly Ala Ile Gly Ala             340 345 350 Phe Trp Thr His Ser Gly Trp Asn Ser Thr Leu Glu Ser Val Cys Glu         355 360 365 Gly Val Pro Met Ile Phe Ser Asp Phe Gly Leu Asp Gln Pro Leu Asn     370 375 380 Ala Arg Tyr Met Ser Asp Val Leu Lys Val Gly Val Tyr Leu Glu Asn 385 390 395 400 Gly Trp Glu Arg Gly Glu Ile Ala Asn Ala Ile Arg Arg Val Met Val                 405 410 415 Asp Glu Glu Gly Glu Tyr Ile Arg Gln Asn Ala Arg Val Leu Lys Gln             420 425 430 Lys Ala Asp Val Ser Leu Met Lys Gly Gly Ser Ser Tyr Glu Ser Leu         435 440 445 Glu Ser Leu Val Ser Tyr Ser Ser Leu     450 455

Claims (4)

UDP-글리코실트랜스퍼라제의 존재하에 스테비오사이드(stevioside) 및 UDP-glucose로부터 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법에 있어서,
말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase)로 구성된 효소와 아세틸포스페이트(acetylphosphate), 말토덱스트린(maltodextrin), UMP 및 ATP로 구성된 기질을 첨가하여 UDP-glucose를 재생하는 것을 특징으로 하는 레바우디오사이드 A(rebaoudioside A)를 제조하는 방법.
A method for preparing rebaudioside A from stevioside and UDP-glucose in the presence of UDP-glycosyltransferase,
Maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, and glass delayed canine (Rebaudioside A) which is characterized in that UDP-glucose is regenerated by adding a substrate composed of uridylate kinase and a substrate composed of acetylphosphate, maltodextrin, UMP and ATP. How to.
제1항에 있어서, UDP-글리코실트랜스퍼라제(UDP-glycosyltransferase)는 Stevia rebaudiana 유래인 것을 특징으로 하는 방법.
The method of claim 1, wherein the UDP-glycosyltransferase is Stevia rebaudiana &Lt; / RTI &gt;
제2항에 있어서, 상기 UDP-글리코실트랜스퍼라제 (UDP-glycosyltransferase E)는 서열번호 1의 염기서열에 의해 코딩되는 것임을 특징으로 하는 방법.
3. The method according to claim 2, wherein the UDP-glycosyltransferase E is encoded by the nucleotide sequence of SEQ ID NO: 1.
제1항에 있어서, 말토덱스트린 포스포릴레이즈(maltodextrin phosphorylase), 글루코오스-1-포스페이트 티미딜트랜스퍼레이즈(glucose-1-phophate thymidylytrasferase), 무기 피로포스파타아제(inorganic pyrophosphatase), 아세테이트 키나아제(acetate kinase) 및 유리딜레이트 카이네이즈(uridylate kinase) 는 Escherichia coli K-12 substr. MG1655 유래인 것을 특징으로 하는 방법.
The method according to claim 1, wherein the maltodextrin phosphorylase, glucose-1-phophate thymidyltransferase, inorganic pyrophosphatase, acetate kinase, ) And uridylate kinase are Escherichia coli K-12 substr. RTI ID = 0.0 &gt; MG1655. &Lt; / RTI &gt;
KR1020130072485A 2013-06-24 2013-06-24 Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion KR101559478B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130072485A KR101559478B1 (en) 2013-06-24 2013-06-24 Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130072485A KR101559478B1 (en) 2013-06-24 2013-06-24 Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion

Publications (2)

Publication Number Publication Date
KR20150000258A true KR20150000258A (en) 2015-01-02
KR101559478B1 KR101559478B1 (en) 2015-10-13

Family

ID=52474427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130072485A KR101559478B1 (en) 2013-06-24 2013-06-24 Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion

Country Status (1)

