KR20140122195A - 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법 - Google Patents

인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법 Download PDF

Info

Publication number
KR20140122195A
KR20140122195A KR20140041550A KR20140041550A KR20140122195A KR 20140122195 A KR20140122195 A KR 20140122195A KR 20140041550 A KR20140041550 A KR 20140041550A KR 20140041550 A KR20140041550 A KR 20140041550A KR 20140122195 A KR20140122195 A KR 20140122195A
Authority
KR
South Korea
Prior art keywords
layer
unit
prediction
encoding
block
Prior art date
Application number
KR20140041550A
Other languages
English (en)
Inventor
윤재원
박민우
위호천
이진영
조용진
최병두
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20140122195A publication Critical patent/KR20140122195A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/187Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Abstract

일 실시예에 따른 인터 레이어 비디오 복호화 방법은,
제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 단계; 상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하는 단계; 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 단계; 및 상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 단계를 포함할 수 있다.

Description

인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법{Method and apparatus for video encoding for Determining Prediction Candidate, method and apparatus for Determining Inter Prediction Candidate}
본 발명은 인터 레이어 비디오 부호화 방법 및 복호화 방법에 관한 것이다. 상세하게는 인터 레이어 비디오 부호화 방법 및 복호화 방법에 있어서 인터 예측 후보를 결정하는 방법에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 트리 구조의 부호화 단위에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
주파수 변환을 이용하여 공간 영역의 영상 데이터는 주파수 영역의 계수들로 변환된다. 비디오 코덱은, 주파수 변환의 빠른 연산을 위해 영상을 소정 크기의 블록들로 분할하고, 블록마다 DCT 변환을 수행하여, 블록 단위의 주파수 계수들을 부호화한다. 공간 영역의 영상 데이터에 비해 주파수 영역의 계수들이, 압축하기 쉬운 형태를 가진다. 특히 비디오 코덱의 인터 예측 또는 인트라 예측을 통해 공간 영역의 영상 화소값은 예측 오차로 표현되므로, 예측 오차에 대해 주파수 변환이 수행되면 많은 데이터가 0으로 변환될 수 있다. 비디오 코덱은 연속적으로 반복적으로 발생하는 데이터를 작은 크기의 데이터로 치환함으로써, 데이터량을 절감하고 있다.
멀티 레이어 비디오 코덱은, 제1 레이어 비디오와 하나 이상의 제2 레이어 비디오를 부복호화한다. 제1 레이어 비디오와 제2 레이어 비디오의 시간적/공간적 중복성(redundancy)와 레이어 간의 중복성을 제거하는 방식으로, 제1 레이어 비디오와 제2 레이어 비디오의 데이터량이 절감될 수 있다.
본 발명은 일 실시예에 따라, 인터 예측 후보의 결정 방법에 있어서, 디스페리티 벡터가 가리키는 위치의 주변에 위치하는 주변블록 중 하나를 머지 후보로 결정함으로써, 인터 예측 모드의 성능 및 정확도를 향상시킬 수 있는 인터 레이어 비디오 부호화 및 복호화방법을 제공하는 것을 특징으로 한다.
물론, 본 발명의 기술적 과제들은 이상에서 언급한 특징으로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당해 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 인터 레이어 복호화 방법은, 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 단계; 상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하는 단계; 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 단계; 및 상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 단계를 포함할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및 상기 제1 레이어 참조블록의 적어도 하나의 주변블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 소정 스캔 순서에 따라서 상기 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 소정 스캔 순서에 따라 상기 제1 레이어 참조위치에 인접한 상기 주변블록들부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 제1 레이어 참조위치에 대응하는 블록이 복수의 서브블록을 포함하고 있을 때, 상기 주변블록이 상기 서브블록을 포함 할 수 있다.
일 실시예에 따른, 상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및 상기 제1 레이어 참조블록을 복수의 서브블록으로 분할하고, 상기 서브블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 상기 제1 레이어 참조위치 주변의 적어도 하나의 정수픽셀을 결정하는 단계; 및 상기 적어도 하나의 정수픽셀이 각각 속하는 서로다른 주변블록들로부터 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 후보리스트에 추가하는 단계는, 상기 움직임 정보가 획득된 적어도 하나의 주변블록 중 하나의 주변블록을 예측 후보로 결정하는 단계; 및 상기 결정된 예측 후보의 움직임 정보를 상기 후보리스트에 추가하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는, 상기 적어도 하나의 주변 블록 중 모션 벡터의 크기가 가장 큰 주변블록을 상기 예측 후보로 결정 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는,상기 적어도 하나의 주변 블록 중 참조 POC(picture Order Count)가 상기 제2 레이어 현재블록의 참조 POC와 일치하는 블록을 상기 예측 후보로 결정 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는 상기 적어도 하나의 주변 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 예측 후보로 결정하는 것을 특징으로 하는 인터레이어 복호화 방법.
본 발명은 일 실시예에 따른, 인터 레이어 부호화 방법에 있어서, 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 단계; 상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하는 단계; 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 단계; 및 상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및 상기 제1 레이어 참조블록의 적어도 하나의 주변블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 소정 스캔 순서에 따라서 상기 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 움직임 정보를 획득하는 단계는, 소정 스캔 순서에 따라 상기 제1 레이어 참조위치에 인접한 상기 주변블록들부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 제1 레이어 참조위치에 대응하는 블록이 복수의 서브블록을 포함하고 있을 때, 상기 주변블록이 상기 서브블록을 포함 할 수 있다.
일 실시예에 따른, 상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및 상기 제1 레이어 참조블록을 복수의 서브블록으로 분할하고, 상기 서브블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함 할 수 있다.
일 실시예에 따른, 상기 후보리스트에 추가하는 단계는, 상기 움직임 정보가 획득된 적어도 하나의 주변블록 중 하나의 주변블록을 예측 후보로 결정하는 단계; 및 상기 결정된 예측 후보의 움직임 정보를 상기 후보리스트에 추가 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는, 상기 적어도 하나의 주변 블록 중 모션 벡터의 크기가 가장 큰 주변블록을 상기 예측 후보로 결정 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는, 상기 적어도 하나의 주변 블록 중 참조 POC(picture Order Count)가 상기 제2 레이어 현재블록의 참조 POC와 일치하는 블록을 상기 예측 후보로 결정 할 수 있다.
일 실시예에 따른, 상기 예측 후보를 결정하는 단계는, 상기 적어도 하나의 주변 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 예측 후보로 결정 할 수 있다.
본 발명은 일 실시예에 따른, 인터 레이어 복호화 장치에 있어서, 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 디스패리티 벡터 결정부; 상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하고, 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 움직임 정보 획득부; 및 상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 후보리스트 결정부를 포함 할 수 있다.
본 발명은 일 실시예에 따른, 인터 레이어 부호화 장치에 있어서, 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 디스패리티 벡터 결정부; 상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하고, 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록으로부터 움직임 정보를 획득하는 움직임 정보 획득부; 및 상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 후보리스트 결정부를 포함 할 수 있다.
본 발명은, 일 실시예에 따른 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체를 포함할 수 있다.
도 1a 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치의 블록도를 도시한다.
도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
도 2a 는 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치의 블록도를 도시한다.
도 2b 는 다양한 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
도 3 은 일 실시예에 따른 인터 레이어 예측 구조를 도시한다.
도 4a 는 일 실시예에 따른 인터 예측 모드에서 이용되는 공간적 예측 후보를 나타낸다.
도 4b 는 일 실시예에 따른 인터 예측 모드에서 이용되는 시간적 예측 후보를 나타낸다.
도 5a 는 일 실시예에 따른 인터 예측 모드에서 이용되는 인터뷰(inter-view) 예측 후보를 나타낸다.
도 5b 는 일 실시예에 따른 인터 예측 모드에서 인터-레이어 참조블록을 인터뷰 예측 후보로 결정하지 않는 일 예를 나타낸다.
도 5c 는 일 실시예에 따른 인터 예측 모드에서 이용되는 향상된 인터뷰 예측 후보 결정방법을 나타낸다.
도 6 은 일 실시예에 따른 인터 예측 모드에서 주변블록을 예측 후보로 결정하는 일 예를 나타낸다.
도 7 은 일 실시예에 따른 인터 예측 모드에서 서브블록을 예측 후보로 결정하는 일 예를 나타낸다.
도 8 은 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 9 는 일 실시예에 따라 트리 구조에 따른 부호화단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 10 은 본 발명의 일 실시예에 따른 부호화단위의 개념을 도시한다.
도 11 은 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 12 는 본 발명의 일 실시예에 따른 부호화단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 13 은 본 발명의 일 실시예에 따른 부호화단위 및 파티션을 도시한다.
도 14 는 본 발명의 일 실시예에 따른, 부호화단위 및 변환단위의 관계를 도시한다.
도 15 는 본 발명의 일 실시예에 따라, 부호화 정보들을 도시한다.
도 16 은 본 발명의 일 실시예에 따른 부호화단위를 도시한다.
도 17, 18 및 19는 본 발명의 일 실시예에 따른, 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화단위, 예측단위 및 변환단위의 관계를 도시한다.
도 21 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 22 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 23 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 24 및 25은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 26 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 27 은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
이하 도 1a 내지 도 7 을 참조하여, 다양한 실시예에 따라 인터 예측 후보리스트를 결정하는 인터 레이어 비디오 부호화 기법, 인터 레이어 비디오 복호화 기법이 제안된다. 또한, 도 8 내지 도 20을 참조하여, 앞서 제안한 인터 레이어 비디오 부호화 기법 및 복호화 기법에 적용가능한 다양한 실시예에 따른 트리 구조의 부호화 단위에 기초한 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 또한, 도 21 내지 도 27을 참조하여, 앞서 제안한 비디오 부호화 방법, 비디오 복호화 방법이 적용가능한 다양한 실시예들이 개시된다.
이하, '영상'은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
이하 '샘플'은, 영상의 샘플링 위치에 할당된 데이터로서 프로세싱 대상이 되는 데이터를 의미한다. 예를 들어, 공간영역의 영상에서 픽셀들이 샘플들일 수 있다.
먼저, 도 1a 내지 도 7 을 참조하여, 일 실시예에 따라 인터 레이어 비디오 부호화 장치와 인터 레이어 비디오 부호화 방법, 그리고 인터 레이어 비디오 복호화 장치와 인터 레이어 비디오 복호화 방법이 개시된다.
도 1a 은 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)의 블록도를 도시한다. 도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 디스패리티 벡터 결정부(12), 움직임 정보 획득부(14) 및 후보리스트 결정부(16)를 포함할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 스케일러블 비디오 코딩(Scalable Video Coding) 방식에 따라 다수의 영상시퀀스들을 레이어별로 분류하여 각각 부호화하고, 레이어별로 부호화된 데이터를 포함하는 별개의 스트림을 출력할 수 있다. 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상 시퀀스와 제2 레이어 영상 시퀀스를 서로 다른 레이어로 부호화할 수 있다.
예를 들어, 공간적 스케일러빌러티(Spatial Scalability)에 기반한 스케일러블 비디오 코딩 방식에 따르면, 저해상도 영상들이 제1 레이어 영상들로서 부호화되고, 고해상도 영상들이 제2 레이어 영상들로서 부호화될 수 있다. 제1 레이어 영상들의 부호화 결과가 제1 레이어 스트림으로 출력되고, 제2 레이어 영상들의 부호화 결과가 제2 레이어 스트림으로 출력될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 부호화될 수 있다. 이 경우 중앙시점 영상들은 제1 레이어 영상들로서 부호화되고, 좌시점 영상들 및 우시점 영상들은 제1 레이어 영상을 참조하는 제2 레이어 영상들로서 부호화될 수 있다. 또는 인터 레이어 비디오 부호화 장치(10)가 제1 레이어, 제2 레이어, 제3 레이어 등 셋 이상의 레이어를 허용하하는 경우 중앙시점 영상들은 제1 레이어 영상들로서 부호화 되고, 좌시점 영상들은 제2 레이어 영상들로 그리고 우시점 영상들은 제3 레이어 영상들로 부호화 될 수 있다. 물론, 반드시 이러한 구성에 한정되는 것은 아니며 중앙시점, 좌시점, 우시점 영상들이 부호화 되는 레이어 및 참조되는 레이어가 변경될 수도 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 시간 계층적 예측(Temporal Hierarchical Prediction)에 따라 스케일러블 비디오 코딩 방식이 수행될 수 있다. 기본 프레임 레이트의 영상들을 부호화하여 생성된 부호화 정보를 포함하는 제1 레이어 스트림이 출력될 수 있다. 프레임 레이트별로 시간적 계층(temporal level)이 분류되고 각 시간적 계층이 각 레이어로 부호화될 수 있다. 기본 프레임 레이트의 영상들을 참조하여 고속 프레임 레이트의 영상들을 더 부호화하여, 고속 프레임 레이트의 부호화 정보를 포함하는 제2 레이어 스트림이 출력될 수 있다.
또한, 제1 레이어와 다수의 제2 레이어들에 대한 스케일러블 비디오 코딩이 수행될 수 있다. 제2 레이어가 셋 이상인 경우, 제1 레이어 영상들과 첫번째 제2 레이어 영상들, 두번째 제2 레이어 영상들, ..., K번째 제2 레이어 영상들이 부호화될 수도 있다. 이에 따라 제1 레이어 영상들의 부호화 결과가 제1 레이어 스트림으로 출력되고, 첫번째, 두번째, ..., K번째 제2 레이어 영상들의 부호화 결과가 각각 첫번째, 두번째, ..., K번째 제2 레이어 스트림으로 출력될 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 단일레이어의 영상들을 참조하여 현재영상을 예측하는 인터 예측(Inter Prediction)을 수행할 수 있다. 인터 예측을 통해, 현재영상과 참조영상 사이의 움직임 정보를 나타내는 모션 벡터(motion vector) 및 현재영상과 참조영상 사이의 레지듀얼 성분(residual)이 생성될 수 있다.
또한, 인터 레이어 비디오 부호화 장치(10)는 제1 레이어 영상들의 예측정보를 참조하여 제2 레이어 영상들의 예측 정보를 예측하는 인터 레이어 예측(Inter-layer Prediction)을 수행할 수 있다.
또한 일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)가 제1 레이어, 제2 레이어, 제3 레이어 등 셋 이상의 레이어를 허용하는 경우에는, 멀티 레이어 예측 구조에 따라 하나의 제1 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측, 제2 레이어 영상과 제3 레이어 영상 간의 인터 레이어 예측을 수행할 수도 있다.
인터 레이어 예측을 통해, 현재영상과 다른 레이어의 참조영상 사이의 위치 차이성분 및 현재영상과 다른 레이어의 참조영상 사이의 레지듀얼 성분이 생성될 수 있다.
인터 레이어 예측 구조는 추후 도 3을 참조하여 상술한다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는 각 레이어마다, 비디오의 각각의 영상의 블록별로 부호화한다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리 구조의 부호화 단위들을 포함하는 최대부호화단위는, 코딩 트리 유닛(Coding Tree Unit), 코딩 블록 트리(Coding Block Tree), 블록 트리, 루트 블록 트리(Root Block Tree), 코딩 트리, 코딩 루트 또는 트리 트렁크(Tree Trunk) 등으로 다양하게 명명되기도 한다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 8 내지 도 20을 참조하여 후술한다.
인터 예측 및 인터 레이어 예측은 부호화 단위, 예측 단위 또는 변환 단위의 데이터 단위를 기초로 수행될 수도 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 영상들에 대해 인터 예측 또는 인트라 예측을 포함하는 소스 코딩 동작들을 수행하여 심볼 데이터를 생성할 수 있다. 심볼데이터는 각 부호화 파라미터의 샘플값 및 레지듀얼의 샘플값을 나타낸다.
예를 들어, 인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 영상들의 데이터 단위의 샘플들에 대해 인터 예측 또는 인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제1 레이어 스트림을 생성할 수 있다.
또한, 인터 레이어 비디오 부호화 장치(10)는, 트리 구조의 부호화 단위들에 기초하여 제2 레이어 영상들을 부호화할 수 있다. 제2 레이어 부호화부(14)는, 제2 레이어 영상의 부호화 단위의 샘플들에 대해 인터/인트라 예측, 변환, 양자화를 수행하여 심볼데이터를 생성하고 심볼데이터에 대해 엔트로피 부호화를 수행하여 제2 레이어 스트림을 생성할 수 있다.
다양한 실시예에 따른 제2 레이어 부호화부(16)는, 제1 레이어 영상의 예측 정보를 이용하여, 제2 레이어 영상을 예측하는 인터 레이어 예측을 수행할 수 있다. 제2 레이어 부호화부(16)는, 인터 레이어 예측 구조를 통해 제2 레이어 영상시퀀스 중 제2 레이어 원본영상을 부호화하기 위해, 제1 레이어 복원영상의 예측정보를 이용하여 제2 레이어 현재영상의 예측정보를 결정하고, 결정된 예측정보에 기초하여 제2 레이어 예측영상을 생성하여 제2 레이어 원본영상과 제2 레이어 예측영상 간의 예측 오차를 부호화할 수 있다.
인터 레이어 비디오 부호화 장치(10)는, 제2 레이어 영상을 부호화 단위 또는 예측 단위와 같은 블록별로 인터 예측을 수행할 수 있다. 즉, 제2 레이어 영상의 블록이 참조할 제1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제1 레이어 영상의 복원블록이 결정될 수 있다. 인터 레이어 비디오 부호화 장치(10)는, 제2 레이어 블록에 상응하는 제1 레이어 복원블록을 이용하여, 제2 레이어 예측블록을 결정할 수 있다.
인터 레이어 비디오 부호화 장치(10)는 인터 예측을 수행하기 위해, 먼저제2 레이어 원본 블록과 상관도가 높은 예측 블록을 제1 레이어 및 제2 레이어에서 복원된 복원 블록 중에서 탐색하는 움직임 추정을 수행할 수 있다. 그리고, 탐색된 예측 블록의 움직임 정보를 후술하는 방법으로 인터 레이어 비디오 복호화 장치(20)로 전송할 수 있다. 여기서, 움직임 정보에는 움직임 추정의 결과에 따른 참조 픽쳐 리스트 0과 참조 픽처 리스트 1을 구분하는 참조 방향 정보, 참조 리스트 내의 참조 픽처를 구분하는 인덱스, 모션벡터 등이 포함될 수 있다.
한편, 예측 단위별로 전송되는 움직임 정보에 관련된 데이터량을 줄이기 위해 인터 레이어 비디오 부호화 장치(10)는 주변 블록과 현재 블록간의 움직임 정보의 상관도를 이용하는 머지(merge)모드 또는 AMVP(Advanced Motion Vector Prediction)을 이용할 수 있다. 두가지 방법에 따를 경우, 움직임 정보를 유도하기 위한 주변 블록들의 후보리스트를 부호화 장치와 복호화 장치에서 동일하게 구성하고, 리스트 내의 후보 선택 정보를 복호화 장치로 전송함으로써 움직임 관련 데이터의 양을 효과적으로 줄일 수 있다.
한편, 인터 예측을 위한 후보리스트를 결정하는 방법에 있어서, 인터뷰(Inter-view) 예측 후보는 디스패리티 벡터가 가리키는 위치에서 가장 가까운 정수픽셀을 포함하는 블록의 예측 모드가 인터 예측 모드 또는 스킵모드일때 이용가능하다. 즉, 제2 레이어 현재 블록에서 디스패리티 벡터가 가리키는 제1 레이어의 위치에 대응되는 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드인경우 참조블록의 움직임 정보를 인터 예측을 위한 후보리스트에 추가할 수 있다.
그런데, 디스패리티 벡터가 가리키는 위치에 대응되는 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드가 아닌 경우에는 인터뷰 예측 후보를 이용할 수 없다. 나아가 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드이더라도 정확하지 않은 움직임 정보를 포함하고 있을 수 있다.
따라서, 일 실시예에 따른 인터 레이어 부호화 장치(10)는 제2 레이어 현재블록에서 디스패리티 벡터가 가리키는 참조위치 주변에 위치하는 적어도 하나의 주변블록들로부터도 움직임 정보를 획득하고, 획득된 움직임 정보중 적어도 하나를 인터 예측을 위한 후보리스트에 추가함으로써 머지 모드 또는 AMVP모드의 정확도를 향상시킬 수 있다.
이하, 일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)에서 인터 예측을 수행하기 위한 후보리스트 구성 방법은 도 4a 내지 도 7에 대한 설명에서 구체적으로 후술한다.
인터 레이어 비디오 부호화 장치(10)는, 제1 레이어 복원영상을 이용하여 제2 레이어 예측블록의 샘플값과 제2 레이어 원본블록의 샘플값 간의 오차, 즉 인터 레이어 예측에 따른 레지듀얼 성분을 변환 및 양자화 하여 엔트로피 부호화할 수 있다.
전술한 바와 같이 인터 레이어 비디오 부호화 장치(10)는 인터 레이어 예측 구조를 통해 제1 레이어 복원영상들을 참조하여 현재 레이어 영상 시퀀스를 부호화할 수도 있다. 다만, 다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)가, 다른 레이어 샘플들을 참조하지 않고도, 단일 레이어 예측 구조에 따라 제2 레이어 영상 시퀀스를 부호화할 수도 있다. 따라서, 인터 레이어 비디오 부호화 장치(10)가 제2 레이어 영상 시퀀스를 부호화하기 위해, 인터 레이어 예측 구조의 인터 예측만을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
한편, 전술한 인터 레이어 비디오 부호화 장치(10)가 다시점 비디오를 부호화하는 경우에, 부호화 되는 제1 레이어 영상은 제1 시점 비디오이고, 제2 레이어 영상은 제2 시점 비디오일 수 있다. 각 시점별 비디오는, 서로 다른 카메라로 촬영되거나 서로 다른 렌즈를 통해 획득될 수 있다.
이하, 향상된 인터 예측 후보리스트를 결정하는 인터 레이어 비디오 부호화 장치(10)의 자세한 동작을 도 1b를 참조하여 상술한다.
도 1b 는 다양한 실시예에 따른 인터 레이어 비디오 부호화 방법의 흐름도를 도시한다.
단계 11에서 일 실시예에 따른 디스패리티 벡터 결정부(12)는 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터를 결정 할 수 있다. 디스패리티 벡터 결정부(12)에서 결정된 디스패리티 벡터는 비트스트림에 포함되어 전송되거나 또는 다른 부호화 정보들로부터 유도될 수 있다.
단계 13에서 일 실시예에 따른 움직임 정보 획득부(14)는 제2 레이어 현재블록의 위치를 기준으로 하여 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정할 수 있다.
단계 15에서 일 실시예에 따른 움직임 정보 획득부(14)는 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 여기서, 주변블록은 제1 레이어 참조위치로부터 소정 거리만큼 이동된 위치에 있는 블록으로 결정될 수 있다.
일 실시예에 따른 움직임 정보 획득부(14)는 제1 레이어 참조위치에 가장 인접한 정수 픽셀을 포함하는 블록을 제1 레이어 참조블록을 결정하고, 제1 레이어 참조블록의 주변의 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 이때, 디스패리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있기 때문에, 제2 레이어 현재블록의 위치에서 디스패리티 벡터가 가리키는 참조위치는 서브픽셀 위치 일 수 있다. 따라서 움직임 정보 획득부(14)는 제2 레이어 현재블록 위치에서 디스패리티 벡터가 가리키는 제1 레이어 복원영상의 참조위치로부터 인접한 정수픽셀(integer pixel)을 포함하는 블록을 제1 레이어의 참조블록으로 결정할 수 있다.
움직임 정보 획득부(14)는 소정 스캔순서(예컨대 z-scan, raster scan 순서)에 따라 제1 레이어 참조위치 주변을 탐색하여 인터 예측 모드 또는 스킵모드로 복원된 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 예를 들면, 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득할 수 있다.
일 실시예에 따른 움직임 정보 획득부(14)는 제1 레이어 참조블록이 복수의 서브블록을 포함하는 경우, 디스패리티 벡터에 대응되는 서브블록 주변의 서브블록에서 움직임 정보를 획득할 수 있다. 예를 들면, 제2 레이어 현재블록에서 디스패리티 벡터가 가리키는 제1 레이어 참조위치에 대응되는 참조블록이 복수의 제1 레이어 예측 단위의 경계에 위치하는 경우, 복수의 제1 레이어 예측 단위에서 움직임 정보를 획득할 수 있다. 또는 움직임 정보 획득부(14)는 참조위치 주변에서 적어도 하나의 정수픽셀을 결정하고, 정수픽셀들이 속하는 주변블록들로부터 움직임 정보를 획득할 수도 있다.
단계 17에서, 일 실시예에 따른 후보리스트 결정부(16)는 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가 할 수 있다.
구체적으로, 후보리스트 결정부(16)는 획득된 움직임 정보에 기초하여 적어도 하나의 주변블록중 하나를 예측 후보로 결정하고, 인터 예측을 위한 후보리스트가 최대 개수의 후보를 가지고 있지 않은 경우 결정된 예측 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 여기서 예측 후보는 머지 후보 또는 AMVP 후보일 수 있다.
예를 들면, 후보리스트 결정부(16)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 블록이 복수개 있는 경우 모션 벡터의 크기가 가장 큰 주변블록을 예측 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다.
다른 예를 들면, 후보리스트 결정부(16)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 주변블록이 복수개 있는 경우 복수개의 주변블록 들 중에서 참조 POC(picture Order Count)가 제2 레이어 현재블록의 참조 POC와 일치하는 주변블록을 예측 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 이때, 제2 레이어 현재 블록과 참조 POC가 일치하는 주변블록이 여러 개인 경우에는 주변블록들의 모션 벡터 크기에 기초하여 예측 후보를 결정할 수 잇다.
또 다른 예를 들면, 후보리스트 결정부(16)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 블록이 복수개 있는 경우 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 인터 예측을 위한 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다.
