KR20130120423A - 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치 - Google Patents

다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치 Download PDF

Info

Publication number
KR20130120423A
KR20130120423A KR20130046215A KR20130046215A KR20130120423A KR 20130120423 A KR20130120423 A KR 20130120423A KR 20130046215 A KR20130046215 A KR 20130046215A KR 20130046215 A KR20130046215 A KR 20130046215A KR 20130120423 A KR20130120423 A KR 20130120423A
Authority
KR
South Korea
Prior art keywords
picture
current
reconstructed
prediction
view
Prior art date
Application number
KR20130046215A
Other languages
English (en)
Other versions
KR102106536B1 (ko
Inventor
최병두
박정훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20130120423A publication Critical patent/KR20130120423A/ko
Application granted granted Critical
Publication of KR102106536B1 publication Critical patent/KR102106536B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/597Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding specially adapted for multi-view video sequence encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은, 다시점 비디오의 각 시점별 픽처들마다 영상간 예측 및 시점간 예측을 수행하여 다시점 비디오를 부호화하는 방법과 복호화하는 방법을 제안한다.
본 발명에 따른 다시점 비디오의 예측 부호화 방법은, 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서 숏텀/롱텀 복원픽처로 구성된 참조픽처세트와, 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서 숏텀 복원픽처로 구성된 참조픽처세트로 구성된 참조픽처세트를 결정하고, 현재픽처의 영상간 예측을 위한 동일시점의 복원픽처와 시점간 예측을 위한 복원픽처를 포함하는 제1 참조리스트 및 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하고, 결정된 적어도 하나의 참조리스트를 이용하여, 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하고, 참조블록을 이용하여 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행한다.

Description

다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치{Method and apparatus for multiview video encoding using reference picture set for multiview video prediction, method and apparatus for multiview video decoding using reference picture set for multiview video prediction}
본 발명은 다시점 비디오 부호화 및 복호화에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
주파수 변환을 이용하여 공간 영역의 영상 데이터는 주파수 영역의 계수들로 변환된다. 비디오 코덱은, 주파수 변환의 빠른 연산을 위해 영상을 소정 크기의 블록들로 분할하고, 블록마다 DCT 변환을 수행하여, 블록 단위의 주파수 계수들을 부호화한다. 공간 영역의 영상 데이터에 비해 주파수 영역의 계수들이, 압축하기 쉬운 형태를 가진다. 특히 비디오 코덱의 인터 예측 또는 인트라 예측을 통해 공간 영역의 영상 화소값은 예측 오차로 표현되므로, 예측 오차에 대해 주파수 변환이 수행되면 많은 데이터가 0으로 변환될 수 있다. 비디오 코덱은 연속적으로 반복적으로 발생하는 데이터를 작은 크기의 데이터로 치환함으로써, 데이터량을 절감하고 있다.
또한, 다양한 시점에서 촬영된 비디오에 대한 요구가 증가하는 가운데, 시점의 개수만큼 증가하는 비디오의 데이터량이 문제된다. 이에 따라, 다시점 비디오를 효과적으로 부호화하기 위한 노력이 계속되고 있다.
본 발명은, 다시점 비디오의 각 시점별 영상들마다 영상간 예측 및 시점간 예측을 수행하여 다시점 비디오를 부호화하는 방법과 복호화 하는 방법을 개시한다.
본 발명의 일 실시예에 따른 다시점 비디오의 예측 부호화 방법은, 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정하는 단계; 상기 결정된 참조픽처들세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처들세트들 중에서 상기 현재픽처와 시점은 동일하고 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 단계; 상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하는 단계; 및 상기 참조블록을 이용하여 상기 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 단계를 포함한다.
일 실시예에 따라 상기 참조픽처세트들을 결정하는 단계는, 상기 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 결정하는 단계; 및 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 다른시점 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 다시점 비디오의 예측 복호화 방법은, 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정하는 단계; 상기 결정된 참조픽처들세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처들세트들 중에서 상기 현재픽처와 시점이 동일하고 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 단계; 상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하는 단계; 및 상기 참조블록을 이용하여 상기 현재블록을 위한 움직임 보상 및 변이 보상 중 적어도 하나를 수행하는 단계를 포함한다.
일 실시예에 따라 상기 참조픽처세트들을 결정하는 단계는, 상기 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계; 및 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 다시점 비디오의 예측 부호화 장치는, 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트로 구성된 참조픽처세트를 결정하는 참조픽처세트 결정부; 상기 결정된 참조픽처세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처세트들 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 참조리스트 결정부; 및 상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하고, 상기 참조블록을 이용하여 상기 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 예측부를 포함한다.
본 발명의 일 실시예에 따른 다시점 비디오의 예측 복호화 장치는, 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트, 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트와, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트로 구성된 참조픽처세트를 결정하는 참조픽처세트 결정부; 상기 결정된 참조픽처세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처세트들 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 참조리스트 결정부; 및 상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하고, 상기 참조블록을 이용하여 상기 현재블록을 위한 움직임 보상 및 변이 보상 중 적어도 하나를 수행하는 보상부를 포함한다.
본 발명은, 일 실시예에 따른 다시점 비디오의 예측 부호화 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체를 제안한다. 본 발명은, 일 실시예에 따른 다시점 비디오의 예측 복호화 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체를 제안한다.
도 1a는 일 실시예에 따른 다시점 비디오 예측 부호화 장치의 블록도를 도시한다.
도 1b는 일 실시예에 따른 다시점 비디오 예측 부호화 방법의 흐름도를 도시한다.
도 2a는 일 실시예에 따른 다시점 비디오 예측 복호화 장치의 블록도를 도시한다.
도 2b는 일 실시예에 따른 다시점 비디오 예측 복호화 방법의 흐름도를 도시한다.
도 3은 일 실시예에 따라 현재픽처의 영상간 예측과 시점간 예측을 위한 참조대상들을 도시한다.
도 4는 일 실시예에 따라 도 3의 참조대상들을 기초하여 구성된 참조리스트를 예시한다.
도 5a 및 5b는 일 실시예에 따른 L0 리스트의 변경 과정을 도시한다.
도 6a 는 일 실시예에 따른 시퀀스 픽처 파라미터 세트의 신택스를 도시한다.
도 6b 는 일 실시예에 따른 픽처 파라미터 세트의 신택스를 도시한다.
도 7은 일 실시예에 따른 슬라이스 헤더의 신택스를 도시한다.
도 8a은 일 실시예에 따른 시점간 예측을 위한 참조픽처세트의 파라미터 세트를 도시한다.
도 8b은 일 실시예에 따른 참조리스트의 변경을 위한 파라미터들의 신택스를 도시한다.
도 9은 다른 실시예에 따라 조합된 참조리스트를 예시한다.
도 10 및 11은 다른 실시예에 따른 조합된 참조리스트의 변경 과정을 도시한다.
도 12 는 일 실시예에 따른 다시점 비디오 예측 부호화 장치를 포함하는 다시점 비디오 부호화 장치의 블록도를 도시한다.
도 13 은 일 실시예에 따른 다시점 비디오 예측 복호화 장치를 포함하는 다시점 비디오 복호화 장치의 블록도를 도시한다.
도 14 는 본 발명의 일 실시예에 따라 트리 구조의 부호화 단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 15 는 본 발명의 일 실시예에 따라 트리 구조의 부호화 단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 16 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
도 17 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 18 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 19 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
도 20 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 21 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 22 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 23, 24 및 25는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 26 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 27 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 28 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 29 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 30 및 31은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 32 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 33 은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
이하 도 1a 내지 도 11을 참조하여, 일 실시예에 따라 다시점 비디오 예측 부호화 장치와 다시점 비디오 예측 부호화 방법, 그리고 다시점 비디오 예측 복호화 장치와 다시점 비디오 예측 복호화 방법이 개시된다. 그리고, 도 12 및 13을 참조하여, 일 실시예에 따른 다시점 비디오 예측 부호화 장치를 포함하는 다시점 비디오 부호화 장치, 그리고 일 실시예에 따른 다시점 비디오 예측 복호화 장치를 포함하는 다시점 비디오 복호화 장치가 개시된다. 또한, 도 14 내지 도 26을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위에 기초하는 일 실시예에 따른 다시점 비디오 부호화 장치 및 다시점 비디오 복호화 장치, 다시점 비디오 부호화 방법 및 다시점 비디오 복호화 방법이 개시된다. 마지막으로, 도 27 내지 도 33을 참조하여, 일 실시예에 따른 따라 다시점 비디오 부호화 방법, 다시점 비디오 복호화 방법, 비디오 부호화 방법, 비디오 복호화 방법이 적용가능한 다양한 실시예들이 개시된다. 이하, '영상'은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
먼저, 도 1a 내지 도 11을 참조하여, 일 실시예에 따라 다시점 비디오 예측 부호화 장치와 다시점 비디오 예측 부호화 방법, 그리고 다시점 비디오 예측 복호화 장치와 다시점 비디오 예측 복호화 방법이 개시된다.
도 1a는 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)의 블록도를 도시한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 참조픽처세트 결정부(12), 참조리스트 결정부(14) 및 예측부(16)를 포함한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 기본시점 영상들과 부가시점 영상들을 부호화한다. 예를 들어, 중앙시점 영상들, 좌시점 영상들과 우시점 영상들이 각각 부호화되고, 이 중에서 중앙시점 영상들은 기본시점 영상들로서 부호화되고, 좌시점 영상들은 제1 부가시점 영상들, 우시점 영상들은 제2 부가시점 영상들로서 부호화될 수 있다. 각 시점별로, 영상들을 부호화하여 생성된 데이터가 별도의 비트스트림으로 출력될 수 있다.
또한, 부가시점이 셋 이상인 경우, 기본시점 영상들과 첫번째 부가시점에 대한 첫번째 부가시점 영상들, 두번째 부가시점에 대한 두번째 부가시점 영상들, ..., K번째 부가시점에 대한 K번째 부가시점 영상들이 부호화될 수도 있다. 이에 따라 기본시점 영상들의 부호화 결과가 기본시점 비트스트림으로 출력되고, 첫번째, 두번째, ..., K번째 부가시점 영상들의 부호화 결과가 각각 첫번째, 두번째, ..., K번째 부가시점 비트스트림으로 출력될 수 있다.
예를 들어, 다시점 비디오 예측 부호화 장치(10)가 기본시점 영상들을 부호화하여 부호화 심볼 및 샘플들을 포함하는 기본레이어 비트스트림을 출력할 수 있다. 또한 다시점 비디오 예측 부호화 장치(10)는, 기본시점 영상들을 부호화하여 생성된 부호화 심볼들 및 샘플들을 참조하여, 부가시점 영상들을 부호화하여 부가레이어 비트스트림을 출력할 수도 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 비디오의 각각의 영상의 블록별로 부호화한다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 일 실시예에 따른 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 14 내지 도 26을 참조하여 후술한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 동일시점의 영상들을 상호 참조하여 예측하는 영상간 예측(Inter Prediction)을 수행할 수 있다. 영상간 예측을 통해, 현재픽처를 위한 참조픽처를 가리키는 참조인덱스, 현재픽처와 참조픽처 사이의 움직임 정보를 나타내는 움직임 벡터(Motion Vector) 및 현재픽처와 참조픽처 사이의 차이성분인 레지듀(Residue) 데이터가 생성될 수 있다.
또한, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 다른 시점 영상들을 참조하여 현재시점 영상들을 예측하는 시점간 예측(Inter-View Prediction)을 수행할 수 있다. 시점간 예측을 통해, 현재시점의 현재픽처를 위한 참조픽처를 가리키는 참조인덱스, 현재픽처와 다른 시점의 참조픽처 사이의 변이(Disparity) 정보 및 현재픽처와 다른 시점의 참조픽처 사이의 차이성분인 레지듀 데이터가 생성될 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재시점 영상들에 대해, 동일시점 영상들 간의 영상간 예측과 타시점 영상들과의 시점간 예측 중 적어도 하나를 수행할 수 있다. 영상간 예측 및 시점간 예측은 부호화 단위, 예측 단위 또는 변환 단위의 데이터 단위를 기초로 수행될 수도 있다.
이하 설명의 편의를 위해, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)의 동작은, 한 시점의 영상들을 위한 예측을 중심으로 기술될 것이다. 다만, 다시점 비디오 예측 부호화 장치(10)의 동작이, 단 한 시점의 영상들에 대해서만 수행되는 동작은 아니며, 다른 시점의 영상들 각각에 대해서도 동일한 동작이 적용될 수 있음은 유의해야 한다.
각 시점별로, 동일시점의 다른 영상들의 예측을 위해 참조될 수 있는 복원픽처를 복호픽처 버퍼(Decoded Picture Buffer; DPB)에 저장할 수 있다. 하지만, 현재픽처를 위한 복호픽처 버퍼에 저장된 복원픽처들 중에서 일부 또는 전부를 이용하여 현재픽처의 영상간 예측 및/또는 시점간 예측을 위한 참조리스트를 결정할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재 영상에 대해 영상간 예측을 위해서, 동일시점의 영상들 중에서 현재픽처보다 먼저 복원되는 영상을 참조할 수 있다. 각 영상에는 재생순서를 나타내는 번호, 즉 POC(Picture Order Count)가 할당될 수 있다. 현재 영상의 POC보다 후순위 POC가 할당된 영상이라도 현재픽처보다 먼저 복원되면, 복원픽처를 참조하여 현재픽처에 대한 영상간 예측이 수행될 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 영상간 예측을 통해, 서로 다른 영상들의 상응하는 블록들 간의 위치 차이를 나타내는 움직임 벡터를 생성할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재 영상에 대해 시점간 예측을 위해서, 다른 시점의 동일한 재생순서의 영상들 중에서 현재픽처보다 먼저 복원되는 영상을 참조할 수 있다. 각 시점에는 상호 식별하기 위한 시점번호 VID(View Identifier)가 할당될 수 있다. 예를 들어11, 현재시점으로부터 좌측으로 멀어지는 시점일수록 시점번호는 작아지고, 현재시점으로부터 우측으로 멀어지는 시점일수록 시점번호는 커질 수 있다. 현재시점의 현재픽처와 동일한 재생순서인 다른시점의 영상들 중에서 먼저 복원된 픽처들을 참조하여 현재픽처에 대한 시점간 예측이 수행될 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 시점간 예측을 통해 다시점 영상들 간의 변이 정보를 생성할 수 있다. 다시점 비디오 예측 부호화 장치(10)는, 동일 씬(Scene), 즉 동일한 재생순서에 대응하는 다른 시점 영상들 간의 변이 정보로서, 시점간 변이 벡터(disparity vector) 또는 시점간 깊이감(Depth)을 나타내는 뎁스맵(Depth Map)을 생성할 수 있다.
도 1b는 일 실시예에 따른 다시점 비디오 예측 부호화 방법의 흐름도를 도시한다. 도 1b를 참조하여, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)의 구성요소별로 동작을 구체적으로 후술한다.
단계 11에서, 일 실시예에 따른 참조픽처세트 결정부(12)는, 복호픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 복원픽처들 중에서, 현재픽처가 참조할 수 있는 후보영상이 될 수 있는 복원픽처들의 세트인 참조픽처세트(Reference Picture Set)를 결정할 수 있다.
일 실시예에 따른 참조픽처세트는, 복호픽처 버퍼에 복원영상들이 저장된 상태에 따라, 영상간 예측을 위한 참조 대상인 동일시점 복원픽처들을 포함하는 3가지 서브세트로 포함할 수 있다. 제1 서브세트는 복호픽처 버퍼에 저장된 동일시점 복원픽처들 중에서 숏텀 참조픽처가 될 수 있는 적어도 하나의 복원픽처로 구성된 숏텀 참조픽처세트이고, 제2 서브세트는 롱텀 참조픽처가 될 수 있는 적어도 하나의 동일시점 복원픽처로 구성된 롱텀 참조픽처세트, 제3 서브세트는 참조픽처로서 이용되지 않는 동일시점 복원픽처들로 구성된 미사용 참조픽처세트일 수 있다.
또한, 일 실시예에 따른 영상간 예측을 위한 숏텀 참조픽처세트는 현재픽처보다 재생순서가 앞서는 선행 복원픽처들과 재생순서가 뒤늦은 후행 복원픽처들을 포함할 수 있다. 따라서, 숏텀 참조픽처세트는, 참조될 수 있는 선행 복원픽처들로 구성된 서브세트, 참조되지 않는 선행 복원픽처들로 구성된 서브세트, 참조될 수 있는 후행 복원픽처들로 구성된 서브세트, 참조되지 않는 후행 복원픽처들로 구성된 서브세트로 구분될 수 있다.
현재 영상의 인터 예측을 위해 이용되는 참조픽처는 현재 영상보다 먼저 복호화된 영상이어야 한다. 일 실시예에 따른 인터 예측을 위한 참조픽처는, 숏텀 참조픽처(Short-term Reference Picture)과 롱텀 참조픽처(Long-term Reference Picture)으로 분류될 수 있다. 복호픽처 버퍼는, 이전 영상들의 움직임 보상에 의해 생성된 복원픽처들을 저장하고 있다. 먼저 생성된 복원픽처들은 다른 영상들의 인터에측을 위한 참조픽처로 이용될 수 있다. 따라서 복호픽처 버퍼에 저장된 복원픽처들 중에서, 현재 영상의 인터 예측을 위한 적어도 하나의 숏텀 참조픽처 또는 적어도 하나의 롱텀 참조픽처가 선택될 수 있다. 숏텀 참조픽처는 현재픽처와 복호화 순서에 따라 직전 또는 최근에 복호화된 영상인 반면에, 롱텀 참조픽처는 현재픽처보다 오래전에 복호화되었지만 다른 영상들의 인터 예측을 위한 참조픽처로 사용되기 위해 선택되어 복호픽처 버퍼에 저장된 영상일 수 있다.
복호픽처 버퍼에 저장된 복원픽처들 중에서, 숏텀 참조픽처들과 롱텀 참조픽처들은 서로 구별되어 선택된다. 롱텀 참조픽처는 다수의 영상들의 인터예측을 위해 참조될 수 있는 영상이므로, 복호픽처 버퍼에 장기간 저장된 영상들이다.
반면에, 현재픽처와 다음영상의 인터예측이 각각 수행되며 매 영상마다 필요한 숏텀 참조픽처들은 갱신될 수 있으므로, 복호픽처 버퍼에서도 숏텀 참조픽처들은 자주 갱신될 수 있다. 따라서 복호픽처 버퍼에 새로운 숏텀 참조픽처가 저장되는 경우에 이미 저장되어 있던 숏텀 참조픽처들 중에서 가장 오래 저장된 영상부터 차례로 삭제된다.
일 실시예에 따라 롱텀 참조픽처를 가리키는 롱텀 참조인덱스로서 롱텀 참조픽처의 POC(Picture Order Count)정보의 LSB(Least Significant Bits)정보를 결정할 수 있다. 일 실시예에 따라 롱텀 참조픽처의 POC정보가 MSB(Most Significant Bits)정보와 LSB정보로 분할하여, LSB정보만을 롱텀 참조픽처를 가리키는 롱텀 참조인덱스로서 이용될 수 있다.
일 실시예에 따른 참조픽처세트는, 복호픽처 버퍼에 복원영상들이 저장된 상태에 따라, 시점간 예측을 위한 참조 대상인 다른시점 복원픽처들을 포함하는 숏텀 참조픽처세트도 포함할 수 있다. 일 실시예에 다른 시점간 예측을 위한 숏텀 참조픽처세트는, 복호픽처 버퍼에 저장된 다른시점 복원픽처들 중에서 현재픽처와 동일한 재생순서가 할당된 복원픽처들을 포함할 수 있다.
또한, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 현재픽처에 대해 영상간 예측 뿐만 아니라 시점간 예측도 수행할 수 있다. 일 실시예에 따른 복호픽처 버퍼에는, 현재픽처와 재생순서는 동일하지만 다른시점의 복원픽처들이 저장되어 있을 수 있다.
따라서, 시점간 예측을 위한 숏텀 참조픽처세트는 복호픽처 버퍼에 저장된 현재픽처와 재생순서는 동일하지만 다른시점 복원픽처들 중에서, 현재픽처보다 시점번호가 작은 음(-)시점 복원픽처들과 시점번호가 큰 양(+)시점 복원픽처들을 포함할 수 있다. 따라서, 숏텀 참조픽처세트는, 참조될 수 있는 음(-)시점 복원픽처들로 구성된 서브세트, 참조될 수 있는 양(+)시점 복원픽처들로 구성된 서브세트로 구분될 수 있다.
일 실시예에 따른 참조픽처세트 결정부(12)는, 복호픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트, 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정할 수 있다. 또한 일 실시예에 따른 참조픽처세트 결정부(12)는, 복포픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정할 수 있다.
또한, 일 실시예에 따른 참조픽처세트 결정부(12)는, 일 실시예에 다른 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 결정할 수 있다.
또한, 일 실시예에 따른 참조픽처세트 결정부(12)는, 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 다른시점 복원픽처로 구성된 참조픽처세트를 더 결정할 수도 있다.
일 실시예에 따른 참조픽처세트 결정부(12)는, 현재 슬라이스에서, 현재픽처를 위해 결정된 참조픽처세트들 중 하나를 이용하는지 여부를 결정할 수 있다.
현재픽처를 위해 결정된 참조픽처세트들 중 하나가 이용된다면, 일 실시예에 따른 참조픽처세트 결정부(12)는, 참조픽처세트들 중 인덱스를 선택할 수 있다.
현재픽처를 위해 결정된 참조픽처세트들이 이용되지 않는다면, 일 실시예에 따른 참조픽처세트 결정부(12)는, 현재슬라이스를 위한 참조픽처세트를 직접 결정할 수 있다.
또한, 시점간 예측을 위한 참조픽처세트로서, 현재시점보다 시점번호가 작은 픽처들의 제1 개수, 시점번호가 큰 픽처들의 제2 개수를 결정하고 현재시점보다 시점번호가 작은 픽처들의 시점번호들 간의 차분값과, 시점번호가 큰 픽처들의 시점번호들 간의 차분값을 결정할 수 있다.
단계 13에서, 일 실시예에 따른 참조리스트 결정부(14)는, 현재픽처의 영상간 예측 및 시점간 예측 중 적어도 하나를 위한 참조픽처를 결정하기 위해, 참조픽처가 될 수 있는 후보영상들을 수록하는 참조리스트를 결정할 수 있다. 현재픽처를 위한 참조리스트는, 복호픽처 버퍼에 저장된 복원픽처들 중에서, 현재픽처가 참조하는 복원픽처들의 순서에 대한 정보를 수록할 수 있다.
일 실시예에 따른 참조리스트 결정부(14)는, 예측 모드에 따라 한개 또는 두개의 참조리스트를 생성할 수 있다. 현재픽처가 전방 예측만 가능한 P 슬라이스 타입의 영상이거나, 양방향 예측이 가능한 B 슬라이스 타입의 영상인 경우에, 참조리스트 결정부(14)는, 제1 참조리스트로서 L0 리스트를 생성할 수 있다.
단계 13에서, 일 실시예에 따른 참조리스트 결정부(14)는, 현재픽처의 동일시점 영상들 중에서, 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와, 현재픽처와 재생순서는 동일하고 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 L0 리스트를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(14)는, 동일시점의 숏텀 참조픽처세트 중에서 참조될 수 있는 선행 복원픽처들로 구성된 서브세트, 참조될 수 있는 후행 복원픽처들로 구성된 서브세트와, 다른시점의 숏텀 참조픽처세트 중에서 참조될 수 있는 음(-)시점 복원픽처들로 구성된 서브세트, 참조될 수 있는 양(+)시점 복원픽처들로 구성된 서브세트 및 롱텀 참조픽처세트의 순서로, 참조픽처세트들의 복원픽처들을 이용하여 L0 리스트를 생성할 수 있다.
또한 단계 13에서, 현재픽처가 B 슬라이스 타입의 영상인 경우에, 일 실시예에 따른 참조리스트 결정부(14)는, 제2 참조리스트로서 L1 리스트를 더 생성할 수 있다. 일 실시예에 따른 참조리스트 결정부(14)는, 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와, 현재픽처와 재생순서는 동일하고 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 L1 리스트를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(14)는, 동일시점의 숏텀 참조픽처세트 중에서 참조될 수 있는 후행 복원픽처들로 구성된 서브세트와, 참조될 수 있는 선행 복원픽처들로 구성된 서브세트, 다른시점의 숏텀 참조픽처세트 중에서 참조될 수 있는 양(+)시점 복원픽처들로 구성된 서브세트, 참조될 수 있는 음(-)시점 복원픽처들로 구성된 서브세트 및 롱텀 참조픽처세트의 순서로, 참조픽처세트들의 복원픽처들을 이용하여 L0 리스트를 생성할 수 있다.
다만 L0 리스트에는 동일시점 영상들 중에서, 현재픽처보다 재생순서가 앞서는 복원픽처가 우선적으로 포함될 수 있는 것이며, 재생순서가 뒤늦은 복원픽처가 포함되지 못하는 것은 아니다. 마찬가지로, L0 리스트에는 동일한 재생순서인 다른시점 영상들 중에서, 현재픽처보다 시점번호가 작은 복원픽처가 우선적으로 포함될 수 있는 것이며, 시점번호가 큰 복원픽처가 포함되지 못하는 것은 아니다.
이와 유사하게, L1 리스트에는 동일시점 영상들 중에서, 현재픽처보다 재생순서가 뒤늦은 복원픽처가 우선적으로 포함될 수 있는 것이며, 재생순서가 앞서는 복원픽처가 포함되지 못하는 것은 아니다. 마찬가지로, L1 리스트에는 동일한 재생순서인 다른시점 영상들 중에서, 현재픽처보다 시점번호가 큰 복원픽처가 우선적으로 포함될 수 있는 것이며, 시점번호가 작은 복원픽처가 포함되지 못하는 것은 아니다.
따라서 일 실시예에 따른 참조리스트 결정부(14)는, 현재픽처의 영상간 예측 및 시점간 예측 중 적어도 하나를 위한 참조리스트로서, L0 리스트 및 L1 리스트 중 적어도 하나를 결정할 수 있다.
단계 15에서 일 실시예에 따른 예측부(16)는, 참조리스트 결정부(14)에서 결정된 적어도 하나의 참조리스트를 이용하여, 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정할 수 있다. 단계 17에서 일 실시예에 따른 예측부(16)는, 단계 15에서 결정된 참조블록을 이용하여 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행할 수 있다.
또한 일 실시예에 따른 참조리스트 결정부(14)는, 현재 픽처에서, 결정된 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경할 수 있는지 여부를 결정할 수 있다.
현재 픽처에서 참조 순서의 임의 변경이 가능한 경우에, 참조리스트 결정부(14)는 현재 픽처에 속하는 현재 슬라이스를 위한 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 변경할 수 있다.
또한 일 실시예에 따른 참조리스트 결정부(14)는, 현재 픽처를 위해, 제1 참조리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 제1 기본개수와, 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 제2 기본개수를 결정할 수 있다. 또한, 참조리스트 결정부(14)는, 현재 픽처를 위해, 제2 참조리스트 중에서 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처의 제3 기본개수와, 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처의 제4 기본개수를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(14)는, 현재 슬라이스에서, 현재 픽처에 대해 설정된 제1 참조리스트의 제1 기본개수와 제2 기본개수, 제2 참조리스트의 제3 기본개수와 제4 기본개수 중에서 적어도 하나를 개별적으로 치환할 수 있는지 여부를 결정할 수 있다.
각 참조리스트에 속하는 복원픽처들의 기본개수의 개별적인 치환이 가능한 경우에, 일 실시예에 따른 참조리스트 결정부(14)는, 현재 슬라이스에서 독자적으로 적용가능한 제1 참조리스트의 복원픽처들의 개수, 제2 참조리스트의 복원픽처들의 개수 중 적어도 하나를 결정할 수 있다.
즉, 현재 슬라이스에서 각 참조리스트에 속하는 복원픽처들의 기본개수를 독자적으로 치환할 수 있다면, 일 실시예에 따른 참조리스트 결정부(14)는, 제1 참조리스트 중에서 현재픽처와 동일시점이지만 재생순서가 앞서는 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제1 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제1 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(14)는, 제1 참조리스트 중에서 현재픽처와 재생순서는 같지만 시점번호가 작은 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제2 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제2 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(14)는, 제2 참조리스트 중에서 현재픽처와 동일시점이지만 재생순서는 뒤늦은 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제3 기본개수 대신에, 현재 슬라이스에 독자적을 적용되는 제3 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(14)는, 제2 참조리스트 중에서 현재픽처와 재생순서는 같지만 시점번호가 큰 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제4 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제4 유효개수로 치환할 수 있다.
일 실시예에 따른 제1 참조리스트에 속하는 참조 인덱스들의 최대개수는, 제1 참조리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 제1 기본개수와, 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 제2 기본개수의 총합일 수 있다.
일 실시예에 따른 제2 참조리스트에 속하는 참조 인덱스들의 최대개수는, 제2 참조리스트 중에서 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처의 제3 기본개수와, 제2 참조리스트 중에서 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처의 제4 기본개수의 총합일 수 있다.
일 실시예에 따른 예측부(16)는, 참조리스트 결정부(14)에서 결정된 L0 리스트 및 L1 리스트 중 적어도 하나에 기초한 참조 순서에 따라, 현재픽처와 복호픽처 버퍼에 저장된 복원픽처들과 비교하여 현재픽처의 예측을 위한 참조픽처를 결정할 수 있다. 또한, 참조리스트 결정부(14)는, 참조픽처 내에서 현재블록과 가장 유사한 블록을 검출하여 참조블록을 결정할 수 있다.
일 실시예에 따른 예측부(16)는, 앞서 결정된 참조픽처를 가리키는 참조인덱스와, 현재블록과 참조블록 간의 위치 차이가 움직임 벡터 또는 변이 벡터로서 결정될 수 있다. 현재블록과 참조블록 간의 픽셀별 차분값이 레지듀 데이터로서 결정될 수 있다.
일 실시예에 따른 예측부(16)가 영상간 예측을 수행하는 경우에, 제1 참조리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 제2 참조리스트 중에서 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처 중 적어도 하나에서 참조픽처 및 참조블록을 결정할 수 있다. 현재블록에 대한 영상간 예측에 의해 결정된 참조블록과 현재블록 간의 제1 레지듀 데이터, 참조블록을 가리키는 제1 움직임 벡터 및 참조픽처를 가리키는 제1 참조인덱스가 영상간 예측의 결과 데이터로서 생성될 수 있다.
일 실시예에 따른 예측부(16)가 시점간 예측을 수행하는 경우에, 제1 참조리스트 중에서 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처와 제2 참조리스트 중에서 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처 중 적어도 하나에서 참조픽처 및 참조블록을 결정할 수 있다. 현재블록에 대한 시점간 예측에 의해 결정된 참조블록과 현재블록 간의 제2 레지듀 데이터, 참조블록을 가리키는 제2 변이 벡터 및 참조픽처를 가리키는 제2 참조인덱스가 시점간 예측의 결과 데이터로서 생성될 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 참조리스트 결정부(14) 및 예측부(16)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 참조리스트 결정부(14) 및 예측부(16)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 다시점 비디오 예측 부호화 장치(10)가 전체적으로 작동될 수도 있다. 또는, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)의 외부 프로세서(미도시)의 제어에 따라, 참조리스트 결정부(14) 및 예측부(16)가 제어될 수도 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 참조리스트 결정부(14) 및 예측부(16)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 다시점 비디오 예측 부호화 장치(10)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
이상 도 1a 및 1b를 참조하여 전술된 실시예에 따라 예측 부호화된 다시점 비디오 비트스트림을 복원하기 위한 다시점 비디오 복호화 장치 및 다시점 비디오 복호화 방법이 도 2a, 2b를 참조하여 후술된다.
도 2a는 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)의 블록도를 도시한다. 도 2b는 일 실시예에 따른 다시점 비디오 예측 복호화 방법의 흐름도를 도시한다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 참조리스트 결정부(24) 및 보상부(26)를 포함한다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 다수 시점별로, 각 시점 영상들이 부호화된 비트스트림을 수신할 수도 있다. 기본시점 영상들의 부호화 데이터가 수록된 비트스트림, 부가시점 영상들의 부호화 데이터가 수록된 비트스트림이 따로 수신될 수도 있다.
예를 들어, 다시점 비디오 예측 복호화 장치(20)가 기본레이어 비트스트림을 복호화하여 기본시점 영상들을 복원할 수 있다. 또한 다시점 비디오 예측 복호화 장치(20)는, 선택적으로 부가레이어 비트스트림을 복호화할 수 있다. 기본레이어 비트스트림으로부터 복원된 부호화 심볼들 및 샘플들을 참조하여, 부가레이어 비트스트림을 복호화하여 부가시점 영상들을 복원할 수도 있다. 선택적으로 부가레이어 비트스트림을 복호화하므로, 다시점 비디오에서 원하는 시점 비디오만 복원될 수 있다.
예를 들어, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 기본시점 비트스트림을 복호화하여 중앙시점 영상들을 복원하고, 제1 부가시점 비트스트림을 복호화하여 좌시점 영상들을 복원하고, 제2 부가시점 비트스트림을 복호화하여 우시점 영상들을 복원할 수도 있다.
또한, 부가시점이 셋 이상인 경우, 첫번째 부가시점 비트스트림으로부터 첫번째 부가시점에 대한 첫번째 부가시점 영상들이 복원되고, 두번째 부가시점 비트스트림으로부터 두번째 부가시점에 대한 두번째 부가시점 영상들이 복원되고, ..., K번째 부가시점 비트스트림으로부터 K번째 부가시점에 대한 K번째 부가시점 영상들이 복원될 수도 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 비디오의 각각의 영상의 블록별로 복호화한다. 일 실시예에 따른 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 각 시점별로 영상들의 부호화된 데이터를 포함하는 비트스트림과 함께, 영상간 예측에 의해 생성된 움직임 벡터 및 시점간 예측에 의해 생성된 변이 정보를 수신할 수 있다.
일 실시예에 따른 다시점 비디오 복원 장치(20)는 동일시점의 영상간 예측을 통해 예측된 영상들을 상호 참조하는 움직임 보상(Motion Compensation)을 수행하여 영상들을 복원할 수 있다. 움직임 보상은, 현재 영상의 움직임 벡터를 이용하여 결정된 참조픽처와, 현재 영상의 레지듀 데이터를 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다.
또한, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 시점간 예측을 통해 예측된 부가시점 영상을 복원하기 위해 다른시점 영상들을 참조하여 변이 보상(Disparity Compensation)을 수행할 수도 있다. 변이 보상은, 현재 영상의 변이 정보를 이용하여 결정된 다른 시점의 참조픽처와, 현재 영상의 레지듀 데이터를 합성하여 현재 영상의 복원 영상을 재구성하는 동작을 의미한다. 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 다른 시점 영상들을 참조하여 예측된 현재시점 영상들을 복원하기 위한 변이 보상을 수행할 수도 있다.
일 실시예에 따른 부호화 단위 또는 예측 단위를 기초로 영상간 움직임 보상 및 시점간 변이 보상을 통한 복원이 수행될 수도 있다.
일 실시예에 따른 보상부(26)는, 시점별 비트스트림을 복호화하기 위해, 다른 시점 비트스트림으로부터 복원된 다른 시점 영상들을 참조하는 시점간 예측과, 동일시점 영상들을 참조하는 영상간 예측을 통해, 현재시점 영상들을 복원할 수 있다.
일 실시예에 따른 보상부(26)는, 다른시점의 복원픽처들 중에서 현재픽처와 동일한 재생순서의 복원픽처를 참조하는 시점간 변이 보상을 통해 현재시점 영상들을 복원할 수 있다. 경우에 따라서는, 둘 이상의 다른 시점의 영상들도 참조하는 시점간 변이 보상을 통해 현재시점 영상들이 복원될 수도 있다. 보상부(26)가 현재픽처의 움직임 보상 또는 변이 보상을 위한 정확한 참조픽처를 결정하기 위해, 참조리스트 결정부(24)는 참조리스트를 결정할 수 있다.
이하 도 2b를 참조하여 영상간 예측 및 시점간 예측을 위한 참조리스트를 결정하고, 최종적으로 참조리스트를 이용하여 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 방법이 상술된다.
단계 21에서, 일 실시예에 따른 참조픽처세트 결정부(22)는, 복호픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 복원픽처들 중에서, 현재픽처가 참조할 수 있는 후보영상이 될 수 있는 복원픽처들의 세트인 참조픽처세트를 결정할 수 있다.
또한, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 현재픽처에 대해 영상간 예측 뿐만 아니라 시점간 예측도 수행할 수 있다. 일 실시예에 따른 복호픽처 버퍼에는, 현재픽처와 재생순서는 동일하지만 다른시점의 복원픽처들이 저장되어 있을 수 있다.
일 실시예에 따른 참조픽처세트는, 영상간 예측을 위한 숏텀 참조픽처세트도 포함할 수 있다. 일 실시예에 영상간 예측을 위한 숏텀 참조픽처세트는, 복호픽처 버퍼에 저장된 동일시점 복원픽처들 중에서 현재픽처와 상이한 재생순서가 할당된 복원픽처들을 포함할 수 있다.
따라서, 영상간 예측을 위한 숏텀 참조픽처세트는 복호픽처 버퍼에 저장된 현재픽처와 동일사짐의 재생순서는 상이한 복원픽처들 중에서, 현재픽처보다 재생순서가 앞서는 선행 복원픽처들과 재생순서가 뒤늦은 후행 복원픽처들을 포함할 수 있다. 따라서, 숏텀 참조픽처세트는, 참조될 수 있는 선행 복원픽처들로 구성된 서브세트, 참조되지 않는 선행 복원픽처들로 구성된 서브세트, 참조될 수 있는 후행 복원픽처들로 구성된 서브세트 및 참조되지 않는 후행 복원픽처들로 구성된 서브세트로 구분될 수 있다.
일 실시예에 따른 참조픽처세트는, 시점간 예측을 위한 숏텀 참조픽처세트도 포함할 수 있다. 일 실시예에 시점간 예측을 위한 숏텀 참조픽처세트는, 복호픽처 버퍼에 저장된 다른시점 복원픽처들 중에서 현재픽처와 동일한 재생순서가 할당된 복원픽처들을 포함할 수 있다.
따라서, 시점간 예측을 위한 숏텀 참조픽처세트는 복호픽처 버퍼에 저장된 현재픽처와 재생순서는 동일하지만 다른시점 복원픽처들 중에서, 현재픽처보다 시점번호가 작은 음(-)시점 복원픽처들과 시점번호가 큰 양(+)시점 복원픽처들을 포함할 수 있다. 따라서, 숏텀 참조픽처세트는, 참조될 수 있는 음(-)시점 복원픽처들로 구성된 서브세트, 참조될 수 있는 양(+)시점 복원픽처들로 구성된 서브세트로 구분될 수 있다.
일 실시예에 따른 참조픽처세트 결정부(22)는, 복호픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트, 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정할 수 있다. 또한 일 실시예에 따른 참조픽처세트 결정부(22)는, 복포픽처 버퍼에 저장된 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정할 수 있다.
또한, 일 실시예에 따른 참조픽처세트 결정부(22)는, 일 실시예에 다른 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 결정할 수 있다.
또한, 일 실시예에 따른 참조픽처세트 결정부(22)는, 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 다른시점 복원픽처로 구성된 참조픽처세트를 더 결정할 수도 있다.
일 실시예에 따른 참조픽처세트 결정부(22)는, 현재 슬라이스에서, 현재픽처를 위해 결정된 참조픽처세트들 중 하나를 이용하는지 여부를 결정할 수 있다.
현재픽처를 위해 결정된 참조픽처세트들 중 하나가 이용된다면, 일 실시예에 따른 참조픽처세트 결정부(22)는, 참조픽처세트들 중 인덱스를 선택할 수 있다.
현재픽처를 위해 결정된 참조픽처세트들이 이용되지 않는다면, 일 실시예에 따른 참조픽처세트 결정부(22)는, 현재슬라이스를 위한 참조픽처세트를 직접 결정할 수 있다.
또한, 시점간 예측을 위한 참조픽처세트로서, 현재시점보다 시점번호가 작은 픽처들의 제1 개수, 시점번호가 큰 픽처들의 제2 개수를 결정하고 현재시점보다 시점번호가 작은 픽처들의 시점번호들 간의 차분값과, 시점번호가 큰 픽처들의 시점번호들 간의 차분값을 결정할 수 있다.
단계 23에서, 일 실시예에 따른 참조리스트 결정부(24)는, 전방 예측 및 양방향 예측을 위한 L0 리스트 및 양방향 예측을 위한 L1 리스트를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(24)는, 현재픽처의 동일시점 영상들 중에서, 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 즉 L0 리스트를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(24)는, 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와 현재픽처와 재생순서는 동일하고 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트, 즉 L1 리스트를 결정할 수 있다.
다만 L0 리스트에는 동일시점 영상들 중에서, 현재픽처보다 재생순서가 앞서는 복원픽처가 우선적으로 포함되고, 유효한 참조인덱스가 남는 경우에 재생순서가 뒤늦은 복원픽처도 포함될 수 있다. 마찬가지로, L0 리스트에는 동일한 재생순서인 다른시점 영상들 중에서, 현재픽처보다 시점번호가 작은 복원픽처가 우선적으로 포함되고, 유효한 참조인덱스가 남는 경우에 시점번호가 큰 복원픽처가 포함될 수 있다.
이와 유사하게, L1 리스트에는 동일시점 영상들 중에서, 현재픽처보다 재생순서가 뒤늦은 복원픽처가 우선적으로 포함되고, 유효한 참조인덱스가 남으면 재생순서가 앞서는 복원픽처도 포함될 수 있다. 마찬가지로, L1 리스트에는 동일한 재생순서인 다른시점 영상들 중에서, 현재픽처보다 시점번호가 큰 복원픽처가 우선적으로 포함될 수 있고, 유효한 참조인덱스가 남으면 시점번호가 작은 복원픽처가 포함될 수 있다.
다시점 비디오 예측 복호화 장치(20)는, 복원픽처를 복호픽처 버퍼(DPB)에 저장할 수 있다. 참조리스트는, 복호픽처 버퍼에 저장된 복원픽처들이 현재픽처의 움직임 보상 또는 변이 보상을 위한 참조되는 순서에 대한 정보를 수록한다.
단계 25에서, 일 실시예에 따른 보상부(26)는, 참조리스트 결정부(24)에서 결정된 적어도 하나의 참조리스트를 이용하여, 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정할 수 있다.
또한, 단계 27에서 일 실시예에 따른 보상부(26)는, 현재 비트스트림에 대해, 동일한 재생순서의 다른시점 복원픽처를 참조하는 변이 보상과 동일시점의 복원픽처들을 참조하는 움직임 보상 중 적어도 하나를 수행하여, 현재시점의 현재픽처를 복원할 수 있다.
구체적으로 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 현재비트스트림을 파싱하여 시점간 예측을 위한 참조인덱스, 변이 정보, 레지듀 데이터를 획득할 수 있다. 일 실시예에 따른 보상부(26)는, 참조인덱스를 이용하여 다른시점 영상들 중에서 참조픽처를 결정하고, 변이 정보를 이용하여 참조픽처 내에서 참조블록을 결정할 수 있다. 또한, 참조블록을 레지듀 데이터만큼 보상함으로써 현재픽처를 복원할 수 있다.
또한 일 실시예에 따른 보상부(26)는, 동일시점인 복원픽처들을 참조하는 움직임 보상을 수행하여 현재픽처를 복원할 수 있다.
구체적으로 다시점 비디오 예측 복호화 장치(20)는, 비트스트림을 파싱하여 현재픽처의 움직임 보상을 위한 참조인덱스, 움직임 벡터와 레지듀 데이터를 획득할 수 있다. 보상부(26)는, 참조인덱스를 이용하여 동일시점의 복원픽처들 중에서 참조픽처를 결정하고, 움직임 벡터를 이용하여 참조픽처 내에서 참조블록을 결정하고, 참조블록을 레지듀 데이터만큼 보상함으로써 현재픽처를 복원할 수 있다.
일 실시예에 따른 참조리스트 결정부(24)는, 현재 픽처에서, 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경할 수 있는지 여부를 결정할 수 있다. 기본적으로 참조리스트의 참조 인덱스는, 참조 인덱스에 대응되는 복원픽처들의 참조 순서를 나타내므로, 참조 인덱스가 변경된다면 참조 인덱스에 대응되는 복원픽처들의 참조 순서가 변경될 수 있다.
일 실시예에 따라 현재 픽처에서 참조리스트의 참조 순서의 임의 변경이 가능한 경우에, 일 실시예에 따른 참조리스트 결정부(24)는, 현재 픽처에 속하는 현재 슬라이스를 위한 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의로 변경할 수 있다.
또한 일 실시예에 따른 참조리스트 결정부(24)는, 현재 픽처를 위해, 제1 참조리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 제1 기본개수, 제1 참조리스트 중에서 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 제2 기본개수, 제2 참조리스트 중에서 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처의 제3 기본개수, 및 제2 참조리스트 중에서 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처의 제4 기본개수를 결정할 수 있다.
일 실시예에 따른 참조리스트 결정부(24)는, 현재 슬라이스에서, 현재 픽처에 대해 설정된 제1 참조리스트의 제1 기본개수 및 제2 기본개수, 제2 참조리스트의 제3 기본개수 및 제4 기본개수 중에서 적어도 하나를 개별적으로 치환할 수 있다.
즉, 현재 슬라이스에서 각 참조리스트에 속하는 복원픽처들의 기본개수를 독자적으로 치환할 수 있다면, 일 실시예에 따른 참조리스트 결정부(24)는, 제1 참조리스트 중에서 현재픽처와 동일시점이지만 재생순서가 앞서는 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제1 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제1 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(24)는, 제1 참조리스트 중에서 현재픽처와 재생순서는 같지만 시점번호가 작은 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제2 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제2 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(24)는, 제2 참조리스트 중에서 현재픽처와 동일시점이지만 재생순서는 뒤늦은 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제3 기본개수 대신에, 현재 슬라이스에 독자적을 적용되는 제3 유효개수로 치환할 수 있다.
마찬가지로, 일 실시예에 따른 참조리스트 결정부(24)는, 제2 참조리스트 중에서 현재픽처와 재생순서는 같지만 시점번호가 큰 적어도 하나의 복원픽처의 개수를, 현재픽처에 공통적으로 적용되는 제4 기본개수 대신에, 현재 슬라이스에 독자적으로 적용되는 제4 유효개수로 치환할 수 있다.
일 실시예에 따른 제1 참조리스트에 속하는 참조 인덱스들의 최대개수는, 제1 참조리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 제1 기본개수와, 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 제2 기본개수의 총합일 수 있다.
일 실시예에 따른 제2 참조리스트에 속하는 참조 인덱스들의 최대개수는, 제2 참조리스트 중에서 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처의 제3 기본개수와, 제2 참조리스트 중에서 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처의 제4 기본개수의 총합일 수 있다.
이렇게 결정된 참조리스트를 이용하여 보상부(26)가 움직임 보상 및 변이 보상 중 적어도 하나를 수행할 수 있다. 일 실시예에 따른 참조리스트는, 영상간 예측을 위한 복원픽처와 시점간 예측을 위한 복원픽처들을 위한 정보를 수록할 수 있다. 따라서, 하나의 참조리스트를 이용하여 움직임 보상 및 변이 보상 중 적어도 하나가 수행될 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 현재픽처의 현재블록을 위한 참조인덱스와 레지듀 데이터를 수신하고, 움직임 벡터 또는 변이 벡터를 수신할 수 있다. 수신된 참조인덱스가 참조리스트 중에서 동일시점의 복원픽처를 가리키는지, 아니면 다른시점의 동일POC 영상을 가리키는지 여부에 따라, 수신된 벡터가 움직임 벡터인지 변이 벡터인지 알 수도 있다.
따라서 일 실시예에 따른 보상부(26)는, 참조리스트 중에서 참조인덱스가 가리키는 참조픽처를 결정하고, 결정된 참조픽처가 동일시점의 복원픽처이라면, 복원픽처 중에서 움직임 벡터가 가리키는 참조블록을 결정하고, 참조블록에 대해 레지듀 데이터를 보상함으로써, 현재블록을 복원할 수 있다.
또한 일 실시예에 따른 보상부(26)는, 참조리스트 중에서 참조인덱스가 가리키는 참조픽처를 결정하고, 결정된 참조픽처가 다른시점의 복원픽처이라면, 복원픽처 중에서 변이 벡터가 가리키는 참조블록을 결정하고, 참조블록에 대해 레지듀 데이터를 보상함으로써, 현재블록을 복원할 수 있다.
앞서 현재시점 비트스트림으로부터 현재시점 영상들이 복원된 과정과 마찬가지로, 제2 시점 비트스트림으로부터 제2 시점 영상들이 복원될 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 참조리스트 결정부(24) 및 보상부(26)를 총괄적으로 제어하는 중앙 프로세서(미도시)를 포함할 수 있다. 또는, 참조리스트 결정부(24) 및 보상부(26)가 각각의 자체 프로세서(미도시)에 의해 작동되며, 프로세서(미도시)들이 상호 유기적으로 작동함에 따라 다시점 비디오 예측 복호화 장치(20)가 전체적으로 작동될 수도 있다. 또는, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)의 외부 프로세서(미도시)의 제어에 따라, 참조리스트 결정부(24) 및 보상부(26)가 제어될 수도 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 참조리스트 결정부(24) 및 보상부(26)의 입출력 데이터가 저장되는 하나 이상의 데이터 저장부(미도시)를 포함할 수 있다. 다시점 비디오 예측 복호화 장치(20)는, 데이터 저장부(미도시)의 데이터 입출력을 관할하는 메모리 제어부(미도시)를 포함할 수도 있다.
이하, 도 3, 4, 5a, 5b를 참조하여, 참조리스트에 영상간 예측을 위한 복원블록 3개, 시점간 예측을 위한 복원블록 3개를 예로 들어 본 발명의 동작을 상술한다.
도 3은 일 실시예에 따라 현재픽처(31)의 영상간 예측과 시점간 예측을 위한 참조대상들을 도시한다.
예를 들어, 4개의 시점들의 영상들(30)이 부호화되고, 그 중에서 시점번호 VID 5의 재생순서번호 POC 18인 현재픽처(31)의 인터 예측을 위한 참조리스트를 결정해본다. 또한 현재픽처(31)는 영상간 예측을 위해, 시점번호 VID 5인 영상들 중에서 현재픽처(31)보다 먼저 복원된 3개의 영상들(32, 33, 34)을 참조할 수 있다고 가정한다. 또한 현재픽처(31)는 시점간 예측을 위해, 재생순서번호 POC 18인 다른 시점 영상들 중에서 현재픽처(31)보다 먼저 복원된 3개의 영상들(35, 36, 37)을 참조할 수 있다고 가정한다.
도 4는 일 실시예에 따라 도 3의 참조대상들을 기초하여 구성된 참조리스트를 예시한다.
도 3에 이어, 현재픽처(31)가 예측을 위해 참조 가능한 복원픽처들(32, 33, 34, 35, 36, 37)이 현재픽처(31)를 위한 복호픽처버퍼 DPB(40)에 저장될 수 있다.
일 실시예에 따른 기본 L0 리스트(41)에서, 영상간 예측 중에서 전방 예측(forward prediction)을 위한 복원픽처들에게 우선적인 참조순서가 할당되고, 현재픽처에 가까운 복원픽처일수록 선순위의 참조순서가 할당될 수 있다. 영상간 예측을 위한 복원픽처들에게, 시점간 예측을 위한 복원픽처들보다 선순위의 참조순서가 할당될 수 있다. 시점간 예측을 위한 시점별 복원픽처들 간에서는 현재시점보다 시점번호가 작은 복원픽처가 시점번호가 큰 복원픽처보다 선순위의 참조순서를 할당받을 수 있다.
또한, 일 실시예에 따른 기본 L1 리스트(45)에서도 기본 L0 리스트(41)와 마찬가지로, 현재픽처에 가까운 복원픽처일수록 선순위의 참조순서가 할당될 수 있다. 영상간 예측을 위한 복원픽처들에게, 시점간 예측을 위한 복원픽처들보다 선순위의 참조순서가 할당될 수 있다. 다만, 기본 L1 리스트(45)에서는, 영상간 예측 중에서 후방 예측(backward prediction)을 위한 복원픽처들에게 우선적인 참조순서가 할당된다. 또한, 시점간 예측을 위한 시점별 복원픽처들 간에서는 현재시점보다 시점번호가 큰 복원픽처가 시점번호가 작은 복원픽처보다 선순위의 참조순서를 할당받을 수 있다.
설명의 편의를 위해, 시점번호 A이고 재생순서번호 B인 영상을 VID A/POC B 영상이라고 명명한다.
따라서, 기본 L0 리스트(41)에 속하는 복원픽처들은 참조순서대로, 동일시점 VID 5/POC 17 픽처(32), VID 5/POC 16 픽처(33), VID 5/POC 19 픽처(34), VID 3/POC 18 픽처(35), VID 1/POC 18 픽처(36), VID 7/POC 18 픽처(37)일 수 있다.
또한, 기본 L1 리스트(45)에 속하는 복원픽처들은 참조순서에 따라, VID 5/POC 19 픽처(34), VID 5/POC 17 픽처(32), VID 5/POC 16 픽처(33), VID 7/POC 18 픽처(37), VID 3/POC 18 픽처(35), VID 1/POC 18 픽처(36)일 수 있다.
도 5a 및 5b는 일 실시예에 따른 L0 리스트의 변경 과정을 도시한다.
일 실시예에 따른 참조인덱스 테이블(50)에서, 참조인덱스(51) Idx는 일반적으로 참조리스트에서 복원픽처들의 기본순서를 가리키는 번호이다. 기본적으로 참조리스트에서 참조인덱스는 참조순서를 나타낼 수 있다. 따라서 참조인덱스에 대응하는 복원픽처들이 참조인덱스의 순서대로 참조될 수 있다.
하지만 참조 순서의 임의변경을 통해, 현재 슬라이스에서 참조인덱스가 가리키는 참조순서가 임시로 변경될 수 있다. 일 실시예에 따른 참조인덱스 테이블(50) 중에서 변경된 인덱스(55) List_entry_l0는, 기본 L0 리스트(41)에서 설정된 참조 순서를 현재 영상에서 임의로 변경하기 위해 정의될 수 있다.
이 때, 기본 L0 리스트(41)에서 Idx 0, 1, 2, 3, 4, 5는 순서대로 VID 5/POC 17 픽처(32), VID 5/POC 16 픽처(33), VID 5/POC 19 픽처(34), VID 3/POC 18 픽처(35), VID 1/POC 18 픽처(36), VID 7/POC 18 픽처(37)을 가리킨다.
즉, 변경된 인덱스(55) List_entry_l0에 따라, 참조 순서가 Idx 0, 3, 1, 2, 4, 5로 변경되므로, 변경된 L0 리스트(59)에 속하는 복원픽처들은 참조순서에 따라, VID 5/POC 17 픽처(32), VID 3/POC 18 픽처(35), VID 5/POC 16 픽처(33), VID 5/POC 19 픽처(34), VID 1/POC 18 픽처(36), VID 7/POC 18 픽처(37)로 변경될 수 있다.
따라서, 기본 L0 리스트(41)에서는 영상간 예측을 위해 최초로 참조될 수 있는 복원픽처인 VID 5/POC 17 픽처(32)의 다음 참조순서가, 다시 영상간 예측을 위한 VID 5/POC 16 픽처(33)이고, 영상간 예측을 위한 동일시점의 복원픽처들이 모두 참조된 다음에 시점간 예측을 위한 다른시점의 복원픽처들이 참조될 수 있다.
하지만 일 실시예에 따른 변경인덱스(55) List_entry_l0에 따라 변경된 L0 리스트(59)에서는, 영상간 예측을 위해 최초로 참조되는 동일시점의 복원픽처 VID 5/POC 17 픽처(32)에 바로 뒤따르는 참조순서가, 시점간 예측을 위해 최초로 참조가능한 다른시점의 복원픽처인 ID 5/POC 17 픽처(32)일 수 있다.
다만, 앞서 현재픽처의 예측 부호화를 위한 하나의 L0 리스트(41)에 3개의 동일시점 복원픽처들(32,33, 34), 3개의 다른시점 복원픽처들(35, 36, 37)이 속하는 경우를 예로 들었지만, 일 실시예에 따른 참조리스트에 속하는 복원픽처들의 개수가 이에 한정되는 것으로 해석되어서는 아니된다.
도 6a 는 일 실시예에 따른 시퀀스 픽처 파라미터 세트(65)의 신택스를 도시한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재 픽처시퀀스 내에서 공통적으로 적용되는 기본(default) 설정들에 대한 정보를 포함하는 시퀀스 파라미터 세트(Sequence Parameter Set)(65)를 생성할 수 있다. 특히, 시점간 예측을 위한 참조리스트와 관련하여, 현재 시퀀스에 속하는 각 픽처들에서 어떠한 참조픽처세트들이 이용될 수 잇는지에 대한 정보가 시퀀스 파라미터 세트(65)에 포함될 수 있다.
일 실시예에 따른 시퀀스 파라미터 세트(65)는, 현재 시퀀스에 포함되는 각 픽처들에게 허용되는 참조픽처세트들의 개수를 나타내는 파라미터 'num_interview_ref_pic_sets'(66)를 포함한다. 예를 들어, 'num_interview_ref_pic_sets'(66)가 0에서 64의 범위 내의 수로 결정되면, 각 픽처마다 상응하는 개수만큼의 참조픽처세트가 설정됨을 나타낼 수 있다.
일 실시예에 따른 시퀀스 파라미터 세트(65)는, 각 참조픽처세트마다 세부 파라미터들을 정의하기 위해 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)와 링크되어 있다. 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)는 도 8a를 참조하여 상술한다. 도 8a은 일 실시예에 따른 시점간 예측을 위한 참조픽처세트의 파라미터 세트를 도시한다.
일 실시예에 따른 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)는, 현재픽처의 시점으로부터 시점번호가 작아지는 방향(음(-)의 시점방향)에 위치하는 다른시점들의 복원영상들의 개수를 나타내는 정보 'num_negative_interview_pics'(93)와, 시점번호가 커지는 방향(양(+)의 시점방향)에 위치하는 다른시점들의 복원영상들의 개수를 나타내는 정보 'num_positive_ interview_pics'(94)를 포함할 수 있다.
또한, 일 실시예에 따른 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)는, 각 음(-)의 시점방향에 위치하는 복원영상들마다 해당시점의 시점번호가 현재시점의 시점번호와 비교했을 때 얼마나 감소했는지를 나타내는 'delta_view_idx _s0_minus1[ i ]'(95)와, 각 양(+)의 시점방향에 위치하는 복원영상들마다 해당시점의 시점번호가 현재시점의 시점번호와 비교했을 때 얼마나 증가했는지를 나타내는 'delta_view_idx_s1_minus1[ i ]'(96)를 포함할 수 있다.
다시, 도 6a의 시퀀스 파라미터 세트(65)로 돌아가면, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는 시퀀스 파라미터 세트(65)로부터 'num_interview_ref_pic_sets'(66)를 파싱하여, 현재 시퀀스에 속한 픽처들에서 이용될 수 있는 참조픽처세트들의 개수를 판독할 수 있다.
또한 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 매 참조픽처세트마다 'interview_ref_pic_set(i)'(67)를 파싱하여, 'num_negative_interview_pics'(93)로부터 음(-)의 시점방향에 위치하는 다른시점들의 복원영상들의 개수를 판독하고, 'num_positive_ interview_pics'(94)로부터 양(+)의 시점방향에 위치하는 다른시점들의 복원영상들의 개수를 판독할 수 있다.
또한 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 일 실시예에 따른 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)를 파싱하여, 'delta_view_idx _s0_minus1[ i ]'(95)로부터, 각 음(-)의 시점방향에 위치하는 복원영상들마다 해당시점의 시점번호와 현재시점의 시점번호 간의 차분값을 판독할 수 있으므로, 음(-)의 시점방향에 위치하는 복원영상들의 시점번호들이 판독될 수 있다.
유사하게, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 일 실시예에 따른 참조픽처세트 파라미터 세트 'interview_ref_pic_set(i)'(67)를 파싱하여, 'delta_view_idx _s1_minus1[ i ]'(96)로부터, 각 양(+)의 시점방향에 위치하는 복원영상들마다 해당시점의 시점번호와 현재시점의 시점번호 간의 차분값을 판독할 수 있으므로, 양(+)의 시점방향에 위치하는 복원영상들의 시점번호들이 판독될 수 있다.
도 6b 는 일 실시예에 따른 픽처 파라미터 세트(60)의 신택스를 도시한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재 픽처 내에서 공통적으로 적용되는 기본(default) 설정들에 대한 정보를 포함하는 픽처 파라미터 세트(60)를 생성할 수 있다. 특히, 참조리스트와 관련하여, 현재 픽처 내에서 각 예측블록들이 영상간 예측 및 시점간 예측 중 적어도 하나를 위해 사용되는 L0 리스트와 L1 리스트에 각각 속하는 복원픽처들의 기본 개수에 대한 정보가 픽처 파라미터 세트(60)에 포함될 수 있다.
예를 들어, 'num_ref_idx_l0_default_active_minus1'(61)은, L0 리스트 중에서 동일시점이면서 현재픽처보다 재생순서가 앞서는 유효한 복원픽처들의 기본 개수를 나타낸다. 'num_interview_ref_idx_l0_default_active_minus1'(62)는, L0 리스트 중에서 현재픽처와 재생순서는 동일하고 현재시점보다 시점번호가 작은 유효한 복원픽처들의 기본 개수를 나타낸다. 'num_ref_idx_l1_default_active_minus1'(63)은, L1 리스트 중에서 동일시점이면서 현재픽처보다 재생순서가 뒤따르는 유효한 복원픽처들의 기본 개수를 나타낸다. 'num_interview_ref_idx_l1_default_active_minus1'(64)는, L1 리스트 중에서 현재픽처와 재생순서는 동일하고 현재시점보다 시점번호가 큰 유효한 복원픽처들의 기본 개수를 나타낸다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 수신된 비트스트림 중에서 픽처 파라미터 세트(60)를 추출할 수 있다. 다시점 비디오 예측 복호화 장치(20)는, 픽처 파라미터 세트(60)로부터 'num_ref_idx_l0_default_active_minus1'(61)를 파싱하여, L0 리스트 중에서 동일시점이면서 현재픽처보다 재생순서가 앞서는 유효한 복원픽처들의 기본 개수를 판독할 수 있다. 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 'num_interview_ref_idx_l0_default_active_minus1'(62)를 파싱하여, L0 리스트 중에서 현재픽처와 재생순서는 동일하고 현재시점보다 시점번호가 작은 유효한 복원픽처들의 기본 개수를 판독할 수 있다. 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 'num_ref_idx_l1_default_active_minus1'(63)를 파싱하여, L1 리스트 중에서 동일시점이면서 현재픽처보다 재생순서가 뒤따르는 유효한 복원픽처들의 기본 개수를 판독할 수 있다. 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 'num_interview_ref_idx_l1_default_active_minus1'(64)를 파싱하여, L1 리스트 중에서 현재픽처와 재생순서는 동일하고 현재시점보다 시점번호가 큰 유효한 복원픽처들의 기본 개수를 판독할 수 있다.
도 7은 일 실시예에 따른 슬라이스 헤더(70)의 신택스를 도시한다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, 현재 슬라이스에서 공통적으로 적용되는 설정들에 대한 정보를 포함하는 슬라이스 헤더(70)를 생성할 수 있다.
일 실시예에 따른 슬라이스 헤더(70)는, 영상간 예측을 위한 숏텀 참조픽처세트에 대한 파라미터들(90), 시점간 예측을 위한 참조픽처세트에 대한 파라미터들(91), 영상간 예측을 위한 롱텀 참조픽처세트에 대한 파라미터들(92)을 포함할 수 있다.
일 실시예에 따른 숏텀 참조픽처세트에 대한 파라미터들(90)은, 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트를 사용할지 여부를 확인하는 정보 'short_term_ref_pic_set_sps_flag'(87)를 포함할 수 있다.
시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트가 현재 슬라이스에서 이용되지 않는다면, 현재 슬라이스를 위한 숏텀 참조픽처세트를 정의하기 위한 파라미터 세트' short_term_ref_pic_set(num_short_term_ref_pic_sets)'(80)를 포함할 수 있다.
반면에, 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트가 현재 슬라이스에서 이용된다면, 현재 슬라이스에서 이용될 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트의 인덱스 'short_term_ref_pic_set_idx'(88)를 포함할 수 있다.
일 실시예에 따른 시점간 예측을 위한 참조픽처세트에 대한 파라미터들(91)은, 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트를 사용할지 여부를 확인하는 정보 'interview_ref_pic_set_sps_flag'(97)를 포함할 수 있다.
시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트가 현재 슬라이스에서 이용되지 않는다면, 현재 슬라이스를 위한 시점간 예측을 위한 참조픽처세트를 정의하기 위한 파라미터 세트 ' interview_ref_pic_set( num_interview_ref_pic_sets)'(80)를 포함할 수 있다.
반면에, 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트가 현재 슬라이스에서 이용된다면, 현재 슬라이스에서 이용될 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트의 인덱스 'interview_ref_pic_set_idx'(98)를 포함할 수 있다.
일 실시예에 따른 롱텀 참조픽처세트에 대한 파라미터들(92)은, 롱텀 참조픽처들의 개수 'num_long_term_pics'(89)과, 롱텀 참조픽처들의 POC와 관련된 정보들을 포함할 수 있다.
또한, 참조리스트와 관련하여, 현재 픽처에서 설정된 기본 설정들을 대신하여, 현재 슬라이스에서 임의로 변경되는 정보가 슬라이스 헤더(70)에 포함될 수 있다.
현재 슬라이스가 P 또는 B 슬라이스 타입으로 전방 예측 모드 또는 양방향 예측 모드에 따르는 경우에, 슬라이스 헤더(70)는 'num_ref_idx_active_override_flag'(71)를 포함할 수 있다. 'num_ref_idx_active_override_flag'(71)는, 현재 픽처 파라미터 세트(60)에서 정해진 'num_ref_idx_l0_default_active_minus1'(61), 'num_interview_ref_idx_l0_default_active_minus1'(62), 'num_ref_idx_l1_default_active_minus1'(63), 'num_interview_ref_idx_l1_default_active_minus1'(64)의 복원픽처들의 기본개수들 중 적어도 하나를, 현재 슬라이스에서 다른 값으로 치환할 수 있는지 여부를 나타낸다.
'num_ref_idx_active_override_flag'(71)에 의해, 현재 슬라이스에서 복원픽처들의 기본개수를 다른 값으로 치환할 수 있다면, 슬라이스 헤더(70)에 먼저 L0 리스트에서 영상간 예측을 위한 유효한 복원픽처들의 개수를 나타내는 'num_ref_idx_l0_active_minus1'(72)가 포함될 수 있다. 또한, 현재 날 유닛(nal unit)에 대한 3차원 비디오의 부복호화가 허용된다면, 슬라이스 헤더(70)에 L0 리스트에서 시점간 예측을 위한 유효한 복원픽처들의 개수'num_interview_ref_idx_l0_active_minus1'(73)도 포함될 수 있다.
또한, 'num_ref_idx_active_override_flag'(71)에 의해, 현재 슬라이스에서 복원픽처들의 기본개수를 다른 값으로 치환할 수 있고, 현재 슬라이스가 B 슬라이스 타입이라면, 슬라이스 헤더(70)에 L1 리스트에서 영상간 예측을 위해 유효한 복원픽처들의 개수를 나타내는 'num_ref_idx_l1_active_minus1'(74)가 포함될 수 있다. 또한, 현재 날 유닛에 대한 3차원 비디오의 부복호화가 허용된다면, 슬라이스 헤더(70)에 L1 리스트에서 시점간 예측을 위한 유효한 복원픽처들의 개수 'num_interview_ref_idx_l1_active_minus1'(75)도 포함될 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 수신된 비트스트림 중에서 슬라이스 헤더(70)를 추출할 수 있다. 다시점 비디오 예측 복호화 장치(20)는, 현재 슬라이스가 P 또는 B 슬라이스 타입으로 전방 예측 모드 또는 양방향 예측 모드에 따르는 경우에, 슬라이스 헤더(70)로부터 'num_ref_idx_active_override_flag'(71)를 파싱하여, 현재 픽처에서 설정된 참조리스트의 복원픽처들의 기본 개수가 현재 슬라이스에서 다른값으로 치환될 수 있는지 여부를 판독할 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 일 실시예에 따른 슬라이스 헤더(70)의 숏텀 참조픽처세트에 대한 파라미터들(90)을 파싱하여, 'short_term_ref_pic_set_sps_flag'(87)로부터 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트를 사용할지 여부를 판독할 수 있다.
시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트가 현재 슬라이스에서 이용되지 않는다면, 'short_term_ref_pic_set(num_short_term_ref_pic_sets)'(80)로부터 현재 슬라이스를 위한 숏텀 참조픽처세트를 정의하기 위한 파라미터들을 추출할 수 있다.
반면에, 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트가 현재 슬라이스에서 이용된다면, 'short_term_ref_pic_set_idx'(88)로부터 현재 슬라이스에서 이용될 시퀀스 파라미터 세트(65)에서 정한 숏텀 참조픽처세트의 인덱스를 판독할 수 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 일 실시예에 따른 슬라이스 헤더(70)의 시점간 예측을 위한 참조픽처세트에 대한 파라미터들(91)을 파싱하여, 'interview_ref_pic_set_sps_flag'(97)로부터 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트를 사용할지 여부를 판독할 수 있다.
시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트가 현재 슬라이스에서 이용되지 않는다면, interview_ref_pic_set( num_interview_ref_pic_sets)'(80)로부터 현재 슬라이스를 위한 시점간 예측을 위한 참조픽처세트를 정의하기 위한 파라미터 세트가 추출될 수 있다.
반면에, 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트가 현재 슬라이스에서 이용된다면, 'interview_ref_pic_set_idx'(98)로부터 현재 슬라이스에서 이용될 시퀀스 파라미터 세트(65)에서 정한 시점간 예측을 위한 참조픽처세트의 인덱스가 판독되어, 어느 참조픽처세트를 이용하여 참조픽처를 결정할 수 있다.
일 실시예에 따른 롱텀 참조픽처세트에 대한 파라미터들(92)은, 슬라이스 헤더로(70)로부터 롱텀 참조픽처들의 개수 'num_long_term_pics'(89)과, 롱텀 참조픽처들의 POC와 관련된 정보들을 판독할 수도 있다.
참조리스트의 복원픽처들의 기본 개수가 치환가능하다면, 다시점 비디오 예측 복호화 장치(20)는 슬라이스 헤더(70)로부터 먼저 'num_ref_idx_l0_active_minus1'(72)를 파싱하여, L0 리스트에서 영상간 예측을 위해 유효한 복원픽처들의 개수를 판독할 수 있다. 또한, 현재 날 유닛에 대한 3차원 비디오의 부복호화가 허용된다면, 다시점 비디오 예측 복호화 장치(20)는 슬라이스 헤더(70)로부터 'num_interview_ref_idx_l0_active_minus1'(73)을 파싱하여, L0 리스트에서 시점간 예측을 위한 유효한 복원픽처들의 개수를 판독할 수 있다.
또한, 'num_ref_idx_active_override_flag'(71)에 의해, 현재 슬라이스에서 복원픽처들의 기본개수를 다른 값으로 치환할 수 있고, 현재 슬라이스가 B 슬라이스 타입이라면, 다시점 비디오 예측 복호화 장치(20)는 슬라이스 헤더(70)로부터 'num_ref_idx_l1_active_minus1'(74)를 파싱하여 L1 리스트에서 영상간 예측을 위해 유효한 복원픽처들의 개수를 판독할 수 있다. 또한, 현재 날 유닛에 대한 3차원 비디오의 부복호화가 허용된다면, 다시점 비디오 예측 복호화 장치(20)는 슬라이스 헤더(70)로부터 'num_interview_ref_idx_l1_active_minus1'(75)를 파싱하여, L1 리스트에서 시점간 예측을 위해 유효한 복원픽처들의 개수를 판독할 수 있다.
또한, 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 예측 복호화 장치(20)는 현재 슬라이스에서 참조리스트에서 이미 정해져있는 참조순서의 변경이 가능하지 여부를 결정할 수 있다(76). 현재 슬라이스에서 참조리스트의 참조순서 변경이 가능하고 현재 날 유닛을 위한 3차원 비디오 부복호화가 허용된다면, 참조리스트 변경 파라미터 세트(77)를 호출할 수 있다.
도 8b은 일 실시예에 따른 참조리스트의 변경을 위한 파라미터들의 신택스를 도시한다.
일 실시예에 따른 참조리스트 변경 파라미터 세트(77)는, 현재 슬라이스가 P 또는 B 슬라이스 타입으로 전방 예측 모드 또는 양방향 예측 모드에 따르는 경우에, L0 참조리스트에 속하는 복원픽처들의 참조 순서를 임의 변경할지 여부를 나타내는 정보 'ref_pic_list_modification_flag_l0'(81)를 포함할 수 있다.
현재 슬라이스에서 참조 순서의 임의 변경이 가능한 경우에, 현재 슬라이스의 전방 예측 또는 양방향 예측을 위한 L0 리스트의 참조 인덱스들 'list_entry_l0'(82)를 임의 변경할 수 있다. 이 때, L0 리스트에 속하는 참조 인덱스들의 최대개수(83)는, L0 리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 기본개수(61)와, 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 기본개수(62)의 총합일 수 있다. 따라서, L0 리스트에 속하는 참조 인덱스들의 최대개수(83)만큼, L0 리스트의 참조 인덱스들 'list_entry_l0'(82)에 새로운 참조인덱스들이 매칭되면서, 현재 슬라이스에서 각 참조인덱스에 대응되는 복원픽처들의 참조순서가 임의로 변경될 수 있다.
일 실시예에 따른 참조리스트 변경 파라미터 세트(84)는, 현재 슬라이스가 B 슬라이스 타입으로 양방향 예측 모드에 따르는 경우에, L1 참조리스트에 속하는 복원픽처들의 참조 순서를 임의 변경할지 여부를 나타내는 정보 'ref_pic_list_modification_flag_l1'(84)를 포함할 수 있다.
또한, 현재 슬라이스에서 참조 순서의 임의 변경이 가능한 경우에, 현재 슬라이스의 방향 예측을 위한 L1 리스트의 참조 인덱스들 'list_entry_l1'(85)를 임의 변경할 수 있다. 이 때, L1 리스트에 속하는 참조 인덱스들의 최대개수(86)는, L1 리스트 중에서 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처의 기본개수(63)와, 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처의 기본개수(64)의 총합일 수 있다. 따라서, L1 리스트에 속하는 참조 인덱스들의 최대개수(86)만큼 L1 리스트의 참조 인덱스들 'list_entry_l1'(85)에 새로운 참조인덱스들이 매칭되면서, 현재 슬라이스에서 참조인덱스들에 대응되는 복원픽처들의 참조순서가 임의로 변경될 수 있다.
따라서, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 참조리스트 변경 파라미터 세트(77)로부터 'ref_pic_list_modification_flag_l0'(81) 또는 'ref_pic_list_modification_flag_l1'(84)를 파싱하여, L0 리스트나 L1 리스트에서 참조 순서가 임의 변경됐는지 판독할 수 있다. L0 리스트의 참조순서가 임의로 변경된 것으로 판단되면, L0 리스트에 속하는 참조 인덱스들의 최대개수(83)만큼 현재 슬라이스에서 임의로 변경된 참조인덱스들 'list_entry_l0'(82)에 따라 L0 리스트의 참조순서를 변경할 수 있다. 마찬가지로 L1 리스트의 참조순서가 임의로 변경된 것으로 판단되면, L1 리스트에 속하는 참조 인덱스들의 최대개수(86)만큼 현재 슬라이스에서 임의로 변경된 참조인덱스들 'list_entry_l1'(85)에 따라 L1 리스트의 참조 순서를 변경할 수 있다.
다른 실시예에 따른 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 예측 복호화 장치(20)는, 기존 참조리스트들을 조합한 새로운 참조리스트를 이용하여 영상간 예측 또는 시점간 예측을 수행할 수 있다.
도 9은 다른 실시예에 따라 조합된 참조리스트를 예시한다.
즉, 기본 L0 리스트(41)에 속하는 복원픽처들과 기본 L1 참조리스트(45)에 속하는 복원픽처들을 조합하여, 새로운 기본 LC 리스트(90)가 생성될 수 있다.
다른 실시예에 따른 기본 LC 리스트(90)에 속하는 복원픽처들의 참조순서는, 기본 L0 리스트(41)와 기본 L1 참조리스트(45)에 속하는 복원픽처들이 지그재그로 번갈아 참조되는 순서로 결정될 수 있다.
예를 들어, 기본 LC 리스트(90)는, 기본 L0 리스트(41)의 첫번째 복원픽처인 VID 5/POC 17 픽처(32)을 시작으로, 기본 L1 리스트(45)의 VID 5/POC 19 픽처(34), 기본 L0 리스트(41)의 VID 5/POC 16 픽처(33), 기본 L1 리스트(45)의 VID 5/POC 17 픽처(32), 기본 L0 리스트(41)의 VID 5/POC 19 픽처(34), 기본 L1 리스트(45)의 VID 5/POC 16 픽처(33), 기본 L0 리스트(41)의 VID 3/POC 18 픽처(35), 기본 L1 리스트(45)의 VID 7/POC 18 픽처(37)의 참조순서로 결정될 수 있다.
도 10 및 11은 다른 실시예에 따른 조합된 참조리스트의 변경 과정을 도시한다.
다른 실시예에 따른 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 예측 복호화 장치(20)는, 조합된 참조리스트, 즉 기본 LC 리스트(90)에 속하는 복원픽처들의 참조 순서를 현재 슬라이스에서 임의로 변경할 수 있다. 따라서 현재 슬라이스를 위해 기본 LC 리스트(90)가 이용하되 않는다. 대신 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 예측 복호화 장치(20)는, 도 10의 참조인덱스 테이블를 참조하여, 다시 기본 L0 리스트(40)와 기본 L1 리스트(41)의 복원픽처들을 이용하여, 변경된 LC 리스트(11)를 생성할 수 있다.
일 실시예에 따른 참조인덱스 테이블(50)에서, 참조인덱스(101) Idx는 변경된 LC 리스트(111)에서 복원픽처들의 참조순서를 가리키는 번호이다. 'pic_from_list_0_flag'(103)는, 변경된 LC 리스트(111)에 속하는 각 복원픽처가 기본 L0 리스트(41) 또는 기본 L1 리스트(45)에 속하는지 여부를 나타낼 수 있다. 'ref_idx_list_curr'(105)는, 해당 복원픽처가 현재 기본 L0 리스트(41) 및 기본 L1 리스트(45)에서 갖는 참조인덱스를 나타낼 수 있다.
따라서, 'pic_from_list_0_flag'(103) 및 'ref_idx_list_curr'(105)에 따라, 변경된 LC 리스트(111)에 속하는 복원픽처들은 참조순서에 따라, 기본 L0 리스트(41)의 VID 5/POC 17 픽처(32), 기본 L1 리스트(45)의 VID 5/POC 19 픽처(34), 기본 L0 리스트(41)의 VID 3/POC 18 픽처(35), 기본 L1 리스트(45)의 VID 7/POC 18 픽처(37), 기본 L0 리스트(41)의 VID 5/POC 16 픽처(33), 기본 L0 리스트(41)의 VID 5/POC 19 픽처(34)으로 결정될 수 있다.
따라서, 다른 실시예에 따른 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 예측 복호화 장치(20)가 LC 리스트를 사용하는 경우에는, 현재 날 유닛에 대해 3차원 비디오의 부복호화가 허용되는 경우에, 현재 슬라이스를 위해, 참조리스트 변경 파라미터 세트 'ref_pic_list_3D_modification'(77)뿐만 아니라, 참조리스트 조합 파라미터 세트 'ref_pic_list_3D_combination'를 슬라이스 헤더에 수록할 수 있다. 다른 실시예에 따른 참조리스트 조합 파라미터 세트 'ref_pic_list_3D_combination'는 조합된 참조리스트를 결정하기 위한 파라미터들을 포함할 수 있다.
다른 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 슬라이스 헤더로부터 참조리스트 조합 파라미터 세트 'ref_pic_list_3D_combination'를 파싱하고, 'ref_pic_list_3D_combination'로부터 L0 리스트 및 L1 리스트를 조합하여 LC 리스트가 이용되는지 여부를 판독할 수 있다. LC 리스트가 이용되는 것으로 판단되면, LC 리스트에 속하는 참조 인덱스들의 최대개수가 판독될 수 있다. 기본적으로 L0 리스트와 L1 리스트의 복원픽처들이 지그재그 순서로 LC 리스트에 속하게 되므로, LC 리스트에 속하는 참조 인덱스들의 최대개수가 확인되면 LC 리스트에 속하는 복원픽처들 및 그 참조순서도 파악될 것이다.
또한, 다른 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, 슬라이스 헤더로부터 LC 리스트에 속하는 복원픽처들의 참조순서가 변경될 수 있는지 여부가 판독될 수 있다. LC 리스트의 복원픽처들의 참조순서가 변경될 수 있다면, 슬라이스 헤더로부터 LC 리스트에 속하는 복원픽처들의 최대개수만큼, 각 참조인덱스마다 변경된 LC 리스트에서 현재 참조 순서를 새로이 설정할 수 있다.
도 12 는 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)를 포함하는 다시점 비디오 부호화 장치(121)의 블록도를 도시한다.
일 실시예에 따른 다시점 비디오 부호화 장치(121)는, 복호픽처버퍼 DPB(42), 다시점 비디오 예측 부호화 장치(10), 변환양자화부(46) 및 엔트로피 부호화부(48)를 포함한다.
일 실시예에 따른 DPB(42)는, 현재픽처와 동일시점의 먼저 복원된 픽처들과 현재픽처와 POC번호가 동일하면서 다른시점의 먼저 복원된 픽처들을 저장하고 있다. DPB(42)에 저장된 복원픽처들 중에서 영상간 예측 및 시점간 예측을 위한 참조픽처들이 결정될 수 있다. 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는 도 1a 및 1b, 3 내지 8을 참조하여 전술한 동작들을 다시점 비디오 부호화 장치(121)에서도 수행할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, P 슬라이스 타입 또는 B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처보다 앞서는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 작은 적어도 하나의 복원픽처를 포함하는 L0 리스트를 결정할 수 있다. 또한, 다시점 비디오 예측 부호화 장치(10)는, B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처를 뒤따르는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 큰 적어도 하나의 복원픽처를 포함하는 L1 리스트를 결정할 수 있다.
따라서 다시점 비디오 예측 부호화 장치(10)는, DPB(42)에 저장된 복원픽처들을 이용하여 다시점 비디오들의 영상간 예측 및 시점간 예측을 위한 L0 리스트와 L1 리스트를 결정할 수 있다. 경우에 따라, 소정 슬라이스에서 L0 리스트와 L1 리스트에서 정의된 복원픽처들의 참조순서가 임의로 변경될 수도 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, L0 리스트를 참조하거나, L0 리스트 및 L1 리스트를 참조하여 현재픽처의 참조픽처를 결정하고, 참조픽처 중에서 참조블록을 결정하여 영상간 예측 및 시점간 예측 중 적어도 하나를 수행할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10)는, DPB(42)에 저장된 복원픽처들을 이용하여 참조리스트를 구성하고, 참조리스트 중에서 선택된 참조픽처를 이용하여 현재 영상에 대한 영상간 예측 및 시점간 예측을 수행하여 레지듀 데이터를 생성할 수 있다.
일 실시예에 따른 변환양자화부(46)는, 다시점 비디오 예측 부호화 장치(10)에서 생성된 레지듀 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수를 생성할 수 있다. 일 실시예에 따른 엔트로피 부호화부(48)는, 양자화된 변환계수와 움직임 벡터, 참조인덱스를 포함하는 심볼들에 대해 엔트로피 부호화를 수행할 수 있다.
일 실시예에 따른 다시점 비디오 부호화 장치(121)는, 비디오의 영상들에 대해 블록별로 인터예측을 수행하고, 영상간 예측 또는 시점간 예측에 의해 생성된 블록별 레지듀 데이터에 대해 변환 및 양자화를 수행하여 블록별 양자화된 변환계수를 생성하고, 양자화된 변환계수에 대해 엔트로피 부호화를 수행하여 비트스트림을 출력함으로써, 비디오를 부호화할 수 있다.
또한, 다시점 비디오 부호화 장치(121)는, DPB(42)에 저장된 이전 복원픽처를 참조하여 현재픽처의 움직임 보상 또는 변이 보상을 수행하여, 현재픽처의 복원픽처를 생성할 수 있다. 현재픽처의 복원픽처는 다른 영상들의 영상간 예측 또는 시점간 예측을 위한 참조픽처로서 이용될 수 있다. 따라서, 다시점 비디오 부호화 장치(121)는 결과적으로 영상간 예측 및 시점간 예측을 위해, 움직임 보상 또는 변이 보상을 수행하는 다시점 비디오 예측 복호화 장치(20)의 동작도 수행할 수 있다.
일 실시예에 따른 다시점 비디오 부호화 장치(121)는 비디오 부호화 결과를 출력하기 위해, 다시점 비디오 부호화 장치(121)의 내부에 탑재된 비디오 인코딩 프로세서 또는 외부 비디오 인코딩 프로세서와 연계하여 작동함으로써, 인트라예측, 인터예측, 변환, 양자화를 포함한 비디오 부호화 동작을 수행할 수 있다. 일 실시예에 따른 다시점 비디오 부호화 장치(121)가 별개의 내부 비디오 인코딩 프로세서를 포함하는 경우 뿐만 아니라, 다시점 비디오 부호화 장치(121) 또는 다시점 비디오 부호화 장치(121)를 제어하는 중앙 연산 장치 또는 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함하는 경우에도, 일 실시예에 따른 비디오 부호화 동작이 구현될 수 있다.
도 13 은 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)를 포함하는 다시점 비디오 복호화 장치(131)의 블록도를 도시한다.
일 실시예에 따른 다시점 비디오 복호화 장치(131)는, 수신부(52), 역양자화역변환부(54), DPB(56), 다시점 비디오 예측 복호화 장치(20) 및 인루프 필터링부(59)를 포함할 수 있다.
일 실시예에 따른 수신부(52)는, 비트스트림을 수신하고 수신된 비디오스트림에 대해 엔트로피 복호화를 수행하여, 부호화된 영상데이터를 파싱할 수 있다.
일 실시예에 따른 역양자화역변환부(54)는, 수신부(52)에서 파싱된 부호화된 영상데이터에 대해 역양자화 및 역변환을 수행하여 레지듀 데이터를 복원할 수 있다.
일 실시예에 따른 수신부(52)는, 비디오스트림으로부터 움직임 벡터 및.또는 변이 벡터를 파싱할 수 있다. 일 실시예에 따른 DPB(56)는, 먼저 복원된 픽처들을 저장하고, 복원픽처들은 다른 영상의 움직임 보상 또는 변이 보상을 위한 참조픽처들으로 이용될 수 있다. 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, DPB(56)에 저장된 복원픽처들을 이용하여 참조리스트를 구성하고, 참조리스트를 이용하여 움직임 벡터와 레지듀 데이터를 이용한 움직임 보상, 또는 변이 벡터와 레지듀 데이터를 이용한 변이 보상을 수행할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(20)는 도 2a 및 2b를 참조하여 전술한 다시점 비디오 예측 복호화 장치(20)와 동일한 동작을 수행할 수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(20)는, P 슬라이스 타입 또는 B 슬라이스 타입인 현재픽처를 위해, DPB(56)에 저장된 동일시점 영상들 중에서 현재픽처보다 앞서는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 작은 적어도 하나의 복원픽처를 포함하는 L0 리스트를 결정할 수 있다.
또한, 다시점 비디오 예측 복호화 장치(20)는, B 슬라이스 타입인 현재픽처를 위해, DPB(56)에 저장된 동일시점 영상들 중에서 현재픽처를 뒤따르는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 큰 적어도 하나의 복원픽처를 포함하는 L1 리스트를 결정할 수 있다.
따라서 다시점 비디오 예측 복호화 장치(20)는, 다시점 비디오들의 영상간 예측 및 시점간 예측을 위한 L0 리스트와 L1 리스트를 결정할 수 있다. 경우에 따라, 소정 슬라이스에서 L0 리스트와 L1 리스트에서 정의된 복원픽처들의 참조순서가 임의로 변경될 수도 있다.
일 실시예에 따른 다시점 비디오 예측 복호화 장치(20)는, L0 리스트를 참조하거나, L0 리스트 및 L1 리스트를 참조하여 현재픽처의 참조픽처를 결정하고, 참조픽처 중에서 참조블록을 결정하여 움직임 보상 및 변이 보상 중 적어도 하나를 수행할 수 있다.
일 실시예에 따른 다시점 비디오 복호화 장치(131)는, 시점별 비디오의 영상마다 블록별로 복호화를 수행하여 비디오를 복원할 수 있다. 수신부(52)는, 블록별로 부호화된 데이터 및 움직임 벡터 또는 변이 정보를 파싱할 수 있다. 역양자화역변환부(54)는 블록마다 부호화된 데이터에 대해 역양자화 및 역변환을 수행하여 블록별로 레지듀 데이터를 복원할 수 있다. 다시점 비디오 예측 복호화 장치(20)는, 블록마다 참조픽처 중에서 움직임 벡터 또는 변이 벡터가 가리키는 참조블록을 결정하고 참조블록에 레지듀 데이터를 합성함으로써 복원블록들이 생성될 수 있다.
인루프 필터링부(59)는 다시점 비디오 예측 복호화 장치(20)에 의해 복원되여 출력된 복원픽처에 대해 디블로킹 필터링과 SAO(Sample Adaptive Offset) 필터링을 수행할 수 있다. 인루프 필터링부(59)도 블록별로 수행되어 최종 복원픽처를 출력할 수 있다. 또한 인루프 필터링부(59)의 출력영상은 DPB(56)에 저장되고, 다음 영상의 움직임보상을 위한 참조픽처로 이용될 수 있다.
일 실시예에 따른 다시점 비디오 복호화 장치(131)는 비디오 복호화 결과를 출력하기 위해, 다시점 비디오 복호화 장치(131)의 내부에 탑재된 비디오 디코딩 프로세서 또는 외부 비디오 디코딩 프로세서와 연계하여 작동함으로써, 역양자화, 역변환, 인트라예측, 움직임보상을 포함한 비디오 복호화 동작을 수행할 수 있다. 일 실시예에 따른 다시점 비디오 복호화 장치(131)가 별개의 내부 비디오 디코딩 프로세서를 포함하는 경우 뿐만 아니라, 다시점 비디오 복호화 장치(131) 또는 다시점 비디오 복호화 장치(131) 또는 그래픽 연산 장치가 비디오 디코딩 프로세싱 모듈을 포함하는 경우에도, 일 실시예에 따른 비디오 복호화 동작이 구현될 수 있다.
이상 도 1a 내지 도 13을 참조하여 전술한 다시점 비디오 예측 부호화 장치(10), 다시점 비디오 예측 복호화 장치(20), 다시점 비디오 부호화 장치(121), 다시점 비디오 복호화 장치(131)에 따르면, 본 발명에 따른 다시점 비디오를 위한 예측 부호화 장치에 따라, 다시점 비디오들의 영상간 예측 및 시점간 예측을 위한 참조리스트들이 구성될 수 있다. 하나의 참조리스트에, 영상간 예측을 위한 참조영상과 시점간 예측을 위한 참조영상이 모두 포함될 수 있다.
또한 복호픽처세트의 상태를 명시적으로 반영한 참조픽처세트에 대한 정보가 시퀀스 파라미터 세트 및 슬라이스 헤더를 통해 송수신될 수 있다. 참조리스트는 참조픽처세트에 따라 결정되므로, 현재 복호픽처 세트의 상태를 고려하여 결정된 참조리스트에서, 참조영상이 결정되고 영상간 예측/움직임 보상, 시점간 예측/변이 보상에 이용될 수 있다.
본 발명에 따른 다시점 비디오를 위한 예측 복호화 장치에 따라, 영상간 예측을 위한 참조영상과 시점감사간 예측을 위한 참조영상이 모두 포함된 참조리스트가 적어도 하나 생성될 수 있다. 하나의 참조리스트를 참조하여 현재영상의 참조영상을 결정하고, 참조영상 중에서 참조블록을 결정하여 움직임 보상 및 변이 보상 중 적어도 하나를 수행할수 있다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10), 다시점 비디오 예측 복호화 장치(20), 다시점 비디오 부호화 장치(121), 다시점 비디오 복호화 장치(131)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인터 예측을 위한 예측 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 6 내지 18을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
일 실시예에 따른 다시점 비디오 예측 부호화 장치(10), 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20), 다시점 비디오 부호화 장치(121) 및 다시점 비디오 복호화 장치(131)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 시점간 예측 또는 영상간 예측을 위해 부호화 단위들, 예측 단위들, 변환 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 14 내지 26을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
원칙적으로 다시점 비디오를 위한 부호화/복호화 과정에서, 기본시점 영상들을 위한 부호화/복호화 과정과, 부가시점 영상들을 위한 부호화/복호화 과정이 따로 수행된다. 즉, 다시점 비디오 중 시점간 예측이 발생하는 경우에는 단일시점 비디오의 부호화/복호화 결과가 상호 참조될 수 있지만, 단일시점 비디오마다 별도의 부호화/복호화 과정이 발생한다.
따라서 설명의 편의를 위해 도 14 내지 26을 참조하여 후술되는 트리구조의 부호화 단위에 기초한 비디오 부호화 과정 및 비디오 복호화 과정은, 단일시점 비디오에 대한 비디오 부호화 과정 및 비디오 복호화 과정이므로, 영상간 예측만 및 움직임 보상이 상술된다. 하지만, 도 1a 내지 13을 참조하여 전술한 바와 같이, 다시점 비디오 부호화/복호화를 위해, 기본시점 영상들과 부가시점 영상들 간의 시점간 예측 및 시점간 변이 보상이 수행된다.
따라서, 일 실시예에 따른 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 부호화 장치(121)가 트리구조의 부호화 단위에 기초하여 다시점 비디오를 예측 부호화하기 위해서는, 각각의 단일시점 비디오마다 비디오 부호화를 수행하기 위해 도 14의 비디오 부호화 장치(100)를 다시점 비디오의 시점 개수만큼 포함하고, 각 비디오 부호화 장치(100)마다 할당된 단일시점 비디오의 부호화를 수행하도록 제어할 수 있다. 또한 각 단일시점 비디오를 부호화하는 비디오 부호화 장치(100)는, 다른시점 비디오를 부호화하는 각 비디오 부호화 장치(100)의 별개 단일시점의 부호화 결과들을 이용하여 시점간 예측을 수행할 수 있다. 이에 따라 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 부호화 장치(121)는 각각 시점별로 부호화 결과를 수록한 비트스트림을 생성할 수 있다.
이와 유사하게, 일 실시예에 따른 다시점 비디오 예측 복호화 장치(20) 및 다시점 비디오 복호화 장치(131)가 트리구조의 부호화 단위에 기초하여 다시점 비디오를 예측 복호화하기 위해서는, 각각의 단일시점 비디오마다 비디오 복호화를 수행하기 위해 도 15의 비디오 복호화 장치(200)를 다시점 비디오의 시점 개수만큼 포함하고, 각 비디오 복호화 장치(200)마다 할당된 단일시점 비디오의 부호화를 수행하도록 제어할 수 있다. 또한 각 단일시점 비디오를 부호화하는 비디오 복호화 장치(200)는, 다른시점 비디오를 부호화하는 각 비디오 복호화 장치(200)의 별개 단일시점의 부호화 결과들을 이용하여 시점간 예측을 수행할 수 있다. 이에 따라 다시점 비디오 예측 복호화 장치(20) 및 다시점 비디오 복호화 장치(131)는 각각 시점별로 부호화 결과를 수록한 비트스트림을 생성할 수 있다.
도 14 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
부호화 단위 결정부(120)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 부호화 심도로 결정된 심도의 부호화 단위들을 포함한다. 부호화 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 부호화 심도는, 다른 영역에 대한 부호화 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 부호화 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 타입은 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
부호화 심도별 부호화 정보는, 부호화 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 부호화 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 타입, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 16 내지 26을 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 부호화 심도의 부호화 단위마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 부호화 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 예측과 관련된 참조정보, 예측정보, 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 1a 을 참조하여 전술한 다시점 비디오 부호화 장치(10)는, 다시점 비디오의 시점들마다 단일시점 영상들의 부호화를 위해, 시점 개수만큼의 비디오 부호화 장치(100)들을 포함할 수 있다.
비디오 부호화 장치(100)가 단일시점 영상들을 부호화하는 경우에, 부호화 단위 결정부(120)는 최대 부호화 단위마다 트리 구조에 따른 부호화 단위별로 영상간 예측을 위한 예측단위를 결정하고, 예측단위마다 영상간 예측을 수행할 수 있다.
특히, 부호화 단위 결정부(120)는 동일시점의 복원픽처를 참조하는 영상간 예측과 다른시점의 복원픽처를 참조하는 시점간 예측을 수행할 수 있다. 일 실시예에 따른 부호화 단위 결정부(120)는, P 슬라이스 타입 또는 B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처보다 앞서는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 작은 적어도 하나의 복원픽처를 포함하는 L0 리스트를 결정할 수 있다. 또한, 부호화 단위 결정부(120)는, B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처를 뒤따르는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 큰 적어도 하나의 복원픽처를 포함하는 L1 리스트를 결정할 수 있다.
따라서 부호화 단위 결정부(120)는, 복호픽처 버퍼에 저장된 복원픽처들을 이용하여 다시점 비디오들의 영상간 예측 및 시점간 예측을 위한 L0 리스트와 L1 리스트를 결정할 수 있다. 경우에 따라, 소정 슬라이스에서 L0 리스트와 L1 리스트에서 정의된 복원픽처들의 참조순서가 임의로 변경될 수도 있다.
일 실시예에 따른 부호화 단위 결정부(120)는, L0 리스트를 참조하거나, L0 리스트 및 L1 리스트를 참조하여 현재픽처의 참조픽처를 결정하고, 참조픽처 중에서 참조 예측단위를 결정하여 영상간 예측 및 시점간 예측 중 적어도 하나를 수행할 수 있다.
도 15 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 부호화 모드에 관한 정보 등 각종 용어의 정의는, 도 14 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 해당 부호화 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 부호화 심도 및 부호화 모드에 관한 정보이다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 부호화 심도 및 부호화 모드에 관한 정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 부호화 심도 및 부호화 모드에 관한 정보가 기록되어 있다면, 동일한 부호화 심도 및 부호화 모드에 관한 정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 타입, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 심도별 부호화 단위의 예측 단위의 파티션 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
도 1a 및 12를 참조하여 전술한 다시점 비디오 예측 부호화 장치(10) 및 다시점 비디오 부호화 장치(121)는, 다시점 비디오의 시점들마다 영상간 예측 및 시점간 예측을 위한 참조픽처를 생성하기 위해, 비디오 복호화 장치(200) 중 영상데이터 복호화부(230)를 시점 개수만큼 포함할 수 있다.
또한, 도 2a 및 13를 참조하여 전술한 다시점 비디오 예측 복호화 장치(20) 및 다시점 비디오 복호화 장치(131)는, 각각 수신된 비트스트림을 복호화하여 각 시점별 영상들을 복원하기 위해, 비디오 복호화 장치(200)를 시점 개수만큼 포함할 수 있다.
다시점 비디오 중에서 소정시점 비디오의 비트스트림이 수신된 경우에는, 비디오 복호화 장치(200)의 영상데이터 복호화부(230)는, 추출부(220)에 의해 비트스트림으로부터 추출된 영상들의 샘플들을 최대 부호화 단위의 트리 구조에 따른 부호화 단위들로 나눌 수 있다. 영상데이터 복호화부(230)는 영상들의 샘플들의 트리 구조에 따른 부호화 단위들마다, 영상간 예측을 위한 예측단위별로 움직임 보상을 수행하여 영상들을 복원할 수 있다.
특히, 영상데이터 복호화부(230)는 동일시점의 복원픽처를 참조하는 영상간 예측과 다른시점의 복원픽처를 참조하는 시점간 예측을 수행할 수 있다. 일 실시예에 따른 영상데이터 복호화부(230)는, P 슬라이스 타입 또는 B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처보다 앞서는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 작은 적어도 하나의 복원픽처를 포함하는 L0 리스트를 결정할 수 있다. 또한, 영상데이터 복호화부(230)는, B 슬라이스 타입인 현재픽처의 동일시점 영상들 중에서 현재픽처를 뒤따르는 POC가 할당된 적어도 하나의 복원픽처와 현재픽처와 동일한 POC가 할당되면서 현재픽처보다 VID가 큰 적어도 하나의 복원픽처를 포함하는 L1 리스트를 결정할 수 있다.
따라서 영상데이터 복호화부(230)는, 복호픽처 버퍼에 저장된 복원픽처들을 이용하여 다시점 비디오들의 영상간 예측 및 시점간 예측을 위한 L0 리스트와 L1 리스트를 결정할 수 있다. 경우에 따라, 소정 슬라이스에서 L0 리스트와 L1 리스트에서 정의된 복원픽처들의 참조순서가 임의로 변경될 수도 있다.
일 실시예에 따른 영상데이터 복호화부(230)는, L0 리스트를 참조하거나, L0 리스트 및 L1 리스트를 참조하여 현재픽처의 참조픽처를 결정할 수 있다. 추출부(220)에서 파싱된 움직임 벡터 또는 변이 벡터를 이용하여, 영상데이터 복호화부(230)는 참조영상 중에서 참조 예측단위가 결정할 수 있다. 움직임 보상 및 변이 보상 중 적어도 하나를 통해 참조 예측단위에 레지듀 데이터를 보상함으로써 현재 예측단위가 복원될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 16 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 16에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 17 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 부호화 단위 결정부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 포함한다. 즉, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 현재 프레임(405) 및 참조 프레임(495)을 이용하여 인터 추정 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 데이터는 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(460), 역변환부(470)을 통해 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(480) 및 오프셋 조정부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)에 적용되기 위해서는, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 역변환부(470), 디블로킹부(480) 및 오프셋 조정부(490)가 모두, 최대 부호화 단위마다 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행하여야 한다.
특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 및 예측 모드를 결정하며, 변환부(430)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 변환 단위의 크기를 결정하여야 한다.
움직임 추정부(420)는, 예측단위별로 동일시점 영상들을 참조하는 영상간 예측을 수행하여 영상간 움직임을 추정할 수 있다. 또한 예측단위별로 재생순서가 동일한 다른시점 영상들을 참조하는 시점간 예측을 수행하여 시점간 변이를 추정할 수 있다.
또한 움직임 보상부(425)는, 예측단위별로 동일시점 영상들을 참조하는 움직임 보상을 수행하여 예측단위를 복원할 수 있다. 또한 예측단위별로 재생순서가 동일한 다른시점 영상들을 참조하는 변이 보상을 수행하여 예측단위를 복원할 수 있다.
움직임 추정부(420) 및 움직임 보상부(425)가 참조리스트를 결정하는 방법은 도 1a 내지 11을 참조하여 상술한 바와 동일하다.
도 18 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화에 관한 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 역변환부(540)를 거쳐 공간 영역의 영상 데이터가 복원된다.
공간 영역의 영상 데이터에 대해서, 인트라 예측부(550)는 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 보상부(560)는 참조 프레임(585)를 함께 이용하여 인터 모드의 부호화 단위에 대해 움직임 보상을 수행한다.
인트라 예측부(550) 및 움직임 보상부(560)를 거친 공간 영역의 데이터는 디블로킹부(570) 및 오프셋 조정부(580)를 거쳐 후처리되어 복원 프레임(595)으로 출력될 수 있다. 또한, 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리된 데이터는 참조 프레임(585)으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 파싱부(510) 이후의 단계별 작업들이 수행될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서는, 영상 복호화부(500)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 오프셋 조정부(580)가 모두, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들에 기반하여 작업을 수행하여야 한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 트리 구조에 따른 부호화 단위들 각각마다 파티션 및 예측 모드를 결정하며, 역변환부(540)는 부호화 단위마다 변환 단위의 크기를 결정하여야 한다.
또한 움직임 보상부(560)는, 예측단위별로 동일시점 영상들을 참조하는 움직임 보상을 수행하여 예측단위를 복원할 수 있다. 또한 예측단위별로 재생순서가 동일한 다른시점 영상들을 참조하는 변이 보상을 수행하여 예측단위를 복원할 수 있다. 움직임 보상부(560)가 참조리스트를 결정하는 방법은 도 1a 내지 11을 참조하여 상술한 바와 동일하다.
도 19 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 3인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630), 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 20 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 21 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인터 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 22 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 타입은 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 타입(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 타입(942), 크기 2N_1xN_1의 파티션 타입(944), 크기 N_1x2N_1의 파티션 타입(946), 크기 N_1xN_1의 파티션 타입(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 타입(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(992), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(994), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(996), 크기 N_(d-1)xN_(d-1)의 파티션 타입(998)을 포함할 수 있다.
파티션 타입 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 타입이 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 타입(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 부호화 심도가 심도 d-1로 결정되고, 파티션 타입은 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 부호화 심도를 결정하고, 해당 파티션 타입 및 예측 모드가 부호화 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도, 및 예측 단위의 파티션 타입 및 예측 모드는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 23, 24 및 25는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 타입이며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 타입, 파티션(1032)은 NxN의 파티션 타입이다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 타입 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라
인터

스킵 (2Nx2N만)
대칭형 파티션 타입 비대칭형 파티션 타입 변환 단위 분할 정보 0 변환 단위
분할 정보 1
2Nx2N
2NxN
Nx2N
NxN
2NxnU
2NxnD
nLx2N
nRx2N
2Nx2N NxN
(대칭형 파티션 타입)

N/2xN/2
(비대칭형 파티션 타입)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 타입에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다.
파티션 타입 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 타입 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 타입 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 타입 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 타입이 대칭형 파티션 타입이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 타입이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 부호화 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 26 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 부호화 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 부호화 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 타입 정보는, 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 타입에 따라 변경될 수 있다.
예를 들어, 파티션 타입 정보가 대칭형 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 타입 정보가 비대칭형 파티션 타입 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 26을 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 14 내지 26를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 도 1a 내지 20을 참조하여 전술된 다시점 비디오 예측 방법, 다시점 비디오 예측 복원 방법 또는 다시점 비디오 부호화 방법에 따른 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 도 1a 내지 20을 참조하여 전술된 다시점 비디오 예측 복원 방법 또는 다시점 비디오 복호화 방법에 따른 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 도 1a 내지 26을 참조하여 전술된 다시점 비디오 예측 부호화 장치(10), 다시점 비디오 부호화 장치(121), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 도 1a 내지 26을 참조하여 전술된 다시점 비디오 예측 복호화 장치(20), 다시점 비디오 복호화 장치(131), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 27은 일 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 양자화 파라미터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 28를 참조하여 후술된다.
도 28는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 27 및 28에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 29은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 29에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 30 및 31을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 30은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 31은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 본 발명의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 본 발명의 비디오 복호화 방법을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(12620)를 거쳐 디스플레이화면(12520)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(12520)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(12650)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(12580)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(12580)에서 재생될 수 있다.
휴대폰(12500) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 30를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 32은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 32의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 26의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 33은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 24을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 도 1a 내지 26을 참조하여 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 도 1a 내지 26을 참조하여 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 도 1a 내지 26을 참조하여 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
도 1a 내지 26을 참조하여 전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 27 내지 도 33에서 전술되었다. 하지만, 도 1a 내지 26을 참조하여 전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 27 내지 도 33의 실시예들에 한정되지 않는다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 다시점 비디오의 예측 부호화 방법에 있어서,
    현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정하는 단계;
    상기 결정된 참조픽처들세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처들세트들 중에서 상기 현재픽처와 시점은 동일하고 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 단계;
    상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하는 단계; 및
    상기 참조블록을 이용하여 상기 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  2. 제1 항에 있어서, 상기 참조픽처세트들을 결정하는 단계는,
    상기 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 결정하는 단계; 및
    상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 다른시점 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  3. 제1 항에 있어서, 상기 참조픽처세트들을 결정하는 단계는,
    현재 슬라이스에서, 상기 현재픽처를 위해 결정된 참조픽처세트들 중 하나를 이용하는지 여부를 결정하는 단계;
    상기 현재픽처를 위해 결정된 참조픽처세트들 중 하나가 이용된다면, 상기 참조픽처세트들 중 인덱스를 선택하는 단계; 및
    상기 현재픽처를 위해 결정된 참조픽처세트들이 이용되지 않는다면, 상기 현재슬라이스를 위한 참조픽처세트를 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  4. 제3 항에 있어서, 상기 현재슬라이스를 위한 참조픽처세트를 결정하는 단계는,
    현재시점보다 시점번호가 작은 픽처들의 제1 개수, 시점번호가 큰 픽처들의 제2 개수를 결정하는 단계; 및
    상기 현재시점보다 시점번호가 작은 픽처들의 시점번호들 간의 차분값, 상기 시점번호가 큰 픽처들의 시점번호들 간의 차분값을 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  5. 제1 항에 있어서, 상기 적어도 하나의 참조리스트를 결정하는 단계는,
    현재 슬라이스에서, 상기 결정된 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경할 수 있는지 여부를 결정하는 단계; 및
    상기 현재 슬라이스에서 상기 참조 순서의 임의 변경이 가능한 경우에, 상기 현재 픽처에 속하는 현재 슬라이스를 위한 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  6. 제1 항에 있어서, 상기 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 단계는,
    상기 영상간 예측을 수행하는 경우에, 상기 제1 참조리스트 중에서 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 제2 참조리스트 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처 중 적어도 하나에서 참조픽처 및 참조블록을 결정하는 단계; 상기 결정된 참조블록을 이용하여 상기 현재블록에 대한 영상간 예측을 수행하는 단계; 및 상기 영상간 예측에 의해 생성된 상기 현재블록의 제1 레지듀(Residue) 데이터, 상기 결정된 참조블록을 가리키는 제1 움직임 벡터 및 상기 결정된 참조픽처를 가리키는 제1 참조인덱스를 결정하는 단계를 포함하고,
    상기 시점간 예측을 수행하는 경우에, 상기 제1 참조리스트 중에서 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처와 상기 제2 참조리스트 중에서 상기 현재픽처보다 시점번호가 큰 적어도 하나의 복원픽처 중 적어도 하나에서 참조픽처 및 참조블록을 결정하는 단계; 상기 결정된 참조블록을 이용하여 상기 현재블록에 대한 시점간 예측을 수행하는 단계; 및 상기 시점간 예측에 의해 생성된 상기 현재블록의 제2 레지듀 데이터, 상기 결정된 참조블록을 가리키는 제2 움직임 벡터 및 상기 결정된 참조픽처를 가리키는 제2 참조인덱스를 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  7. 다시점 비디오의 예측 복호화 방법에 있어서,
    현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트를 결정하는 단계;
    상기 결정된 참조픽처들세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처들세트들 중에서 상기 현재픽처와 시점이 동일하고 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 단계;
    상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하는 단계; 및
    상기 참조블록을 이용하여 상기 현재블록을 위한 움직임 보상 및 변이 보상 중 적어도 하나를 수행하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 복호화 방법.
  8. 제7 항에 있어서, 상기 참조픽처세트들을 결정하는 단계는,
    상기 현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계; 및
    상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 미참조 복원픽처로 구성된 참조픽처세트를 더 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  9. 제7 항에 있어서, 상기 참조픽처세트들을 결정하는 단계는,
    현재 슬라이스에서, 상기 현재픽처를 위해 결정된 참조픽처세트들 중 하나를 이용하는지 여부를 결정하는 단계;
    상기 현재픽처를 위해 결정된 참조픽처세트들 중 하나가 이용된다면, 상기 참조픽처세트들 중 인덱스를 선택하는 단계; 및
    상기 현재픽처를 위해 결정된 참조픽처세트들이 이용되지 않는다면, 상기 현재슬라이스를 위한 참조픽처세트를 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  10. 제9 항에 있어서, 상기 현재슬라이스를 위한 참조픽처세트를 결정하는 단계는,
    현재시점보다 시점번호가 작은 픽처들의 제1 개수, 시점번호가 큰 픽처들의 제2 개수를 결정하는 단계; 및
    상기 현재시점보다 시점번호가 작은 픽처들의 시점번호들 간의 차분값, 상기 시점번호가 큰 픽처들의 시점번호들 간의 차분값을 결정하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 방법.
  11. 제7 항에 있어서, 상기 적어도 하나의 참조리스트를 결정하는 단계는,
    현재 슬라이스에서, 상기 결정된 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경할 수 있는지 여부를 결정하는 단계; 및
    상기 현재 슬라이스에서 상기 참조 순서의 임의 변경이 가능한 경우에, 상기 현재 슬라이스를 위한 적어도 하나의 참조리스트의 참조 인덱스들의 참조 순서를 임의 변경하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 복호화 방법.
  12. 제7 항에 있어서, 상기 움직임 보상 및 변이 보상 중 적어도 하나를 수행하는 단계는,
    상기 현재픽처의 현재블록을 위한 참조인덱스, 레지듀 데이터 및 움직임 벡터 또는 변이 벡터를 수신하는 단계;
    상기 제1 참조리스트 중에서 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 제2 참조리스트 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처 중 적어도 하나에서 상기 참조인덱스가 가리키는 참조픽처를 결정하는 단계;
    상기 결정된 참조픽처 중에서 상기 현재블록의 움직임 벡터 또는 변이 벡터가 가리키는 참조블록을 결정하는 단계; 및
    상기 결정된 참조블록에 상기 레지듀 데이터를 보상하는 단계를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 복호화 방법.
  13. 다시점 비디오의 예측 부호화 장치에 있어서,
    현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트와 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트를 결정하고, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트로 구성된 참조픽처세트를 결정하는 참조픽처세트 결정부;
    상기 결정된 참조픽처세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처세트들 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 참조리스트 결정부; 및
    상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하고, 상기 참조블록을 이용하여 상기 현재블록을 위한 영상간 예측 및 시점간 예측 중 적어도 하나를 수행하는 예측부를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 부호화 장치.
  14. 다시점 비디오의 예측 복호화 장치에 있어서,
    현재픽처보다 먼저 복원된 동일시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 상이한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트, 적어도 하나의 롱텀 복원픽처로 구성된 참조픽처세트와, 상기 현재픽처보다 먼저 복원된 다른시점 복원픽처들 중에서, 상기 현재픽처와 재생순서가 동일한 적어도 하나의 숏텀 복원픽처로 구성된 참조픽처세트로 구성된 참조픽처세트를 결정하는 참조픽처세트 결정부;
    상기 결정된 참조픽처세트들 중에서, 상기 현재픽처보다 재생순서가 앞서는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 현재픽처보다 시점번호가 작은 적어도 하나의 복원픽처를 포함하는 제1 참조리스트, 및 상기 결정된 참조픽처세트들 중에서 상기 현재픽처보다 재생순서가 뒤따르는 적어도 하나의 복원픽처와 상기 현재픽처와 재생순서는 동일하고 상기 시점번호가 큰 적어도 하나의 복원픽처를 포함하는 제2 참조리스트 중에서 적어도 하나의 참조리스트를 결정하는 참조리스트 결정부; 및
    상기 결정된 적어도 하나의 참조리스트를 이용하여, 상기 현재픽처의 현재블록을 위한 적어도 하나의 참조픽처 및 참조블록을 결정하고, 상기 참조블록을 이용하여 상기 현재블록을 위한 움직임 보상 및 변이 보상 중 적어도 하나를 수행하는 보상부를 포함하는 것을 특징으로 하는 다시점 비디오의 예측 복호화 장치.
  15. 제1 항 내지 제12 항 중 어느 한 항의 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.
KR1020130046215A 2012-04-25 2013-04-25 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치 KR102106536B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261638101P 2012-04-25 2012-04-25
US61/638,101 2012-04-25

Publications (2)

Publication Number Publication Date
KR20130120423A true KR20130120423A (ko) 2013-11-04
KR102106536B1 KR102106536B1 (ko) 2020-05-06

Family

ID=49483525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130046215A KR102106536B1 (ko) 2012-04-25 2013-04-25 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치

Country Status (5)

Country Link
US (1) US20150124877A1 (ko)
EP (1) EP2843946A4 (ko)
KR (1) KR102106536B1 (ko)
CN (1) CN104396252B (ko)
WO (1) WO2013162311A1 (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130119379A (ko) * 2012-04-23 2013-10-31 삼성전자주식회사 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
US9357195B2 (en) * 2012-08-16 2016-05-31 Qualcomm Incorporated Inter-view predicted motion vector for 3D video
WO2014075236A1 (en) * 2012-11-14 2014-05-22 Mediatek Singapore Pte. Ltd. Methods for residual prediction with pseudo residues in 3d video coding
KR102212211B1 (ko) 2014-01-03 2021-02-04 삼성전자주식회사 멀티 레이어 비디오의 복호화 및 부호화를 위한 버퍼 관리 방법 및 장치
US10715833B2 (en) * 2014-05-28 2020-07-14 Apple Inc. Adaptive syntax grouping and compression in video data using a default value and an exception value
US10469864B2 (en) 2014-11-27 2019-11-05 Kt Corporation Method and apparatus for video signal coding using current picture reference flag
WO2016085229A1 (ko) 2014-11-27 2016-06-02 주식회사 케이티 비디오 신호 처리 방법 및 장치
CN115134595A (zh) * 2015-06-05 2022-09-30 杜比实验室特许公司 用于执行帧间预测的图像编解码方法、比特流存储方法
US20170006219A1 (en) 2015-06-30 2017-01-05 Gopro, Inc. Image stitching in a multi-camera array
US9992502B2 (en) 2016-01-29 2018-06-05 Gopro, Inc. Apparatus and methods for video compression using multi-resolution scalable coding
US10291910B2 (en) 2016-02-12 2019-05-14 Gopro, Inc. Systems and methods for spatially adaptive video encoding
US10484621B2 (en) 2016-02-29 2019-11-19 Gopro, Inc. Systems and methods for compressing video content
US10645362B2 (en) 2016-04-11 2020-05-05 Gopro, Inc. Systems, methods and apparatus for compressing video content
US10163029B2 (en) 2016-05-20 2018-12-25 Gopro, Inc. On-camera image processing based on image luminance data
US10462466B2 (en) 2016-06-20 2019-10-29 Gopro, Inc. Systems and methods for spatially selective video coding
US10553029B1 (en) 2016-09-30 2020-02-04 Amazon Technologies, Inc. Using reference-only decoding of non-viewed sections of a projected video
US10609356B1 (en) * 2017-01-23 2020-03-31 Amazon Technologies, Inc. Using a temporal enhancement layer to encode and decode stereoscopic video content
US10198862B2 (en) 2017-01-23 2019-02-05 Gopro, Inc. Methods and apparatus for providing rotated spherical viewpoints
EP3831056A4 (en) 2018-08-17 2021-10-13 Huawei Technologies Co., Ltd. MANAGEMENT OF REFERENCE PHOTO IN VIDEO CODING
CN112740705A (zh) * 2018-09-21 2021-04-30 夏普株式会社 用于在视频编码中发送信号通知参考图片的系统和方法
EP3629584A1 (en) * 2018-09-25 2020-04-01 Koninklijke Philips N.V. Apparatus and method for generating and rendering a video stream
WO2020232355A1 (en) * 2019-05-16 2020-11-19 Bytedance Inc. Intra block copy for screen content coding
WO2024077616A1 (zh) * 2022-10-14 2024-04-18 Oppo广东移动通信有限公司 编解码方法、装置、设备、及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090077907A (ko) * 2006-10-13 2009-07-16 톰슨 라이센싱 멀티뷰 비디오 코딩을 위한 참조 화상 목록 관리 구문
US20100202521A1 (en) * 2006-08-25 2010-08-12 Han Suh Koo Method and apparatus for decoding/encoding a video signal

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101461242B (zh) * 2006-03-30 2011-08-03 Lg电子株式会社 用于解码/编码视频信号的方法和装置
US8634463B2 (en) * 2006-04-04 2014-01-21 Qualcomm Incorporated Apparatus and method of enhanced frame interpolation in video compression
KR20080022063A (ko) * 2006-09-05 2008-03-10 엘지전자 주식회사 비디오 신호 디코딩 방법 및, 비디오 신호 디코딩 장치
CN107295350A (zh) * 2006-10-13 2017-10-24 汤姆逊许可公司 用于多视点视频编码的参考图像列表管理语法
KR100941608B1 (ko) * 2006-10-17 2010-02-11 경희대학교 산학협력단 다시점 영상의 부호화 및 복호화 방법과 그를 위한 장치
KR100902353B1 (ko) * 2007-11-16 2009-06-12 광주과학기술원 깊이맵 추정장치와 방법, 이를 이용한 중간 영상 생성 방법및 다시점 비디오의 인코딩 방법
EP2424247B1 (en) * 2009-04-21 2016-08-24 LG Electronics Inc. Method and apparatus for processing multi-view video signal
KR102090106B1 (ko) * 2011-11-11 2020-03-17 지이 비디오 컴프레션, 엘엘씨 깊이-맵 추정 및 업데이트를 사용한 효율적인 멀티-뷰 코딩
US9258559B2 (en) * 2011-12-20 2016-02-09 Qualcomm Incorporated Reference picture list construction for multi-view and three-dimensional video coding
IN2014CN04872A (ko) * 2012-01-17 2015-09-18 Ericsson Telefon Ab L M
KR20130119379A (ko) * 2012-04-23 2013-10-31 삼성전자주식회사 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202521A1 (en) * 2006-08-25 2010-08-12 Han Suh Koo Method and apparatus for decoding/encoding a video signal
KR20090077907A (ko) * 2006-10-13 2009-07-16 톰슨 라이센싱 멀티뷰 비디오 코딩을 위한 참조 화상 목록 관리 구문

Also Published As

Publication number Publication date
KR102106536B1 (ko) 2020-05-06
WO2013162311A1 (ko) 2013-10-31
EP2843946A4 (en) 2016-01-20
CN104396252A (zh) 2015-03-04
US20150124877A1 (en) 2015-05-07
CN104396252B (zh) 2018-05-04
EP2843946A1 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
KR101961888B1 (ko) 인터 예측 방법 및 그 장치, 움직임 보상 방법 및 그 장치
KR101941250B1 (ko) 블록크기에 따라 인터 예측의 참조픽처리스트를 결정하는 비디오 부호화 방법과 그 장치, 비디오 복호화 방법과 그 장치
KR102106536B1 (ko) 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
KR102270787B1 (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20170101872A (ko) 인터 예측의 참조영상을 결정하는 방법과 그 장치
KR101456501B1 (ko) 참조픽처리스트 변경이 가능한 인터 예측 방법과 그 장치
KR20160132859A (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
KR20140122196A (ko) 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20150043221A (ko) 인트라 블록 복사 예측을 이용한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20130119379A (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
KR20150010660A (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 깊이 영상의 화면내 예측 방법
KR20150073132A (ko) 휘도 보상을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20130088086A (ko) 시점변환을 위한 예측구조에 기초한 다시점 비디오 부호화 방법 및 그 장치, 시점변환을 위한 예측구조에 기초한 다시점 비디오 복호화 방법 및 그 장치
KR20160031991A (ko) 적응적 휘도 보상을 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20130119380A (ko) 슬라이스 헤더를 이용하는 3차원 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
KR20170019373A (ko) 다 시점 영상 부호화/복호화 방법 및 장치
KR101919015B1 (ko) 다 시점 영상 부호화/복호화 방법 및 장치
KR20150076135A (ko) 뎁스 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR20140122673A (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20140122198A (ko) 시점 합성 예측을 이용하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20160135760A (ko) 유형 정보를 이용한 멀티 레이어 비디오 부호화 방법 및 멀티 레이어 비디오 복호화 방법
KR20140123008A (ko) 휘도차를 보상하기 위한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
KR20130085388A (ko) 시점 변환을 위한 다시점 비디오 예측 방법 및 그 장치, 시점 변환을 위한 다시점 비디오 예측 복원 방법 및 그 장치
KR20150043227A (ko) 뎁스 인터 부호화 방법 및 그 장치, 복호화 방법 및 그 장치
KR101663230B1 (ko) 잔차 예측을 이용한 인터 레이어 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right