Country Link
KR (1) KR101559478B1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105380224A (en) * 2015-11-19 2016-03-09 南京诺云生物科技有限公司 Novel stevioside derivative, preparation method and application thereof
WO2017178632A1 (en) * 2016-04-13 2017-10-19 Evolva Sa Production of steviol glycosides in recombinant hosts
US9957540B2 (en) 2013-02-06 2018-05-01 Evolva Sa Methods for improved production of Rebaudioside D and Rebaudioside M
US10017804B2 (en) 2013-02-11 2018-07-10 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
CN109196110A (en) * 2018-07-19 2019-01-11 邦泰生物工程(深圳)有限公司 Preparation method, rebandioside A alternation enzyme and the application of rebandioside A
US10364450B2 (en) 2015-01-30 2019-07-30 Evolva Sa Production of steviol glycoside in recombinant hosts
US10392644B2 (en) 2010-06-02 2019-08-27 Evolva Sa Production of steviol glycosides in microorganisms
US10421983B2 (en) 2014-08-11 2019-09-24 Evolva Sa Production of steviol glycosides in recombinant hosts
US10435730B2 (en) 2011-08-08 2019-10-08 Evolva Sa Recombinant production of steviol glycosides
US10612064B2 (en) 2014-09-09 2020-04-07 Evolva Sa Production of steviol glycosides in recombinant hosts
US10815514B2 (en) 2016-05-16 2020-10-27 Evolva Sa Production of steviol glycosides in recombinant hosts
US10837041B2 (en) 2015-08-07 2020-11-17 Evolva Sa Production of steviol glycosides in recombinant hosts
US10947515B2 (en) 2015-03-16 2021-03-16 Dsm Ip Assets B.V. UDP-glycosyltransferases
WO2022139522A1 (en) * 2020-12-23 2022-06-30 주식회사 삼양사 Glycosyltransferase and steviol glucoside preparation method using same
US11396669B2 (en) 2016-11-07 2022-07-26 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2023121426A1 (en) * 2021-12-24 2023-06-29 주식회사 삼양사 Production of rebaudioside
KR20230103294A (en) 2021-12-31 2023-07-07 한화오션 주식회사 Automatic Cabling Loop System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362135B1 (en) 2019-10-25 2022-02-14 고려대학교 산학협력단 Terpene glycosidic analogs, manufacturing method thereof and compositions containing the same as active ingredients

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100888694B1 (en) 2008-09-01 2009-03-16 김경재 Method for production sweet-improved enzymatically modified stevia
MY180803A (en) 2010-06-02 2020-12-09 Evolva Inc Recombinant production of steviol glycosides

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392644B2 (en) 2010-06-02 2019-08-27 Evolva Sa Production of steviol glycosides in microorganisms
US10435730B2 (en) 2011-08-08 2019-10-08 Evolva Sa Recombinant production of steviol glycosides
US9957540B2 (en) 2013-02-06 2018-05-01 Evolva Sa Methods for improved production of Rebaudioside D and Rebaudioside M
US11530431B2 (en) 2013-02-06 2022-12-20 Evolva Sa Methods for improved production of Rebaudioside D and Rebaudioside M
US10612066B2 (en) 2013-02-06 2020-04-07 Evolva Sa Methods for improved production of rebaudioside D and rebaudioside M
US10017804B2 (en) 2013-02-11 2018-07-10 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
US11021727B2 (en) 2013-02-11 2021-06-01 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
US10421983B2 (en) 2014-08-11 2019-09-24 Evolva Sa Production of steviol glycosides in recombinant hosts
US11168343B2 (en) 2014-08-11 2021-11-09 Evolva Sa Production of steviol glycosides in recombinant hosts
US10612064B2 (en) 2014-09-09 2020-04-07 Evolva Sa Production of steviol glycosides in recombinant hosts
US11466302B2 (en) 2014-09-09 2022-10-11 Evolva Sa Production of steviol glycosides in recombinant hosts
US10364450B2 (en) 2015-01-30 2019-07-30 Evolva Sa Production of steviol glycoside in recombinant hosts
US11807888B2 (en) 2015-01-30 2023-11-07 Evolva Sa Production of steviol glycoside in recombinant hosts
US11041183B2 (en) 2015-01-30 2021-06-22 Evolva Sa Production of steviol glycoside in recombinant hosts
US11459548B2 (en) 2015-03-16 2022-10-04 Dsm Ip Assets B.V. UDP-glycosyltransferases
US10947515B2 (en) 2015-03-16 2021-03-16 Dsm Ip Assets B.V. UDP-glycosyltransferases
US10837041B2 (en) 2015-08-07 2020-11-17 Evolva Sa Production of steviol glycosides in recombinant hosts
CN105380224A (en) * 2015-11-19 2016-03-09 南京诺云生物科技有限公司 Novel stevioside derivative, preparation method and application thereof
CN109195457A (en) * 2016-04-13 2019-01-11 埃沃尔瓦公司 Steviol glycoside is generated in the recombination host
AU2017251462B2 (en) * 2016-04-13 2022-02-03 Evolva Sa Production of steviol glycosides in recombinant hosts
US11821015B2 (en) 2016-04-13 2023-11-21 Evolva Sa Production of steviol glycosides in recombinant hosts
US10982249B2 (en) 2016-04-13 2021-04-20 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2017178632A1 (en) * 2016-04-13 2017-10-19 Evolva Sa Production of steviol glycosides in recombinant hosts
US10815514B2 (en) 2016-05-16 2020-10-27 Evolva Sa Production of steviol glycosides in recombinant hosts
US11396669B2 (en) 2016-11-07 2022-07-26 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2019161634A1 (en) * 2018-07-19 2019-08-29 邦泰生物工程(深圳)有限公司 Preparation method for rebaudioside a, enzyme for rebaudioside a preparation, and application
CN109196110A (en) * 2018-07-19 2019-01-11 邦泰生物工程(深圳)有限公司 Preparation method, rebandioside A alternation enzyme and the application of rebandioside A
WO2022139522A1 (en) * 2020-12-23 2022-06-30 주식회사 삼양사 Glycosyltransferase and steviol glucoside preparation method using same
WO2023121426A1 (en) * 2021-12-24 2023-06-29 주식회사 삼양사 Production of rebaudioside
KR20230103294A (en) 2021-12-31 2023-07-07 한화오션 주식회사 Automatic Cabling Loop System

Also Published As

Publication number Publication date
KR101559478B1 (en) 2015-10-13

Similar Documents

Publication Publication Date Title
KR101559478B1 (en) Method for Preparing Natural High Intensity Sweetener Rebaudiside A by Using Enzymatic Conversion
KR101223381B1 (en) Isocyclomaltooligosaccharide, isocyclomaltooligosaccharide synthase, process for producing them and use thereof
US9364492B2 (en) Method for glycosylation of flavonoid compounds
CN106754595B (en) One plant of recombinant bacterium and its application in catalysis content rebaudioside-A generation rebaudioside D
KR20130014227A (en) NOVEL α-GLUCOSYL STEVIOSIDES AND PROCESS FOR PRODUCING THE SAME
KR20090010024A (en) Construction of new variants of dextransucrase dsr-s by genetic engineering
CN108192937B (en) Method for preparing glucosyl stevioside at high flux by enzymatic temperature change
KR101129098B1 (en) Cyclic maltosyl maltose, cyclic maltosyl maltose synthase, method of producing the same and use thereof
CN109154012B (en) Method for producing steviol and steviol glycoside Using AOBGL11 homolog
JP7000327B2 (en) Methods for Small Molecule Glycosylation
Nguyen et al. Production of steviol from steviol glucosides using β-glycosidase from Sulfolobus solfataricus
KR100853353B1 (en) Polypeptide having ?-isomaltosylglucosaccharide synthase activity
KR101433660B1 (en) Production of ginsenoside Rg3, Rh1 and Rg2 using novel ginsenoside glycosidase
Horaguchi et al. Nigero-oligosaccharide production by enzymatic hydrolysis from alkaline-pretreated α-1, 3-glucan
Cai et al. Improved soluble bacterial expression and properties of the recombinant flavonoid glucosyltransferase UGT73G1 from Allium cepa
CN108715876B (en) Method for preparing low-grafting-number glucosyl stevioside
KR20110110882A (en) Method for preparing glycosylated flavonoids
Kang et al. Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4
KR20180055735A (en) Synthesis method of stevioside glucosides using modified Leuconostoc and Novel stevioside glucosides made by the same
US11242550B2 (en) High-throughput enzymatic preparation of glucosylated steviol glycosides under programming temperatures
KR101978565B1 (en) Pullulan degrading enzyme from Ruminococcus bromii and use thereof
KR102303661B1 (en) Compositions comprising glucose transferase for producing glucosylated steviol glycosides and method for producing glucosylated steviol glycosides using the same
KR20190063189A (en) Novel α-Glucosyl-Rebaudioside A and Method for Preparing The Same
WO2020122050A1 (en) Cycloisomaltotetraose, cycloisomaltotetraose production enzyme, and production methods and uses thereof
KR20230058757A (en) Method for producing D-allose from D-allulose using L-rhamnose isomerase from Paenibacillus baekrokdamisoli

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 5