KR20140136029A - 연료 전지와 함께 사용하기 위한 냉각 시스템 및 방법 - Google Patents

연료 전지와 함께 사용하기 위한 냉각 시스템 및 방법 Download PDF

Info

Publication number
KR20140136029A
KR20140136029A KR1020147028359A KR20147028359A KR20140136029A KR 20140136029 A KR20140136029 A KR 20140136029A KR 1020147028359 A KR1020147028359 A KR 1020147028359A KR 20147028359 A KR20147028359 A KR 20147028359A KR 20140136029 A KR20140136029 A KR 20140136029A
Authority
KR
South Korea
Prior art keywords
water
heat exchanger
fuel cell
fluid
cathode
Prior art date
Application number
KR1020147028359A
Other languages
English (en)
Other versions
KR102051280B1 (ko
Inventor
브라이언 제이. 바우얼스
스티븐 피오레
웨어 풀러
그레그 히케이
창식 김
Original Assignee
누베라 퓨엘 셀스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 누베라 퓨엘 셀스, 인크. filed Critical 누베라 퓨엘 셀스, 인크.
Publication of KR20140136029A publication Critical patent/KR20140136029A/ko
Application granted granted Critical
Publication of KR102051280B1 publication Critical patent/KR102051280B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04044Purification of heat exchange media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04134Humidifying by coolants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04716Temperature of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

냉각 시스템은 연료 전지와 함께 사용하기 위해 제공된다. 냉각 시스템은 연료 전지의 출구 통로에 유체 연결된 제 1 열교환기를 포함한다. 제 1 열교환기는 연료 전지의 출구 통로를 통과하는 유체의 적어도 일부를 액체 물로 응축시키도록 구성될 수 있다. 냉각 시스템은 또한 제 1 열교환기의 출구 통로와 연료 전지의 입구 통로에 유체 연결된 제 2 열교환기를 포함할 수 있다. 제 2 열교환기는 연료 전지의 입구 통로 안으로 통과하는 유체를 냉각시키도록 구성될 수 있다. 또한, 연료 전지의 출구 통로와 연료 전지의 입구 통로는 연료 전지의 음극에 유체 연결될 수 있고, 연료 전지의 입구 통로는 물을 음극에 공급하도록 구성될 수 있다.

Description

연료 전지와 함께 사용하기 위한 냉각 시스템 및 방법{COOLING SYSTEM AND METHOD FOR USE WITH A FUEL CELL}
본 발명은 일반적으로 연료 전지와 함께 사용하기 위한 냉각 시스템에 관한 것이다.
임의의 유형의 연료 전지는 양극, 음극 및 양극과 음극 사이에 위치한 다공성 막을 포함할 수 있다. 상기 막은 음극으로부터의 이온성 종들의 유동이 양극으로 흐르게 하도록 구성된다. 상기 막을 가로지르는 이온들의 상기 이동에 반응하여, 전자들은 양극으로부터 음극으로 흐른다.
연료 전지는 양극에서의 수소 반응과 음극에서의 산소 반응에 의해서 작동한다. 산소는 대기 공기로부터 공급될 수 있고 순수 수소는 대체로 양극에 공급된다. 음극 및 양극에서 발생하는 반응들은 상당한 열을 발생시킬 수 있다. 이러한 열을 발산시키기 위하여, 여러 냉각 시스템들이 개발되었다. 한 유형의 냉각 시스템은 음극수 분사(CW1)를 사용하고, 여기서 냉각수는 연료 전지의 음극에 공급되고 음극에 공급된 하나 이상의 가스들과 혼합하도록 허용된다.
연료 전지를 제한된 범위의 작동 온도에서 유지하는 것에 추가하여, 냉각 시스템은 또한 냉각 시스템에 물을 부가하거나 또는 제거할 필요성 없이 작동해야 한다. "중성 물" 냉각 시스템은 물을 보존하거나 또는 물을 부가 또는 제거하는데 소모된 작동 시간을 절감할 수 있다.
임의의 기존 냉각 시스템은 모든 작동 조건들 하에서 충분한 냉각을 효율적으로 제공하고 적당한 물 균형을 달성할 수 없는데, 이는 물을 응축 및 냉각시키기 위하여 통상적으로 단일 열교환기가 사용되기 때문이다. 응축 및 냉각 기능을 단일 장치로 조합하는 것은 적당한 물 균형 및 냉각 기능을 유지하는데 필요한 다른 요구조건들 때문에 문제가 된다. 예를 들어, 냉각 시스템으로부터 잉여 물을 제거하기 위하여, 열교환기의 팬 속도는 냉각 시스템으로부터 더욱 많은 물을 운송할 수 있는 고온 배기 가스를 생성하도록 대체로 감소된다. 그러나 팬 속도를 감소시키면 물 온도를 증가시키게 되고, 이는 결과적으로 연료 전지 온도가 과도하게 높게 될 수 있다. 이와 같이, 기존의 냉각 시스템을 사용하여 물을 제거하고 연료 전지 과열을 방지하는 것이 종종 어렵다.
본 발명은 종래 기술의 냉각 시스템의 하나 이상의 문제들 또는 단점들을 극복하는 것이다.
본 발명의 한 형태는 연료 전지와 함께 사용하기 위한 냉각 시스템에 관한 것이다. 상기 냉각 시스템은 상기 연료 전지의 출구 통로와 유체 연결된 제 1 열교환기를 포함한다. 상기 제 1 열교환기는 상기 연료 전지의 출구 통로를 통과하는 유체의 적어도 일부를 액체 물로 응축시킬 수 있다. 상기 냉각 시스템은 또한 상기 제 1 열교환기의 출구 통로와 상기 연료 전지의 입구 통로에 유체 연결된 제 2 열교환기를 포함할 수 있다. 상기 제 2 열교환기는 상기 연료 전지의 입구 통로 안으로 통과하는 유체를 냉각시키도록 구성될 수 있다. 또한, 상기 연료 전지의 출구 통로와 상기 연료 전지의 입구 통로는 상기 연료 전지의 음극과 유체 연결되고, 상기 연료 전지의 입구 통로는 물을 상기 음극에 공급하도록 구성될 수 있다.
본 발명의 다른 형태는 전력 시스템에 관한 것이다. 상기 전력 시스템은 출구 통로와 적어도 하나의 입구 통로에 유체 연결된 음극을 갖는 연료 전지로서, 상기 적어도 하나의 입구 통로는 적어도 부분적으로 재순환된 물을 상기 음극에 공급하는 상기 연료 전지를 포함한다. 상기 전력 시스템은 또한 상기 연료 전지의 출구 통로에 유체 연결된 제 1 열교환기로서, 상기 연료 전지의 출구 통로를 통과하는 유체의 적어도 일부를 물로 변환시키도록 구성된, 상기 제 1 열교환기를 포함한다. 또한 상기 전력 시스템은 상기 제 1 열교환기의 출구 통로와 상기 연료 전지의 입구 통로에 유체 연결된 제 2 열교환기로서, 상기 연료 전지의 입구 통로를 통과하는 유체를 냉각시키도록 구성된, 상기 제 2 열교환기를 포함할 수 있다.
본 발명의 다른 형태는 연료 전지의 냉각 방법에 관한 것이다. 상기 방법은 수소를 상기 연료 전지의 양극에 공급하고 공기 및 물을 상기 연료 전지의 음극에 공급하는 단계; 상기 연료 전지로부터 유체를 출력하는 유체 출력 단계로서, 상기 유체의 적어도 일부가 제 1 유체를 포함하는, 상기 유체 출력 단계를 포함할 수 있다. 상기 방법은 또한 상기 제 1 유체를 제 1 열교환기로 공급하고 상기 제 1 열교환기를 사용하여 상기 제 1 유체의 적어도 일부를 물로 응축시키는 단계를 포함한다. 제 2 열교환기에는 상기 연료 전지로부터의 유체 출력물과 상기 제 1 열교환기에 의해 응축된 상기 물 중 적어도 하나가 공급될 수 있다. 또한, 상기 방법은 상기 제 2 열교환기를 통해서 흐르는 유체를 냉각시키는 단계; 그리고 상기 냉각된 유체를 상기 연료 전지에 공급하는 단계를 포함한다.
본 발명의 추가 목적 및 장점들은 하기 상세한 설명에서 부분적으로 기술되고, 하기 상세한 설명으로부터 부분적으로 명백해지거나 또는 본 발명의 실행에 의해서 학습될 수 있다. 본 발명의 목적 및 장점들은 특히 첨부된 청구범위에 의해서 지적된 요소 및 조합들에 의해서 구현되고 달성될 것이다.
상술한 일반 설명 및 하기 상세한 설명은 단지 예시적이고 설명적이고 청구범위에 기재된 시스템, 장치 및 방법들을 제한하지 않는 것으로 이해되어야 한다.
본 명세서의 일부를 구성하고 합체된 첨부된 도면은 본 발명의 여러 요소들을 설명과 함께 예시하고 본 발명의 원리를 설명하도록 기능한다.
도 1은 재순환 루프를 포함하는 예시적인 개시된 실시예에 따른, 냉각 시스템의 개략적인 도면을 도시한다.
도 2는 2개의 재순환 루프들을 포함하는 다른 예시적인 개시된 실시예에 따른, 냉각 시스템의 개략적인 도면을 도시한다.
도 3은 물을 분리하고 응축시키도록 구성된 열교환기를 포함하는 다른 예시적인 개시된 실시예에 따른, 냉각 시스템의 개략적인 도면을 도시한다.
도 4는 하향 유체 유동을 갖는 열교환기를 포함하는 다른 예시적인 개시된 실시예를 따른, 냉각 시스템의 개략적인 도면을 도시한다.
도 5는 예시적인 개시된 실시예를 따른, 열교환기에 의해서 제공된 열 전달량의 차트를 도시한다.
도 6은 다른 예시적인 개시된 실시예에 따른, 열교환기들에 의해서 제공된 열 전달량 및 물 균형의 차트를 도시한다.
도 7a는 예시적인 개시된 실시예에 따른, 열교환기의 전면도의 개략적인 도면을 도시한다.
도 7b는 예시적인 개시된 실시예에 따른, 열교환기의 배면도의 개략적인 도면을 도시한다.
도 8a는 예시적인 개시된 실시예에 따른, 열교환기의 일부의 절취도를 개략적으로 도시한다.
도 8b는 예시적인 개시된 실시예에 따른, 열교환기의 일부의 배면도를 개략적으로 도시한다.
도 9a는 예시적인 개시된 실시예를 따른, 완성된 필터 조립체의 개략적인 도면을 도시한다.
도 9b는 예시적인 개시된 실시예를 따른, 필터 조립체의 전개도를 개략적으로 도시한다.
도 9c는 예시적인 개시된 실시예를 따른, 필터 조립체의 측면도의 개략적인 도면을 도시한다.
지금부터는 본 발명의 예시적인 실시예들에 대한 상세 설명에 대해 기술할 것이며, 그 예들은 첨부된 도면을 도시된다. 가능하다면, 동일 또는 유사 부분들을 지칭하기 위하여 도면에 걸쳐 동일 도면부호가 사용될 것이다.
도 1은 연료 전지(12)와 함께 사용하기 위한 본 발명의 냉각 시스템(10)의 개략적인 도면을 도시한다. 일부 실시예에서, 연료 전지(12)는 연료 전지의 음극 물 분사(CWI) 유형을 포함하고, 그에 의해서 냉각수가 음극(16)에 공급될 수 있다. 다른 실시예에서, 연료 전지(12)는 연료 전지의 다른 유형을 포함할 수 있다.
연료 전지(12)는 양극 입구 통로(18)와 양극 출구 통로(20)에 유체 연결된 양극(14)을 포함할 수 있다. 양극 입구 통로(18)는 양극(14)에 수소를 공급하도록 구성될 수 있다. 출구 통로(20)는 양극(14)을 통해서 수소를 적어도 부분적으로 재순환시키기 위하여 입구 통로(18)에 유체 연결될 수 있다.
음극(16)은 음극 입구 통로(22)와 음극 출구 통로(24)에 유체 연결될 수 있다. 음극 입구 통로(22)는 음극(16)에 공기를 공급하도록 구성된 통로(22a)와 음극(16)에 물을 공급하도록 구성된 통로(22b)를 포함할 수 있다. 출구 통로(24)는 음극(16)을 통해서 물을 적어도 부분적으로 재순환시키기 위하여 입구 통로(22)에 유체 연결될 수 있다. 당업자 중 한 사람은 연료 전지(12)에 하나 이상의 통로들 중 다양한 구성들을 사용하여 수소, 공기 및 물의 재순환된 또는 신선한 소스들이 공급될 수 있다는 것을 인식할 것이다.
냉각 시스템(10)은 제 1 열교환기(26) 및 제 2 열교환기(28)를 포함할 수 있다. 열교환기(26,28)는 이 열교환기에 가스, 증기 또는 액체 형태로 공급된 물을 응축, 분리, 포획 또는 냉각시키도록 구성될 수 있다. 열교환기(26,28)는 냉각 시스템(10)의 하나 이상의 통로에 유체 연결될 수 있다. 예를 들어, 제 1 열교환기(26)는 연료 전지(12)의 출구 통로(24)에 유체 연결될 수 있고 제 2 열교환기(28)는 연료 전지(12)의 입구 통로(22b)에 유체 연결될 수 있다.
냉각 시스템(10)은 또한 물 분리기(30), 저장 장치(32), 펌프(34) 또는 필터(36)와 같은 다른 장치들을 포함할 수 있다. 물 분리기(30)는 물 분리기(30)로 진입하는 유체의 유동으로부터 적어도 부분적으로 물을 분리하도록 구성될 수 있다. 저장 장치(32)는 물을 저장하도록 구성될 수 있고, 탱크, 대직경 통로 또는 팽창가능한 저수조를 포함할 수 있다. 펌프(34)는 통로를 통해서 유체를 이동시키도록 구성될 수 있다. 필터(36)는 미립자 물질, 이온 또는 다른 원하지 않는 성분들을 유체로부터 적어도 부분적으로 분리시키도록 구성될 수 있다. 냉각 시스템(10)은 또한 하나 이상의 밸브들(도시생략) 또는 다른 유체 장치들을 포함할 수 있다.
본원에 도시되고 기술된 실시예들은 예시적이고 다른 구성들도 본 발명에 기초하여 가능하다. 예를 들어, 본원에 기술된 하나 이상의 장치들은 필요하지 않을 수 있고 또는 냉각 시스템(10)에 걸쳐서 다른 구성들로 배열될 수 있다. 이들 장치들의 하나 이상의 기능들이 상기 장치 또는 기타 장치들을 사용하여 냉각 시스템(10)으로 합체될 수 있다는 것도 예상할 수 있다.
도 1 내지 도 4에 도시된 바와 같이, 출구 통로(20)는 출구 통로(20) 내에 수용된 물의 일부를 분리시키도록 구성된 물 분리기(30a)를 포함할 수 있다. 도 1, 도 2 및 도 4는 물 분리기(30b)를 갖는 출구 통로(24)를 도시하고, 도 3은 물 분리기(30b)가 없는 출구 통로(20)를 도시한다. 물 분리기(30a)는 도 1, 도 2 및 도 4에 도시된 물 분리기(30b) 또는 도 3에 도시된 저장 장치(32)에 물을 공급하도록 작동할 수 있다. 물 분리기(30b)는 제 1 출구 통로(23)를 통해서 저장 장치(32)에 물을 공급하도록 작동할 수 있다. 물 분리기(30b)는 또한 제 2 출구 통로(25)에 유체를 공급하도록 구성될 수 있다. 일부 실시예에서, 제 2 출구 통로(25)에 공급된 유체는 가스, 증기 또는 방울 형태의 물을 포함할 수 있다.
제 2 출구 통로(25)는 제 1 열교환기(26)에 유체 연결될 수 있고 제 1 열교환기(26)에 유체를 제공하도록 구성될 수 있다. 상기 유체는 물이 일반적으로 물 분리기(30b)에 의해서 유체로부터 제거될 때 주로 가스일 수 있다. 상기 유체에 잔류하는 물의 적어도 일부는 제 1 열교환기(26)에 의해서 응축 또는 분리될 수 있다. 제 1 열교환기(26)에 의해서 보유된 물은 저장 장치(32)로 공급되고 재순환 루프(44)를 통해서 냉각 시스템(10)을 통해서 재순환될 수 있다. 재순환 루프(44)를 통해서 유동하는 물은 연료 전지(12)로 복귀하기 전에 제 2 열교환기(28)에 의해서 냉각될 수 있다. 하기 기술된 바와 같이, 제 1 열교환기(26)는 일반적으로 냉각 시스템(10)의 전체 동작 및 효율을 개선하기 위하여 제 2 열교환기(28)와는 독립적으로 작동할 수 있다.
열교환기(26)는 열교환기(26)로 진입하는, 안에 있는 또는 나오는 유체의 온도를 제어하도록 구성된 하나 이상의 구성요소들을 포함할 수 있다. 예를 들어, 열교환기(26)는 배기 통로(40) 안으로 통과하는 유체의 온도를 제어하도록 구성된 하나 이상의 팬들(38)을 포함할 수 있다. 구체적으로, 열교환기(26)는 2개의 냉각 팬들(도 7a 참조)을 포함할 수 있다.
유체 온도를 제어함으로써, 물 응축 비율은 선택적으로 제어될 수 있다. 또한, 냉각 시스템(10) 내의 물의 양은 열교환기(26) 내에 보유된 물을 냉각 시스템(10)에 공급함으로써 조정될 수 있다. 시간에 걸쳐 상기 물 균형은 냉각 시스템(10) 내의 전체 물의 양이 일반적으로 일정하도록 원하는 범위 내에서 유지될 수 있다. 이러한 "물 중립(water neutrality)"은 냉각 시스템(10)이 거의 작동하지 않거나 또는 외부 소스에 의해서 물이 공급되는 것을 의미한다. 이는 배기 통로(40)를 통한 물의 손실 비율과 대략 동일한 비율로 연료 전지(12)를 통해서 물을 생산하는 것을 포함할 수 있다. 물 생산 및 손실 비율에서의 짧은 기간의 오정합은 잉여 물을 저장 장치(32)에 공급하거나 또는 저장 장치(32)로부터 물을 제거함으로써 버퍼(buffer)될 수 있다.
열교환기(26)는 물을 냉각 시스템(10)에 공급하도록 구성된 하나 이상의 출구 통로(42)를 포함할 수 있다. 도 1에 도시된 바와 같이, 저장 장치(32)는 출구 통로(42)에 의해서 출구 통로(23) 및 열교환기(26)를 경유하여 물 분리기(30b)로부터 물이 공급될 수 있다. 저장 장치(32) 내에 저장된 물은 펌프(34)에 의해서 제 2 열교환기(28)로 공급될 수 있다. 제 2 열교환기(28)는 필터(36)를 통과하여 입구 통로(22b) 안으로 들어가기 전에 적어도 부분적으로 물을 냉각시킬 수 있다. 따라서, 열교환기(28)는 물이 다시 음극(16) 안으로 안내되기 전에 물 온도를 제어할 수 있다.
도 2에 도시된 바와 같이, 다른 예시적인 실시예에 따라서, 냉각 시스템(10)은 재순환 루프(44) 내의 물을 냉각시키기 위한 제 2 재순환 루프(46)를 포함할 수 있다. 구체적으로, 제 2 재순환 루프(46)는 재순환 루프(44)에 유체 연결되어서 재순환 루프(44)에 공급된 물의 적어도 일부는 재순환 루프(46)에 공급될 수 있다. 재순환 루프(46)에서 물이 상술한 제 2 열교환기(28)에 의해서 냉각될 수 있다. 또한, 재순환 루프(46)는 저장 장치(32), 펌프(34) 또는 냉각 시스템(10)의 다른 장치를 포함하거나 또는 포함하지 않을 수 있다는 것을 이해할 수 있다.
도 3은 다른 예시적인 실시예에 따른 냉각 시스템(10)의 개략적인 도면을 제공하고, 연료 전지(12)로부터의 출구 통로(24)는 제 1 열교환기(26)와 직접 유체 교통한다. 이 구성에서, 음극(16)으로부터의 유체 출력은 물 분리를 통과하지 않고 제 1 열교환기(26)에 직접 공급된다. 제 1 열교환기(26)는 또한 음극(16)에 의해서 유체 출력으로부터 물을 분리하기 위하여 물 분리기로서 작용할 수 있다. 물 분리기(30a)에 의해서 출력된 물은 직접 저장 장치(32)에 공급될 수 있다. 이러한 구성은 또한 본원에 기술된 냉각 시스템(10)의 다른 실시예들에 제공될 수 있다.
도 4는 다른 예시적인 실시예에 따른 냉각 시스템(10)의 개략적인 도면을 제공하고, 제 1 열교환기(26)는 하방 유동 경로를 포함한다. 하기 기술된 바와 같이, 제 1 열교환기(26)는 상방 유동 경로 또는 하방 유동 경로에서 작동하도록 구성될 수 있다.
예를 들어 도 1 내지 도 3에 도시된, 상향 유동 설계에서, 출구 통로(24) 또는 물 분리기(30b)에서 공급된 유체는 제 1 열교환기(26)의 하부 영역에 위치한 하부 매니폴드(48)로 진입할 수 있다. 유체는 그때 제 1 열교환기(26)의 상부 영역에 위치한 상부 매니폴드(50)로 일반적인 상향 방향으로 제 1 열교환기(26)를 통하여 유동할 수 있다. 이러한 상향 유동 경로는 유체의 상향 유동에 대한 중력으로 인하여 제 1 열교환기(26) 내에서 응축되는 물이 하향으로 흐를 수 있게 한다. 응축된 물은 그때 하부 매니폴드(48)로부터 배출되어서 출구 통로(42)를 경유하여 저장 장치(32) 안으로 흐를 수 있다. 예를 들어 도 4에 도시된 하류 유동 설계에서, 연료 전지(12)로부터의 유체는 상부 매니폴드(50)를 경유하여 제 1 열교환기(26) 안으로 진입할 수 있다. 유체는 그때 일반적으로 하향 방향으로 하부 매니폴드(48)로 흐르고 배기 통로(40)를 경유하여 제 1 열교환기(26)를 빠져나올 수 있다. 제 1 열교환기(26)에서 응축된 물은 또한 일반적으로 하향으로 유동할 수 있고 출구 통로(42)를 경유하여 하부 매니폴드(48)로부터 배출될 수 있다.
상술한 바와 같이. 냉각 시스템(10)은 기존의 냉각 시스템보다 큰 설계적 가요성을 제공할 수 있다. 냉각 시스템(10)은 기존 시스템들보다 작은 수의 구성요소들, 단순화된 배관작업을 포함하고 또는 작은 공간을 점유한다. 작동 시에, 냉각 시스템(10)은 물 온도 및 물 균형의 독립적 제어와 같이, 기존 시스템에 대해서 하나 이상의 다른 장점들을 제공할 수 있다. 또한, 냉각 시스템(10)은 냉각 성능 또는 작동 범위를 개선하기 위하여 열 교환기(26,28) 사이의 전체 열 부하의 분할량을 조정하는 것을 허용할 수 있다.
냉각 시스템(10)의 물 균형이 일반적으로 일정할 때의 상황을 위하여, 냉각 시스템(10)에 의해서 방출된 전체 열은 연료 전지(12)의 작동 조건의 범위에 걸쳐 비교적 일정할 수 있다. 이러한 상황에서, 냉각 시스템(10)은 열교환기(26,28) 사이의 연료 전지(12)를 냉각시키는데 필요한 전체 방출열을 분할하도록 구성될 수 있다. 이 분할량은 예를 들어 공기 화학량론, 음극(16)의 물 유입 온도 또는 냉각수(22b)의 유동 비율과 같이, 냉각 시스템(10) 또는 연료 전지(12)의 작동 변수를 조정함으로써 제어될 수 있다.
예를 들어, 도 5는 약 0,4 g/s의 양성 물균형(positive water balance)을 달성하기 위하여 전체 방출열의 약 15kW를 필요로 하는 연료 전지 시스템을 위한 작동 변수 선택사항을 도시한다. 표 1에 표시된 작동 변수를 변화시킴으로써(공기 화학량론 약 1.5 내지 약 2.5, 물 온도 약 55 내지 약 65℃, 물 유동 비율 약 15 내지 약 25ml/hr/Amp/cell), 제 1 열교환기(26)(HX1)와 제 2 열교환기(28)(HX2) 사이의 열 전달 분할량은 약 25%/약 75% 내지 약 78%/약22% 범위일 수 있다.
라벨
공기
화학량론
물 유동 비율(g/s
)
물 온도
(℃)
전체 열 전달량
(kW)
HX1
전달량
(kW)
HX2
전달량
(kW)
HX1
전달량
(kW)
HX2
전달량
(kW)
A ~1.5 ~25 ~55 ~14.8 ~3.7 ~11.1 ~25 ~75
B ~2.5 ~15 ~65 ~15.8 ~12.4 ~3.4 ~78 ~22
표 1: 예 연료 전지 작동 변수 선택사항들
냉각 시스템(10)은 하나 이상의 작동 변수들을 제한함으로써 작동 조건들의 더욱 많은 제한된 범위 또는 더욱 작은 제한된 범위를 사용하여 작동할 수 있다. 예를 들어, 도 5에 도시된 바와 같이, 약 1.50 내지 약 2.50 (점들 A & B) 대신에, 약 1.75 내지 약 2.25 (점들 C&D)로 공기 화학량론을 제한하고, 동일 범위의 물 유동 및 온도를 유지하는 것은 약 12.4 내지 약 11.7kW의 제 1 열교환기(26)에서의 최대 요구 부하 및 약 11.1 내지 약 10.3kW의 제 2 열교환기(28)에서의 최대 요구 부하를 감소시킬 수 있다. 물 유동 및 온도를 추가로 제한하는 것은 하나 또는 양자의 열교환기(26,28)에 대한 작동 요구값을 추가로 감소시킬 수 있다.
냉각 시스템(10)은 또한 원하는 범위 내에서 물 균형을 제어하도록 자동할 수 있다. 예를 들어, 열교환기(26,28)를 통하여 방출된 전체 열 전달량을 증가시킴으로써, 제 1 열교환기(26)에 의해서 더욱 많은 물이 응축될 수 있다. 양성 물 균형이 생성될 수 있고 그에 의해서 더욱 많은 물이 제 1 열교환기(26)에 의해서 제공되어서 냉각 시스템(10)에 수용된 전체 물의 양은 증가된다. 도 6은 열교환기(26,28)를 통해서 방출된 총 열 전달량이 양성 또는 중성 물 균형을 제공하도록 어떻게 조정될 수 있는 지를 도시한다.
일부 예에서, 전체 열 전달량을 낮추면, 중성 또는 음성 물 균형을 생성할 수 있다. 예를 들어, 제 1 열교환기(26)는 냉각 시스템(10)을 빠져나오는 물의 비율이 수소 및 산소 사이의 연료 반응시에 생성된 물의 비율과 대략 동일하도록, 배기 통로(40)를 통과하는 유체의 온도를 제어하거나 또는 물을 응축시킴으로써 일반적인 중성 물 균형을 제공할 수 있다. 냉각 시스템(10)에서 물의 전체 양이 원하는 레벨을 초과하면, 제 1 열교환기(26)는 연료 전지 반응시에 생성되는 것보다 배기 통로(40)를 경유하여 냉각 시스템(10)으로부터 물을 더욱 많이 제거하도록 작동할 수 있다. 이러한 피드백 제어는 냉각 시스템(10)의 원하는 양의 물을 유지하는데 사용될 수 있다. 구체적으로, 저장 장치(32)에서 물의 원하는 레벨은 배기 통로(40)를 경유하여 냉각 시스템(10)을 떠나는 물의 양을 제어함으로써 유지될 수 있다.
일부 실시예에서, 제 1 열교환기(26)의 열 전달량은 고정된 세트의 작동 변수에 대해서 일반적으로 일정하게 유지될 수 있다. 제 2 열교환기(28)의 일반적으로 일정한 열 전달량에 의해서, 물 균형은 제 1 열교환기(26)의 열 전달량을 변화시킴으로써 조정될 수 있다. 예를 들어, 제 1 열교환기(26)의 팬 속도를 변경함으로써 그리고 그에 따라 배기 통로(40)를 통해서 흐르는 유체의 온도 및 수증기 함량을 변경함으로써 행해진다. 유사하게, 제 1 열교환기(26)의 고정된 열 전달량에 대해서, 물 균형은 음극 공기 화학량론을 변경함으로써 조정될 수 있다.
열 전달량 균형이 추가 조작을 요구할 때의 상황에서, 작동 변수들은 물 균형을 개선하도록 변경될 수 있다. 예를 들어, 냉각 시스템(10)이 고온 환경에서 작동하고 물을 충분히 응축할 수 없다면, 작동 변수는 더욱 많은 열 전달량을 제 2 열교환기(28)로 이동시키도록 조정될 수 있다. 열 전달량에서의 이러한 변화는 제 1 열교환기(26)에 의해서 요구되는 냉각력을 낮출 수 있고 제 1 열교환기(26)의 능력을 개선시켜서 물 균형을 유지할 수 있다. 냉각 시스템(10)이 저온 환경에서 작동하고 물을 과도하게 응축시키면, 응축 비율은 작동 변수를 조정함으로써 감소되어서 제 2 열교환기(28)로부터 제 1 열교환기(26)로 열 전달량을 변화시킨다. 이러한 변화는 배기 가스를 배기 통로(40)에 있는 제 1 열교환기(26)로부터 잉여 물을 운반할 수 있을 만큼 충분히 고온으로 유지할 수 있다.
도 7a 및 도 7b는 예시적인 실시예에 따른 제 1 열교환기(26)의 개략적인 도면을 제공한다. 상술한 바와 같이, 제 1 열교환기(26)는 제 1 열교환기(26)를 통과하는 수증기의 적어도 일부를 액체 형태로 변환시키도록 구성될 수 있다. 예를 들어, 제 1 열교환기(26)는 입력 가스 스트림을 중력에 대항하여 상향으로 흐르게 하도록 구성될 수 있다. 동시에, 입력 가스와 함께 동반되거나 또는 입력 가스로부터 응축된 액체 물은 중력으로 인하여 아래로 흐를 수 있다. 이와 같이, 제 1 열교환기(26)는 응축 유닛 또는 물 분리기로 작용할 수 있다.
도 7a 및 도 7b에 도시된 바와 같이, 제 1 열교환기(26)는 하부 매니폴드(48) 및 상부 매니폴드(50)를 포함할 수 있다. 하부 매니폴드(48)는 연료 전지(12)(도시생략)로부터 유체 출력 유동을 수용하기 위한 입구 포트(52)를 포함할 수 있다. 하부 매니폴드(48)는 또한 제 1 열교환기(26)에 의해서 보유된 물의 출구를 제공하도록 구성된 하나 이상의 배수 포트(54)를 포함할 수 있다. 일부 실시예에서, 배수 포트(54)는 "출렁임(sloshing)"이 물을 하부 매니폴드(48)의 양 측부를 향하여 밀쳐낼 때 효율적인 물 배수를 제공하도록 하부 매니폴드(48)의 대향 측부들을 향하여 위치할 수 있다. 이러한 출렁임은 냉각 시스템(10)을 사용하는 차량의 동작으로 인하여 발생할 수 있다.
또한, 제 1 열교환기(26)는 배수 포트(54) 없이 작동할 수 있다는 것을 예상할 수 있다. 예를 들어, 물 분리기(30b)로부터 유체를 공급하는 입구 통로(도시생략)는 배수 포트(54)를 향하여 상향으로 각도형성될 수 있다. 상향 각도형성된 입구 통로는 또한 가스 속도들을 하기 기술된 바와 같이 저속으로 유지하도록 크기설정될 수 있다. 이러한 입구 통로는 제 1 열교환기(26)에 의해서 포획된 적어도 일부 물이 물 분리기(30b)로 다시 배수될 수 있게 한다.
도 8a 및 도 8b에 도시된 바와 같이, 열교환기(26)는 열교환기(26)를 통하여 유체를 안내하도록 구성된 하나 이상의 채널들(56)을 포함할 수 있다. 일부 실시예에서, 채널들(56)은 일반적으로 수직이고 하부 매니폴드(48)에서 상부 매니폴드(50)로 연장될 수 있다. 채널들(56)의 구성은 유체가 하부 매니폴드(48)로부터 상부 매니폴드(50)로 일반적으로 상향으로 유동할 수 있게 한다. 채널(56)은 또한 유체가 도 4에 대해서 상술한 바와 같이 일반적으로 하향으로 유동할 수 있게 허용하도록 구성될 수 있다.
채널(56)은 물을 모으거나 또는 물이 제 1 열교환기(26)로부터 배수되도록 구성될 수 있다. 예를 들어, 하나 이상의 채널(56)은 유체가 채널(56)을 통해서 상향으로 유동하는 동안 액체 물이 중력으로 인하여 하향으로 이동할 수 있게 허용하도록 크기설정될 수 있다. 이 결과를 달성하기 위하여, 채널(56) 내의 유체 속도는 충분히 작게 유지되어서 항력(drag force)을 감소시켜서, 이 항력들이 물을 유체 유동과 함께 상향으로 밀쳐내기에 불충분하다. 특히 채널(56)은 물 배수를 허용하도록 유체 속도를 충분히 낮은 수준으로 제한하기에 충분한 전체 단면적(채널들의 수 x 각 채널의 단면적)을 제공하도록 크기설정될 수 있다. 채널(56)은 또한 낮은 유체 속도를 갖는 물을 제자리에 유지할 수 있는 물 표면 장력을 일반적으로 제한하기에 충분히 큰 치수를 가질 수 있다. 예를 들어, 채널(56)은 약 6mm 이상의 폭을 가질 수 있다. 채널(56) 내에 포획된 물은 도 7a 및 도 7b에 도시된 바와 같이, 하부 매니폴드(48)에서 모아지고 배수 포트(54)로부터 흐를 수 있다.
일부 실시예에서, 열교환기(26)는 일반적으로 수직으로 지향된 일반적으로 하나 이상의 평행한 채널(56)을 포함할 수 있다. 평행 채널(56)은 상부 매니폴드(50)에 각각 유체 연결될 수 있다. 상부 매니폴드(50)는 도 8a에 도시된 바와 같이 하나 이상의 채널(56)에 유체 연결되고 유체 유동을 배기 포트(60)로 안내하도록 구성된 루멘(lumen;58)을 포함할 수 있다.
일부 작동 조건들에서, 액체 물은 상부 매니폴드(50) 내의 유체 유동에 제공될 수 있다. 열교환기(26)의 하나 이상의 형태들은 일반적으로 배기 포트(60)로부터 흐르는 액체 물을 일반적으로 제한하도록 구성될 수 있다. 예를 들어, 배기 포트(60)는 일반적으로 낮은 가스 속도를 유지하기 위하여 단면적이 충분히 클 수 있다. 다른 예에서, 배기 포트(60)는 물 관통 포트(60)의 유동을 여과시킬 수 있는 필터 조립체(62)를 포함할 수 있다.
필터 조립체(62)는 배기 유체가 제 1 열교환기(26)를 경유하여 냉각 시스템(10)을 빠져나오게 허용하도록 구성될 수 있다. 필터 조립체(62)는 또한 제 1 열교환기(26)로부터 물의 통과를 제한하거나 또는 제 1 열교환기(26) 안으로 외부 오염물 또는 파편들의 유입을 제한하도록 구성될 수 있다. 또한, 필터 조립체(62)는 필터 조립체(62)에서 응축되거나 또는 합쳐지는 물이 다시 제 1 열교환기(26) 안으로 배수되도록 구성될 수 있다.
도 9a 내지 도 9c는 예시적인 실시예에 따른 필터 조립체(62)의 개략적인 도면을 제공한다. 필터 조립체(62)는 여러 구성들로 배치된 하나 이상의 필터 요소(64), 필터 프레임(66) 또는 가스켓(68)을 포함할 수 있다. 일반적으로, 하나 이상의 필터 요소(64)는 필터 조립체(62)를 통한 액체 물의 통과를 적어도 부분적으로 제한하면서 유체가 냉각 시스템(10)을 빠져나오게 허용한다. 이러한 여과는 일부 경우에 제 1 열교환기(26)를 빠져나오는 배기 가스에 의한 액체 물의 방출을 방지할 수 있다.
도 9b에 도시된 바와 같이, 필터 조립체(62)는 서로 인접하게 위치한 3개의 필터 요소들(64), 3개의 필터 프레임(66), 및 하나의 가스켓(68)을 포함할 수 있다. 필터 요소(64)는 예를 들어, 금속 포움(foam), 메시 또는 펠트 매체(felt media)와 같은 다공성 매체의 하나 이상의 층을 포함할 수 있다. 하나 이상의 필터 요소(64)는 하나 이상의 필터 프레임들(66) 또는 가스켓들(68) 사이에서 유지될 수 있다. 일부 실시예에서, 제 1 및 제 3 필터 요소는 약 1.2mm의 금속성 포움을 포함할 수 있고 제 2 필터 요소는 베기포 60BL3 금속 필터 매체와 다른 베키포(Bekipor) 필터 매체를 포함할 수 있다. 일반적으로, 필터 요소(64)는 1) 수증기를 포함하는 가스들이 통과할 수 있어야 하고, 2) 액체 물을 뭉치거나 또는 차단해야 하고, 3) 액체 물을 배수시켜야 하고, 또는 4) 열교환기(26) 안으로의 외부 먼지 또는 파편의 유입을 최소화해야 한다. 필터 요소(64)는 포움, 스크린, 메시, 펠트, 모직, 용지 또는 다른 다공성 구조를 포함할 수 있다. 이들은 금속, 테프론(Teflon), 유리 섬유, 옷감 또는 세라믹을 포함하는 재료로 부분적으로 형성될 수 있다. 또한, 제 1 및 제 2 필터 요소(64)를 분리시키는 필터 프레임(66)은 약 5mm의 폭을 가질 수 있다.
일부 실시예에서, 제 1 열교환기(26) 또는 필터 조립체(62)는 필터 조립체(62)에 의해서 포획된 적어도 일부 물을 다시 제 1 열교환기(26)로 배수하도록 구성될 수 있다. 예를 들어, 필터 요소(64)의 다공 특성은 중력으로 인하여 물이 루멘(58) 안으로 배수되게 하는 경로를 제공할 수 있다. 제 1 열교환기(26) 또는 필터 조립체(62)는 포획된 물이 하나 이상의 채널(56)(도시생략) 안으로 다시 방울져 떨어지게 하도록 다양하게 구성될 수 있다. 이러한 물 유동을 보조하기 위하여, 2개의 필터 요소(64) 사이에 위치한 필터 프레임(66)은 도 9c에 도시된 바와 같이, 필터 요소(64)의 저부 에지(70)의 적어도 일부를 덮지 않을 수 있다. 추가로, 필터 요소(64)의 저부 에지(70)는 필터 조립체(62)로부터의 물이 채널(56)에서 방울져 떨어지도록 하나 이상의 채널(56) 위에 위치할 수 있다. 상술한 바와 같이, 채널(56)은 물이 하부 매니폴드(48)로 하향으로 유동하도록 크기설정될 수 있다.
본 발명의 다른 실시예는 당업자가 본 명세서를 고려하고 본원에 개시된 개념을 실행할 수 있음이 자명한 사실이다. 예를 들어, 제 1 열교환기(26)는 예를 들어, 냉각 전지 유형의 연료 전지 시스템과 같은 다양한 연료 전지와 함께 사용될 수 있다. 또한, 열교환기(26,28)의 하나 이상의 기능 또는 구성요소들은 단일 유닛으로 조합될 수 있다. 본 명세서 및 예들은 단지 예시적으로 고려될 수 있고 본 발명의 진정한 범주 및 정신은 하기 청구범위에 기재되도록 의도된 것이다.

Claims (23)

  1. 연료 전지와 함께 사용하기 위한 냉각 시스템으로서,
    상기 연료 전지의 출구 통로와 유체 연결된 제 1 열교환기로서, 상기 연료 전지의 출구 통로를 통과하는 유체의 적어도 일부를 액체 물로 응축시키도록 구성되는, 상기 제 1 열교환기;
    상기 제 1 열교환기의 출구 통로와 상기 연료 전지의 입구 통로에 유체 연결된 제 2 열교환기로서, 상기 연료 전지의 입구 통로 안으로 통과하는 유체를 냉각시키도록 구성되는, 상기 제 2 열교환기를 포함하고;
    상기 연료 전지의 출구 통로와 상기 연료 전지의 입구 통로는 상기 연료 전지의 음극과 유체 연결되고, 상기 연료 전지의 입구 통로는 물을 상기 음극에 공급하도록 구성되는, 냉각 시스템.
  2. 제 1 항에 있어서,
    상기 음극에 유체 연결되고 산소를 상기 음극에 공급하도록 구성되는 공기 입구 통로; 및
    상기 연료 전지의 양극에 유체 연결된 양극 출구 통로 및 양극 입구 통로를 추가로 포함하고,
    상기 양극 출구 통로는 상기 양극 입구 통로에 유체 연결되고 상기 양극 입구 통로는 수소를 상기 양극에 공급하도록 구성되는, 냉각 시스템.
  3. 제 2 항에 있어서,
    상기 양극 출구 통로는 물 분리기로 통과하는 유체의 적어도 일부를 물로 분리시키도록 구성된 상기 물 분리기를 포함하는, 냉각 시스템.
  4. 제 3 항에 있어서,
    상기 물 분리기는 음극 출구 통로, 상기 음극 출구 통로에 결합된 제 2 물 분리기, 및 물 저장 장치 중 적어도 하나에 유체 연결되는, 냉각 시스템.
  5. 제 1 항에 있어서,
    상기 연료 전지의 출구 통로는 상기 물 분리기로 통과하는 유체의 적어도 일부를 물로 분리시키도록 구성된 물 분리기를 포함하고, 상기 물 분리기는 상기 제 1 열교환기에 유체 연결되는, 냉각 시스템.
  6. 제 1 항에 있어서,
    물 저장 장치, 펌프 및 필터 중 적어도 하나를 추가로 포함하는, 냉각 시스템.
  7. 제 1 항에 있어서,
    상기 제 1 열교환기의 출구 통로는 상기 제 2 열교환기에 유체 연결된 물 출구 통로를 구비한 물 저장 장치에 유체 연결되는, 냉각 시스템.
  8. 제 7 항에 있어서,
    상기 제 2 열교환기는 물을 상기 물 저장 장치에 공급하도록 구성된 물 입구 통로에 유체 연결되는, 냉각 시스템.
  9. 제 1 항에 있어서,
    상기 제 1 열교환기는 상기 연료 전지의 출구 통로에 유체 연결된 입구 포트, 대기와 유체 연결된 배기 포트, 상기 제 1 열교환기에 유체 연결된 배수 포트, 및 상기 제 1 열교환기 내에서 적어도 부분적으로 물을 포획하도록 구성된 필터 조립체를 포함하는, 냉각 시스템.
  10. 제 9 항에 있어서,
    상기 필터 조립체는 적어도 2개의 필터 요소들과 상기 적어도 2개의 필터 요소들 사이에 위치한 적어도 하나의 프레임 부재를 포함하고, 상기 제 1 열교환기는 하나 이상의 채널들을 포함하고, 상기 적어도 2개의 필터 요소들 중 적어도 하나는 상기 적어도 하나의 프레임 부재에 의해서 적어도 부분적으로 차단되지 않고 상기 하나 이상의 채널들 안으로 물을 배수하도록 구성된 하부 에지를 포함하는, 냉각 시스템.
  11. 제 9 항에 있어서,
    상기 필터 조립체는 상기 제 1 열교환기의 상부 매니폴드에 유체 연결되고, 상기 상부 매니폴드는 일반적으로 수직으로 지향된 복수의 채널들에 유체 연결되는, 냉각 시스템.
  12. 출구 통로와 적어도 하나의 입구 통로에 유체 연결된 음극을 포함하는 연료 전지로서, 상기 적어도 하나의 입구 통로는 공기와 적어도 부분적으로 재순환된 물을 상기 음극에 공급하여 상기 음극 내에서 상기 공기와 상기 적어도 부분적으로 재순환된 물의 혼합을 허용하도록 구성되는, 상기 연료 전지;
    상기 연료 전지의 출구 통로에 유체 연결된 제 1 열교환기로서, 상기 연료 전지의 출구 통로를 통과하는 유체의 적어도 일부를 액체 물로 변환시키도록 구성된, 상기 제 1 열교환기; 및
    상기 제 1 열교환기의 출구 통로와 상기 연료 전지의 입구 통로에 유체 연결된 제 2 열교환기로서, 상기 연료 전지의 입구 통로를 통과하는 유체를 냉각시키도록 구성된, 상기 제 2 열교환기를 포함하는 전력 시스템.
  13. 연료 전지의 냉각 방법으로서,
    수소를 상기 연료 전지의 양극에 공급하고 공기 및 물을 상기 연료 전지의 음극에 공급하는 단계;
    상기 연료 전지로부터 유체를 출력하는 유체 출력 단계로서, 상기 유체의 적어도 일부가 제 1 유체를 포함하는, 상기 유체 출력 단계;
    상기 제 1 유체를 제 1 열교환기로 공급하고 상기 제 1 열교환기를 사용하여 상기 제 1 유체의 적어도 일부를 물로 응축시키는 단계;
    제 2 열교환기에 상기 연료 전지로부터의 유체 출력물과 상기 제 1 열교환기에 의해 응축된 상기 물 중 적어도 하나를 공급하는 단계;
    상기 제 2 열교환기를 통해서 흐르는 유체를 냉각시키는 단계; 그리고
    상기 냉각된 유체를 상기 연료 전지에 공급하는 단계를 포함하는, 연료 전지의 냉각 방법.
  14. 제 13 항에 있어서,
    상기 음극 및 상기 양극 중 적어도 하나로부터의 유체 출력물로부터 물을 분리시키는 단계를 추가로 포함하는, 연료 전지의 냉각 방법.
  15. 제 14 항에 있어서,
    상기 양극으로부터 분리된 물은 상기 음극으로부터의 유체 출력물과 저장수 중 적어도 하나에 공급되는, 연료 전지의 냉각 방법.
  16. 제 13 항에 있어서,
    물의 유동을 저장 장치에 공급하는 단계를 추가로 포함하고, 상기 물의 유동은 상기 제 1 열교환기 및 상기 제 2 열교환기 중 적어도 하나로부터 출력되는, 연료 전지의 냉각 방법.
  17. 제 16 항에 있어서,
    상기 제 1 열교환기를 통과하는 상기 제 1 유체의 온도를 제어함으로써 상기 저장 장치에 대한 상기 물의 유동을 변경하는 단계를 추가로 포함하는, 연료 전지의 냉각 방법.
  18. 제 13 항에 있어서,
    상기 연료 전지를 통해서 재순환하기 위한 유체를 여과하는 단계 및 펌핑하는 단계 중 적어도 하나를 추가로 포함하는, 연료 전지의 냉각 방법.
  19. 제 13 항에 있어서,
    상기 제 1 열교환기 및 상기 제 2 열교환기의 열 전달량(heat duty)을 적어도 부분적으로 균형을 맞추기 위하여 작동 변수를 변경하는 단계를 추가로 포함하고, 상기 작동 변수는 물 균형, 음극 화학량론(cathode stoichiometry), 유체 유동비율 및 유체 온도 중 적어도 하나를 포함하는, 연료 전지의 냉각 방법.
  20. 제 19 항에 있어서,
    상기 작동 변수를 변경하는 단계는 저장된 물의 수위를 적어도 부분적으로 제어하기 위하여 상기 제 1 열교환기를 빠져나오는 수증기의 비율을 변경하는, 연료 전지의 냉각 방법.
  21. 제 13 항에 있어서,
    저속의 유체 속도를 제공하도록 크기설정된 채널을 사용하여 상기 제 1 열교환기 내에서 물을 모으는 단계를 추가로 포함하는, 연료 전지의 냉각 방법.
  22. 제 21 항에 있어서,
    필터 조립체 내에서 물을 모으는 단계와 상기 모아진 물을 상기 채널로 안내하는 단계를 추가로 포함하는, 연료 전지의 냉각 방법.
  23. 제 13 항에 있어서,
    상기 음극을 통해서 제 1 재순환 루프를 경유하여 물을 재순환시키는 단계와 상기 제 1 재순환 루프에 유체 연결된 제 2 재순환 루프를 경유하여 상기 재순환 물을 냉각시키는 단계를 추가로 포함하는, 연료 전지의 냉각 방법.
KR1020147028359A 2012-03-12 2013-03-11 연료 전지와 함께 사용하기 위한 냉각 시스템 및 방법 KR102051280B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261609531P 2012-03-12 2012-03-12
US61/609,531 2012-03-12
PCT/US2013/030266 WO2013138249A2 (en) 2012-03-12 2013-03-11 Cooling system and method for use with a fuel cell

Publications (2)

Publication Number Publication Date
KR20140136029A true KR20140136029A (ko) 2014-11-27
KR102051280B1 KR102051280B1 (ko) 2019-12-03

Family

ID=48050899

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147028359A KR102051280B1 (ko) 2012-03-12 2013-03-11 연료 전지와 함께 사용하기 위한 냉각 시스템 및 방법

Country Status (7)

Country Link
US (2) US9780393B2 (ko)
EP (2) EP3232500B1 (ko)
JP (1) JP6336433B2 (ko)
KR (1) KR102051280B1 (ko)
CA (1) CA2866836A1 (ko)
ES (2) ES2633168T3 (ko)
WO (1) WO2013138249A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10211469B1 (en) * 2018-02-19 2019-02-19 Emerson Climate Technologies, Inc. Heat rejection system for electrochemical climate control system
CN113097535B (zh) * 2021-04-06 2022-06-14 吉林大学 自增湿燃料电池水热管理系统及其控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030078858A (ko) * 2000-09-12 2003-10-08 도널드선 컴파니 인코포레이티드 저온 촉매 공정을 위한 에어 필터 어셈블리
JP2006302594A (ja) * 2005-04-19 2006-11-02 Equos Research Co Ltd 燃料電池システム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4362789A (en) * 1981-09-21 1982-12-07 Westinghouse Electric Corp. Fuel cell cooling and recirculation system
DE19908099A1 (de) * 1999-02-25 2000-08-31 Daimler Chrysler Ag Brennstoffzellensystem
US6277509B1 (en) * 1999-04-12 2001-08-21 International Fuel Cells Llc Hydride bed water recovery system for a fuel cell power plant
DE10020055A1 (de) * 2000-04-22 2001-10-25 Volkswagen Ag Kondensator, insbesondere für ein Fahrzeug, und Verfahren zum Trennen einer Flüssigkeit und eines Gases aus einem Mehrphasenbetriebsstoff
US6537351B2 (en) * 2001-05-29 2003-03-25 Utc Fuel Cells, L.L.C. Compact light weight condenser assembly
EP1313161A1 (en) * 2001-11-15 2003-05-21 Ballard Power Systems AG Fuel cell system and method for operating the same
JP4140294B2 (ja) * 2002-07-05 2008-08-27 日産自動車株式会社 燃料電池システム
US6696521B2 (en) * 2002-07-29 2004-02-24 Arco Chemical Technology, Lp High performance ortho UPR
GB2396688B (en) * 2002-11-22 2006-06-28 Intelligent Energy Ltd Thermal energy management in electrochemical fuel cells
DE10260871A1 (de) * 2002-12-23 2004-07-08 Sungene Gmbh & Co. Kgaa Verfahren zur Herstellung von transgenen Pflanzen mit erhöhtem Vitamin E-Gehalt durch Veränderung des Serin-Acetyltransferase-Gehalts
JP3918757B2 (ja) * 2003-03-27 2007-05-23 日産自動車株式会社 燃料電池システム
JP4882198B2 (ja) * 2003-09-25 2012-02-22 日産自動車株式会社 燃料電池システム
JP2005183117A (ja) * 2003-12-18 2005-07-07 Toshiba Home Technology Corp 燃料電池装置
JP5103776B2 (ja) * 2006-03-31 2012-12-19 株式会社エクォス・リサーチ 燃料電池システム及びその運転方法
JP2007280755A (ja) * 2006-04-06 2007-10-25 Toyota Motor Corp 燃料電池システム及びその運転方法並びに移動体
JP2008130484A (ja) * 2006-11-24 2008-06-05 Denso Corp 燃料電池システム
KR20100032919A (ko) * 2007-07-12 2010-03-26 쉘 인터내셔날 리써취 마트샤피지 비.브이. 탄화수소 스트림의 냉각 방법 및 장치
GB2453126B (en) * 2007-09-26 2013-02-06 Intelligent Energy Ltd Fuel cell system
JP5314273B2 (ja) * 2007-12-11 2013-10-16 三菱重工業株式会社 電気分解装置及びこれを利用する燃料電池発電システム
JP2009224179A (ja) * 2008-03-17 2009-10-01 Equos Research Co Ltd 燃料電池システム
KR100923448B1 (ko) * 2009-05-27 2009-10-27 한국기계연구원 밀폐형 연료전지 시스템
US20130059214A1 (en) * 2010-05-27 2013-03-07 Utc Power Corporation Fuel cell contaminant removal method
GB2533265B (en) * 2014-12-01 2021-09-15 Intelligent Energy Ltd Fuel cell system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030078858A (ko) * 2000-09-12 2003-10-08 도널드선 컴파니 인코포레이티드 저온 촉매 공정을 위한 에어 필터 어셈블리
JP2006302594A (ja) * 2005-04-19 2006-11-02 Equos Research Co Ltd 燃料電池システム

Also Published As

Publication number Publication date
US9780393B2 (en) 2017-10-03
EP3232500A1 (en) 2017-10-18
JP6336433B2 (ja) 2018-06-06
US10547066B2 (en) 2020-01-28
EP3232500B1 (en) 2019-07-03
WO2013138249A2 (en) 2013-09-19
JP2015515718A (ja) 2015-05-28
EP2826091B1 (en) 2017-06-07
US20170365865A1 (en) 2017-12-21
ES2633168T3 (es) 2017-09-19
US20130236804A1 (en) 2013-09-12
WO2013138249A3 (en) 2014-02-27
EP2826091A2 (en) 2015-01-21
KR102051280B1 (ko) 2019-12-03
ES2739980T3 (es) 2020-02-05
CA2866836A1 (en) 2013-09-19

Similar Documents

Publication Publication Date Title
US7579098B2 (en) Fuel cells evaporative reactant gas cooling and operational freeze prevention
US8182954B2 (en) Full cells evaporative cooling and combined evaporative and sensible cooling
US9882230B2 (en) Fuel cell stack
KR101246531B1 (ko) 연료 전지에 대한 반응물 가스 증발 냉각 및 작동 결빙방지
US7435502B2 (en) Internal PEM fuel cell water management
JP2007157718A (ja) 燃料電池の操作方法及び燃料電池システム
US20190181474A1 (en) Fuel cell apparatus
KR102575900B1 (ko) 유로판
JP2006036117A (ja) 燃料電池自動車
US10547066B2 (en) Cooling system and method for use with a fuel cell
US8470480B2 (en) Circulation of gas-entrained fuel cell coolant
JP3818068B2 (ja) 燃料電池システム
CN116259806B (zh) 一种能去除气体杂质的燃料电堆及去除气体杂质的方法
US8980494B2 (en) Water management for a fuel cell
CN111344888A (zh) 加湿系统和带有加湿系统的燃料电池系统
US20040086771A1 (en) High temperature reactant recycling for PEM fuel cell humidification
US9455455B2 (en) Evaporatively cooled fuel cells with water passageways enhanced by wicks
JP2005158430A (ja) 燃料電池システム
US7163199B2 (en) Ventilation system for fuel cell water tank
KR20090017652A (ko) 연료 전지용 물 관리
JP2005158544A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant