KR20140125588A - 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템 - Google Patents

스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템 Download PDF

Info

Publication number
KR20140125588A
KR20140125588A KR20130043561A KR20130043561A KR20140125588A KR 20140125588 A KR20140125588 A KR 20140125588A KR 20130043561 A KR20130043561 A KR 20130043561A KR 20130043561 A KR20130043561 A KR 20130043561A KR 20140125588 A KR20140125588 A KR 20140125588A
Authority
KR
South Korea
Prior art keywords
bragg grating
strain
fiber bragg
signal
reflected optical
Prior art date
Application number
KR20130043561A
Other languages
English (en)
Inventor
김헌우
이효열
강민수
Original Assignee
재단법인 중소조선연구원
이효열
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 중소조선연구원, 이효열 filed Critical 재단법인 중소조선연구원
Priority to KR20130043561A priority Critical patent/KR20140125588A/ko
Publication of KR20140125588A publication Critical patent/KR20140125588A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

본 발명의 일 실시예에 따른 스트레인 측정 장치는 타겟 파장 대역을 갖는 광신호를 생성하는 광원, 상기 광신호를 반사하여 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 복수의 광섬유 브래그 격자 센서들, 상기 복수의 반사 광신호들을 각각 다른 출력 채널을 통해 출력하는 도파로 어레이 격자, 상기 광신호를 상기 광원으로부터 상기 복수의 광섬유 브래그 격자 센서들로 전달하고, 상기 복수의 반사 광신호들을 상기 도파로 어레이 격자로 전달하는 써큘레이터, 상기 복수의 반사 광신호들을 각각 전기적 신호로 변환하는 복수의 광 다이오드들, 및 상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 신호 처리부를 포함한다.

Description

스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템{STRAIN MEASURING APPARATUS AND MONITORING SYSTEM FOR SAFETY GRADE OF SHIP COMPRISING THEREOF}
본 발명은 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템에 관한 것으로, 더욱 상세하게는 도파로 어레이 격자(AWG)를 이용한 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템에 관한 것이다.
해상에서 발생하는 선박 침몰 사고는 인명 및 경제적 손실, 환경 오염 등의 문제를 유발하는 심각한 사고로서 피해의 정도가 크고, 사고 발생 원인이 다양하고 복잡하여 사고 원인의 규명이 쉽지 않다. 선박 침몰 사고의 원인들 가운데, 반복되는 운항으로 선체에 가해지는 충격, 과다 적재 등을 원인으로 하는 선체 구조의 결함이 심각한 문제로 대두되고 있다. 이러한 문제를 해결하기 위해, 대형 선박의 경우 국제해사기구(IMO)에서 20,000 DWT 이상의 산적 화물선에 대해 선체 구조 모니터링 시스템의 장착을 권고하고 있다.
선박의 선체 구조 모니터링 시스템에는 일반적으로 LBSG(Long Based Strain Gauge) 변형률 센서가 사용되고 있다. 하지만, LBSG 변형률 센서는 온도에 대한 보정이 필요하고, 전자기적인 영향과 해상에서의 부식 환경 등과 같은 환경적 변화에 민감한 단점이 있다.
이러한 LBSG 변형률 센서의 단점을 보완하기 위하여 광섬유 센서가 선박의 선체 구조 모니터링 시스템에 사용되고 있다. 광섬유 센서는 전기적인 신호를 사용하는 기존의 변형률 센서보다 감도가 좋고, 광신호를 이용하기 때문에 전자기장에 대한 영향을 받지 않는다. 광섬유 센서는 단일 광섬유에 다수의 센서를 용이하게 설치할 수 있으며, 크기가 작아 구조물에 크게 영향을 미치지 않고 부착 및 내부 삽입이 용이하다는 장점이 있다. 한편, 일반적으로 광섬유 센서를 이용한 선박의 선체 구조 모니터링 시스템은 광파장 분석기(Optical Spectrum Analyzer, OSA)를 이용하고 있으나, 광파장 분석기는 고가의 장비이며, 부피가 크고 응답속도가 느려 실시간으로 빠른 파장 변화를 측정하기 어려운 단점이 있다.
이에, 본 발명의 목적은 실시간으로 선박의 안전도를 감시할 수 있는 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템을 제공하는 데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 스트레인 측정 장치는 타겟 파장 대역을 갖는 광신호를 생성하는 광원, 상기 광신호를 반사하여 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 복수의 광섬유 브래그 격자 센서들, 상기 복수의 반사 광신호들을 각각 다른 출력 채널을 통해 출력하는 도파로 어레이 격자, 상기 광신호를 상기 광원으로부터 상기 복수의 광섬유 브래그 격자 센서들로 전달하고, 상기 복수의 반사 광신호들을 상기 도파로 어레이 격자로 전달하는 써큘레이터, 상기 복수의 반사 광신호들을 각각 전기적 신호로 변환하는 복수의 광 다이오드들, 및 상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 신호 처리부를 포함한다.
일 실시예에서, 상기 복수의 반사 광신호들의 중심 파장은 상기 복수의 광섬유 브래그 격자 센서들에 인가되는 외력에 의한 스트레인에 의해 변화될 수 있다.
일 실시예에서, 상기 타겟 파장 대역은 1300 nm 내지 1800 nm 로 정의될 수 있다.
일 실시예에서, 상기 복수의 광섬유 브래그 격자 센서들은 서로 이격되어 배치될 수 있다.
일 실시예에서, 상기 복수의 광섬유 브래그 격자 센서들은 병렬로 연결될 수 있다.
일 실시예에서, 상기 복수의 광섬유 브래그 격자 센서들은 직렬로 연결될 수 있다.
일 실시예에서, 상기 복수의 광 다이오드들은 상기 복수의 반사 광신호들을 각각 전압 신호로 변환할 수 있다.
일 실시예에서, 상기 신호 처리부는 상기 전기적 신호를 증폭하는 증폭부, 상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 처리부, 및 상기 스트레인을 저장하는 메모리를 포함할 수 있다.
일 실시예에서, 상기 신호 처리부는 하기의 수학식 4에 기초하여 상기 중심 파장을 산출할 수 있다.
[수학식 4]
Figure pat00001
여기서, i는 도파로 어레이 격자(140, 도 2 참조)의 출력 채널의 번호, Vi는 i번째 출력 채널에서 측정된 전압을 의미함.
본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템은 선박의 안전도 감시 시스템에 있어서, 상기 선박에 인가되는 외력에 의한 스트레인을 측정하는 측정부, 상기 스트레인을 임계값과 비교하고, 비교 결과에 따라 경보 제어 신호를 생성하는 판단부, 및 상기 경보 제어 신호에 응답하여 경보를 발생하는 경보 발생부를 포함하되, 상기 측정부는 타겟 파장 대역을 갖는 광신호를 생성하는 광원, 상기 광신호를 반사하여 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 복수의 광섬유 브래그 격자 센서들, 상기 복수의 반사 광신호들을 각각 다른 출력 채널을 통해 출력하는 도파로 어레이 격자, 상기 광신호를 상기 광원으로부터 상기 복수의 광섬유 브래그 격자 센서들로 전달하고, 상기 복수의 반사 광신호들을 상기 도파로 어레이 격자로 전달하는 써큘레이터, 상기 복수의 반사 광신호들을 각각 전기적 신호로 변환하는 복수의 광 다이오드들, 및 상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 신호 처리부를 포함할 수 있다.
일 실시예에서, 상기 복수의 반사 광신호들의 중심 파장은 상기 복수의 광섬유 브래그 격자 센서들에 인가되는 외력에 의한 스트레인에 의해 변화될 수 있다.
일 실시예에서, 상기 신호 처리부는 상기 전기적 신호를 증폭하는 증폭부, 상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 처리부, 및 상기 스트레인을 저장하는 메모리를 포함할 수 있다.
일 실시예에서, 상기 복수의 광섬유 브래그 격자 센서들은 서로 이격되어 배치될 수 있다.
본 발명의 일 실시예에 따른 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템은 실시간으로 선박의 안전도를 감시할 수 있다.
또한, 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템은 선박의 안전도를 정확하게 측정할 수 있다.
도 1은 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템을 보여주는 블록도이다.
도 2는 도 1의 스트레인 측정 장치를 구체적으로 보여주는 블록도이다.
도 3은 도 2의 광섬유 브래그 격자(FBG) 센서의 동작을 설명하기 위한 도면이다.
도 4는 도 2의 도파로 어레이 격자(AWG)의 동작을 설명하기 위한 도면이다.
도 5는 도 2의 신호 처리부를 더욱 구체적으로 보여주는 블록도이다.
도 6은 본 발명의 다른 실시예에 따른 스트레인 측정 장치를 보여주는 블록도이다.
도 7은 본 발명의 일 실시예에 따른 선박의 안전도 감시 방법을 보여주는 흐름도이다.
도 8 내지 도 10은 선박에 부착된 위치에 따라 측정되는 스트레인을 보여주는 그래프들이다.
도 11 내지 도 14는 본 발명의 일 실시예에 따른 스트레인 측정 장치를 이용하여 측정된 스트레인과 일반적인 스트레인 측정 장치를 이용하여 측정된 스트레인을 비교하여 보여주는 그래프들이다.
본 명세서에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 또는 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예들을 설명하기 위한 목적으로 예시된 것으로서, 본 발명의 개념에 따른 실시 예들은 다양한 형태들로 실시될 수 있으며 본 명세서에 설명된 실시 예들에 한정되지 않는다.
본 발명의 개념에 따른 실시 예들은 다양한 변경들을 가할 수 있고 여러 가지 형태들을 가질 수 있으므로 실시 예들을 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예들을 특정한 개시 형태들에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물, 또는 대체물을 포함한다.
본 발명은 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템에 관한 것으로, 더욱 상세하게는 도파로 어레이 격자(AWG)를 이용한 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템에 관한 것이다. 이하에서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시예들을 첨부된 도면을 참조하여 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템을 보여주는 블록도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템(1000)은 스트레인 측정 장치(100), 판단부(200), 및 경보 발생부(300)를 포함한다.
스트레인 측정 장치(100)는 선박의 각 부분(예를 들면, 마스트, 선체 등)에 설치된 광섬유 센서를 이용하여 선박에 인가되는 스트레인(strain)을 측정한다. 스트레인 측정 장치(100)에 대해서는 이하의 도 2를 참조하여 더욱 구체적으로 설명될 것이다.
판단부(200)는 스트레인 측정 장치(100)에 의해 측정된 스트레인을 임계값과 비교한다. 판단부(200)는 측정된 스트레인이 임계값보다 높은 경우 선박의 안전도가 낮은 것으로 판단할 것이다. 반면에, 판단부(200)는 측정된 스트레인이 임계값보다 낮은 경우 선박의 안전도가 높은 것으로 판단할 것이다. 판단부(200)는 측정된 스트레인과 임계값의 비교 결과에 따라 경보 제어 신호(Cal)를 경보 발생부(300)로 전달한다.
경보 발생부(300)는 판단부(200)로부터 전달되는 경보 제어 신호(Cal)에 기초하여 경보를 발생한다. 경보 발생부(300)는 경보등, 경보음 등 다양한 수단을 통해 경보를 발생하는 경보 장치를 모두 포함할 수 있다.
본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템은 상술한 스트레인 측정 장치(100), 판단부(200), 및 경보 발생부(300)를 통해 선박(특히, 요트와 같은 소형 선박)의 안전도를 감시할 수 있다. 오늘날, 생활 수준의 향상에 따라 레저 활동으로서 요트 세일링에 대한 수요가 증가하고 있다. 이러한 수요 증가에 따라 요트의 안전도를 감시하기 위한 시스템이 필요하다. 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템은 요트의 설계 검증 및 성능을 평가할 수 있으며, 종 방향 보강제 및 선체 중앙부의 슈라우드(shroud) 및 마스트 등의 구조 결함이나 손상을 실시간으로 모니터링 할 수 있다. 따라서, 본 발명의 일 실시예에 따른 선박의 안전도 감시 시스템은 요트와 같은 소형 선박의 사고 방지 및 선박의 효율적인 유지 보수를 가능하게 한다.
이하에서는 도 1을 참조하여 설명된 선박의 안전도 감시 시스템이 더욱 구체적으로 설명될 것이다.
도 2는 도 1의 스트레인 측정 장치를 더욱 구체적으로 보여주는 블록도이다.
도 2를 참조하면, 스트레인 측정 장치(100)는 광원(110), 복수의 광섬유 센서들(120), 써큘레이터(circulator, 130), 도파로 어레이 격자(Arrayed Waveguide Grating, 140), 복수의 광 다이오드들(PDn, 150), 및 신호 처리부(160)를 포함한다.
광원(110), 복수의 광섬유 센서들(120), 써큘레이터(130), 도파로 어레이 격자(140), 및 복수의 광 다이오드들(150)은 광섬유 선로를 통해 연결될 수 있다.
광원(110)은 광신호를 생성한다. 광원(110)은 다양한 파장을 갖는 광신호들을 생성할 수 있다. 예를 들면, 광원(110)은 1550±250 nm 대역의 파장을 갖는 광신호를 생성할 수 있다. 광원(110)으로는 예를 들어, LED(Light Emitting Diode)가 사용될 수 있으나, 이에 한정되는 것은 아니며, 광신호를 생성하는 다양한 종류의 광원이 사용될 수 있다. 생성된 광신호는 써큘레이터(130)를 통해 복수의 광섬유 센서들(120)에 각각 전달될 것이다.
복수의 광섬유 센서들(120) 각각은 선박의 서로 다른 위치에 배치될 수 있다. 예를 들면, 복수의 광섬유 센서들(120)은 선박의 마스트(mast), 선체, 및 러더(rudder) 등에 각각 배치될 수 있다. 복수의 광섬유 센서들(120)은 광섬유를 통과하는 광신호의 진폭, 위상 또는 편광 등을 이용하여 측정하고자 하는 물리량(예를 들어, 스트레인)의 변화를 감지할 수 있다.
복수의 광섬유 센서들(120) 각각은 예를 들어, 외부 패브리-페로 간섭센서(Fiber-optic extrinsic Fabry-Perot interfero-metric sensor) 또는 파장 분할 다중화 기법(Wavelength Division Multiplexing, WDM)을 이용한 광섬유 브래그 격자 센서(Fiber-optic Bragg Grating, FBG)일 수 있다. 이하에서, 복수의 광섬유 센서들(120) 각각은 광섬유 브래그 격자 센서인 것으로 가정된다.
복수의 광섬유 브래그 격자 센서들(120) 각각은 써큘레이터(130)를 통해 전달되는 광신호를 통과시키거나 또는 반사시킬 수 있다. 각각의 광섬유 브래그 격자 센서들(120)로부터 통과되는 신호는 통과 광신호, 반사되는 신호는 반사 광신호로 각각 이해될 수 있다. 각각의 광섬유 브래그 격자 센서들(120)은 인가되는 광신호 가운데 특정 파장의 광신호를 반사하도록 설계될 수 있다. 따라서, 각각의 광섬유 브래그 격자 센서들(120)은 서로 다른 파장을 갖는 반사 광신호를 생성할 것이다. 한편, 각각의 광섬유 브래그 격자 센서들(120)에 인장, 압력, 또는 구부림과 같은 외력이 작용하는 경우 상기 반사 광신호의 파장이 변화될 수 있다.
써큘레이터(130)는 복수의 광섬유 브래그 격자 센서들(120)로부터 전달되는 복수의 반사 광신호를 도파로 어레이 격자(140)로 전달한다. 즉, 써큘레이터(130)는 광원(110)으로부터 생성되는 광신호를 복수의 광섬유 브래그 격자 센서들(120)로 전달하고, 복수의 광섬유 브래그 격자 센서들(120)로부터 전달되는 복수의 반사 광신호들을 도파로 어레이 격자(140)로 전달한다. 써큘레이터(130)는 예를 들어, 도파관 써큘레이터, 동축 써큘레이터, 집중 상수 써큘레이터 등 다양한 종류의 써큘레이터가 이용가능하며, 이에 한정되는 것은 아니다.
도파로 어레이 격자(140)는 복수의 광신호 브래그 격자 센서들(120)로부터 전달되는 복수의 반사 광신호들을 전달받는다. 도파로 어레이 격자(140)는 상기 복수의 반사 광신호들을 파장 별로 구분하여 출력할 수 있다. 즉, 도파로 어레이 격자(140)는 상기 복수의 반사 광신호들을 분리하여 복수의 광신호 브래그 격자 센서들(120) 각각에 대응하는 복수의 출력 광신호들을 생성할 수 있다.
도파로 어레이 격자(140)는 복수의 광신호 브래그 격자 센서들(120)의 개수와 동일한 수의 출력 채널을 가질 수 있다. 예를 들어, 광신호 브래그 격자 센서들(120)의 개수가 16개인 경우, 도파로 어레이 격자(140)는 16개의 출력 채널을 가질 수 있다. 도파로 어레이 격자(140)는 각 출력 채널을 통해 복수의 출력 광신호들을 출력할 것이다.
도파로 어레이 격자(140)의 구체적인 동작은 이하의 도 5를 참조하여 더욱 구체적으로 설명될 것이다.
복수의 광 다이오드들(150)은 도파로 어레이 격자(140)로부터 전달되는 복수의 출력 광신호들을 복수의 전기적 신호들로 변환할 것이다. 상기 복수의 전기적 신호들은 예를 들어, 전류 신호 또는 전압 신호를 의미할 수 있다. 이하에서, 상기 복수의 전기적 신호들은 전압 신호인 것으로 가정될 것이다. 복수의 광 다이오드들(150)은 도파로 어레이 격자(140)의 출력 채널들과 연결될 수 있다. 복수의 광 다이오드들(150)은 상기 출력 채널들을 통해 전달되는 출력 광신호들을 각각 전기적 신호로 변환할 수 있다.
신호 처리부(160)는 복수의 광 다이오드들(150)로부터 전달되는 복수의 전기적 신호들을 처리하여 스트레인 값을 산출할 수 있다. 구체적으로, 신호 처리부(160)는 상기 복수의 전기적 신호들을 각각 처리하여 복수의 광섬유 브래그 격자 센서들(120)이 배치된 위치에 대한 스트레인 값을 산출할 수 있다. 신호 처리부(160)의 구체적인 구성에 대해서는 이하의 도 3을 참조하여 더욱 구체적으로 설명될 것이다.
도 3은 도 2의 광섬유 브래그 격자(FBG) 센서의 동작을 설명하기 위한 도면이다.
도 3을 참조하면, 도 2의 광섬유 브래그 격자 센서(120, 도 2 참조)의 단면도가 도시된다. 광섬유 브래그 격자 센서(120)는 광섬유 코어(121), 복수의 광섬유 브래그 격자(122), 및 클래딩(123)을 포함할 수 있다.
광섬유 브래그 격자 센서(120)는 광섬유 코어(121)에 복수의 광섬유 브래그 격자(122)를 길이에 따라 새긴 후, 외력의 영향에 따라 각각의 광섬유 브래그 격자(122)에서 반사되는 광신호의 파장이 달라지는 특성을 이용한 센서이다. 광섬유 코어(121)는 클래딩(123)보다 높은 굴절률을 갖도록 설계될 수 있다. 광섬유 브래그 격자 센서(120)는 광섬유와의 연결 손실이 작고 파장 선택도가 높으며, 편광에 무관한 특성을 갖는 장점이 있다.
광섬유 브래그 격자 센서(120)의 동작 원리는 다음과 같다. 광섬유 브래그 격자(122)는 브래그 조건을 만족하는 광신호를 반사하고, 브래그 조건을 만족하지 않는 광신호는 통과시킨다. 브래그 조건을 만족하여 반사되는 광신호(즉, 반사 광신호)의 파장에 대한 브래그 조건식은 하기의 수학식 1과 같다.
Figure pat00002
여기서, λB는 반사 광신호의 파장, neff는 광섬유 코어의 유효 굴절률, Λ는 광섬유 브래그 격자의 격자 주기를 의미한다. 즉, 반사 광신호의 파장(λB)은 굴절률(neff)과 광섬유 브래그 격자 주기(Λ)의 함수로 이해될 수 있다.
광섬유 브래그 격자 센서(120)에 인가된 외력에 의해 광섬유 브래그 격자(122)의 격자 주기(Λ)나 굴절률(neff)의 변화가 발생되면 반사 광신호의 파장(λB)에 변화가 발생한다. 예를 들면, 광섬유 브래그 격자 센서(120)가 배치된 부분에 가해지는 외력에 의해 광섬유 브래그 격자 센서(120)로부터 생성되는 반사 광신호의 파장(λB)이 짧아지거나 또는 길어질 수 있다. 또한, 도 2를 참조하여 설명한 바와 같이, 복수의 광섬유 브래그 격자 센서(120)가 선박의 서로 다른 위치에 배치되는 경우 각각의 광섬유 브래그 격자 센서(120)가 받는 외력의 영향이 다르므로, 각각의 광섬유 브래그 격자 센서(120)로부터 생성되는 반사 광신호의 파장 변화도 달라질 수 있다.
상술한 광섬유 코어의 유효 굴절률(neff)과 광섬유 브래그 격자 주기(Λ)는 온도와 스트레인의 함수로 표현될 수 있다. 이는 하기의 수학식 2와 같다.
Figure pat00003
여기서, Pe는 광탄성 상수, Δε는 광섬유 브래그 격자에 가해진 스트레인, α는 광섬유의 온도에 따른 팽창계수, ξ는 온도에 의한 광섬유 코어의 굴절률 변화, ΔT는 광섬유 브래그 격자에 가해진 온도 변화량을 의미한다. 이 때, 온도 변화를 무시할 수 있다고 가정하면, 스트레인과 반사 광신호의 파장은 하기의 수학식 3과 같이 표현될 수 있다.
Figure pat00004
반사 광신호의 파장의 변화는 광섬유 브래그 격자 센서(120)에 가해진 물리량에 선형적으로 비례하므로 반사 광신호의 파장의 변화를 측정하면 가해진 스트레인 값이 산출될 수 있다. 즉, 상술한 수학식 3을 참조하면, 외력에 의한 반사 광신호의 파장 변화를 측정하면 광섬유 브래그 격자 센서(120)에 가해진 스트레인을 산출할 수 있다. 외력에 의한 반사 광신호의 파장 변화는 중심 파장(Centroid Wavelength, CW)을 이용하여 측정될 수 있으며, 이는 이하의 도 5를 참조하여 설명되는 신호 처리부(160, 도 2 참조)에 의해 수행될 수 있다.
도 4는 도 2의 도파로 어레이 격자(AWG)의 동작을 설명하기 위한 도면이다.
도 4를 참조하면, 도파로 어레이 격자(140)는 복수의 광섬유 브래그 격자 센서들(120, 도 2 참조)로부터 반사 광신호들을 전달받는다. 각각의 반사 광신호는 예를 들면, 서로 다른 파장을 가질 수 있다. 도파로 어레이 격자(140)는 서로 다른 파장을 갖는 각각의 반사 광신호를 복수의 출력 채널(Ch1, Ch2, Ch3,…, Chn, n은 자연수)을 통해 각각 출력되도록 처리할 수 있다.
도 5는 도 2의 신호 처리부를 더욱 구체적으로 보여주는 블록도이다.
도 5를 참조하면, 신호 처리부(160)는 증폭부(161), 처리부(162), 및 메모리(163)를 포함할 수 있다.
증폭부(161)는 복수의 광 다이오드들(150, 도 2 참조)로부터 전달되는 복수의 전압 신호들을 증폭한다. 이는, 도파로 어레이 격자(140, 도 2 참조)로부터 출력되는 복수의 출력 광신호들의 광량이 적기 때문에, 상기 복수의 출력 광신호들을 전압 신호로 변환하는 경우 외력 작용에 의한 상기 반사 광신호의 파장 변화를 측정하기 어려우므로, 측정이 용이한 범위로 증폭하기 위함이다.
처리부(162)는 상기 전압 신호들을 처리하여 각각의 출력 광신호의 중심 파장값(CW)을 산출할 수 있다. 이는 이하의 수학식 4를 이용하여 수행될 수 있다.
Figure pat00005
여기서, i는 도파로 어레이 격자(140, 도 2 참조)의 출력 채널의 번호, Vi는 i번째 출력 채널에서 측정된 전압을 의미한다. 즉, 출력 광신호가 도파로 어레이 격자(140)의 복수의 출력 채널(Ch1, Ch2, Ch3,…, Chn, n은 자연수)을 통해 출력되는 경우 각각의 출력 광신호의 중심 파장(CW)을 산출하면 출력 광신호의 파장의 피크(peak)를 알 수 있다. 상기 출력 광신호의 파장의 피크를 기준 피크값과 비교하면 외력에 의한 반사 광신호의 파장 변화가 산출될 수 있다. 여기서, 상기 기준 피크값은 복수의 브래그 격자 센서들(120)에 외력이 가해지지 않은 상황에서의 반사 광신호의 파장의 피크값을 의미할 수 있다.
처리부(162)는 상술한 수학식 4를 이용하여 산출된 각각의 전압 신호에 대한 중심 파장(CW)을 기초로, 상술한 수학식 3을 이용하여 각각의 브래그 격자 센서들(120)에 가해진 스트레인 값들을 산출할 수 있다. 즉, 각각의 스트레인 값은 복수의 광섬유 브래그 격자 센서(120)가 배치된 위치에 대한 스트레인 값을 의미할 수 있다.
메모리(163)는 생성된 스트레인 값들을 저장할 수 있다. 메모리(163)는 휘발성 메모리 또는 불휘발성 메모리를 포함할 수 있다. 메모리(163)는 예를 들어, MRAM(Magnetic Random Access Memory), RRAM(Resistive Random Access Memory), PRAM(Phase-change Random Access Memory), SRAM(Static Random Access Memory), STT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory), 플래시 메모리(Flash memory) 등 다양한 종류의 메모리를 포함할 수 있다. 메모리(163)에 저장된 스트레인 값들은 판단부(200, 도 1 참조)에 제공될 수 있다.
도 6은 본 발명의 다른 실시예에 따른 스트레인 측정 장치를 보여주는 블록도이다. 광원(110), 써큘레이터(130), 도파로 어레이 격자(140), 복수의 광다이오드들(150), 및 신호 처리부(160)는 도 2 내지 도 5를 참조하여 설명한 바와 동일하므로 구체적인 설명은 생략될 것이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 선박의 안전도 감시 시스템은 복수의 광섬유 브래그 격자 센서들(120)이 직렬로 연결될 수 있다. 복수의 광섬유 브래그 격자 센서들(120)이 직렬로 연결되는 경우, 광섬유 브래그 격자 센서들을 효율적으로 선체 곳곳에 배치할 수 있다.
복수의 광섬유 브래그 격자 센서들(120)은 광원(110)으로부터 써큘레이터(130)를 통해 전달되는 광신호를 순차적으로 전달받을 수 있다. 예를 들면, 제 1 브래그 격자 센서(FBG1)으로 먼저 광신호가 입력되고, 제 1 광섬유 브래그 격자 센서(FBG1)를 통과한 광신호는 제 2 광섬유 브래그 격자 센서(FBG2)로 입력될 것이다. 각각의 광섬유 브래그 격자 센서(120)로부터 반사된 반사 광신호들은 순차적으로 써큘레이터(130)를 통과하여 도파로 어레이 격자(140)로 전달될 것이다.
도 7은 본 발명의 일 실시예에 따른 선박의 안전도 감시 방법을 보여주는 흐름도이다.
도 7을 참조하면, 본 발명의 일 실시예에 따른 선박의 안전도 감시 방법은 타겟 파장 대역을 갖는 광신호를 생성하는 단계(S110), 상기 타겟 파장 대역 내의 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 단계(S120), 상기 복수의 반사 광신호 각각을 채널별로 분리하여 출력하는 단계(S130), 상기 복수의 반사 광신호 각각을 전압 신호로 변환하는 단계(S140), 상기 전압 신호를 이용하여 상기 복수의 반사 광신호 각각의 중심 파장을 산출하는 단계(S150), 상기 중심 파장의 피크값을 기준 피크값과 비교하여 상기 중심 파장의 변화를 판단하는 단계(S160), 상기 중심 파장의 변화량을 이용하여 스트레인을 산출하는 단계(S170), 상기 스트레인을 임계값과 비교하는 단계(S180), 및 경보 발생 단계(S190)를 포함할 수 있다. 이하에서, 각 단계가 도 1 내지 도 5를 참조하여 구체적으로 설명된다.
S110 단계에서, 광원(110, 도 2 참조)은 타겟 파장 대역을 갖는 광신호를 생성한다. 예를 들면, 광원(110)은 1550±250 nm 대역의 파장을 갖는 광신호를 생성할 수 있다.
S120 단계에서, 복수의 광섬유 브래그 격자 센서들(120)은 광원(110)으로부터 생성된 광신호를 전달받고, 각각 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성할 수 있다. 각각의 광섬유 브래그 격자 센서들(120)은 인가되는 광신호 가운데 특정 파장의 광신호를 반사하도록 설계될 수 있다. 따라서, 복수의 반사 광신호들은 상기 타겟 파장 대역 내에서 서로 다른 파장을 가질 것이다. 한편, 각각의 광섬유 브래그 격자 센서들(120)에 인장, 압력, 또는 구부림과 같은 외력이 작용하는 경우 상기 반사 광신호의 파장이 변화될 수 있다.
S130 단계에서, 도파로 어레이 격자(140)는 복수의 반사 광신호들을 분리하여 각각 다른 출력 채널을 통해 출력할 수 있다. 예를 들면, 도파로 어레이 격자(140)는 복수의 반사 광신호들을 복수의 광섬유 브래그 격자 센서(120)마다 분리하여 출력할 수 있다.
S140 단계에서, 복수의 광 다이오드들(150)은 도파로 어레이 격자(140)의 각 출력 채널로부터 전달되는 반사 광신호들을 전압 신호들로 변환할 수 있다.
S150 단계에서, 신호 처리부(160)는 복수의 반사 광신호들에 각각 대응되는 전압 신호들을 이용하여 복수의 반사 광신호들 각각의 중심 파장(CW)을 산출할 수 있다.
S160 단계에서, 신호 처리부(160)는 복수의 반사 광신호들 각각의 중심 파장(CW)의 피크값을 기준 파장의 피크값과 비교하여 중심 파장(CW)의 변화 여부를 판단할 수 있다. 중심 파장(CW)의 변화는 광섬유 브래그 격자 센서에 외력이 작용한 것을 의미할 수 있다.
S170 단계에서, 신호 처리부(160)는 중심 파장(CW)의 변화량을 이용하여 복수의 반사 광신호들 각각에 대한 스트레인 값을 산출할 수 있다. 산출된 스트레인은 반사 광신호가 생성된 광섬유 브래그 격자 센서가 배치된 위치에 인가된 스트레인으로 이해될 수 있다.
S180 단계에서, 판단부(200, 도 1 참조)는 산출된 스트레인을 임계값과 비교하여 경보 발생 여부를 결정할 수 있다. 예를 들면, 판단부(200)는 산출된 스트레인이 임계값보다 큰 경우 경보 제어 신호(Cal)를 생성할 것이다.
S190 단계에서, 경보 발생부(300, 도 1 참조)는 판단부(200)로부터 전달되는 경보 제어 신호(Cal)에 기초하여 경보를 발생할 수 있다.
도 8 내지 도 10은 선박에 부착된 위치에 따라 측정되는 스트레인을 보여주는 그래프들이다.
도 8의 경우 선박의 선수에, 도 9의 경우 선박의 마스트 상부에, 도 10의 경우 선박의 선측(선박의 측면)에 스트레인 측정 장치(도 2 참조)가 부착되어 스트레인을 측정된 경우를 각각 보여준다.
각 그래프의 가로축은 시간을, 세로축은 측정된 스트레인을 의미한다.
도 8 내지 도 10을 참조하면, 스트레인 측정 장치가 부착된 위치에 따라 스트레인이 다른 것을 알 수 있다. 구체적으로, 선박의 마스트 상부(도 9에 도시됨)에 가해지는 스트레인이 가장 크고, 선측(도 10에 도시됨), 선수(도 8에 도시됨)의 순서로 스트레인이 작아진다. 하지만, 이는 어디까지나 실험예에 한정되는 것임은 잘 이해될 것이다.
도 11 내지 도 14는 본 발명의 일 실시예에 따른 스트레인 측정 장치를 이용하여 측정된 스트레인과 일반적인 스트레인 측정 장치를 이용하여 측정된 스트레인을 비교하여 보여주는 그래프들이다. 도 11 내지 도 14에서 측정된 스트레인은 예를 들면, 선박의 운항 중에 측정된 것이다. 일반적인 스트레인 측정 장치로 스트레인 게이지(strain gauge)가 사용되었다.
도 11의 경우 선박의 선수에, 도 12의 경우 선박의 마스트 상부에, 도 13의 경우 선박의 선측(선박의 측면)에, 도 14의 경우 선박의 마스트 하부에 스트레인 측정 장치(도 2 참조)가 부착되어 스트레인을 측정된 경우를 각각 보여준다.
도 11 내지 도 14를 참조하면, 본 발명의 일 실시예에 따른 스트레인 측정 장치(100, 도 2 참조)를 이용하여 측정된 스트레인과 스트레인 게이지를 이용하여 측정된 스트레인의 변화 추이가 매우 유사함을 알 수 있다. 이는, 본 발명의 일 실시예에 따른 스트레인 측정 장치(100)가 정확하게 구현됨을 의미한다.
또한, 본 발명의 일 실시예에 따른 스트레인 측정 장치(100)를 이용하여 측정된 스트레인의 변화는 스트레인 게이지를 이용하여 측정된 스트레인의 변화보다 크다. 이는, 본 발명의 일 실시예에 따른 스트레인 측정 장치(100)가 스트레인 게이지보다 민감도가 더 좋다는 것을 의미할 수 있다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템은 일반적인 스트레인 게이지보다 스트레인 측정의 민감도 및 정확도가 좋고, 복수개의 FBG 센서를 이용하여 동시에 선박의 각 부분에 가해지는 스트레인을 측정할 수 있다.
하지만, 본 발명의 일 실시예에 따른 스트레인 측정 장치가 선박의 안전도 감시 시스템에만 적용되는 것은 아니며, 외력으로부터 가해지는 스트레인을 측정하기 위한 교량, 건물, 항공기, 기차 등의 안전도 감시 시스템에도 적용 가능하다.
본 발명의 상세한 설명에서는 구체적인 실시 예에 관하여 설명하였으나, 본 발명의 범위와 기술적 사상에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 상술한 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 한다.
1000, 2000: 선박의 안전도 감시 시스템
100: 스트레인 측정 장치
200: 판단부
300: 경보 발생부
110: 광원
120: 복수의 광섬유 브래그 격자 센서
121: 광섬유 코어
122: 브래그 격자
123: 클래딩
130: 써큘레이터
140: 도파로 어레이 격자
150: 복수의 광다이오드
160: 신호 처리부
161: 증폭부
162: 처리부
163: 메모리

Claims (13)

  1. 타겟 파장 대역을 갖는 광신호를 생성하는 광원;
    상기 광신호를 반사하여 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 복수의 광섬유 브래그 격자 센서들;
    상기 복수의 반사 광신호들을 각각 다른 출력 채널을 통해 출력하는 도파로 어레이 격자;
    상기 광신호를 상기 광원으로부터 상기 복수의 광섬유 브래그 격자 센서들로 전달하고, 상기 복수의 반사 광신호들을 상기 도파로 어레이 격자로 전달하는 써큘레이터;
    상기 복수의 반사 광신호들을 각각 전기적 신호로 변환하는 복수의 광 다이오드들; 및
    상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 신호 처리부를 포함하는 스트레인 측정 장치.
  2. 제 1 항에 있어서,
    상기 복수의 반사 광신호들의 중심 파장은 상기 복수의 광섬유 브래그 격자 센서들에 인가되는 외력에 의한 스트레인에 의해 변화되는 스트레인 측정 장치.
  3. 제 1 항에 있어서,
    상기 타겟 파장 대역은 1300 nm 내지 1800 nm 로 정의되는 스트레인 측정 장치.
  4. 제 1 항에 있어서,
    상기 복수의 광섬유 브래그 격자 센서들은 서로 이격되어 배치되는 스트레인 측정 장치.
  5. 제 4 항에 있어서,
    상기 복수의 광섬유 브래그 격자 센서들은 병렬로 연결되는 스트레인 측정 장치.
  6. 제 4 항에 있어서,
    상기 복수의 광섬유 브래그 격자 센서들은 직렬로 연결되는 스트레인 측정 장치.
  7. 제 1 항에 있어서,
    상기 복수의 광 다이오드들은 상기 복수의 반사 광신호들을 각각 전압 신호로 변환하는 스트레인 측정 장치.
  8. 제 1 항에 있어서,
    상기 신호 처리부는 상기 전기적 신호를 증폭하는 증폭부;
    상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 처리부; 및
    상기 스트레인을 저장하는 메모리를 포함하는 스트레인 측정 장치.
  9. 제 8 항에 있어서,
    상기 신호 처리부는 하기의 수학식 4에 기초하여 상기 중심 파장을 산출하는 스트레인 측정 장치.
    [수학식 4]
    Figure pat00006

    여기서, i는 도파로 어레이 격자의 출력 채널의 번호, Vi는 i번째 출력 채널에서 측정된 전압을 의미함.
  10. 선박의 안전도 감시 시스템에 있어서:
    상기 선박에 인가되는 외력에 의한 스트레인을 측정하는 측정부;
    상기 스트레인을 임계값과 비교하고, 비교 결과에 따라 경보 제어 신호를 생성하는 판단부; 및
    상기 경보 제어 신호에 응답하여 경보를 발생하는 경보 발생부를 포함하되,
    상기 측정부는 타겟 파장 대역을 갖는 광신호를 생성하는 광원;
    상기 광신호를 반사하여 서로 다른 파장을 갖는 복수의 반사 광신호들을 생성하는 복수의 광섬유 브래그 격자 센서들;
    상기 복수의 반사 광신호들을 각각 다른 출력 채널을 통해 출력하는 도파로 어레이 격자;
    상기 광신호를 상기 광원으로부터 상기 복수의 광섬유 브래그 격자 센서들로 전달하고, 상기 복수의 반사 광신호들을 상기 도파로 어레이 격자로 전달하는 써큘레이터;
    상기 복수의 반사 광신호들을 각각 전기적 신호로 변환하는 복수의 광 다이오드들; 및
    상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 신호 처리부를 포함하는 선박의 안전도 감시 시스템.
  11. 제 10 항에 있어서,
    상기 복수의 반사 광신호들의 중심 파장은 상기 복수의 광섬유 브래그 격자 센서들에 인가되는 외력에 의한 스트레인에 의해 변화되는 스트레인 측정 장치.
  12. 제 10 항에 있어서,
    상기 신호 처리부는 상기 전기적 신호를 증폭하는 증폭부;
    상기 전기적 신호를 이용하여 대응되는 반사 광신호의 중심 파장을 산출하고, 상기 중심 파장을 이용하여 상기 복수의 광섬유 브래그 격자 센서들에 인가된 스트레인을 산출하는 처리부; 및
    상기 스트레인을 저장하는 메모리를 포함하는 스트레인 측정 장치.
  13. 제 10 항에 있어서,
    상기 복수의 광섬유 브래그 격자 센서들은 서로 이격되어 배치되는 스트레인 측정 장치.
KR20130043561A 2013-04-19 2013-04-19 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템 KR20140125588A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130043561A KR20140125588A (ko) 2013-04-19 2013-04-19 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130043561A KR20140125588A (ko) 2013-04-19 2013-04-19 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템

Publications (1)

Publication Number Publication Date
KR20140125588A true KR20140125588A (ko) 2014-10-29

Family

ID=51995305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130043561A KR20140125588A (ko) 2013-04-19 2013-04-19 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템

Country Status (1)

Country Link
KR (1) KR20140125588A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815260A (zh) * 2022-05-10 2022-07-29 福州京东方光电科技有限公司 近眼显示装置及设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114815260A (zh) * 2022-05-10 2022-07-29 福州京东方光电科技有限公司 近眼显示装置及设备

Similar Documents

Publication Publication Date Title
Masoudi et al. Subsea cable condition monitoring with distributed optical fiber vibration sensor
JP5232982B2 (ja) 光ファイバ位置特定のための光学マーキング部を備えた光ファイバセンサおよび光ファイバセンサの計測方法と光ファイバセンサ装置
JP5413931B2 (ja) 光ファイバ位置特定のための光学マーキング部を備えた光ファイバセンサおよび光ファイバセンサの計測方法と光ファイバセンサ装置
GB2435096A (en) Measuring strain in lead-in cables in a marine seismic acquisition system
CN108139366A (zh) 基于声发射的健康监测方法和系统
JP5242098B2 (ja) 光ファイバセンサ及び変動位置検出方法
CN102353474A (zh) 一种基于光纤布里渊散射原理的海水温度剖面botda测量方法
CN110186547A (zh) 管道安全状况检测装置及方法
US20190170609A1 (en) Birefringent multi-peak optical reference element and birefringent sensor system
KR101063337B1 (ko) 다채널용 멀티 플렉서를 이용한 광섬유 브래그 격자 센싱 시스템
KR20140125588A (ko) 스트레인 측정 장치 및 이를 포함하는 선박의 안전도 감시 시스템
JP6819784B2 (ja) 温度測定装置、温度測定方法および温度測定プログラム
JP2015031593A (ja) 物理量測定システム及び物理量測定方法
KR101474068B1 (ko) 광섬유 브래그 격자를 이용한 원전 환경 모니터링 시스템
CN110806233A (zh) 用于压力容器的光纤光栅传感器装置及检测装置
Valente et al. Time and wavelength multiplexing of fiber Bragg grating sensors using a commercial OTDR
CA2898142C (en) Real-time non-linear optical strain gauge system
KR20160005847A (ko) 변형률과 온도를 동시 측정하기 위한 광섬유 브래그 격자가 통합된 라만 광섬유 시간영역반사계 센서 및 그 센싱 방법
KR100789924B1 (ko) 광섬유 센서가 장착된 부착형 보강재를 이용한 구조물보강상태 분석방법
JP4726007B2 (ja) 変位量検出装置
KR102036260B1 (ko) 광섬유 격자를 이용한 누수 및 침수 감지센서
CN113092082B (zh) Opgw光缆寿命预测系统
TAKAHASHI et al. Pressure and temperature dependence of fiber Bragg grating for acoustic sensing
RU77420U1 (ru) Универсальный волоконно-оптический модульный телеметрический комплекс, регистрирующий модуль, сенсорная головка и модуль расширения числа оптических каналов
JP2006266799A (ja) 光ファイバセンサ装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application