따라서, 인터 레이어 비디오 부호화 장치(10)는 결정된 후보리스트에 포함된 후보중 하나를 선택하여 제2 레이어 현재블록에 대해 인터 예측을 수행하여, 제2 레이어 예측 영상을 생성하고, 제2 레이어 원본영상과 제2 레이어 예측 영상간의 예측 오차를 부호화 할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)는, 디스패리티 벡터 결정부(12), 움직임 정보 획득부(14) 및 후보리스트 결정부(16)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 디스패리티 벡터 결정부(12), 움직임 정보 획득부(14) 및 후보리스트 결정부(16)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 인터 레이어 비디오 부호화 장치(10)가 전체적으로 작동될 수도 있다. 또는, 인터 레이어 비디오 부호화 장치(10)의 외부 프로세서(미도시)의 제어에 따라, 디스패리티 벡터 결정부(12), 움직임 정보 획득부(14) 및 후보리스트 결정부(16)가 제어될 수도 있다.
인터 레이어 비디오 부호화 장치(10)는, 디스패리티 벡터 결정부(12), 움직임 정보 획득부(14) 및 후보리스트 결정부(16)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 인터 레이어 비디오 부호화 장치(10)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
인터 레이어 비디오 부호화 장치(10)는, 비디오 부호화 결과를 출력하기 위해, 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 변환을 포함한 비디오 부호화 동작을 수행할 수 있다. 인터 레이어 비디오 부호화 장치(10)의 내부 비디오 인코딩 프로세서는, 별개의 프로세서로서 비디오 부호화 동작을 구현할 수 있다. 또한, 인터 레이어 비디오 부호화 장치(10) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 가능하다.
도 2a 은 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치의 블록도를 도시한다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 디스패리티벡터 결정부(22), 움직임 정보 획득부(24) 및 후보리스트 결정부(26)를 포함할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 스케일러블 부호화 방식에 따라 레이어별로 비트스트림들을 수신할 수 있다. 인터 레이어 비디오 복호화 장치(20)가 수신하는 비트스트림들의 레이어의 개수가 한정되는 것은 아니다. 하지만, 설명의 편의를 위해 이하 인터 레이어 비디오 복호화 장치(20)가 제1 레이어 스트림을 수신하여 복호화하고 또 제2 레이어 스트림을 수신하여 복호화하는 실시예에 대해 상술한다.
예를 들어, 공간적 스케일러빌러티에 기반한 인터 레이어 비디오 복호화 장치(20)는, 서로 다른 해상도의 영상시퀀스가 서로 다른 레이어로 부호화된 스트림을 수신할 수 있다. 제1 레이어 스트림을 복호화하여 저해상도 영상시퀀스가 복원되고, 제2 레이어 스트림을 복호화하여 고해상도 영상 시퀀스가 복원될 수 있다.
다른 예로, 다시점 비디오가 스케일러블 비디오 코딩 방식에 따라 복호화될 수 있다. 스테레오스코픽 비디오 스트림이 다수 레이어로 수신된 경우에, 제1 레이어 스트림을 복호화하여 좌시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
또는 다시점 비디오 스트림이 다수 레이어로 수신된 경우에, 제1 레이어 스트림을 복호화하여 중앙시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 좌시점 영상들이 복원될 수 있다. 제1 레이어 스트림에 제3 레이어 스트림을 더 복호화하여 우시점 영상들이 복원될 수 있다.
다른 예로, 시간적 스케일러빌러티에 기반한 스케일러블 비디오 코딩 방식이 수행될 수 있다. 제1 레이어 스트림을 복호화하여 기본 프레임 레이트의 영상들이 복원될 수 있다. 제1 레이어 스트림에 제2 레이어 스트림을 더 복호화하여 고속 프레임 레이트의 영상들이 복원될 수 있다.
또한, 제2 레이어가 셋 이상인 경우, 제1 레이어 스트림으로부터 제1 레이어 영상들이 복원되고, 제1 레이어 복원영상들을 참조하여 제2 레이어 스트림을 더 복호화하면 제2 레이어 영상들이 더 복원될 수 있다. 제2 레이어 복원영상을 참조하여 K번째 레이어 스트림을 더 복호화하면 K번째 레이어 영상들이 더 복원될 수도 있다.
인터 레이어 비디오 복호화 장치(20)는, 제1 레이어 스트림과 제2 레이어 스트림으로부터 제1 레이어 영상들 및 제2 레이어 영상들의 부호화된 데이터를 획득하고, 더하여 인터 예측에 의해 생성된 모션 벡터 및 인터 레이어 예측에 의해 생성된 예측 정보를 더 획득할 수 있다.
예를 들어 인터 레이어 비디오 복호화 장치(20)는 각 레이어별로 인터 예측된 데이터를 복호화하고, 다수 레이어 간에 인터 레이어 예측된 데이터를 복호화할 수 있다. 부호화 단위 또는 예측 단위를 기초로 움직임 보상(Motion Compensation) 및 인터 레이어 복호화를 통한 복원이 수행될 수도 있다.
각 레이어 스트림에 대해서는 동일 레이어의 인터 예측을 통해 예측된 복원영상들을 참조하여, 현재영상을 위한 움직임 보상을 수행함으로써, 영상들을 복원할 수 있다. 움직임 보상은, 현재 영상의 모션 벡터를 이용하여 결정된 참조영상과, 현재 영상의 레지듀얼 성분을 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
또한, 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 예측을 통해 예측된 제2 레이어 영상을 복호화하기 위해 제1 레이어 영상들의 예측정보를 참조하여 인터 레이어 복호화를 수행할 수도 있다. 인터 레이어 복호화는, 현재 영상의 예측정보를 결정하기 위하여 다른 레이어의 참조블록의 예측정보를 이용하여 현재 영상의 예측 정보를 재구성하는 동작을 포함한다.
일 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 영상들을 참조하여 예측된 제3 레이어 영상들을 복원하기 위한 인터 레이어 복호화를 수행할 수도 있다. 인터 레이어 예측 구조는 추후 도 3을 참조하여 상술한다.
다만, 다양한 실시예에 따른 제2 레이어 복호화부(24)가, 제1 레이어 영상시퀀스를 참조하지 않고도, 제2 레이어 스트림을 복호화할 수도 있다. 따라서, 제2 레이어 복호화부(24)가 제2 레이어 영상 시퀀스를 복호화하기 위해, 인터 레이어 예측을 수행한다고 제한적으로 해석하지 않도록 유의하여야 한다.
인터 레이어 비디오 복호화 장치(20)는 비디오의 각각의 영상의 블록별로 복호화한다. 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다.
인터 레이어 비디오 복호화 장치(20)는 파싱된 제1 레이어 영상의 부호화 심볼들을 이용하여, 제1 레이어 영상을 복호화할 수 있다. 인터 레이어 비디오 복호화 장치(20)가 트리 구조의 부호화 단위들을 기초로 부호화된 스트림들을 수신한다면, 제1 레이어 스트림의 최대 부호화 단위마다, 트리 구조의 부호화 단위들을 기초로 복호화를 수행할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 최대 부호화 단위마다 엔트로피 복호화를 수행하여, 부호화 정보와 부호화된 데이터를 획득할 수 있다. 제 인터 레이어 비디오 복호화 장치(20)는 스트림으로부터 획득한 부호화된 데이터에 대해 역양자화, 역변환을 수행하여, 레지듀얼 성분을 복원할 수 있다. 다른 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는 양자화된 변환계수들의 비트스트림을 직접 수신할 수도 있다. 양자화된 변환계수들에 대해 역양자화, 역변환을 수행한 결과, 영상들의 레지듀얼 성분이 복원될 수도 있다.
인터 레이어 비디오 복호화 장치(20)는 동일 레이어 영상들 간에 움직임 보상을 통해, 예측영상을 결정하고, 예측영상과 레지듀얼 성분을 결합하여 제1 레이어 영상들을 복원할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 인터 레이어 예측 구조에 따르면, 제1 레이어 복원영상의 샘플들을 이용하여 제2 레이어 예측영상을 생성할 수 있다. 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 스트림을 복호화하여, 인터 레이어 예측에 따른 예측 오차를 획득할 수 있다. 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 예측영상에 예측 오차를 결합함으로써 제2 레이어 복원영상을 생성할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 복호화된 제1 레이어 복원영상을 이용하여 제2 레이어 예측영상을 결정할 수 있다. 인터 레이어 비디오 복호화 장치(20)는 인터 레이어 예측 구조에 따라, 제2 레이어 영상의 부호화 단위 또는 예측 단위와 같은 블록 별록 인터 예측을 수행할 수 있다. 즉, 제2 레이어 영상의 블록이 참조할 제1 레이어 영상의 블록을 결정할 수 있다. 예를 들어, 제2 레이어 영상에서 현재 블록의 위치에 상응하여 위치하는 제1 레이어 영상의 복원블록이 결정될 수 있다. 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 블록에 상응하는 제1 레이어 복원블록을 이용하여, 제2 레이어 예측블록을 결정할 수 있다.
이러한 예측 블록을 결정하기 위해서는 현재 복원될 제2 레이어 블록의 움직임 정보가 필요하다. 따라서 인터 레이어 비디오 복호화 장치(20)는 주변 블록과 현재 블록간의 움직임 정보의 상관도를 이용하는 머지(merge)모드 또는 AMVP(Advanced Motion Vector Prediction)를 이용하여 움직임 정보를 획득할 수 있다. 두가지 방법에 따를 경우, 움직임 정보를 유도하기 위한 주변 블록들의 후보리스트를 부호화 장치와 복호화 장치에서 동일하게 구성하고, 리스트 내의 후보 선택 정보만을 인터 레이어 비디오 복호화 장치(20)가 수신함으로써 움직임 정보에 관련된 데이터량을 효과적으로 줄일 수 있다.
한편, 인터 예측을 위한 후보리스트를 결정하는 방법에 있어서, 인터뷰 예측 후보는 디스패리티 벡터가 가리키는 위치에서 가장 가까운 정수픽셀을 포함하는 블록의 예측 모드가 인터 예측 모드 또는 스킵모드일때 이용가능하다. 즉, 제2 레이어 현재 블록에서 디스패리티 벡터가 가리키는 제1 레이어의 위치에 대응되는 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드인경우 참조블록의 움직임 정보를 인터 예측을 위한 후보리스트에 추가할 수 있다.
그런데, 디스패리티 벡터가 가리키는 위치에 대응되는 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드가 아닌 경우 인터뷰 예측 후보를 이용할 수 없고, 나아가 참조블록의 예측모드가 인터 예측 모드 또는 스킵모드이더라도 정확하지 않은 움직임 정보를 포함하고 있을 수 있다.
따라서, 일 실시예에 따른 인터 레이어 복호화 장치(20)는 제2 레이어 현재블록에서 디스패리티 벡터가 가리키는 참조위치 주변에 위치하는 적어도 하나의 주변블록들로부터도 움직임 정보를 획득하고, 획득된 움직임 정보중 적어도 하나를 인터 예측을 위한 후보리스트에 추가함으로써 머지 모드 또는 AMVP모드의 정확도를 향상시킬 수 있다.
이하, 일 실시예에 따른 인터 레이어 비디오 복호화 장치(20)에서 인터 예측을 수행하기 위한 후보리스트 구성 방법은 도 4a 내지 도 7에 대한 설명에서 구체적으로 후술한다.
인터 레이어 비디오 복호화 장치(20), 인터 예측에 따라 제1 레이어 복원블록을 이용하여 결정된 제2 레이어 예측블록을, 제2 레이어 원본블록의 인터 레이어 예측을 위한 참조영상으로서 이용할 수도 있다. 인터 레이어 비디오 복호화 장치(20)는, 제1 레이어 복원영상을 이용하여 결정한 제2 레이어 예측블록의 샘플값과 인터 레이어 예측에 따른 레지듀얼 성분을 합성함으로써, 제2 레이어 블록을 복원할 수 있다.
공간적 스케일러블 비디오 코딩 방식에 따르면, 인터 레이어 비디오 복호화 장치(20)가 제2 레이어 영상과 다른 해상도의 제1 레이어 영상을 복원한 경우에, 제1 레이어 복원영상을 제2 레이어 원본영상과 동일한 해상도로 크기조절하기 위해 보간할 수 있다. 보간된 제1 레이어 복원영상을 인터 레이어 예측을 위한 제2 레이어 예측영상으로서 결정될 수 있다.
따라서, 인터 레이어 비디오 복호화 장치(20)는, 제1 레이어 스트림을 복호화하여 제1 레이어 영상 시퀀스를 복원하고 또한 제2 레이어 스트림을 복호화하여 제2 레이어 영상 시퀀스를 복원할 수 있다.
한편, 전술한 인터 레이어 비디오 복호화 장치(20)가 다시점 비디오를 복호화하는 경우에, 복호화 되는 제1 레이어 영상은 제1 시점 비디오이고, 제2 레이어 영상은 제2 시점 비디오일 수 있다. 각 시점별 비디오는, 서로 다른 카메라로 촬영되거나 서로 다른 렌즈를 통해 획득될 수 있다.
이하, 향상된 인터 예측 후보리스트를 결정하는 인터 레이어 비디오 복호화 장치(20)의 자세한 동작을 도 2b 를 참조하여 상술한다.
도 2b 는 다양한 실시예에 따른 인터 레이어 비디오 복호화 방법의 흐름도를 도시한다.
단계 21에서 일 실시예에 따른 디스패리티 벡터 결정부(22)는 제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터를 결정 할 수 있다. 디스패리티 벡터 결정부(22)에서 결정된 디스패리티 벡터는 비트스트림으로부터 획득되거나 또는 다른 부호화 정보들로부터 유도될 수 있다.
단계 23에서 일 실시예에 따른 움직임 정보 획득부(24)는 제2 레이어 현재블록의 위치를 기준으로 하여 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정할 수 있다.
단계 25에서 일 실시예에 따른 움직임 정보 획득부(24)는 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 여기서, 주변블록은 제1 레이어 참조위치로부터 소정 거리만큼 이동된 위치에 있는 블록으로 결정될 수 있다.
일 실시예에 따른 움직임 정보 획득부(24)는 제1 레이어 참조위치에 가장 인접한 정수 픽셀을 포함하는 블록을 제1 레이어 참조블록을 결정하고, 제1 레이어 참조블록의 주변의 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 이때, 디스패리티 벡터는 쿼터 펠(quarter-pel) 또는 하프 펠(half-pel)과 같은 분수(fractional) 단위의 정밀도를 가질 수 있기 때문에, 제2 레이어 현재블록의 위치에서 디스패리티 벡터가 가리키는 참조위치는 서브픽셀 위치 일 수 있다. 따라서 움직임 정보 획득부(24)는 제2 레이어 현재블록 위치에서 디스패리티 벡터가 가리키는 제1 레이어 복원영상의 참조위치로부터 인접한 정수픽셀(integer pixel)을 포함하는 블록을 제1 레이어의 참조블록으로 결정할 수 있다.
움직임 정보 획득부(24)는 소정 스캔순서(예컨대 z-scan, raster scan 순서)에 따라 제1 레이어 참조위치 주변을 탐색하여 인터 예측 모드 또는 스킵모드로 복원된 적어도 하나의 주변블록으로부터 움직임 정보를 획득할 수 있다. 예를 들면, 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득할 수 있다.
일 실시예에 따른 움직임 정보 획득부(24)는 제1 레이어 참조블록이 복수의 서브블록을 포함하는 경우, 디스패리티 벡터에 대응되는 서브블록 주변의 서브블록에서 움직임 정보를 획득할 수 있다. 예를 들면, 제2 레이어 현재블록에서 디스패리티 벡터가 가리키는 제1 레이어 참조위치에 대응되는 참조블록이 복수의 제1 레이어 예측 단위의 경계에 위치하는 경우, 복수의 제1 레이어 예측 단위에서 움직임 정보를 획득할 수 있다. 또는 움직임 정보 획득부(24)는 참조위치에 주변에서 적어도 하나의 정수픽셀을 결정하고, 정수픽셀들이 속하는 주변블록들로부터 움직임 정보를 획득할 수도 있다.
단계 27에서, 일 실시예에 따른 후보리스트 결정부(26)는 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가 할 수 있다.
구체적으로, 후보리스트 결정부(26)는 획득된 움직임 정보에 기초하여 적어도 하나의 주변블록중 하나를 예측 후보로 결정하고, 인터 예측을 위한 후보리스트가 최대 개수의 후보를 가지고 있지 않은 경우 결정된 예측 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 여기서 예측 후보는 머지 후보 또는 AMVP 후보일 수 있다.
예를 들면, 후보리스트 결정부(26)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 블록이 복수개 있는 경우 모션 벡터의 크기가 가장 큰 주변블록을 예측 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다.
다른 예를 들면, 후보리스트 결정부(26)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 주변블록이 복수개 있는 경우 복수개의 주변블록 들 중에서 참조 POC(picture Order Count)가 제2 레이어 현재블록의 참조 POC와 일치하는 주변블록을 예측 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 이때, 제2 레이어 현재 블록과 참조 POC가 일치하는 주변블록이 여러 개인 경우에는 주변블록들의 모션 벡터 크기에 기초하여 예측 후보를 결정할 수 잇다.
또 다른 예를 들면, 후보리스트 결정부(26)는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 블록이 복수개 있는 경우 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 인터 예측을 위한 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다.
따라서, 인터 레이어 비디오 복호화 장치(20)는 비트스트림으로부터 획득된 후보 선택정보에 기초하여 결정된 후보리스트에 포함된 후보중 하나를 선택할 수 있다. 따라서 인터 레이어 비디오 복호화 장치(20)는 선택된 후보의 움직임 정보를 이용하여 제2 레이어 현재블록에 대해 인터 예측을 수행함으로써 제2 레이어 예측블록을 결정할 수 있다. 인터 레이어 비디오 복호화 장치(20)는, 결정한 제2 레이어 예측블록의 샘플값과 인터 레이어 예측에 따른 레지듀얼 성분을 합성함으로써, 제2 레이어 블록을 복원할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 디스패리티 벡터 결정부(22), 움직임 정보 획득부(24) 및 후보리스트 결정부(26)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 디스패리티 벡터 결정부(22), 움직임 정보 획득부(24) 및 후보리스트 결정부(26)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 인터 레이어 비디오 복호화 장치(20)가 전체적으로 작동될 수도 있다. 또는, 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)의 외부 프로세서(미도시)의 제어에 따라, 디스패리티 벡터 결정부(22), 움직임 정보 획득부(24) 및 후보리스트 결정부(26)가 제어될 수도 있다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 디스패리티 벡터 결정부(22), 움직임 정보 획득부(24) 및 후보리스트 결정부(26)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 인터 레이어 비디오 복호화 장치(20)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)는, 비디오 복호화를 통해 비디오를 복원하기 위해, 내부에 탑재된 비디오 디코딩 프로세서 또는 외부 비디오 디코딩 프로세서와 연계하여 작동함으로써, 역변환을 포함한 비디오 복호화 동작을 수행할 수 있다. 다양한 실시예에 따른 인터 레이어 비디오 복호화 장치(20)의 내부 비디오 디코딩 프로세서는, 별개의 프로세서뿐만 아니라, 인터 레이어 비디오 복호화 장치(20) 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 디코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 복호화 동작을 구현하는 경우도 포함할 수도 있다.
도 1a 내지 2b를 참조하면, 인터 레이어 부호화 장치(10) 및 인터 레이어 복호화 장치(20)는 제2 레이어 현재블록에서 디스패리티 벡터가 가리키는 픽셀의 주변 픽셀을 포함하는 적어도 하나의 주변블록들로부터도 움직임 정보를 획득하고, 획득된 움직임 정보중 적어도 하나를 인터 예측을 위한 후보리스트에 추가함으로써 머지 모드 또는 AMVP모드의 정확도를 향상시킬 수 있다. 따라서 부호화 효율이 높아질 수 있다.
이하 도 3을 참조하여 다양한 실시예에 따른 비디오 스트림 부호화 장치(10)에서 수행될 수 있는 인터 레이어 예측 구조를 상술한다.
도 3은 일 실시예에 따른 인터 레이어 예측 구조를 도시한다.
인터 레이어 부호화 시스템(1600)은 기본 레이어 부호화단(1610)과 향상 레이어 부호화단(1660), 그리고 기본 레이어 부호화단(1610)와 향상 레이어 부호화단(1660) 간의 인터 레이어 예측단(1650)으로 구성된다. 기본 레이어 부호화단(1610) 및 향상 레이어 부호화단(1660)은, 인터 레이어 부호화부(12)에 포함될 수 있다.
기본 레이어 부호화단(1610)는, 기본 레이어 영상 시퀀스를 입력받아 영상마다 부호화한다. 향상 레이어 부호화단(1660)은, 향상 레이어 영상 시퀀스를 입력받아 영상마다 부호화한다. 기본 레이어 부호화단(1610)과 향상 레이어 부호화단(1620)의 동작들 중에서 중복되는 동작은 동시에 후술한다.
블록 분할부(1618, 1668)를 통해 입력 영상(저해상도 영상, 고해상도 영상)은, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등으로 분할된다. 블록 분할부(1618, 1668)로부터 출력된 부호화 단위의 부호화를 위해, 부호화 단위의 예측단위별로 인트라예측 또는 인터예측이 수행될 수 있다. 예측 스위치(1648, 1698)는, 예측단위의 예측모드가 인트라 예측모드 또는 인터 예측모드인지 여부에 따라, 움직임 보상부(1640, 1690)로부터 출력된 이전 복원영상을 참조하여 인터 예측이 수행되거나, 또는 인트라 예측부(1645, 1695)로부터 출력된 현재 입력 영상 내에서 현재 예측단위의 이웃 예측단위를 이용하여 인트라 예측이 수행될 수 있다. 인터 예측을 통해 예측단위별로 례지듀얼 정보가 생성될 수 있다.
부호화 단위의 예측단위별로, 예측단위와 주변영상 간의 레지듀얼 정보가 변환/양자화부(1620, 1670)에 입력된다. 변환/양자화부(1620, 1670)는, 부호화 단위의 변환단위를 기초로, 변환단위별로 변환 및 양자화를 수행하여 양자화된 변환계수를 출력할 수 있다.
스케일링/역변환부(1625, 1675)는, 다시 부호화 단위의 변환단위별로 양자화된 변환계수에 대해 스케일링 및 역변환을 수행하여 공간영역의 레지듀얼 정보를 생성할 수 있다. 예측 스위치(1648, 1698)에 의해 인터 모드로 제어되는 경우에, 레지듀얼 정보는 이전 복원영상 또는 이웃 예측단위와 합성됨으로써, 현재 예측단위를 포함하는 복원영상이 생성되고 현재 복원영상은 스토리지(1630, 1680)에 저장될 수 있다. 현재 복원영상은 다시 다음에 부호화되는 예측단위의 예측모드에 따라 인트라예측부(1645, 1695)/움직임보상부(1640, 1690)로 전달될 수 있다.
특히, 인터모드의 경우, 인루프필터링(In-Loop Filtering)부(1635, 1685)는, 스토리지(1630, 1680)에 저장된 복원영상에 대해, 부호화 단위별로 디블로킹 필터링 및 SAO (Sample Adaptive Offset) 필터링 중 적어도 하나의 필터링을 수행할 수 있다. 부호화 단위 및 부호화 단위에 포함된 예측 단위 및 변환 단위 중 적어도 하나에 대해 디블로킹 필터링 및 SAO (Sample Adaptive Offset) 필터링) 중 적어도 하나의 필터링이 수행될 수 있다.
디블로킹 필터링은 데이터 단위의 블록킹 현상을 완화시키기 위한 필터링이고, SAO 필터링은 데이터 부호화 및 복호화에 의해 변형되는 픽셀값을 보상하기 위한 필터링이다. 인루프필터링부(1635, 1685)에 의해 필터링된 데이터는, 예측 단위별로 움직임보상부(1640, 1690)에게 전달될 수 있다. 다시 블록분할부(1618, 1668)로부터 출력된, 다음 순서의 부호화 단위의 부호화를 위해, 움직임보상부(1640, 1690) 및 블록분할부(1618, 1668)가 출력한 현재 복원영상과 다음 부호화 단위 간의 레지듀얼 정보가 생성될 수 있다.
이러한 식으로, 입력 영상의 부호화 단위마다 전술한 부호화 동작이 반복될 수 있다.
또한, 인터레이어 예측을 위해 향상 레이어 부호화단(1660)은, 기본 레이어 부호화단(1610)의 스토리지(1630)에 저장된 복원영상을 참조할 수 있다. 기본 레이어 부호화단(1610)의 부호화 컨트롤부(1615)는 기본 레이어 부호화단(1610)의 스토리지(1630)를 제어하여, 기본 레이어 부호화단(1610)의 복원영상을 향상 레이어 부호화단(1660)에게 전달할 수 있다. 인터 레이어 예측단(1650)에서는, 인터 레이어 필터링부(1655)가 기본 레이어 부호화단(1610)의 스토리지(1610)로부터 출력된 기본 레이어 복원영상에 대해 디블로킹 필터링 또는 SAO 필터링을 수행할 수 있다. 인터 레이어 예측단(1650)은, 기본 레이어와 향상 레이어의 영상 간에 해상도가 다른 경우에, 기본 레이어의 복원영상을 업샘플링하여 향상 레이어 부호화단(1660)으로 전달할 수 있다. 향상 레이어 부호화단(1660)의 스위치(1698)의 제어에 따라 인터 레이어 예측이 수행되는 경우에는, 인터 레이어 예측단(1650)을 통해 전달된 기본 레이어 복원영상을 참조하여 향상 레이어 영상의 인터 레이어 예측이 수행될 수도 있다.
영상의 부호화를 위해, 부호화 단위, 예측 단위, 변환 단위를 위한 각종 부호화 모드를 설정할 수 있다. 예를 들어, 부호화 단위에 대한 부호화 모드로서, 심도 또는 분할 정보(split flag) 등이 설정될 수 있다. 예측 단위에 대한 부호화 모드로서, 예측 모드, 파티션 타입, 인트라 방향 정보, 참조리스트 정보 등이 설정될 수 있다. 변환 단위에 대한 부호화 모드로서, 변환심도 또는 분할정보 등이 설정될 수 있다.
기본레이어 부호화단(1610)은, 부호화 단위를 위한 다양한 심도들, 예측 단위에 대한 다양한 예측모드들, 다양한 파티션 타입들, 다양한 인트라 방향들, 다양한 참조리스트들, 변환단위를 위한 다양한 변환심도를 각각 적용하여 부호화를 수행한 결과에 따라, 부호화 효율이 가장 높은 부호화심도, 예측모드, 파티션타입, 인트라 방향/참조리스트, 변환심도 등을 결정할 수 있다. 기본레이어 부호화단(1610)에서 결정되는 상기 열거된 부호화 모드에 한정되지는 않는다.
기본레이어 부호화단(1610)의 부호화 컨트롤부(1615)는, 각각 구성요소들의 동작에 다양한 부호화 모드들이 적절히 적용될 수 있도록 제어할 수 있다. 또한, 부호화 컨트롤부(1615)는, 향상 레이어 부호화단(1660)의 인터 레이어 부호화를 위해, 향상 레이어 부호화단(1660)이 기본레이어 부호화단(1610)의 부호화 결과를 참조하여 부호화 모드 또는 레지듀얼 정보를 결정하도록 제어할 수 있다.
예를 들어, 향상 레이어 부호화단(1660)은, 기본레이어 부호화단(1610)의 부호화 모드를 향상 레이어 영상을 위한 부호화 모드로서 그대로 이용하거나, 기본레이어 부호화단(1610)의 부호화 모드를 참조하여 향상 레이어 영상을 위한 부호화 모드를 결정할 수 있다. 기본레이어 부호화단(1610)의 부호화 컨트롤부(1615)는 기본레이어 부호화단(1610)의 향상 레이어 부호화단(1660)의 부호화 컨트롤부(1665)의 제어 신호를 제어하여, 향상 레이어 부호화단(1660)이 현재 부호화 모드를 결정하기 위해, 기본레이어 부호화단(1610)의 부호화 모드로부터 현재 부호화 모드를 이용할 수 있다.
도 3에서 도시된 인터 레이어 예측 방식에 따른 인터 레이어 부호화 시스템(1600)과 유사하게, 인터 레이어 예측 방식에 따른 인터 레이어 복호화 시스템도 구현될 수 있다. 즉, 멀티 레이어 비디오의 인터 레이어 복호화 시스템은, 기본레이어 비트스트림 및 향상 레이어 비트스트림을 수신할 수 있다. 인터 레이어 복호화 시스템의 기본레이어 복호화단에서 기본레이어 비트스트림을 복호화하여 기본레이어 영상들을 복원할 수 있다. 멀티 레이어 비디오의 인터 레이어 복호화 시스템의 향상 레이어 복호화단에서는, 기본레이어 복원영상과 파싱한 부호화정보를 이용하여 향상 레이어 비트스트림을 복호화하여 향상 레이어 영상들을 복원할 수 있다.
다양한 실시예에 따른 인터 레이어 비디오 부호화 장치(10)에서 인터 레이어 예측을 수행했다면, 인터 레이어 비디오 복호화 장치(20) 에서도 전술한 인터 레이어 복호화 시스템에 따라 멀티 레이어 영상들을 복원할 수 있다.
이하 도 4a 내지 도 7을 참조하여, 비디오 스트림 부호화 장치(10) 및 비디오 스트림 복호화 장치(20)가, 다시점 비디오에 대해 인터 레이어 예측 구조를 적용하는 실시예가 상술된다. 다시점 비디오의 인터뷰 예측 구조에서 개별시점 비디오는 각각 하나의 레이어에 할당되므로, 인터뷰 예측 구조도 인터 레이어 예측 구조로 해석될 수 있다.
이하 도 4a 내지 도 5b를 참조하여, 인터 레이어 복호화 장치(20)가 인터 예측을 위한 공간적 예측 후보 (Spatial Candidate), 시간적 예측(Temporal) 후보 및 인터뷰 예측 후보(Inter-view Candidate)를 결정하는 일 예들을 설명한다. 물론, 이외에도 인터 레이어 구조에서, 인터 예측을 위한 예측 후보에는 시차 후보(Disparity), 시점 합성 예측 후보(View Synthesis Prediction Candidate) 등이 더 포함될 수 있음은 자명하다.
도 4a 는 일 실시예에 따른 인터 예측 모드에서 이용되는 공간적 예측 후보를 나타낸다.
도 4a를 참조하면, 인터 레이어 복호화 장치(20)는 현재 픽처(30)에서 현재 블록(31)의 예측 정보를 결정하기 위해 참조할 후보블록들은, 현재 블록(31)에 공간적으로 이웃하는 예측단위일 수 있다. 예를 들어, 현재 블록(31)의 좌측하단 샘플의 좌측하단 외부에 위치하는 주변블록 A0(32), 현재 블록(31)의 좌측하단 샘플의 좌측 외부에 위치하는 주변블록 A1(33), 현재 블록(31)의 우측상단 샘플의 우측상단 외부에 위치하는 주변블록 B0(34), 현재 블록(31)의 우측상단 샘플의 상단 외부에 이웃하는 주변블록 B1(35), 현재 블록(31)의 좌측상단 샘플의 좌측상단 외부에 위치하는 주변블록 B2(36)들이 후보블록이 될 수 있다. 후보블록이 될 수 있는 블록을 결정하기 위해 주변블록 A1(33), B1(35), B0(34), A0(32), B2(36)의 순서로 소정 위치의 주변블록들(32, 33, 34, 35, 36)이 탐색될 수 있다.
예를 들어, 주변블록 A1(33), B1(35), B0(34), A0(32), B2(36) 중 4개의 주변블록이 공간적 후보블록으로 선택될 수 있다. 즉, 4개의 공간적 후보블록들의 움직임 정보가 인터 예측을 위한 후보리스트에 포함될 수 있다.
인터 레이어 복호화 장치(20)는 블록 A1(33), B1(35), B0(34), A0(32), B2(36) 중 움직임 정보를 갖는 블록, 즉 인터 예측된 블록만을 인터 예측을 위한 예측 후보에 포함시키고, 움직임 정보를 갖지 않는 블록은 예측 후보에서 제외할 수 있다. 또한 인터 레이어 복호화 장치(20)는 중복되는 움직임 정보를 갖는 블록은 인터 예측을 위한 예측 후보에서 제외할 수 있다.
공간적 예측 후보에 포함될 수 있는 주변 블록의 위치 및 개수는 상기 예에 한정되지 않고 변경될 수 있다. 한편, 공간적 예측 후보 결정에 이용되는 블록은 부호화 단위 또는 예측 단위일 수 있다.
도 4b 는 일 실시예에 따른 인터 예측 모드에서 이용되는 시간적 예측 후보를 나타낸다.
도 4b를 참조하면, 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(40)에 포함된 현재 블록(41)의 인터 예측을 위해, 참조 픽처(43)에 포함되며 현재 블록(41)과 콜로케이티드 블록(co-located block)(44) 및 상기 동일 위치의 블록(44) 주변의 블록 중 적어도하나가 시간적 예측 후보에 포함될 수 있다. 예를 들어, 동일 위치의 블록(44)의 우측 하단 블록(45)이 시간적 예측 후보에 포함될 수 있다. 한편, 시간적 예측 후보 결정에 이용되는 블록은 부호화 단위 또는 예측 단위일 수 있다.
도 5a 는 일 실시예에 따른 인터 예측 모드에서 이용되는 인터뷰(inter-view) 예측 후보를 나타낸다.
도 5a를 참조하면, 인터 레이어 비디오 복호화 장치(20)는 제2 레이어 현재 픽처(50)에 포함된 현재 블록(51)의 인터 예측을 위해, 현재 블록(51) 위치에서 디스패리티 벡터(DV)가 가리키는 제1 레이어 참조블록(53)이 움직임 정보를 갖는지 결정한다. 즉, 제1 레이어 참조블록(53)이 인터 모드 또는 스킵모드로 결정되었는지 판단된다. 여기서 디스패리티 벡터가 가리키는 참조위치는 현재블록(51)의 중심 픽셀을 기준으로 할 수도 있고 또는 현재블록(51)의 좌측 상단 픽셀을 기준으로 할 수 있다.
인터 레이어 비디오 복호화 장치(20)는 제1 레이어 참조블록(53)이 움직임 정보를 가지고 있으면, 참조블록(53)을 인터뷰 예측 후보로 결정하고, 참조블록(53)의 움직임 정보를 인터 예측을 위한 후보리스트에 추가할 수 있다. 한편, 인터뷰 예측 후보 결정에 이용되는 블록은 부호화 단위 또는 예측 단위일 수 있다.
도 5b 는 일 실시예에 따른 인터 예측 모드에서 인터 레이어 참조블록을 인터뷰 예측 후보로 결정하지 않는 일 예를 나타낸다.
도 5b를 참조하면, 한편, 도 5a를 참조하면, 디스패리티 벡터(DV)가 가리키는 참조블록(53)은 제1 레이어 픽처(52)의 부호화 단위 또는 예측 단위의 경계에 위치할 수 있다. 이 경우에는, 디스패리티 벡터(DV)가 가리키는 참조위치에 가장 인접한 정수픽셀을 포함하는 부호화 단위(53-1)의 예측 모드 정보를 참조블록(53)의 예측 모드 정보로 결정할 수 있다.
따라서, 참조블록(53)이 복수의 부호화 단위(53-1, 53-2, 53-3, 53-4)에 걸쳐 있음에도 불구하고, 상술한 바와같이 디스패리티 벡터(DV)가 가리키는 위치에 가장 인접한 정수픽셀을 포함하는 부호화 단위(53-1)의 예측 모드 정보만으로 참조블록(53)의 예측 모드가 결정된다.
즉, 참조블록(53)의 예측 모드 정보를 판단하는 하나의 부호화 단위(53-1)의 예측모드가 인터 예측 모드 또는 스킵모드가 아닌 경우에는 인터뷰 예측 후보를 이용할 수 없다. 따라서, 이 경우에는 인터 레이어 비디오 복호화 장치(20)는 인터-레이어 참조블록을 인터뷰 예측 후보로 결정하지 않는다.
하지만, 도 5b에서, 디스패리티 벡터(DV)가 가리키는 참조블록(53)은 제1 레이어 픽처(52)의 부호화 단위 또는 예측 단위의 경계에 위치하기 때문에 디스패리티 벡터(DV)가 가리키는 참조위치에 인접한 주변 블록들(53-1,53-2,53-3,53-4)중 적어도 하나의 블록들은(53-2, 53-3, 53-4) 움직임 정보를 가지고 있을 수 있다.
나아가 참조블록(53)의 예측모드가 인터 예측 모드 또는 스킵모드로 예측이 수행되어 움직임 정보를 가지고 있다고 판단되더라도, 그 움직임 정보가 정확하지 않은 정보를 포함하고 있을 수 있다. 예컨대, 인터 예측에 의해 유사한 블록이 탐색되지 않아 참조블록(53)이 정확한 움직임 정보를 갖지 않은 문제점이 있을 수 있다.
따라서, 일 실시예에 따른 인터 레이어 복호화 장치(20)는 제2 레이어 현재블록(51)에서 디스패리티 벡터(DV)가 가리키는 참조위치 주변에 위치하는 적어도 하나의 주변블록들(53-2, 53-3, 53-4)로부터도 움직임 정보(mv0, mv1, mv2)를 획득하고, 획득된 움직임 정보(mv0, mv1, mv2) 중 적어도 하나를 인터 예측을 위한 후보리스트에 추가함으로써 머지 모드 또는 AMVP모드의 정확도를 향상시킬 수 있다.
도 5c 는 일 실시예에 따른 인터 예측 모드에서 이용되는 향상된 인터뷰 예측 후보 결정방법을 나타낸다.
도 5c를 참조하면, 인터 레이어 복호화 장치(20)의 후보리스트 결정부(26)는 획득된 움직임 정보에 기초하여 적어도 하나의 주변블록 중 하나를 예측 후보로 결정하고, 인터 예측을 위한 후보리스트가 최대 개수의 후보를 가지고 있지 않은 경우 결정된 예측 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 여기서 예측 후보는 머지 후보 또는 AMVP 후보일 수 있다.
예를 들면, 후보리스트 결정부(26)는 디스패리티 벡터(DV)가 가리키는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 주변블록(53-1, 53-2, 53-3)이 복수개 있는 경우 모션 벡터의 크기가 가장 큰 주변블록(53-4)을 예측 후보로 결정하고, 결정된 후보의 움직임 정보(mv1)를 후보리스트에 추가할 수 있다.
다른 예를 들면, 후보리스트 결정부(26)는 디스패리티 벡터(DV)가 가리키는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 주변블록(53-1, 53-2, 53-3)이 복수개 있는 경우 복수개의 주변블록 들 중에서 참조 POC(picture Order Count)가 제2 레이어 현재블록(51)의 참조 POC와 일치하는 주변블록을 예측 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다. 이때, 제2 레이어 현재 블록(51)과 참조 POC가 일치하는 주변블록이 여러 개인 경우에는 주변블록들의 모션 벡터 크기에 기초하여 예측 후보를 결정할 수 잇다.
또 다른 예를 들면, 후보리스트 결정부(26)는 디스패리티 벡터(DV)가 가리키는 참조위치 주변에 인터 예측 모드 또는 스킵 모드인 주변블록(53-1, 53-2, 53-3)이 복수개 있는 경우 주변블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 인터 예측을 위한 후보로 결정하고, 결정된 후보의 움직임 정보를 후보리스트에 추가할 수 있다.
도 6 은 일 실시예에 따른 인터 예측 모드에서 주변블록을 예측 후보를 결정하는 일 예를 나타낸다.
도 6을 참조하면, 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(60)에 포함된 현재 블록(61)의 인터 예측을 위해, 참조 픽처(62)에 포함되며 제2 레이어 현재 블록(61)에서 디스패리티 벡터가 가리키는 제1 레이어 참조블록(63) 및 참조블록(63)의 주변 블록의 예측 모드를 결정할 수 있다. 예를 들어, 참조블록(63)의 우측 하단 블록(64)의 예측 모드가 인터 예측 모드 또는 스킵 모드라면, 인터 예측을 위한 예측 후보로 결정될 수 있다. 한편, 예측 후보 결정에 이용되는 블록은 부호화 단위 또는 예측 단위일 수 있다.
이하, 참조블록(63)의 우측 하단블록(64)이 머지 모드에서 머지 후보로 결정되어후보리스트에 추가되는 일련의 동작을 신택스 요소 및 수도코드를 참조하여 설명한다. 또한, 이하의 설명에서 참조블록(63) 및 우측 하단블록(64)은 각각 IvMC 후보 및 IvMCShift 후보에 대응된다.
먼저 인터 레이어 비디오 복호화 장치(20)는 신택스 요소iv_mv_pred_flag[..] 및 DispAvailabilityIdc[][]를 획득하여 인터뷰 방향의 움직임 예측이 사용 가능한지 및 제2 레이어 현재블록의 디스패리티 벡터가 이용가능(available)한지를 각각 판단한다. 만약 두가지 조건중 하나라도 만족하지 못하는 경우에는 IvMC 후보 및 IvMCShift 후보를 인터 예측 후보로 이용하지 않는다.
반면에 인터뷰 방향의 움직임 예측 및 디스패리티 벡터가 이용가능한 경우, 인터 예측을 위한 머지 후보로 IvMCShift 후보가 이용될 수 있다.
IvMCShift 후보를 유도하기 위해서 현재 블록의 리스트0과 리스트1에 대한 유도 과정을 각각 수행한다. IvMCShift 후보를 유도하기 위해 현재 블록의 위치(xPb, yPb), 그리고 현재 블록의 가로(nPbW)와 높이(nPbH), 현재 유도과정이 리스트0인지 리스트1인지에 대한 플래그, 현재 블록이 참조하는 레이어의 인덱스(RefViewIdx[][]), 현재 블록의 디스패리티 벡터(MvRefinedDisp[][])가 참조블록의 우측 하단 블록위치를 가리킬 수 있도록 오프셋 벡터(nPbW * 2 + 4, nPbH * 2 + 4)가 이용될 수 있다. 그 후, 소정 유도과정을 통해 각 리스트방향에 대한 IvMCShift 후보의 이용가능 정보, 모션벡터 정보, 참조 인덱스 정보를 획득할 수 있다. 이용가능
IvMCShift 후보가 유도되는 경우 신택스 요소 predFlagLXIvMCShift 및 mvLXIvMCShift 로 표현되는 움직임 정보가 설정될 수 있다. 여기서, predFlagLXIvMCShift는 IvMCShift 후보가 L0 또는 L1 방향에서 예측을 수행했는지 여부를 나타내는 플레그로 참조 방향 정보를 의미하며, mvLXIvMCShift는 IvMCShift 후보의 L0방향 및 L1 방향 모션 벡터를 의미한다. IvMCShift 후보가 L0 또는 L1 방향중 한 방향에 대해서 이용가능하다면, IvMCShift 후보가 이용가능한것으로 설정될 수 있다.
예를 들면, IvMCShift 후보가 인터 모드 또는 스킵 모드를 가지면 이용가능하다고 판단되어, IvMCShift 후보의 모션벡터 정보, 참조 인덱스 정보를 획득할 수 있다.다음으로, 인터 레이어 비디오 복호화 장치(20)는 IvMCShift 후보를 머지 후보로 결정하여 머지 후보 리스트에 추가하기 위해 하기 수도코드의 동작을 수행할 수 있다.
...
i = 0
...
if(availableFlagIvMCShift && i < ( 5 + NumExtraMergeCand ) && (!availableFlagIvMC || differentMotion( IvMC, IvMCShift )))
extMergeCandList[ i++ ] = IvMCShift
상기 수도코드에 따르면, 먼저 IvShift 후보가 이용가능한지(availableFlagIvMCShift) 판단한다. 그리고, IvMCShift 후보를 머지 후보리스트에 추가하기 위해 우선 현재 머리 후보리스트가 최대 개수만큼 채웠는지( i < ( 5 + NumExtraMergeCand)) 판단한다. 만약, 머지후보리스트가 최대 개수에 도달해 있으면 IvMCShift 후보를 머지 후보리스트에 추가하지 않는다.또한, IvMC 후보가 이용가능하지 않은지(!availableFlagIvMC)를 판단하고 IvMC 후보와 IvMCShift 후보의 모션벡터가 동일한지 여부(differentMotion ( IvMC, IvMCShift ))를 판단한다.
결국, 상술한 조건을 모두 만족하는 경우 후보리스트(extMergeCandList[ i++ ])에 IvMCShift 후보가 추가된다. 여기서 후보리스트에 추가되는 정보는 IvMCshift 후보를 가리키는 정보일 수도 있고, IvMCshift 후보의 움직임 정보일 수도 있다.
인터 레이어 비디오 복호화 장치(20)는 후보리스트가 완성되면 비트스트림으로부터 획득된 후보 선택정보에 기초하여 결정된 후보리스트에 포함된 후보중 하나를 선택할 수 있다. 따라서 인터 레이어 비디오 복호화 장치(20)는 선택된 후보의 움직임 정보를 이용하여 제2 레이어 현재블록에 대해 인터 예측을 수행함으로써 제2 레이어 예측블록을 결정할 수 있다.
도 7 은 일 실시예에 따른 인터 예측 모드에서 서브블록을 예측 후보로 결정하는 일 예를 나타낸다.
도 7을 참조하면, 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(70)에 포함된 현재 블록(71)의 인터 예측을 위해, 참조 픽처(72)에 포함되며 제2 레이어 현재 블록(71)에서 디스패리티 벡터가 가리키는 제1 레이어 참조블록(73)이 복수의 서브블록을 포함하는 경우, 디스패리티 벡터에 대응하는 서브블록(75)의 주변 블록을 예측 후보에 포함시킬 수 있다. 예를 들어, 참조블록(73)이 9개의 서브블록으로 분할되는 경우 디스패리티 벡터에 대응하는 서브블록(75)의 주변 서브블록(74)이 인터 예측을 위한 예측 후보로 결정될 수 있다. 이때, 서브블록들이 움직임 정보를 가지고 있는지 판단하기 위해 소정 순서(예컨대, z-scan, raster scan)에 따른 탐색이 수행될 수 있다. 한편, 예측 후보 결정에 이용되는 서브 블록은 제1 레이어 영상의 부호화 단위 또는 예측 단위일 수 있다.
다른 예로, 인터 레이어 비디오 복호화 장치(20)는 현재 픽처(70)에 포함된 현재 블록(71)의 인터 예측을 위해, 참조 픽처(72)에 포함되며 제2 레이어 현재 블록(71)에서 디스패리티 벡터가 가리키는 제1 레이어 참조블록(73)에서 복수의 서브블록 단위로 움직임 정보를 획득할 수도 있다. 예를 들어, 참조블록(73)이 9개의 서브블록으로 분할되는 경우 각 서브블록 단위로 움직임 정보를 가지는지 탐색할 수 있다. 이때, 서브블록들이 움직임 정보를 가지고 있는지 판단하기 위해 소정 순서(예컨대, z-scan, raster scan)에 따른 탐색이 수행될 수 있다.
따라서, 인터 레이어 비디오 복호화 장치(20)는 각 서브블록이 속하는 부호화 단위 또는 예측 단위의 움직임 정보를 획득할 수 있다. 물론 반드시 이러한 구성에 한정되는 것은 아니며, 서브블록은 인터 예측 후보 탐색을 위해 임의로 결정된 단위일 수 있다.
한편, 도 4a 내지 도 7에서 상술된 동작은 인터 레이어 비디오 복호화 장치(20)가 수행하는 것을 전제로 설명하였지만, 인터 레이어 비디오 부호화 장치(10)에서도 동일한 동작이 수행될 수 있음을 본 실시예가 속하는 기술분야의 통상의 기술자는 쉽게 이해할 수 있을 것이다.
일 실시예에 따른 인터 레이어 비디오 부호화 장치(10) 및 일 실시예에 따른 인터 레이어 비디오 복호화 장치(20)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인터 레이어 예측 또는 인터 예측을 위해 부호화 단위들, 예측 단위들, 변환 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 8 내지 20을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
원칙적으로 멀티 레이어 비디오를 위한 부호화/복호화 과정에서, 제1 레이어 영상들을 위한 부호화/복호화 과정과, 제2 레이어 영상들을 위한 부호화/복호화 과정이 따로 수행된다. 즉, 멀티 레이어 비디오 중 인터 레이어 예측이 발생하는 경우에는 싱글 레이어 비디오의 부호화/복호화 결과가 상호 참조될 수 있지만, 싱그 레이어 비디오마다 별도의 부호화/복호화 과정이 발생한다.
따라서 설명의 편의를 위해 도 8 내지 20을 참조하여 후술되는 트리구조의 부호화 단위에 기초한 비디오 부호화 과정 및 비디오 복호화 과정은, 싱글 레이어 비디오에 대한 비디오 부호화 과정 및 비디오 복호화 과정이므로, 인터 예측 및 움직임 보상이 상술된다. 하지만, 도 1a 내지 7b을 참조하여 전술한 바와 같이, 비디오 스트림 부호화/복호화를 위해, 기본시점 영상들과 제2 레이어 영상들 간의 인터 레이어 예측 및 보상이 수행된다.
따라서, 일 실시예에 따른 인터 레이어 비디오 부호화 장치(10)의 부호화부(12)가 트리구조의 부호화 단위에 기초하여 멀티 레이어 비디오를 부호화하기 위해서는, 각각의 싱글 레이어 비디오마다 비디오 부호화를 수행하기 위해 도 8의 비디오 부호화 장치(100)를 멀티 레이어 비디오의 레이어 개수만큼 포함하여 각 비디오 부호화 장치(100)마다 할당된 싱글 레이어 비디오의 부호화를 수행하도록 제어할 수 있다. 또한 인터 레이어 비디오 부호화 장치(10)는, 각 비디오 부호화 장치(100)의 별개 단일시점의 부호화 결과들을 이용하여 시점간 예측을 수행할 수 있다. 이에 따라 인터 레이어 비디오 부호화 장치(10)의 부호화부(12)는 레이어별로 부호화 결과를 수록한 기본시점 비디오스트림과 제2 레이어 비디오스트림을 생성할 수 있다.
이와 유사하게, 일 실시예에 따른 인터 레이어 비디오 복호화 장치(20)의 복호화부(26)가 트리 구조의 부호화 단위에 기초하여 멀티 레이어 비디오를 복호화하기 위해서는, 수신한 제1 레이어 비디오스트림 및 제2 레이어 비디오스트림에 대해 레이어별로 비디오 복호화를 수행하기 위해 도 9의 비디오 복호화 장치(200)를 멀티 레이어 비디오의 레이어 개수만큼 포함하고 각 비디오 복호화 장치(200)마다 할당된 싱글 레이어 비디오의 복호화를 수행하도록 제어할 수 있다, 그리고 인터 레이어 비디오 복호화 장치(20)가 각 비디오 복호화 장치(200)의 별개 싱글 레이어의 복호화 결과를 이용하여 인터 레이어 보상을 수행할 수 있다. 이에 따라 인터 레이어 비디오 복호화 장치(20)의 복호화부(26)는, 레이어별로 복원된 제1 레이어 영상들과 제2 레이어 영상들을 생성할 수 있다.
도 8 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 최종 심도로 결정한다. 결정된 최종 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 최종 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 최종 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 최종 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 최종 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 최종 심도로 결정된 심도의 부호화 단위들을 포함한다. 최종 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 최종 심도는, 다른 영역에 대한 최종 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 최종 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 모드는 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
심도별 분할 정보는, 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 모드, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 9 내지 19를 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 분할정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 분할정보는, 심도 정보, 예측 단위의 파티션 모드 정보, 예측 모드 정보, 변환 단위의 분할 정보 등을 포함할 수 있다.
최종 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 심도의 부호화 단위마다 적어도 하나의 분할정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 분할정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 심도가 다를 수 있으므로, 데이터에 대해 심도 및 분할정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 모션벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 1a 을 참조하여 전술한 인터 레이어 비디오 부호화 장치(10)는, 멀티 레이어 비디오의 레이어들마다 싱글 레이어 영상들의 부호화를 위해, 레이어 개수만큼의 비디오 부호화 장치(100)들을 포함할 수 있다. 예를 들어, 제1 레이어 부호화부(12)가 하나의 비디오 부호화 장치(100)를 포함하고, 제2 레이어 부호화부(14)가 제2 레이어의 개수만큼의 비디오 부호화 장치(100)를 포함할 수 있다.
비디오 부호화 장치(100)가 제1 레이어 영상들을 부호화하는 경우에, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위별로 영상간 예측을 위한 예측단위를 결정하고, 예측단위마다 영상간 예측을 수행할 수 있다.
비디오 부호화 장치(100)가 제2 레이어 영상들을 부호화하는 경우에도, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위 및 예측단위를 결정하고, 예측단위마다 인터 예측을 수행할 수 있다.
비디오 부호화 장치(100)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 차를 부호화할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
도 9 는 다양한 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 분할정보 등 각종 용어의 정의는, 도 8 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 최종 심도 및 분할정보를 추출한다. 추출된 최종 심도 및 분할정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 심도 및 분할정보는, 하나 이상의 심도 정보에 대해 설정될 수 있으며, 심도별 분할정보는, 해당 부호화 단위의 파티션 모드 정보, 예측 모드 정보 및 변환 단위의 분할 정보 등을 포함할 수 있다. 또한, 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 심도 및 분할정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 심도 및 분할정보다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 심도 및 분할정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 심도 및 분할정보가 기록되어 있다면, 동일한 심도 및 분할정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 심도 및 분할정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 모드, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 심도별 부호화 단위의 예측 단위의 파티션 모드 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 심도다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 모드, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 2a를 참조하여 전술한 인터 레이어 비디오 복호화 장치(20)는, 수신된 제1 레이어 영상스트림 및 제2 레이어 영상스트림을 복호화하여 제1 레이어 영상들 및 제2 레이어 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
제1 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제1 레이어 영상스트림으로부터 추출된 제1 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 제1 레이어 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제1 레이어 영상들을 복원할 수 있다.
제2 레이어 영상스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 제2 레이어 영상스트림으로부터 추출된 제2 레이어 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는, 제2 레이어 영상들의 샘플들의 부호화 단위들마다 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 제2 레이어 영상들을 복원할 수 있다.
추출부(220)는, 제1 레이어 영상과 제2 레이어 영상 간의 휘도 차를 보상하기 위해 휘도 오차와 관련된 정보를 비트스트림으로부터 획득할 수 있다. 다만, 부호화 단위의 부호화 모드에 따라 휘도 수행 여부가 결정될 수 있다. 예를 들어, 크기 2Nx2N의 예측 단위에 대해서만 휘도보상이 수행될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 분할정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 10 은 다양한 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 10에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 11 은 다양한 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 픽처 부호화부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 수행한다. 즉, 인트라 예측부(420)는 현재 영상(405) 중 인트라 모드의 부호화 단위에 대해 예측 단위별로 인트라 예측을 수행하고, 인터 예측부(415)는 인터 모드의 부호화 단위에 대해 예측단위별로 현재 영상(405) 및 복원 픽처 버퍼(410)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다. 현재 영상(405)은 최대부호화 단위로 분할된 후 순차적으로 인코딩이 수행될 수 있다. 이때, 최대 부호화 단위가 트리 구조로 분할될 부호화 단위에 대해 인코딩을 수행될 수 있다.
인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터를 현재 영상(405)의 인코딩되는 부호화 단위에 대한 데이터로부터 빼줌으로써 레지듀 데이터를 생성하고, 레지듀 데이터는 변환부(425) 및 양자화부(430)를 거쳐 변환 단위별로 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(445), 역변환부(450)을 통해 공간 영역의 레지듀 데이터로 복원된다. 복원된 공간 영역의 레지듀 데이터는 인트라 예측부(420) 또는 인터 예측부(415)로부터 출력된 각 모드의 부호화 단위에 대한 예측 데이터와 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터로 복원된다. 복원된 공간 영역의 데이터는 디블로킹부(455) 및 SAO 수행부(460)를 거쳐 복원 영상으로 생성된다. 생성된 복원 영상은 복원 픽쳐 버퍼(410)에 저장된다. 복원 픽처 버퍼(410)에 저장된 복원 영상들은 다른 영상의 인터예측을 위한 참조 영상으로 이용될 수 있다. 변환부(425) 및 양자화부(430)에서 양자화된 변환 계수는 엔트로피 부호화부(435)를 거쳐 비트스트림(440)으로 출력될 수 있다.
일 실시예에 따른 영상 부호화부(400)가 비디오 부호화 장치(100)에 적용되기 위해서, 영상 부호화부(400)의 구성 요소들인 인터 예측부(415), 인트라 예측부(420), 변환부(425), 양자화부(430), 엔트로피 부호화부(435), 역양자화부(445), 역변환부(450), 디블로킹부(455) 및 SAO 수행부(460)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행할 수 있다.
특히, 인트라 예측부(420)및 인터예측부(415) 는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 모드 및 예측 모드를 결정하며, 변환부(425)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 쿼드 트리에 따른 변환 단위의 분할 여부를 결정할 수 있다.
도 12 는 다양한 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
엔트로피 복호화부(515)는 비트스트림(505)으로부터 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화 정보를 파싱한다. 부호화된 영상 데이터는 양자화된 변환계수로서, 역양자화부(520) 및 역변환부(525)는 양자화된 변환 계수로부터 레지듀 데이터를 복원한다.
인트라 예측부(540)는 인트라 모드의 부호화 단위에 대해 예측 단위 별로 인트라 예측을 수행한다. 인터 예측부(535)는 현재 영상 중 인터 모드의 부호화 단위에 대해 예측 단위 별로 복원 픽처 버퍼(530)에서 획득된 참조 영상을 이용하여 인터 예측을 수행한다.
인트라 예측부(540) 또는 인터 예측부(535)를 거친 각 모드의 부호화 단위에 대한 예측 데이터와 레지듀 데이터가 더해짐으로써 현재 영상(405)의 부호화 단위에 대한 공간 영역의 데이터가 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(545) 및 SAO 수행부(550)를 거쳐 복원 영상(560)으로 출력될 수 있다. 또한, 복원 픽쳐 버퍼(530)에 저장된 복원 영상들은 참조 영상으로서 출력될 수 있다.
비디오 복호화 장치(200)의 픽처 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 엔트로피 복호화부(515) 이후의 단계별 작업들이 수행될 수 있다.
영상 복호화부(500)가 일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서, 영상 복호화부(500)의 구성 요소들인 엔트로피 복호화부(515), 역양자화부(520), 역변환부(525), 인트라 예측부(540), 인터 예측부(535), 디블로킹부(545) 및 SAO 수행부(550)가 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반하여 작업을 수행할 수 있다.
특히, 인트라 예측부(540)및 인터 예측부(535)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위마다 파티션 모드 및 예측 모드를 결정하며, 역변환부(525)는 부호화 단위마다 쿼드 트리구조에 따른 변환단위의 분할 여부를 결정할 수 있다.
도 10의 부호화 동작 및 도 11의 복호화 동작은 각각 단일 레이어에서의 비디오스트림 부호화 동작 및 복호화 동작을 상술한 것이다. 따라서, 도 1a의 부호화부(12)가 둘 이상의 레이어의 비디오스트림을 부호화한다면, 레이어별로 영상부호화부(400)를 포함할 수 있다. 유사하게, 도 2a의 복호화부(26)가 둘 이상의 레이어의 비디오스트림을 복호화한다면, 레이어별로 영상복호화부(500)를 포함할 수 있다.
도 13 는 다양한 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 심도 및 파티션 모드로 선택될 수 있다.
도 14 은 다양한 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 15 은 다양한 실시예에 따라, 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 분할정보로서, 각각의 심도의 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 모드에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 모드에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 모드에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 모드에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 16 는 다양한 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 모드(912), 2N_0xN_0 크기의 파티션 모드(914), N_0x2N_0 크기의 파티션 모드(916), N_0xN_0 크기의 파티션 모드(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 모드는 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 모드마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 모드(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 모드(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 모드의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 모드(942), 크기 2N_1xN_1의 파티션 모드(944), 크기 N_1x2N_1의 파티션 모드(946), 크기 N_1xN_1의 파티션 모드(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 모드(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 모드(992), 크기 2N_(d-1)xN_(d-1)의 파티션 모드(994), 크기 N_(d-1)x2N_(d-1)의 파티션 모드(996), 크기 N_(d-1)xN_(d-1)의 파티션 모드(998)을 포함할 수 있다.
파티션 모드 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 모드가 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 모드(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 심도가 심도 d-1로 결정되고, 파티션 모드는 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 심도를 결정하고, 해당 파티션 모드 및 예측 모드가 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 심도로 결정될 수 있다. 심도, 및 예측 단위의 파티션 모드 및 예측 모드는 분할정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 심도의 분할 정보만이 '0'으로 설정되고, 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 심도로 파악하고, 해당 심도에 대한 분할정보를 이용하여 복호화에 이용할 수 있다.
도 17, 18 및 19는 다양한 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 모드며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 모드, 파티션(1032)은 NxN의 파티션 모드다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 모드 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 모드 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라
인터

스킵 (2Nx2N만)
대칭형 파티션 모드 비대칭형 파티션 모드 변환 단위 분할 정보 0 변환 단위
분할 정보 1
2Nx2N
2NxN
Nx2N
NxN
2NxnU
2NxnD
nLx2N
nRx2N
2Nx2N NxN
(대칭형 파티션 모드)

N/2xN/2
(비대칭형 파티션 모드)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 심도이므로, 심도에 대해서 파티션 모드 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 모드에서 정의될 수 있으며, 스킵 모드는 파티션 모드 2Nx2N에서만 정의될 수 있다.
파티션 모드 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 모드 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 모드 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 모드 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 모드 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 모드가 대칭형 파티션 모드이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 모드이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 20 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 모드 정보는, 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 모드에 따라 변경될 수 있다.
예를 들어, 파티션 모드 정보가 대칭형 파티션 모드 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 모드 정보가 비대칭형 파티션 모드 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 19 를 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 8 내지 20를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 부호화 방법 및/또는 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 복호화 방법 및/또는 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 부호화 장치(10), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 도 1a 내지 20을 참조하여 전술된 인터 레이어 비디오 복호화 장치(20), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 21은 다양한 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 22를 참조하여 후술된다.
도 22는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 21 및 22에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 23은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 24에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 24 및 25을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 24은, 다양한 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 25은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 본 발명의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 본 발명의 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(1262)를 거쳐 디스플레이화면(1252)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(1252)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(1265)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(1258)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(1258)에서 재생될 수 있다.
휴대폰(1250) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 24를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 26은 다양한 실시예에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 26의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 27은 다양한 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 도 1a 내지 20을 참조하여 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
도 1a 내지 20을 참조하여 전술된 비디오 부호화 방법 및 비디오 복호화 방법, 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 21 내지 도 27에서 전술되었다. 하지만, 도 1a 내지 20을 참조하여 전술된 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 21 내지 도 27의 실시예들에 한정되지 않는다.
이제까지 개시된 다양한 실시예들이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 명세서에서 개시된 실시예들의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 명세서의 개시 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 명세서의 개시범위에 포함된 것으로 해석되어야 할 것이다.

Claims (24)

  1. 인터 레이어 복호화 방법에 있어서,
    제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 단계;
    상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하는 단계;
    상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 단계; 및
    상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 단계를 포함하는 인터 레이어 복호화 방법.
  2. 제 1항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및
    상기 제1 레이어 참조블록의 적어도 하나의 주변블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  3. 제 2항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    소정 스캔 순서에 따라서 상기 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  4. 제 2항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    소정 스캔 순서에 따라 상기 제1 레이어 참조위치에 인접한 상기 주변블록들부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  5. 제 1항에 있어서,
    상기 제1 레이어 참조위치에 대응하는 블록이 복수의 서브블록을 포함하고 있을 때,
    상기 주변블록이 상기 서브블록을 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  6. 제 1항에 있어서,
    상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및
    상기 제1 레이어 참조블록을 복수의 서브블록으로 분할하고, 상기 서브블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  7. 제 1항에 있어서, 상기 후보리스트에 추가하는 단계는,
    상기 움직임 정보가 획득된 적어도 하나의 주변블록 중 하나의 주변블록을 예측 후보로 결정하는 단계; 및
    상기 결정된 예측 후보의 움직임 정보를 상기 후보리스트에 추가하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  8. 제 7항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 모션 벡터의 크기가 가장 큰 주변블록을 상기 예측 후보로 결정하는 것을 특징으로 하는 인터 레이어 복호화 방법.
  9. 제 7항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 참조 POC(picture Order Count)가 상기 제2 레이어 현재블록의 참조 POC와 일치하는 블록을 상기 예측 후보로 결정하는 것을 특징으로 하는 인터레이어 복호화 방법.
  10. 제 7항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 예측 후보로 결정하는 것을 특징으로 하는 인터레이어 복호화 방법.
  11. 인터 레이어 부호화 방법에 있어서,
    제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 단계;
    상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하는 단계;
    상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 단계; 및
    상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 단계를 포함하는 인터 레이어 부호화 방법.
  12. 제 11항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계;및
    상기 제1 레이어 참조블록의 적어도 하나의 주변블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  13. 제 12항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    소정 스캔 순서에 따라서 상기 제1 레이어 참조위치에 대응하는 참조블록의 우측 하단 블록에서 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  14. 제 12항에 있어서, 상기 움직임 정보를 획득하는 단계는,
    소정 스캔 순서에 따라 상기 제1 레이어 참조위치에 인접한 상기 주변블록들부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  15. 제 11항에 있어서,
    상기 제1 레이어 참조위치에 대응하는 블록이 복수의 서브블록을 포함하고 있을 때,
    상기 주변블록이 상기 서브블록을 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  16. 제 11항에 있어서, 상기 제1 레이어 참조위치에 대응하는 제1 레이어 참조블록을 결정하는 단계; 및
    상기 제1 레이어 참조블록을 복수의 서브블록으로 분할하고, 상기 서브블록들로부터 적어도 하나의 움직임 정보를 획득하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  17. 제 11항에 있어서, 상기 후보리스트에 추가하는 단계는,
    상기 움직임 정보가 획득된 적어도 하나의 주변블록 중 하나의 주변블록을 예측 후보로 결정하는 단계; 및
    상기 결정된 예측 후보의 움직임 정보를 상기 후보리스트에 추가하는 단계를 포함하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  18. 제 17항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 모션 벡터의 크기가 가장 큰 주변블록을 상기 예측 후보로 결정하는 것을 특징으로 하는 인터 레이어 부호화 방법.
  19. 제 17항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 참조 POC(picture Order Count)가 상기 제2 레이어 현재블록의 참조 POC와 일치하는 블록을 상기 예측 후보로 결정하는 것을 특징으로 하는 인터레이어 부호화 방법.
  20. 제 17항에 있어서, 상기 예측 후보를 결정하는 단계는,
    상기 적어도 하나의 주변 블록 중 양방향 예측을 이용하는 블록에 우선순위를 두어 예측 후보로 결정하는 것을 특징으로 하는 인터레이어 부호화 방법.
  21. 인터 레이어 복호화 장치에 있어서,
    제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 디스패리티 벡터 결정부;
    상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하고, 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록의 움직임 정보를 획득하는 움직임 정보 획득부; 및
    상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 후보리스트 결정부를 포함하는 인터 레이어 복호화 방법.
  22. 인터 레이어 부호화 장치에 있어서,
    제1 레이어 영상을 참조하여 제2 레이어 현재블록에 대한 인터 레이어 예측을 수행하기 위한 디스페리티 벡터(disparity vector)를 결정하는 디스패리티 벡터 결정부;
    상기 제2 레이어 현재블록의 위치를 기준으로 하여 상기 결정된 디스페리티 벡터에 대응하는 제 1 레이어의 참조위치를 결정하고, 상기 제1 레이어 참조위치의 주변에 위치하는 적어도 하나의 주변블록으로부터 움직임 정보를 획득하는 움직임 정보 획득부; 및
    상기 획득된 움직임 정보 중 적어도 하나를 인터 예측을 위한 후보(candidate) 리스트에 추가하는 후보리스트 결정부를 포함하는 인터 레이어 부호화 방법.
  23. 제 1 항 내지 제 10 항 중 어느 한 항의 인터 레이어 비디오 복호화 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
  24. 제 11 항 내지 제 20 항 중 어느 한 항의 인터 레이어 비디오 부호화 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
KR20140041550A 2013-04-05 2014-04-07 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법 KR20140122195A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361808922P 2013-04-05 2013-04-05
US61/808,922 2013-04-05

Publications (1)

Publication Number Publication Date
KR20140122195A true KR20140122195A (ko) 2014-10-17

Family

ID=51658672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20140041550A KR20140122195A (ko) 2013-04-05 2014-04-07 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법

Country Status (5)

Country Link
US (1) US20160073115A1 (ko)
EP (1) EP2981090A4 (ko)
KR (1) KR20140122195A (ko)
CN (1) CN105264894A (ko)
WO (1) WO2014163458A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117930A1 (ko) * 2015-01-21 2016-07-28 삼성전자 주식회사 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
WO2017078846A1 (en) * 2015-11-03 2017-05-11 Qualcomm Incorporated Updating regions for display based on video decoding mode
WO2020004879A1 (ko) * 2018-06-25 2020-01-02 엘지전자 주식회사 영상 코딩 시스템에서 복수의 주변 블록들을 사용하는 인터 예측에 따른 영상 디코딩 방법 및 장치
US11792389B2 (en) 2018-09-04 2023-10-17 Huawei Technologies Co., Ltd. Bi-directional inter prediction method and apparatus

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438609B2 (en) * 2013-04-08 2022-09-06 Qualcomm Incorporated Inter-layer picture signaling and related processes
CN106254878B (zh) * 2015-06-14 2020-06-12 同济大学 一种图像编码及解码方法、图像处理设备
CN108616758B (zh) * 2016-12-15 2023-09-29 北京三星通信技术研究有限公司 多视点视频编码、解码方法及编码器、解码器
CN109005412B (zh) * 2017-06-06 2022-06-07 北京三星通信技术研究有限公司 运动矢量获取的方法及设备
KR102408258B1 (ko) * 2017-09-12 2022-06-13 삼성전자주식회사 움직임 정보의 부호화 및 복호화 방법, 및 움직임 정보의 부호화 및 복호화 장치
CN112740671A (zh) * 2018-09-18 2021-04-30 韩国电子通信研究院 图像编码/解码方法和装置以及存储比特流的记录介质
JP7157246B2 (ja) * 2018-11-06 2022-10-19 北京字節跳動網絡技術有限公司 ジオメトリック分割を用いたインター予測のためのサイド情報信号通知方法
WO2020094038A1 (en) 2018-11-07 2020-05-14 Mediatek Inc. Method and apparatus of encoding or decoding video blocks by current picture referencing coding
CN116074505A (zh) * 2018-11-08 2023-05-05 Oppo广东移动通信有限公司 视频信号编码/解码方法以及用于所述方法的设备
WO2020140862A1 (en) 2018-12-30 2020-07-09 Beijing Bytedance Network Technology Co., Ltd. Conditional application of inter prediction with geometric partitioning in video processing

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460468B2 (en) * 2004-04-22 2008-12-02 At&T Intellectual Property I, L.P. Method and system for automatically tracking the rerouting of logical circuit data in a data network
ES2704137T3 (es) * 2004-08-27 2019-03-14 Chevron Phillips Chemical Co Lp Proceso de poliolefinas energéticamente eficiente
CN101473655B (zh) * 2006-06-19 2011-06-08 Lg电子株式会社 用于处理多视点视频信号的方法和装置
KR101370899B1 (ko) * 2006-10-24 2014-03-10 엘지전자 주식회사 비디오 신호 디코딩 방법 및 장치
CN101198064A (zh) * 2007-12-10 2008-06-11 武汉大学 一种分辨率分层技术中的运动矢量预测方法
KR20110007928A (ko) * 2009-07-17 2011-01-25 삼성전자주식회사 다시점 영상 부호화 및 복호화 방법과 장치
US20140016117A1 (en) * 2009-09-23 2014-01-16 Syracuse University Noninvasive, continuous in vitro simultaneous measurement of turbidity and concentration
CN101867813B (zh) * 2010-04-23 2012-05-09 南京邮电大学 面向交互式应用的多视点视频编码方法
US9300970B2 (en) * 2010-07-09 2016-03-29 Samsung Electronics Co., Ltd. Methods and apparatuses for encoding and decoding motion vector
KR101456499B1 (ko) * 2010-07-09 2014-11-03 삼성전자주식회사 움직임 벡터의 부호화 방법 및 장치, 그 복호화 방법 및 장치
KR101820997B1 (ko) * 2011-01-12 2018-01-22 선 페이턴트 트러스트 동화상 부호화 방법 및 동화상 복호화 방법
KR102209693B1 (ko) * 2011-02-09 2021-01-29 엘지전자 주식회사 영상 부호화 및 복호화 방법과 이를 이용한 장치
KR20120107386A (ko) * 2011-03-21 2012-10-02 한국전자통신연구원 스케일러블 영상 부호화 공간 계층간 예측 움직임 벡터를 이용한 고속 모드 결정 방법
CN105187840A (zh) * 2011-05-31 2015-12-23 Jvc建伍株式会社 动图像解码装置、动图像解码方法、接收装置及接收方法
JP5252029B2 (ja) * 2011-05-31 2013-07-31 株式会社Jvcケンウッド 動画像復号装置、動画像復号方法、動画像復号プログラム、受信装置、受信方法、及び受信プログラム
KR101729429B1 (ko) * 2011-06-30 2017-04-21 가부시키가이샤 제이브이씨 켄우드 화상 인코딩 장치, 화상 인코딩 방법, 화상 인코딩 프로그램, 화상 디코딩 장치, 화상 디코딩 방법 및 화상 디코딩 프로그램
KR20130037161A (ko) * 2011-10-05 2013-04-15 한국전자통신연구원 스케일러블 비디오 코딩을 위한 향상된 계층간 움직임 정보 예측 방법 및 그 장치
KR101960761B1 (ko) * 2011-11-24 2019-03-22 에스케이텔레콤 주식회사 모션 벡터의 예측 부호화/복호화 방법 및 장치
DE102012219855A1 (de) * 2012-03-02 2013-09-05 Robert Bosch Gmbh Verfahren zur Herstellung von zumindest einem Schneidstrangsegment eines Schneidstrangs
WO2013176485A1 (ko) * 2012-05-22 2013-11-28 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
US20140098880A1 (en) * 2012-10-05 2014-04-10 Qualcomm Incorporated Prediction mode information upsampling for scalable video coding
CN102946536B (zh) * 2012-10-09 2015-09-30 华为技术有限公司 候选矢量列表构建的方法及装置
US9648319B2 (en) * 2012-12-12 2017-05-09 Qualcomm Incorporated Device and method for scalable coding of video information based on high efficiency video coding
KR20160015843A (ko) * 2014-07-31 2016-02-15 삼성전자주식회사 디스플레이 장치 및 그 디스플레이 장치를 제어하는 방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117930A1 (ko) * 2015-01-21 2016-07-28 삼성전자 주식회사 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
KR20170100564A (ko) * 2015-01-21 2017-09-04 삼성전자주식회사 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
US10820007B2 (en) 2015-01-21 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for decoding inter-layer video, and method and apparatus for encoding inter-layer video
WO2017078846A1 (en) * 2015-11-03 2017-05-11 Qualcomm Incorporated Updating regions for display based on video decoding mode
US9883137B2 (en) 2015-11-03 2018-01-30 Qualcomm Incorporated Updating regions for display based on video decoding mode
WO2020004879A1 (ko) * 2018-06-25 2020-01-02 엘지전자 주식회사 영상 코딩 시스템에서 복수의 주변 블록들을 사용하는 인터 예측에 따른 영상 디코딩 방법 및 장치
US11792389B2 (en) 2018-09-04 2023-10-17 Huawei Technologies Co., Ltd. Bi-directional inter prediction method and apparatus

Also Published As

Publication number Publication date
CN105264894A (zh) 2016-01-20
EP2981090A1 (en) 2016-02-03
US20160073115A1 (en) 2016-03-10
WO2014163458A1 (ko) 2014-10-09
EP2981090A4 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
KR101712109B1 (ko) 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 복호화 방법 및 그 장치, 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 부호화 방법 및 장치
KR20160132859A (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
KR20140122196A (ko) 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20140122195A (ko) 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법
KR20160132893A (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR101710635B1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 블록 기반 디스패리티 벡터 예측 방법
KR20150076134A (ko) 서브블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR20140034053A (ko) 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 부호화 방법 및 그 장치, 트리 구조의 부호화 단위에 기초한 예측 정보의 인터-레이어 비디오 복호화 방법 및 그 장치
KR20130120423A (ko) 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
KR20150105264A (ko) 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 복호화 방법 및 그 장치 및 서브 블록 기반 예측을 수행하는 인터 레이어 비디오 부호화 방법 및 그 장치
KR20170100564A (ko) 인터 레이어 비디오 복호화 방법 및 그 장치 및 인터 레이어 비디오 부호화 방법 및 그 장치
KR20140091493A (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20150043220A (ko) 멀티 레이어 비디오 부호화 방법 및 장치, 멀티 레이어 비디오 복호화 방법 및 장치
KR20140122202A (ko) 계층 식별자 확장에 따른 비디오 스트림 부호화 방법 및 그 장치, 계층 식별자 확장에 따른 따른 비디오 스트림 복호화 방법 및 그 장치
KR20140127177A (ko) 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
KR20170019363A (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20150012223A (ko) 움직임 벡터 결정 방법 및 그 장치
KR20140125320A (ko) 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
KR20130119379A (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
KR20150010660A (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 깊이 영상의 화면내 예측 방법
KR20150073132A (ko) 휘도 보상을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20160031991A (ko) 적응적 휘도 보상을 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR101919015B1 (ko) 다 시점 영상 부호화/복호화 방법 및 장치
KR101895429B1 (ko) 뷰 병합 예측을 이용하여 영상을 부호화 또는 복호화 하는 방법 및 그 장치
KR20170019361A (ko) 깊이 블록을 이용하는 멀티 레이어 비디오 부호화 방법 및 멀티 레이어 비디오 복호화 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid