KR20140139983A - Ferrite and transformer - Google Patents

Ferrite and transformer Download PDF

Info

Publication number
KR20140139983A
KR20140139983A KR1020140063949A KR20140063949A KR20140139983A KR 20140139983 A KR20140139983 A KR 20140139983A KR 1020140063949 A KR1020140063949 A KR 1020140063949A KR 20140063949 A KR20140063949 A KR 20140063949A KR 20140139983 A KR20140139983 A KR 20140139983A
Authority
KR
South Korea
Prior art keywords
terms
mol
mass
ferrite
oxide
Prior art date
Application number
KR1020140063949A
Other languages
Korean (ko)
Other versions
KR101990781B1 (en
Inventor
쇼지 스사
다쿠야 아오키
아쓰시 다카라다
가쓰시 야스하라
겐타로 모리
Original Assignee
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티디케이가부시기가이샤 filed Critical 티디케이가부시기가이샤
Publication of KR20140139983A publication Critical patent/KR20140139983A/en
Application granted granted Critical
Publication of KR101990781B1 publication Critical patent/KR101990781B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

[TASK] The present invention provides MnZn-based ferrite having a high saturation magnetic flux density Bs, a low magnetic low Pcv, and a high loss strength. [SOLUTION] MnZn-based ferrite according to the present invention contains a main component which is composed of 66 mol% to 70 mol% of iron oxide in terms of Fe2O3, 10 mol% to 20 mol% of zinc oxide in terms of ZnO, and 0.4 mol% to 2 mol% of nickel oxide in terms of NiO, and the remainder which is substantially composed of MnO, and contains 0.005 wt% to 0.3 wt% of Si in terms of SiO2, 0.02 wt% to 0.15 wt% of Ca in terms of CaO, 0.01 wt% to 0.1 wt% of Nb in terms of Nb2O5, 0.005 wt% to 0.04 wt% of Zr in terms of ZrO2, and 0.05 wt% to 0.35 wt% of Sn in terms of SnO, with respect to the total weight of the oxide which is the main component.

Description

페라이트 및 트랜스{FERRITE AND TRANSFORMER}FERRITE AND TRANSFORMER < RTI ID = 0.0 >

본 발명은, Fe, Mn, Zn 및 Ni를 포함하는 페라이트 및 이것을 사용한 트랜스에 관한 것이다.
The present invention relates to a ferrite including Fe, Mn, Zn and Ni and a transformer using the ferrite.

최근, 전자 기기의 소형화, 다기능화가 급속히 진전됨에 따라, 각종 부품의 고집적화, 고주파화도 진행되고, 공급되는 전류도 대전류화가 진행되고 있다. 대전류화에 따라, 각종 부품으로부터의 발열은 증대하고, 전자 기기의 구동시의 발열에 의한 온도 상승도 고려하여, 트랜스, 쵸크 코일과 같은 회로 부품에 사용되는 자심(磁芯) 재료는, 실온으로부터 120℃ 정도의 고온까지 높은 포화 자속 밀도 Bs를 확보하는 것이 요구되고 있고, 각종 부품의 고온에서의 안정적이고 확실한 구동이 요구되고 있다.2. Description of the Related Art In recent years, miniaturization and multifunctionalization of electronic devices have progressed rapidly, and the integration and high frequency of various components have progressed, and the current supplied is also being increased. As the current increases, the heat from various components increases. In consideration of the temperature rise due to heat generation when the electronic device is driven, a magnetic core material used for circuit components such as a transformer and a choke coil, It is required to secure a high saturation magnetic flux density Bs up to a high temperature of about 120 DEG C, and stable and reliable driving of various components at high temperatures is required.

MnZn계 페라이트는, 일반적으로 트랜스 및 쵸크 코일의 재료로서 사용되고 있다. 이러한 요망에 따르기 위해, 트랜스나 쵸크 코일 등에 사용되는 MnZn계 페라이트는, 동작 온도에 있어서 높은 포화 자속 밀도 Bs, 및 낮은 자기 손실 Pcv를 갖는 것이 요구되고 있다.MnZn ferrites are generally used as materials for transformers and choke coils. To meet this demand, MnZn ferrites used in transformers, choke coils, and the like are required to have a high saturation magnetic flux density Bs at operating temperature and a low magnetic loss Pcv.

한편, 페라이트의 제조 중 및 수송 중의 핸들링성을 개선하고, 또한 페라이트 코어로의 보빈 장착성이나, 장착한 보빈으로의 권선의 작업성을 높이기 위해서는, 페라이트의 기계적 강도가 높은 것이 요구되고 있다. 그 중에서도 충격에 의한 페라이트의 결손이 생기기 어려운 것, 즉 결손 강도가 높은 것이 중요하다.On the other hand, ferrite is required to have high mechanical strength in order to improve the handling properties during ferrite production and transportation, and to improve the bobbin attachability to the ferrite core and the workability of the winding to the mounted bobbin. Among them, it is important that the defect of the ferrite due to impact is hard to occur, that is, the defect strength is high.

높은 포화 자속 밀도 Bs와, 자기 손실 Pcv를 낮게 억제한 MnZn계 페라이트 재료 및 이의 제조 방법에 대해서는 몇 가지가 제안되어 있다.
Several methods have been proposed for a MnZn-based ferrite material with a high saturation magnetic flux density Bs and a low magnetic loss Pcv and a method for producing the same.

일본 공개특허공보 특개2007-31210호Japanese Patent Application Laid-Open No. 2007-31210 일본 공개특허공보 특개2011-195415호Japanese Laid-Open Patent Publication No. 2011-195415 일본 공개특허공보 특개2005-272229호Japanese Patent Application Laid-Open No. 2005-272229

그러나, 특허문헌 1에서는, 100℃에서의 낮은 자기 손실화와 높은 포화 자속 밀도화의 특성 개선은 이루어지고 있으나, Fe2O3량이 적기 때문에 포화 자속 밀도 Bs가 낮고, 큐리점(Curie point)도 낮아진다. 또한 고온의 120℃에서의 포화 자속 밀도의 특성 개선에 대한 검토가 이루어져 있지 않다. 또한, 특허문헌 2의 기술에서 수득되는 페라이트는 결손 강도가 반드시 충분한 것은 아니다. 특허문헌 3에서는, NiO를 다량으로 함유하고 있기 때문에 120℃에서의 포화 자속 밀도 Bs가 충분히 수득되어 있지 않다.However, although Patent Literature 1 improves the characteristics of low magnetic loss at 100 ° C and high saturation magnetic flux density, since the amount of Fe 2 O 3 is small, the saturation magnetic flux density Bs is low and the Curie point Lower. Further, the improvement of the characteristics of the saturation magnetic flux density at a high temperature of 120 占 폚 has not been studied. In addition, the ferrite obtained by the technique of Patent Document 2 does not necessarily have sufficient defect strength. In Patent Document 3, the saturation magnetic flux density Bs at 120 占 폚 is not sufficiently obtained because NiO is contained in a large amount.

본 발명은 이러한 실상을 바탕으로 창안된 것으로서, 그 목적은 고온 하(120℃)에서 높은 포화 자속 밀도 Bs와 낮은 자기 손실 Pcv를 갖고, 또한 결손 강도가 뛰어난 Mn-Zn계 페라이트를 제안하는 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its object is to provide a Mn-Zn ferrite having a high saturation magnetic flux density Bs and a low magnetic loss Pcv at a high temperature (120 ° C)

상기한 과제를 해결하고, 목표를 달성하기 위하여 페라이트 원료인 조립분(造粒粉)의 주성분 및 미량 성분을 각각 적정 범위로 제어하는 것이 중요함을 발견하였다.It has been found that it is important to control the main component and the minor component of the granulated powder as the ferrite raw material to an appropriate range in order to solve the above problems and achieve the target.

즉, 제1 수단에 따른 Mn-Zn계 페라이트는 산화철을 Fe2O3 환산으로 66mol% 이상 70mol% 이하, 산화아연을 ZnO 환산으로 10mol% 이상 20mol% 이하, 산화니켈을 NiO 환산으로 0.4mol% 이상 내지 2mol% 이하, 잔부가 산화망간이 되는 주성분으로 이루어지고, 주성분인 상기 산화물의 합계 질량에 대하여, Si를 SiO2 환산으로 0.005질량% 이상 0.03질량% 이하, Ca를 CaO 환산으로 0.02질량% 이상 0.15질량% 이하, Nb를 Nb2O5 환산으로 0.01질량% 이상 0.1질량% 이하, Zr을 ZrO2 환산으로 0.005질량% 이상 0.04질량% 이하, Sn을 SnO 환산으로 0.05질량% 이상 0.35질량% 이하 함유하는 것을 특징으로 한다.That is, the Mn-Zn ferrite according to the first means is composed of 66 mol% or more and 70 mol% or less of iron oxide in terms of Fe 2 O 3 , 10 mol% or more and 20 mol% or less of zinc oxide in terms of ZnO, 0.4 mol% By mass or more and 0.03% by mass or less in terms of CaO, based on the total mass of said oxide as a main component, in terms of SiO 2 , less than 0.15% by mass or less, Nb to Nb 2 O 0.01% by mass to 5 in terms of 0.1% by mass or less, 0.005% or more by weight of Zr to ZrO 2 in terms of 0.04% by mass or less, less than 0.05% by mass of Sn as SnO in terms of 0.35% by weight Or less.

제2 수단에 따른 Mn-Zn 페라이트는, 상기 제1 수단에 따른 페라이트에 있어서, 결손 시험에서의 결손률이 2% 미만인 특성을 나타내는 것을 특징으로 한다.The Mn-Zn ferrite according to the second means is characterized in that in the ferrite according to the first means, the defect ratio in the defect test is less than 2%.

제3 수단에 따른 Mn-Zn 페라이트는, 상기 제1 또는 제2 수단 중 어느 하나에 따른 페라이트에 있어서, 주성분인 상기 산화물의 합계 질량에 대하여, V, Ta, Hf를 각각 V2O5, Ta2O5, HfO2로 환산하면 0.001 내지 0.01질량%의 V, Ta, Hf를 적어도 1종 이상 함유하는 것을 특징으로 한다.The Mn-Zn ferrite according to the third means is characterized in that V, Ta, and Hf are V 2 O 5 and Ta, respectively, with respect to the total mass of the oxide as the main component in the ferrite according to the first or second means, 2 O 5 and 0.001 to 0.01 mass% of at least one of V, Ta and Hf in terms of HfO 2 .

제4 수단은, 상기 제1 내지 상기 제3 수단 중 어느 하나에 따른 페라이트로 구성되는 트랜스이다.
The fourth means is a transformer composed of ferrite according to any one of the first to third means.

본 발명에 의하면, 스위칭 전원 등의 전원 트랜스 등에 사용되는 트랜스용 자심, 또는 트랜스(자심의 주변에 코일을 권회(卷回)한 것)로서 본 발명에 따른 페라이트를 사용함으로써, 고온 하에서 높은 포화 자속 밀도 Bs를 갖고, 자기 손실이 낮고, 또한 제조 공정에서의 결손이 일어나기 어려운 페라이트 코어를 수득할 수 있다.
INDUSTRIAL APPLICABILITY According to the present invention, by using ferrite according to the present invention as a transforming magnetic core used in a power transformer or the like such as a switching power supply, or a transformer (a coil is wound around a magnetic core), high saturation flux It is possible to obtain a ferrite core having a density Bs and having a low magnetic loss and hardly causing defects in the manufacturing process.

도 1은 본소성(本燒成) 공정에서의 온도 설정의 일례를 도시한 그래프이다.1 is a graph showing an example of temperature setting in the main firing process.

이하, 본 발명의 실시형태에 대하여 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

[본 발명 MnZn계 페라이트에 대한 설명][Description of MnZn ferrite according to the present invention]

(주성분 조성에 대한 설명)(Explanation of main component composition)

본 발명의 Mn-Zn계 페라이트는, 주성분으로서 산화철을 Fe2O3 환산으로 66 내지 70mol%, (바람직하게는, 66.0 내지 69.0mol%, 보다 바람직하게는 66.0 내지 68.0mol%), 산화아연을 ZnO 환산으로 10 내지 20mol%(바람직하게는 14.5 내지 16.0mol%, 보다 바람직하게는 15.0 내지 16.0mol%), 산화니켈을 NiO 환산으로 0.4 내지 2.0mol%, 잔부가 산화망간 MnO로 하는 기본 조성으로 이루어지고, 부성분으로서 Si를 SiO2 환산으로 0.005 내지 0.03질량%, Ca를 CaO 환산으로 0.02 내지 0.15질량%, Nb를 Nb2O5 환산으로 0.01 내지 0.1질량%, Zr을 ZrO2 환산으로 0.005 내지 0.04질량%, Sn을 SnO 환산으로 0.05 내지 0.35질량% 함유하고 있다.The Mn-Zn ferrite of the present invention contains 66 to 70 mol% (preferably 66.0 to 69.0 mol%, more preferably 66.0 to 68.0 mol%) of iron oxide as the main component in terms of Fe 2 O 3 , 10 to 20 mol% (preferably 14.5 to 16.0 mol%, more preferably 15.0 to 16.0 mol%) in terms of ZnO, 0.4 to 2.0 mol% in terms of NiO as nickel oxide and manganese oxide MnO in the balance , 0.001 to 0.03 mass% of Si in terms of SiO 2 , 0.02 to 0.15 mass% of Ca in terms of CaO, 0.01 to 0.1 mass% of Nb in terms of Nb 2 O 5 , 0.005 to 1 mole of Zr in terms of ZrO 2 , 0.04 mass%, and Sn is 0.05 to 0.35 mass% in terms of SnO.

상기의 주성분 조성에 있어서, Fe2O3량을 늘리면 포화 자속 밀도 Bs를 높이는 효과가 있지만, Fe2O3량이 70.0mol%를 초과하면 자기 손실 Pcv가 증가한다는 불량이 생기는 경향이 있다. 또한, Fe2O3량이 66.0mol% 미만이 되면 포화 자속 밀도 Bs가 저하된다는 불량이 생기는 경향이 있다.In the above-mentioned main component composition, increasing the amount of Fe 2 O 3 has the effect of increasing the saturation magnetic flux density Bs. However, when the amount of Fe 2 O 3 exceeds 70.0 mol%, the magnetic loss Pcv tends to increase. If the amount of Fe 2 O 3 is less than 66.0 mol%, the saturation magnetic flux density Bs tends to deteriorate.

상기의 주성분 조성에 있어서, ZnO량이 20.0mol%를 초과하면 포화 자속 밀도 Bs가 저하되어 자기 손실 Pcv가 높아진다는 불량이 생기는 경향이 있다. ZnO량이 10.0mol% 미만이 되면, 자기 손실 Pcv가 높아진다는 불량이 생기는 경향이 있다.When the amount of ZnO exceeds 20.0 mol% in the above-mentioned main component composition, the saturation magnetic flux density Bs tends to be lowered and the magnetic loss Pcv tends to become high. When the amount of ZnO is less than 10.0 mol%, a defect that the magnetic loss Pcv increases tends to occur.

Ni는, 페라이트의 자기 이방성을 낮추는 작용을 갖는 동시에, 결손 강도를 높인다. 적당량의 Ni를 함유시킴으로써, 낮은 자기 손실을 도모하고 또한, 결손 강도를 향상시킬 수 있다. Ni는 상기 주성분 조성에 있어서, NiO량이 2.0mol%를 초과하면 포화 자속 밀도 Bs가 저하된다는 불량이 생기는 경향이 있다. 또한, NiO량이 0.4mol% 미만이 되면 결손 강도가 저하된다는 불량이 생기는 경향이 있다.
Ni has an effect of lowering the magnetic anisotropy of ferrite, and at the same time, enhances the defect strength. By containing an appropriate amount of Ni, it is possible to achieve low magnetic loss and improve the defect strength. Ni has a tendency that a saturation magnetic flux density Bs is lowered when NiO content exceeds 2.0 mol% in the main component composition. Also, when the amount of NiO is less than 0.4 mol%, defective strength tends to be deteriorated.

(부성분 조성에 대한 설명)(Explanation of subcomponent composition)

Ca는, 페라이트의 소결성을 높이는 작용을 갖는 동시에, 입계(粒界)의 고저항화에 기여하기 때문에, 적정량의 Ca를 함유시킴으로써 자기 손실의 저감화를 도모할 수 있다. 페라이트의 Ca의 함유량(CaO 환산)이, 주성분 산화물의 합계 질량에 대하여, 0.02질량% 미만이 되면 입계가 잘 형성되지 않고 비저항이 저하되어 와전류(渦電流) 손실이 커지는 경향이 있고, 0.15질량%를 초과하면 결정립 성장이 촉진되어 이상(異常) 입자가 생기기 때문에 와전류 손실이 증가하는 경향이 있다. Ca의 함유량(CaO 환산)은, 0.028 내지 0.084질량%인 것이 바람직하다.Ca has an effect of increasing the sinterability of ferrite and contributes to a higher resistance of the grain boundaries. Therefore, by containing Ca in an appropriate amount, the magnetic loss can be reduced. If the Ca content (in terms of CaO) of the ferrite is less than 0.02% by mass based on the total mass of the main component oxide, the grain boundary is not formed well and the resistivity is lowered and the eddy current loss tends to become large. , Crystal grain growth is promoted and abnormal grains are generated, so that the eddy current loss tends to increase. The Ca content (in terms of CaO) is preferably 0.028 to 0.084 mass%.

Si는, 페라이트의 소결성을 높이는 작용을 갖는 동시에, 입계의 고저항화에 기여하기 때문에, 적정량의 Si를 함유시킴으로써, 자기 손실 Pcv의 저감화를 도모할 수 있다. 페라이트의 Si의 함유량(SiO2 환산)이, 주성분인 산화물의 합계 질량에 대하여, 0.005질량% 미만이면, 입계의 고저항층의 형성이 불충분해지고, 자기 손실 Pcv의 저감이 불충분해진다. 다른 한편, Si의 함유량(SiO2 환산)이 0.03질량%를 초과하면, 이상한 입자 성장을 촉진시키고, 자기 손실 Pcv의 저감이 불충분해진다. Si의 함유량(SiO2 환산)은 0.005 내지 0.01질량%인 것이 바람직하다.Si has an effect of enhancing the sintering property of ferrite and contributes to a higher resistance of grain boundaries. Therefore, by containing a proper amount of Si, it is possible to reduce the magnetic loss Pcv. If the Si content (in terms of SiO 2 ) of the ferrite is less than 0.005% by mass with respect to the total mass of the oxide as the main component, the formation of the high resistance layer at the grain boundaries becomes insufficient and the reduction of the magnetic loss Pcv becomes insufficient. On the other hand, when the content of Si (in terms of SiO 2 ) exceeds 0.03 mass%, the abnormal grain growth is promoted and the reduction of the magnetic loss Pcv becomes insufficient. The content of Si (in terms of SiO 2 ) is preferably 0.005 to 0.01% by mass.

Nb는, 페라이트의 입계의 고저항화에 기여하기 때문에, 적정량의 Nb를 함유시킴으로써, 자기 손실 Pcv의 저감화를 도모할 수 있다. 페라이트 소결체의 Nb의 함유량(Nb2O5 환산)이, 주성분인 산화물의 합계 질량에 대하여, 0.01질량% 미만이면, 입계의 고저항화가 불충분해지기 쉽고, 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다. 다른 한편, Nb의 함유량(Nb2O5 환산)이 0.1질량%를 초과하면, 결정 조직의 불균일성을 조장하는 경향이 있다. Nb의 함유량(Nb2O5 환산)은 0.025 내지 0.050질량%인 것이 바람직하다.Since Nb contributes to increase the resistance of the grain boundaries of ferrite, by containing a proper amount of Nb, it is possible to reduce the magnetic loss Pcv. If the content of Nb (in terms of Nb 2 O 5 ) in the ferrite sintered body is less than 0.01% by mass based on the total mass of the oxide as the main component, the increase in the resistance of the grain boundaries tends to become insufficient and the reduction in the magnetic loss Pcv tends to be insufficient have. On the other hand, when the content of Nb (in terms of Nb 2 O 5 ) exceeds 0.1% by mass, the nonuniformity of crystal structure tends to be promoted. The content of Nb (in terms of Nb 2 O 5 ) is preferably 0.025 to 0.050 mass%.

Zr은, 페라이트의 입계의 고저항화에 기여하기 때문에, 적정량의 Zr를 함유시킴으로써, 자기 손실 Pcv의 저감화를 도모할 수 있다. 페라이트의 Zr의 함유량(ZrO2 환산)이, 주성분인 산화물의 합계 질량에 대하여, 0.005질량% 미만이면, 입계의 고저항화가 불충분해지기 쉽고, 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다. 다른 한편, Zr의 함유량(ZrO2 환산)이 0.04질량%를 초과하면, 결정 조직의 불균일성을 조장하는 경향이 있다. Zr의 함유량(ZrO2 환산)은, 0.005 내지 0.02질량%인 것이 바람직하다.Since Zr contributes to high resistance of the grain boundaries of ferrite, by containing a proper amount of Zr, it is possible to reduce the magnetic loss Pcv. When the content of Zr (in terms of ZrO 2 ) of the ferrite is less than 0.005% by mass with respect to the total mass of the oxide as the main component, the increase in the resistance of the grain boundary tends to be insufficient and the reduction of the magnetic loss Pcv tends to become insufficient. On the other hand, when the content of Zr (in terms of ZrO 2 ) exceeds 0.04 mass%, the nonuniformity of the crystal structure tends to be promoted. The content of Zr (in terms of ZrO 2 ) is preferably 0.005 to 0.02 mass%.

Sn은 페라이트의 결정립의 비저항을 높이는 효과가 있기 때문에, 적정량의 Sn을 함유시킴으로써, 와전류 손실을 낮추어 자기 손실 Pcv의 저감화를 도모할 수 있다. 페라이트의 Sn의 함유량(SnO 환산)이, 주성분인 산화물의 합계 질량에 대하여, 0.05질량% 미만이면, 고저항화의 효과가 나타나지 않고, 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다. 다른 한편, Sn의 함유량(SnO 환산)이 0.35질량%를 초과하면, 결정 조직의 불균일성을 조장하는 경향이 있다. Sn의 함유량은 0.1 내지 0.3질량%인 것이 바람직하다.Since Sn has an effect of increasing the specific resistance of the crystal grains of ferrite, by containing an appropriate amount of Sn, the eddy current loss can be lowered and the magnetic loss Pcv can be reduced. When the content of Sn (in terms of SnO) of the ferrite is less than 0.05% by mass with respect to the total mass of the oxide as the main component, the effect of increasing the resistance is not exhibited and the reduction of the magnetic loss Pcv tends to become insufficient. On the other hand, when the content of Sn (in terms of SnO) exceeds 0.35% by mass, the nonuniformity of the crystal structure tends to be promoted. The content of Sn is preferably 0.1 to 0.3 mass%.

본 실시형태에 따른 페라이트는, 상기 이외의 성분을 추가로 함유하는 것이라도 좋다. 예를 들어, Ta(Ta2O5), Hf(HfO2), V(V2O5)는, 상기한 Nb, Zr과 마찬가지로, 페라이트 코어의 입계의 고저항화에 기여하기 때문에, 이것들을 적정량 함유시킴으로써 자기 손실 Pcv의 저감화를 도모할 수 있다. 페라이트의 Ta, Hf 및 V의 함유량(Ta2O5, HfO2, V2O5 환산)이, 주성분인 산화물의 합계 질량에 대하여, 0.005질량% 미만이면, 입계의 고저항화가 불충분해지기 쉽고, 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다. 다른 한편, Ta, Hf 및 V의 함유량(Ta2O5, HfO2, V2O5 환산)이 0.040질량%를 초과하면, 결정 조직의 불균일성을 조장하는 경향이 있다. Ta, Hf 및 V의 함유량(Ta2O5, HfO2, V2O5 환산)은, 0.005 내지 0.030질량%인 것이 바람직하다.The ferrite according to the present embodiment may further contain components other than those described above. For example, Ta (Ta 2 O 5 ), Hf (HfO 2 ), and V (V 2 O 5 ) contribute to the high resistance of the grain boundaries of the ferrite core, like Nb and Zr described above. By containing an appropriate amount, it is possible to reduce the magnetic loss Pcv. If the content of Ta, Hf and V (in terms of Ta 2 O 5 , HfO 2 and V 2 O 5 ) of the ferrite is less than 0.005 mass% with respect to the total mass of the oxide as the main component, the increase in the resistance of the grain boundary is likely to become insufficient , The reduction of the magnetic loss Pcv tends to be insufficient. On the other hand, when the content of Ta, Hf and V (in terms of Ta 2 O 5 , HfO 2 and V 2 O 5 ) exceeds 0.040 mass%, the nonuniformity of the crystal structure tends to be promoted. The content of Ta, Hf and V (in terms of Ta 2 O 5 , HfO 2 and V 2 O 5 ) is preferably 0.005 to 0.030 mass%.

다음으로, 페라이트의 제조 방법에 대하여 설명한다.Next, a method for producing ferrite will be described.

처음에, 주성분을 이루는 산화철 α-Fe2O3, 산화망간 Mn3O4, 산화아연 ZnO 및 산화니켈 NiO을 준비하고, 이들 산화물을 혼합하여 혼합물을 수득한다. 이 때, 최종적으로 수득되는 혼합물 중의 각 산화물 성분의 구성비가 소정의 범위 내가 되도록 상기 산화물과 함께 다른 산화물을 혼합해도 좋다.Initially, iron oxide? -Fe 2 O 3 , manganese oxide Mn 3 O 4 , zinc oxide ZnO and nickel oxide NiO, which constitute the main component, are prepared and mixed to obtain a mixture. At this time, another oxide may be mixed together with the oxide so that the composition ratio of each oxide component in the finally obtained mixture is within a predetermined range.

이어서, 상기 주성분의 혼합물을 가소성(假燒成)하여 가소성물을 수득한다(가소 공정). 가소는 통상은 공기 중에서 실시하면 좋다. 가소 온도는 혼합물을 구성하는 성분에 의존하지만, 800 내지 1100℃로 하는 것이 바람직하다. 또한, 가소 시간도, 혼합물을 구성하는 성분에 의존하지만, 1 내지 3시간으로 하는 것이 바람직하다. 그 후, 수득된 가소성물을 볼 밀 등에 의해 분쇄하여 분쇄분을 수득한다.Subsequently, the mixture of the main components is calcined to obtain a calcined product (calcination step). The plasticity is usually carried out in air. The firing temperature depends on the components constituting the mixture, but it is preferably 800 to 1100 캜. Further, the calcination time depends on the components constituting the mixture, but it is preferably 1 to 3 hours. Thereafter, the obtained fired product is pulverized by a ball mill or the like to obtain a pulverized powder.

상기의 주성분 원료의 가소성물을 분쇄할 때, 소정량의 Ca를 탄산칼슘(CaCO3) 또는 산화칼슘(CaO)으로서 첨가하여 양자를 혼합함으로써 본소성용의 원료 혼합분을 수득한다(혼합 공정).When pulverizing the calcined product of the main component material, a predetermined amount of Ca is added as calcium carbonate (CaCO 3 ) or calcium oxide (CaO), and the two are mixed to obtain a raw material mixture for main constitution (mixing step).

다른 한편, 부성분을 이루는 산화규소(SiO2)를 소정량 준비하여 주성분 원료의 가소성물을 분쇄할 때에 첨가하고 양자를 혼합한다. 이것에 의해, 원료 혼합분을 수득한다. 또한, 여기에서 상기 성분 이외의 부성분(Nb2O5, ZrO2, Ta2O5, HfO2, V2O5 등)을 적절히 첨가해도 좋다. 또한, 최종적으로 수득되는 혼합물 중의 각 부성분의 함유량이 상기 범위 내가 되도록, 상기 화합물 대신에 다른 화합물을 사용해도 좋다.On the other hand, a predetermined amount of silicon oxide (SiO 2 ) constituting the subcomponent is prepared and added when the calcination product of the main component material is pulverized, and the two are mixed. As a result, a raw material mixture is obtained. Here, subcomponents (Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , HfO 2 , V 2 O 5 and the like) other than the above components may be appropriately added. Further, other compounds may be used in place of the above-mentioned compounds so that the content of each subcomponent in the finally obtained mixture is within the above range.

이어서, 상기한 바와 같이 하여 수득되는 원료 혼합분과, 폴리비닐알코올 등의 적당한 바인더를 혼합하여, 페라이트 코어의 성형체를 수득한다.Then, the raw material mixture obtained as described above is mixed with a suitable binder such as polyvinyl alcohol to obtain a molded product of a ferrite core.

다음에, 성형체를 가열로 내에서 소성한다(본소성 공정). 도 1은, 본소성 공정에서의 온도 설정의 일례를 도시한 그래프이다. 도 1에 도시한 바와 같이, 본소성 공정은, 가열로 내의 성형체를 서서히 가열하는 승온 공정 S1과, 온도를 1200 내지 1300℃로 유지하는 온도 유지 공정 S2와, 유지 온도로부터 서서히 강온하는 서냉(徐冷) 공정 S3과, 서냉 공정 S3의 종료 후에 급냉하는 급냉 공정 S4를 적어도 갖는다.Next, the formed body is fired in a heating furnace (main firing step). 1 is a graph showing an example of temperature setting in the main firing step. As shown in Fig. 1, the main firing step includes a temperature raising step S1 for gradually heating the molded body in the heating furnace, a temperature holding step S2 for maintaining the temperature at 1200 to 1300 deg. C, a slow cooling Cooling) step S3, and a quenching step S4 for quenching after completion of the slow cooling step S3.

승온 공정 S1은, 가열로 내의 온도를 후술하는 유지 온도로까지 승온하는 공정이다. 승온 속도는 10 내지 300℃/시간으로 하는 것이 바람직하다.The temperature raising step S1 is a step of raising the temperature in the heating furnace to a holding temperature to be described later. The temperature raising rate is preferably 10 to 300 占 폚 / hour.

승온 공정 S1에 의해 소정의 온도(1200 내지 1300℃)에 도달하면, 이 온도로 유지하는 온도 유지 공정 S2를 실시한다. 온도 유지 공정 S2에서의 유지 온도가 1200℃ 미만이면, 페라이트 코어의 입자 성장이 불충분해지고, 히스테리시스 손실이 증대하므로, 자기 손실 Pcv의 저감이 불충분해진다. 다른 한편, 유지 온도가 1300℃를 초과하면, 페라이트 코어의 입자 성장이 과잉이 되고, 와전류 손실이 증대하기 때문에, 자기 손실 Pcv의 저감이 불충분해진다. 유지 온도를 1200 내지 1300℃로 함으로써, 히스테리시스 손실과 와전류 손실의 밸런스가 이루어져, 고온 영역에서의 자기 손실 Pcv를 충분히 저감할 수 있다.When the temperature reaches a predetermined temperature (1200 to 1300 占 폚) by the temperature raising step S1, a temperature holding step S2 for holding the temperature at this temperature is performed. If the holding temperature in the temperature holding step S2 is less than 1200 占 폚, the grain growth of the ferrite core becomes insufficient and the hysteresis loss increases, so that the reduction of the magnetic loss Pcv becomes insufficient. On the other hand, if the holding temperature exceeds 1300 占 폚, the grain growth of the ferrite core becomes excessive and the eddy current loss increases, so that the reduction of the magnetic loss Pcv becomes insufficient. By setting the holding temperature at 1200 to 1300 占 폚, a balance between the hysteresis loss and the eddy current loss is achieved, and the magnetic loss Pcv in the high temperature region can be sufficiently reduced.

상기의 유지 온도로 소성을 실시하는 시간(유지 시간)은 2시간 이상인 것이 바람직하다. 유지 시간이 2시간 미만이면, 온도 1200 내지 1300℃로 소성을 실시한 경우에도 입자 성장이 불충분해지고, 자기 손실 Pcv의 저감이 불충분해지기 쉽다. 유지 시간은 분쇄분을 구성하는 원료에 의존하지만, 3 내지 10시간으로 하는 것이 보다 바람직하다.It is preferable that the firing time (holding time) is 2 hours or more. If the holding time is less than 2 hours, even when firing is performed at a temperature of 1200 to 1300 占 폚, the grain growth becomes insufficient and the reduction of the magnetic loss Pcv tends to become insufficient. The holding time depends on the raw material constituting the pulverized powder, but it is more preferably 3 to 10 hours.

온도 유지 공정 S2의 종료 후, 서냉 공정 S3을 실시한다. 서냉 공정 S3에서의 서냉 속도는 200℃/시간 이하인 것이 바람직하다. 서냉 속도가 200℃/시간을 초과하면, 페라이트 코어의 입자 내의 잔류 응력이 커지기 쉽고, 이것에 의해 자기 손실의 저감이 불충분해지는 경향이 있다. 또한, 상기 서냉 속도는 서냉 대역에서의 평균값을 의미하는 것이며, 이것을 초과하는 속도로 온도가 저하되는 부분이 있어도 좋다.After completion of the temperature holding step S2, the slow cooling step S3 is performed. The slow cooling rate in the slow cooling step S3 is preferably 200 DEG C / hour or less. If the slow cooling rate exceeds 200 ° C / hour, the residual stress in the particles of the ferrite core tends to be large, and the reduction of the magnetic loss tends to become insufficient. Further, the slow cooling rate means an average value in the slow cooling zone, and there may be a portion where the temperature decreases at a rate exceeding this.

서냉 공정 S3에 있어서 유지 온도로부터 강온할 때에, 가열로 내의 산소 농도를 제어하고, 연속적 또는 단계적으로 내리는 조작을 실시한다(산소 농도 조정 공정). 이러한 조작을 실시함으로써, 온도 1200℃에서의 산소 농도를 0.2 내지 1.0체적%로 하고 또한 온도 1100℃에서의 산소 농도를 0.02 내지 0.10체적%로 하는 것이 바람직하다.In the slow cooling step S3, when the temperature is lowered from the holding temperature, the oxygen concentration in the heating furnace is controlled and an operation of continuously or stepwise lowering is performed (oxygen concentration adjusting step). By carrying out such an operation, it is preferable to set the oxygen concentration at 1200 占 폚 to 0.2 to 1.0% by volume and the oxygen concentration at 1100 占 폚 to 0.02 to 0.10% by volume.

서냉 공정 S3을 종료하고, 급냉 공정 S4를 개시하는 온도(서냉 종료 온도)는 900 내지 1150℃인 것이 바람직하다. 서냉 종료 온도가 1150℃보다도 높으면, 페라이트 코어의 입계의 형성이 불충분해지기 쉽고, 이것에 의해 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다. 다른 한편, 서냉 종료 온도가 900℃보다도 낮으면, 페라이트 코어의 입계에 이상이 생기기 쉽고, 이것에 의해 자기 손실 Pcv의 저감이 불충분해지는 경향이 있다.It is preferable that the temperature at which the slow cooling step S3 is completed and the quenching step S4 is started (slow cooling end temperature) is 900 to 1150 deg. If the slow cooling termination temperature is higher than 1150 占 폚, the formation of grain boundaries of the ferrite core tends to be insufficient, and the reduction of the magnetic loss Pcv tends to become insufficient. On the other hand, if the slow cooling termination temperature is lower than 900 占 폚, the grain boundary of the ferrite core tends to be anomalous, and the reduction of the magnetic loss Pcv tends to be insufficient.

서냉 공정 S3의 종료 후, 급냉 공정 S4를 실시한다. 적어도 서냉 종료 온도로부터 700℃에 도달할 때까지의 온도 범위에 대해서는, 강온(降溫) 속도를 150℃/시간 이상으로 하는 것이 바람직하다.
After completion of the slow cooling step S3, quenching step S4 is carried out. It is preferable to set the cooling rate at 150 ° C / hour or more for at least the temperature range from the slow cooling end temperature to 700 ° C.

[실시예][Example]

이하, 본 발명을 더욱 상세한 실시예에 기초하여 설명하겠지만, 본 발명은 이들 실시예에 한정되지 않는다.Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

실시예 1 내지 21 및 비교예 1 내지 17Examples 1 to 21 and Comparative Examples 1 to 17

각 성분 원료를 최종적으로 표 1에 도시한 조성이 되도록 칭량하고, 볼 밀을 사용하여 습식 혼합하였다. 원재료 혼합물을 건조시킨 후, 공기 중에서 900℃ 정도의 온도에서 가소(假燒)하였다. 수득된 가소분(假燒粉)을 볼 밀에 투입하여, 원하는 입자 직경이 될 때까지 습식 분쇄를 3시간 실시하였다.Each component material was finally weighed so as to have the composition shown in Table 1, and wet-mixed using a ball mill. The raw material mixture was dried and then calcined at a temperature of about 900 ° C in the air. The obtained calcined powder was put into a ball mill, and wet pulverization was carried out for 3 hours until a desired particle diameter was obtained.

이렇게 수득된 분쇄분을 건조하고, 분쇄분 100질량부에 대하여 폴리비닐알코올을 0.8질량부 가하여 조립(造粒)한 후, 수득된 혼합물을 약 150MPa의 압력으로 가압 성형하고, 토로이달(toroidal)형 성형체와 결손 시험용 성형체를 수득하였다. 성형체를 다음에 나타내는 소성 조건의 범위 내에서 본소성을 실시하고, 복수의 토로이달 페라이트 코어와 결손 시험용 페라이트 코어를 수득하였다. 이러한 본소성 공정은, 유지 온도가 1200℃ 내지 1300℃이고, 서냉 종료 온도를 900℃ 내지 1150℃로 설정하였다.The pulverized powder thus obtained was dried, and 0.8 parts by mass of polyvinyl alcohol was added to 100 parts by mass of the pulverized powder. The resulting mixture was granulated, and the obtained mixture was pressure-molded under a pressure of about 150 MPa to obtain a toroidal powder. Shaped molded body and a molded body for defect test were obtained. The molded body was subjected to firing in the range of firing conditions shown below to obtain a plurality of toroidal ferrite cores and a ferrite core for defect test. In this main firing step, the holding temperature was set to 1200 to 1300 占 폚, and the slow cooling termination temperature was set to 900 to 1150 占 폚.

페라이트 코어의 자기 손실 Pcv를 다음과 같이 하여 측정하였다. 즉, 이와츠 케소쿠 제조 B-H 애널라이저(형식 SY-8217)로 자속 밀도 200mT, 주파수 100kHz의 조건으로 온도 25 내지 150℃의 범위의 자기 손실을 측정하고, 120℃에서의 자기 손실 Pcv의 값을 구하였다. The magnetic loss Pcv of the ferrite core was measured as follows. That is, the magnetic loss in the temperature range of 25 to 150 ° C was measured under the conditions of a magnetic flux density of 200 mT and a frequency of 100 kHz with a BH analyzer (type SY-8217) manufactured by Iwatsu Keisei Co., Respectively.

페라이트 코어의 포화 자속 밀도를 다음과 같이 측정하였다. 즉, 바깥 직경 20mm의 토로이달 형상을 직류 BH 트레이서를 사용하여 1194A/m에서의 포화 자속 밀도 Bs를 측정하여 120℃의 값을 얻었다.The saturation magnetic flux density of the ferrite core was measured as follows. That is, a toroidal shape having an outer diameter of 20 mm was measured at a saturation magnetic flux density Bs at 1194 A / m using a DC BH tracer to obtain a value of 120 ° C.

페라이트 코어의 결손 강도를 다음과 같이 측정하였다. 즉, 직경 10mm×높이 10mm를 갖는 원주체 시료 5개(미리 중량이 측정되어 있음)를 내주(內周) 측면에 차폐판이 설치된 안쪽 직경 100mm×안쪽 높이 118mm의 원통형 스테인레스 포트 속에 투입하고, 옆으로 향한 상태에서 스테인레스 포트를 회전수 100rpm으로 20분간 회전시켰다. 그 후, 원주체 시료를 취출하여 시험 후의 중량을 측정하여 결손률을 구하였다.The defect strength of the ferrite core was measured as follows. That is, five cylindrical specimens having a diameter of 10 mm and a height of 10 mm (preliminarily measured in weight) were placed in a cylindrical stainless-steel pot having an inside diameter of 100 mm and an inside height of 118 mm provided with shielding plates on the inner circumferential side, The stainless steel pot was rotated at a revolution of 100 rpm for 20 minutes. Thereafter, the cylindrical sample was taken out, and the weight after the test was measured to determine the defect rate.

결손률은, 다음과 같은 산출식으로 부여된다.The defect rate is given by the following calculation formula.

결손률(%)〓 [(시험 전 중량-시험 후 중량)/(시험 전 중량)×100(%) - [(weight before test) - (weight after test) / (weight before test) x 100

상기 식에서 결손률은 수치가 작을수록 충격에 강하다.In the above equation, the defect ratio is more resistant to impact as the numerical value is smaller.

본 발명에서는, 결손률 2% 미만을 합격 레벨로 판단하고 있다.In the present invention, it is judged that the degree of deficiency is less than 2% as the acceptable level.

표 1에 측정 결과를 기재한다. 이 표 1로부터, 페라이트의 주성분의 조성과 미량 성분의 첨가를 적절히 제어한 시료(실시예 1 내지 21)에서는, 120℃에서의 자기 손실 Pcv, 포화 자속 밀도 Bs가 양호하고, 또한 결손률이 2.0%보다 작은 특성이 뛰어난 시료가 수득되어 있는 것을 알 수 있다.Table 1 shows the measurement results. It can be seen from the results shown in Table 1 that in the samples (Examples 1 to 21) in which the composition of the main component of the ferrite and the addition of the trace components were suitably controlled, the magnetic loss Pcv at 120 ° C and the saturation magnetic flux density Bs were satisfactory, %. ≪ / RTI >

Figure pat00001
Figure pat00001

이상과 같이, 본 발명에 따른 MnZn계 페라이트는 높은 포화 자속 밀도 Bs와, 낮은 자기 손실 Pcv를 갖고, 또한 결손 강도가 높은 특성을 가지므로, 트랜스, 쵸크 코일과 같은 부품에 적절히 사용할 수 있다.
As described above, the MnZn ferrite according to the present invention has high saturation magnetic flux density Bs, low magnetic loss Pcv, and high defect strength, so that it can be suitably used for components such as transformers and choke coils.

Claims (4)

산화철을 Fe2O3 환산으로 66 내지 70mol%, 산화아연을 ZnO 환산으로 10 내지 20mol%, 산화니켈을 NiO 환산으로 0.4 내지 2mol% 포함하고, 잔부가 실질적으로 MnO인 조성으로 되는 주성분으로 이루어지고, 주성분인 상기 산화물의 합계 질량에 대하여, Si를 SiO2 환산으로 0.005 내지 0.03질량%, Ca를 CaO 환산으로 0.02 내지 0.15질량%, Nb를 Nb2O5 환산으로 0.01 내지 0.1질량%, Zr을 ZrO2 환산으로 0.005 내지 0.04질량%, Sn을 SnO 환산으로 0.05 내지 0.35질량% 함유하는 것을 특징으로 하는 페라이트.The main component is composed of 66 to 70 mol% of iron oxide in terms of Fe 2 O 3 , 10 to 20 mol% of zinc oxide in terms of ZnO, 0.4 to 2 mol% of nickel oxide in terms of NiO, and the balance of substantially MnO , 0.001 to 0.03 mass% of Si in terms of SiO 2 , 0.02 to 0.15 mass% of Ca in terms of CaO, 0.01 to 0.1 mass% of Nb in terms of Nb 2 O 5 , and Zr in terms of Nb 2 O 5 based on the total mass of the oxide as a main component 0.005 to 0.04 mass% in terms of ZrO 2 and 0.05 to 0.35 mass% in terms of SnO. 제1항에 있어서, 결손 시험에서의 결손률이 2% 미만인 특성을 나타내는 것을 특징으로 하는, 페라이트.The ferrite according to claim 1, characterized in that the defect ratio in the defect test is less than 2%. 제1항 또는 제2항에 있어서, 주성분인 상기 산화물의 합계 질량에 대하여, V, Ta, Hf를 각각 V2O5, Ta2O5, HfO2로 환산하면, 0.001 내지 0.01질량%의 V, Ta, Hf를 적어도 1종 이상 함유하는 것을 특징으로 하는, 페라이트.The method according to claim 1 or 2, wherein V, Ta and Hf are converted into V 2 O 5 , Ta 2 O 5 and HfO 2 , respectively, with respect to the total mass of the oxide as the main component, and 0.001 to 0.01 mass% of V , Ta, and Hf. 제1항 또는 제2항 중 어느 한 항에 기재된 페라이트로 구성되는 트랜스.A transformer comprising ferrite according to any one of claims 1 to 3.
KR1020140063949A 2013-05-28 2014-05-27 Ferrite and transformer KR101990781B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2013-111945 2013-05-28
JP2013111945 2013-05-28
JP2014047415A JP2015006972A (en) 2013-05-28 2014-03-11 Ferrite and transformer
JPJP-P-2014-047415 2014-03-11

Publications (2)

Publication Number Publication Date
KR20140139983A true KR20140139983A (en) 2014-12-08
KR101990781B1 KR101990781B1 (en) 2019-06-19

Family

ID=52337597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140063949A KR101990781B1 (en) 2013-05-28 2014-05-27 Ferrite and transformer

Country Status (2)

Country Link
JP (1) JP2015006972A (en)
KR (1) KR101990781B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485403A (en) * 2018-10-26 2019-03-19 天通控股股份有限公司 A kind of high BsLow loss soft magnetic ferrite material and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113813A (en) * 1997-06-12 1999-01-06 Kawasaki Steel Corp Ferrite material
US20030059365A1 (en) * 2001-08-22 2003-03-27 Minebea Co., Ltd. Mn-Zn ferrite and coil component with magnetic core made of same
JP2005272229A (en) 2004-03-25 2005-10-06 Jfe Ferrite Corp HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
US20060118756A1 (en) * 2002-09-26 2006-06-08 Kenya Takagawa Ferrite material
JP2007031210A (en) 2005-07-27 2007-02-08 Nec Tokin Corp Mn-Zn FERRITE
JP2007150006A (en) * 2005-11-29 2007-06-14 Jfe Ferrite Corp Magnetic property recovery method of ferrite core
JP2011195415A (en) 2010-03-23 2011-10-06 Tdk Corp MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE
JP5093790B2 (en) * 2004-08-03 2012-12-12 Jfeフェライト株式会社 Mn-Zn ferrite and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4281990B2 (en) * 2002-09-26 2009-06-17 Tdk株式会社 Ferrite material
US7481946B2 (en) * 2003-01-10 2009-01-27 Tdk Corporation Method for producing ferrite material and ferrite material
JP4089970B2 (en) * 2003-08-25 2008-05-28 Tdk株式会社 Ferrite material manufacturing method
JP4129917B2 (en) * 2003-01-10 2008-08-06 Tdk株式会社 Ferrite material and manufacturing method thereof
JP2005075653A (en) * 2003-08-28 2005-03-24 Tdk Corp Method for producing ferrite material and method for firing ferrite material
JP2006193343A (en) * 2005-01-11 2006-07-27 Hitachi Metals Ltd Ferrite sintered body and electronic component using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH113813A (en) * 1997-06-12 1999-01-06 Kawasaki Steel Corp Ferrite material
US20030059365A1 (en) * 2001-08-22 2003-03-27 Minebea Co., Ltd. Mn-Zn ferrite and coil component with magnetic core made of same
US20060118756A1 (en) * 2002-09-26 2006-06-08 Kenya Takagawa Ferrite material
JP2005272229A (en) 2004-03-25 2005-10-06 Jfe Ferrite Corp HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni-BASED FERRITE
JP5093790B2 (en) * 2004-08-03 2012-12-12 Jfeフェライト株式会社 Mn-Zn ferrite and method for producing the same
JP2007031210A (en) 2005-07-27 2007-02-08 Nec Tokin Corp Mn-Zn FERRITE
JP2007150006A (en) * 2005-11-29 2007-06-14 Jfe Ferrite Corp Magnetic property recovery method of ferrite core
JP2011195415A (en) 2010-03-23 2011-10-06 Tdk Corp MnZn-BASED FERRITE POWDER, METHOD FOR PRODUCING MnZn-BASED FERRITE CORE, AND FERRITE CORE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109485403A (en) * 2018-10-26 2019-03-19 天通控股股份有限公司 A kind of high BsLow loss soft magnetic ferrite material and preparation method thereof

Also Published As

Publication number Publication date
KR101990781B1 (en) 2019-06-19
JP2015006972A (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5332254B2 (en) Ferrite sintered body
US8282853B2 (en) NiMnZn based ferrite
KR102094797B1 (en) MnZn FERRITE AND METHOD FOR PRODUCING SAME
CN106915956A (en) MnZnLi based ferrites, magnetic core and transformer
KR102517963B1 (en) MnZn-based ferrite sintered body
JP2007197245A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
KR20050039755A (en) Ferrite material
JP5089963B2 (en) Method for producing MnZnNi ferrite
EP1394116A1 (en) Mn-Zn ferrite, transformer magnetic core and transformer
JP3597673B2 (en) Ferrite material
KR101435429B1 (en) Ferrite core and transformer
JP3288113B2 (en) Mn-Zn ferrite magnetic material
KR101990781B1 (en) Ferrite and transformer
JP2003068516A (en) Mn-Zn-Ni FERRITE AND ITS MANUFACTURING METHOD
JP5828308B2 (en) Ferrite core and transformer
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP5560436B2 (en) MnZnNi ferrite
KR101370665B1 (en) Ferrite core and transformer
JP3790606B2 (en) Mn-Co ferrite material
JP2022059859A (en) MnZn BASED FERRITE AND MANUFACTURING METHOD OF SAME
JP2008169072A (en) Mn-Zn FERRITE
JP6079172B2 (en) Ferrite core and transformer
JPH10270231A (en) Mn-ni ferrite material
JP2001233667A (en) Manganese-zinc-based ferrite for power supply
JP2007197253A (en) METHOD OF MANUFACTURING Mn-Zn FERRITE

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101006287; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20161102

Effective date: 20181029

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant