KR20140115019A - Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil - Google Patents

Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil Download PDF

Info

Publication number
KR20140115019A
KR20140115019A KR1020130029526A KR20130029526A KR20140115019A KR 20140115019 A KR20140115019 A KR 20140115019A KR 1020130029526 A KR1020130029526 A KR 1020130029526A KR 20130029526 A KR20130029526 A KR 20130029526A KR 20140115019 A KR20140115019 A KR 20140115019A
Authority
KR
South Korea
Prior art keywords
sewage sludge
soil
biochar
bio
present
Prior art date
Application number
KR1020130029526A
Other languages
Korean (ko)
Inventor
옥용식
박재남
임정은
안종화
Original Assignee
강원대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강원대학교산학협력단 filed Critical 강원대학교산학협력단
Priority to KR1020130029526A priority Critical patent/KR20140115019A/en
Publication of KR20140115019A publication Critical patent/KR20140115019A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/025Thermal hydrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a method for manufacturing a biochar using sewage sludge and a novel purpose for a heavy metal adsorption of the biochar manufactured by the same. More specifically, the present invention relates to Pb-immobilization effect in soil contaminated by heavy metal, derived from a biochar manufactured in a specific process using sewage sludge. The biochar manufactured from sewage sludge has a function of adsorbing heavy metal in soil which is contaminated by heavy metal, and is especially effective in adsorbing lead (Pb). Therefore, the biochar can be useful as a material for improving and stabilizing soil which is contaminated by lead (Pb). Moreover, since sewage sludge which requires a delicate treatment is used as a component, the present invention is capable of providing solutions to both recycling of waste resource and prevention of environmental pollution.

Description

하수슬러지를 이용한 바이오차 제조방법 및 이로 인해 제조된 바이오차의 토양 내 납(Pb) 고정화 효과{Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil}[0001] The present invention relates to a method for producing bio-tea using sewage sludge, and a method for immobilizing lead (Pb)

본 발명은 하수슬러지를 이용한 바이오차 제조방법 및 이로 인해 제조된 바이오차의 중금속 흡착의 신규 용도에 관한 것으로, 자세하게는 하수슬러지를 이용하여 특정 공정으로 제조된 바이오차가 중금속 오염 토양 내의 납(Pb)을 효과적으로 흡착(고정화)시키는 효과에 관한 것이다.The present invention relates to a method for producing a bio-tea using sewage sludge and a novel use of the bio-tea for the heavy metal adsorption. More specifically, the present invention relates to a method for producing a bio-tea using sewage sludge, (Immobilizing) the adsorbent effectively.

인구증가에 따른 도시화와 산업화로 인해 생활수준이 증가됨에 따라 비례적으로 슬러지의 발생량도 증가 하고 있다. 슬러지란 공장이나 가정에서 배출되는 폐수를 정수 및 폐수처리 함으로써 수중의 부유물을 액체로부터 분리시켜 발생되는 찌꺼기를 일컬으며, 반고형물로서 악취발생 및 자연 생태계에 영향을 끼친다. 폐수처리 과정에서 생긴 슬러지는 중금속 등 오염물질이 많고 부패성이 크며 함수율이 높다. 이와 같은 슬러지는 각종 산업장 및 제한된 토지 면적을 가진 도시에서 고형폐기물과 더불어 심각한 문제로 대두되고 있으며, 슬러지의 함수율, 부패성, 병원성, 유해물질 함유는 환경학적 잠재적 위험성 및 처리의 기술적 문제가 중요하다(윤, 1995). 또한 런던협약의 발효로 인해 2012년부터 하수오니의 해양투기가 금지됨에 따라 처리방법중 약 50%를 차지하는 해양투기의 대처방안을 강구하여야 한다.As the living standard increases due to urbanization and industrialization due to population growth, the amount of sludge generated is proportionally increased. Sludge refers to the wastewater discharged from factories and households by treating wastewater from water and wastewater and separating suspended matter from the liquid from the liquid. It is a semi-solid, which affects odor generation and natural ecosystem. The sludge formed in the wastewater treatment process has many pollutants such as heavy metals, high perishability and high water content. Such sludge is becoming a serious problem with solid wastes in various industrial fields and cities with limited land area, and the water content of the sludge, perishability, pathogenicity, environmental hazard potential and technical problem of treatment are important (Yoon, 1995). In addition, the marine dumping of sewage sludge will be banned in 2012 due to the London Convention, and countermeasures against marine dumping should be sought, which accounts for about 50% of the treatment methods.

반면 폐기물로 여겨지는 일부 슬러지는 중요한 영양물질과 유기물질을 포함하여 자연의 자원으로 가치가 있으며, 선진 외국에서는 자원의 유한성을 인식하여 각종 자원의 보전 및 절약에 노력하고 있다. 슬러지도 자원으로 재활용이 필요하다는 인식으로 다양한 형태의 자원화를 적극적으로 추진하고 있으며, 그 방법의 하나로서 퇴비화 하고 있다(배재근, “하수슬러지의 자원화 현황 및 전망”, J. of KOWREC, 8(3), 9∼30[2000]).On the other hand, some sludges considered as waste are valuable as natural resources, including important nutrients and organic matter. In developed countries, efforts are being made to conserve resources and conserve resources. J. of KOWREC, 8 (3), "Sewage Sludge Recycling Status and Prospect", Jae-Keun Bae, "Composting of Sludge as a Resource" , 9-30 [2000]).

그러나 하수 슬러지내 존재하는 각종 중금속의 축적과 다량의 염분 및 미부숙된 유기물의 부숙 과정에서 발생하는 독성물질에 의한 작물의 생육저해, 중금속의 생물농축 현상에 의한 인축 독성의 유발 가능성과 가용성 염류의 용탈로 인한 토양과 지하수의 오염 등 부정적인 효과도 우려되고 있다(Jung, K, Y., “Organic Wastes Recycling”, Korean J. Soil Sci. Fert, 31(S.I), 30∼33[1995]).However, there is a possibility that the accumulation of various heavy metals in sewage sludge, the inhibition of the growth of crops due to the toxic substances generated in the compaction of large amounts of salinity and inhaled organic matter, the possibility of lethal toxicity due to the bioconcentration of heavy metals, (Jung, K., Y., "Organic Wastes Recycling", Korean J. Soil Sci. Fert., 31 (SI), 30-33 [1995]) is also concerned with the negative effects of soil and groundwater contamination due to leaching.

그러므로 처치 곤란한 상태의 슬러지를 퇴비화하는 방안으로 대처할 수도 있으나 중금속과 독성을 유발할 수 있다는 선행결과에 따라 하수슬러지의 효과적인 처리방법이 필요한 실정이다.Therefore, it is possible to cope with the problem of composting sludge which is difficult to treat, but it is necessary to effectively treat sewage sludge according to the result that it can cause heavy metals and toxicity.

한편, 바이오차(biochar)란 유기물질을 무산소 조건의 밀폐된 공간에서 700℃이하의 온도조건하에 열분해하여 생성된 물질을 일컫는데, 이러한 바이오차의 재료는 식물체일 수도 있고, 계분이나 돈분 같은 축분도 바이오차의 재료가 될 수 있다. 바이오차와 관련된 특허로는 한국등록특허 제10-1190282호에서 임목부산물(플라타너스, 버드나무가지, 활엽수, 단풍잎돼지풀 등)을 이용하여 바이오차를 제조하는 방법 및 이렇게 제조된 바이오차가 중금속 오염수 처리의 용도를 가짐을 개시하고 있다.On the other hand, biochar refers to a substance produced by pyrolyzing an organic material under an oxygen-free closed space under a temperature condition of 700 ° C or less. The material of the bio-tea may be a plant, Can also be the material of bio-tea. Patent patents relating to biocha are disclosed in Korean Patent No. 10-1190282, in which a bio-tea is produced by using by-product of wood (sycamore, willow tree, hardwood, maple leaf, And the like.

그러나 현재까지 하수슬러지를 이용하여 제조된 바이오차의 납(Pb) 오염 토양의 안정화 효과(용도)에 대해서는 규명된 바 없다.However, the stabilizing effect (use) of lead (Pb) -contaminated soil of bio-tea produced using sewage sludge has not been elucidated.

이에 본 발명자들은 하수슬러지의 처리 방안으로서 퇴비화 이외에 바이오차로의 제작함으로써, 폐기물 처리문제와 폐자원의 자원화를 동시에 해결하고자 노력하였으며, 그 결과 하수슬러지를 이용하여 특정 조건 하에서 제조된 바이오차가 중금속 오염 토양 내에 함유된 생물에 이용 가능한 형태의 납(Pb)을 고정화시킴으로써(immobilization) 생물이 흡수할 수 없는 형태로 변환시켜 오염된 토양을 효과적으로 안정화시킨다는 사실을 확인함으로써 본 발명을 완성하였다.Therefore, the present inventors have tried to solve the waste disposal problem and the recycling of waste resources simultaneously by producing bio-lane in addition to composting as a treatment method of sewage sludge. As a result, the bio-car produced under a specific condition using sewage sludge (Pb) in a form usable in organisms contained in the soil (immobilization) to convert it into a form that the organism can not absorb, thereby effectively stabilizing the contaminated soil.

한국등록특허 제10-1190282호Korean Patent No. 10-1190282

따라서 본 발명의 목적은 하수슬러지를 이용한 바이오차 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing bio-tea using sewage sludge.

본 발명의 다른 목적은 상기 방법으로 제조된 토양 내 중금속 흡착용 바이오차를 제공하는 것이다.Another object of the present invention is to provide a biochip for adsorbing heavy metals in soil produced by the above method.

본 발명의 또 다른 목적은 상기 중금속 흡착용 바이오차를 유효성분으로 함유하는 토양개량용 조성물을 제공하는 것이다.It is still another object of the present invention to provide a soil improving composition comprising the above-mentioned heavy metal adsorbing biochain as an effective ingredient.

상기와 같은 본 발명의 목적을 달성하기 위해서,In order to achieve the above-mentioned object of the present invention,

본 발명은 (a) 하수슬러지를 준비하는 단계; (b) 상기 준비된 하수슬러지를 고온에서 건조시키는 단계; (c) 상기 건조된 하수슬러지를 분쇄하는 단계; 및 (d) 상기 분쇄물을 열분해하는 단계를 포함하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법을 제공한다.(A) preparing a sewage sludge; (b) drying the prepared sewage sludge at a high temperature; (c) pulverizing the dried sewage sludge; And (d) thermally decomposing the pulverized material. The present invention also provides a method for producing biochar using sewage sludge.

본 발명의 일실시예에 있어서, 상기 (b) 단계는 하수슬러지를 100℃ 내지 110℃에서 수분함량이 1% 내지 10%가 되도록 건조시키는 단계일 수 있다.In one embodiment of the present invention, the step (b) may be a step of drying the sewage sludge at a temperature ranging from 100 ° C to 110 ° C to a moisture content of 1% to 10%.

본 발명의 일실시예에 있어서, 상기 (c) 단계는 건조된 하수슬러지를 1mm 내지 3mm의 입도가 되도록 분쇄하는 단계일 수 있다.In one embodiment of the present invention, the step (c) may be a step of pulverizing the dried sewage sludge to a particle size of 1 mm to 3 mm.

본 발명의 일실시예에 있어서, 상기 (d) 단계는 분쇄물을 7℃/분(min)의 속도로 승온하여 300℃ 내지 700℃ 범위에서 2시간 내지 4시간 동안 열분해를 진행하는 단계일 수 있다.In one embodiment of the present invention, the step (d) may include heating the pulverized product at a rate of 7 ° C / minute (min) and pyrolyzing the product at 300 ° C to 700 ° C for 2 hours to 4 hours have.

또한 본 발명은, 상기 방법으로 제조된 토양 내 중금속 흡착용 바이오차를 제공한다.The present invention also provides a biochip for adsorbing heavy metals in soil produced by the above method.

본 발명의 일실시예에 있어서, 상기 중금속은 납(Pb)일 수 있다.In one embodiment of the present invention, the heavy metal may be lead (Pb).

본 발명의 일실시예에 있어서, 상기 바이오차는 토양 내에 함유된 생물에 이용 가능한 형태의 납(Pb)을 고정화시킴으로써(immobilization) 생물이 흡수할 수 없는 형태로 변환시켜 오염된 토양을 안정화시킬 수 있다.In one embodiment of the present invention, the bio-car can stabilize the contaminated soil by immobilizing the lead (Pb) in a form that is usable for the organisms contained in the soil, .

또한, 본 발명은 상기 중금속 흡착용 바이오차를 유효성분으로 함유하는 토양개량용 조성물을 제공한다.The present invention also provides a composition for soil improvement comprising the above-mentioned bioacci for adsorbing heavy metals as an effective ingredient.

본 발명의 하수슬러지로부터 제조되는 바이오차는 중금속으로 오염된 토양 내의 중금속을 흡착하는 기능을 가지며, 특히 납(Pb)의 흡착 기능이 우수하여 납(Pb)으로 오염된 토양을 안정화시키는 토양개량제의 소재로서 유용하게 사용될 수 있다. 또한 본 발명의 경우 처치 곤란한 상태의 하수슬러지 사용함으로써 폐자원의 활용과 더불어 환경오염문제를 예방할 수 있는 이점을 가진다.The bio-tea produced from the sewage sludge according to the present invention has a function of adsorbing heavy metals in the soil contaminated with heavy metals, particularly excellent in the adsorption function of lead (Pb), so that the material of the soil conditioner stabilizing the soil contaminated with lead (Pb) . ≪ / RTI > Further, in the case of the present invention, by using sewage sludge in a state difficult to be treated, there is an advantage that the environmental pollution problem can be prevented along with utilization of waste resources.

도 1은 본 발명의 하수슬러지 바이오차의 열분해 온도(300℃, 700℃)에 따른 표면 이미지를 나타낸 사진이다((a): SS[열분해 전 하수슬러지 분말], (b): SBC300, (c): SBC700).
도 2는 본 발명의 하수슬러지 바이오차의 열분해 온도(300℃, 400℃, 500℃, 600℃, 700℃)에 따른 작용기 분석 결과를 나타낸 그래프이다.
도 3은 본 발명의 하수슬러지 바이오차의 열분해 온도(300℃, 400℃, 500℃, 600℃, 700℃)에 따른 입도 분석 결과를 나타낸 그래프이다.
도 4는 본 발명의 하수슬러지 바이오차의 열분해 온도(300℃, 400℃, 500℃, 600℃, 700℃)에 따른 중금속 오염 토양 내 납(Pb) 흡착 효과를 평가한 것으로, 열분해 온도에 따라 제조된 각각의 하수슬러지 바이오차를 중금속 오염 토양에 적용한 후 토양 내 납(Pb) 이온의 농도를 측정하여 그래프로 나타낸 것이다(a: 0.1N HCl extracted Pb, (b): 1M CaCl2 extracted Pb, (c) 0.43M CH3COOH extracted Pb).
1 is a photograph showing a surface image according to the pyrolysis temperature (300 ° C., 700 ° C.) of the sewage sludge bio-tea of the present invention ((a): SS (Sewage sludge powder before pyrolysis), (b): SBC300 ): SBC700).
2 is a graph showing the result of functional group analysis according to the pyrolysis temperatures (300 ° C, 400 ° C, 500 ° C, 600 ° C and 700 ° C) of the sewage sludge bioassay of the present invention.
3 is a graph showing the results of particle size analysis according to the thermal decomposition temperatures (300 ° C, 400 ° C, 500 ° C, 600 ° C and 700 ° C) of the sewage sludge bioassay of the present invention.
4 is a graph showing an evaluation of lead (Pb) adsorption effect of heavy metal contaminated soil according to the pyrolysis temperature (300 ° C, 400 ° C, 500 ° C, 600 ° C and 700 ° C) of the sewage sludge bio- (A) 0.1N HCl extracted Pb, (b): 1M CaCl 2 extracted Pb, and (b) the concentration of lead (Pb) ion in the soil after applying each sewage sludge bio- (c) 0.43M CH 3 COOH extracted Pb).

본 발명은 (a) 하수슬러지를 준비하는 단계; (b) 상기 준비된 하수슬러지를 고온에서 건조시키는 단계; (c) 상기 건조된 하수슬러지를 분쇄하는 단계; 및 (d) 상기 분쇄물을 열분해하는 단계를 포함하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법을 제공함에 그 특징이 있다.(A) preparing a sewage sludge; (b) drying the prepared sewage sludge at a high temperature; (c) pulverizing the dried sewage sludge; And (d) thermally decomposing the pulverized material. The method of the present invention is characterized by using the sewage sludge.

본 발명의 (a) 단계는 하수슬러지를 준비하는 단계이다.Step (a) of the present invention is a step of preparing sewage sludge.

본 발명의‘하수슬러지’란 하수처리장으로 유입되는 이물질을 중력 침강이나 약품 처리를 하여 따로 모아서 탈수시켜 남은 찌꺼기 덩어리를 의미한다.The term "sewage sludge" of the present invention means a sludge remaining after collecting and dehydrating foreign matter introduced into a sewage treatment plant by gravity sedimentation or chemical treatment.

본 발명에서 바이오차의 원료로 사용되는 하수슬러지는 일반적인 하수종말처리장에서 생산되는 슬러지로서 농축조, 조화조, 탈수기의 공정을 거쳐 생산되는 수분함량이 50% 이하의 상태의 하수슬러지를 이용할 수 있다.In the present invention, sewage sludge used as a raw material of bio-tea is sludge produced in a general sewage end-treatment plant and sewage sludge having a moisture content of 50% or less produced through a process of a concentration tank, a coagulation tank and a dehydrator can be used.

본 발명의 (b) 단계는 상기 (a) 단계에서 준비된 하수슬러지를 고온에서 건조시키는 단계로서, 자세하게는 하수종말처리장에서 생산되는 슬러지의 수분함량을 줄이기 위해 100℃ 이상의 고온에서 건조시키는 단계이다.The step (b) of the present invention is a step of drying the sewage sludge prepared in the step (a) at a high temperature, in detail, a step of drying at a high temperature of 100 ° C or more to reduce the moisture content of the sludge produced in the sewage end treatment plant.

본 발명의 일실시예에서, 상기 (b) 단계는 하수슬러지를 100℃ 내지 110℃에서 수분함량이 10% 이내가 되도록 건조시킬 수 있다.In one embodiment of the present invention, the step (b) is a step of heating the sewage sludge at 100 ° C to 110 ° C It can be dried so that the moisture content is within 10%.

본 발명의 (c) 단계는 건조된 하수슬러지를 분쇄하는 단계로서, 자세하게는 상기 (b) 단계를 거쳐 수분함량이 1% 내지 10%가 되도록 건조된 하수슬러지를 고무망치를 이용하여 파쇄하여 적절한 입도를 가진 입자가 되도록 분말화하는 단계이다.The step (c) of the present invention is a step of pulverizing the dried sewage sludge. In detail, the sewage sludge dried to have a moisture content of 1% to 10% through the step (b) And pulverizing the resulting mixture into particles having a particle size.

본 발명의 일실시예에서, 상기 (c) 단계는 건조된 하수슬러지를 1mm 내지 3mm의 입도가 되도록 분쇄하여 분쇄물을 수득하는 단계일 수 있다.In one embodiment of the present invention, the step (c) may be a step of pulverizing the dried sewage sludge to a particle size of 1 mm to 3 mm to obtain a pulverized product.

본 발명의 (d) 단계는 상기 분쇄물을 열분해하는 단계로서, 자세하게는 상기 (c) 단계를 통해 수득한 분쇄물을 일정한 속도로 승온하여 700℃ 이하의 온도 범위에서 열분함으로써 최종적으로 본 발명의 바이오차를 수득하는 단계이다.The step (d) of the present invention is a step of pyrolyzing the pulverized product. Specifically, the pulverized product obtained through the step (c) is heated at a constant rate and thermally decomposed in a temperature range of 700 ° C or lower. Thereby obtaining a bio-tea.

본 발명의 일실시예에서, 상기 (d) 단계는 분쇄물을 7℃/분(min)의 속도로 승온하여 300℃ 내지 700℃ 범위에서 2시간 내지 4시간 동안 열분해를 진행할 수 있다.In one embodiment of the present invention, the step (d) may include heating the pulverized product at a rate of 7 ° C / minute (min) and pyrolysis at 300 ° C to 700 ° C for 2 to 4 hours.

본 발명의 다른 일실시예에서, 상기 (d) 단계는 분쇄물을 7℃/분(min)의 속도로 승온하여 각 300℃, 400℃, 500℃, 600℃, 700℃ 조건에서 3시간 동안 열분해를 진행할 수 있다.In another embodiment of the present invention, the step (d) comprises heating the pulverized product at a rate of 7 ° C / minute (min), heating the product at 300 ° C, 400 ° C, 500 ° C, 600 ° C, Pyrolysis can proceed.

본 발명자들은 상기와 같은 (a) 내지 (d) 단계를 통해 제조된 바이오차가 중금속으로 오염된 토양 내의 중금속을 흡착하는 기능을 가지며, 특히 납(Pb)의 흡착 기능이 우수하여 납(Pb)으로 오염된 토양을 안정화시키는 토양개량제의 소재로서 유용하게 사용될 수 있다는 사실을 최초로 규명하였다.The present inventors have found that the bio-tea produced through the steps (a) to (d) has a function of adsorbing heavy metals in the soil contaminated with heavy metals, and particularly excellent in the adsorption function of lead (Pb) And that it can be useful as a soil remediation agent for stabilizing contaminated soil.

이러한 사실을 본 발명의 일실시예를 통해 확인할 수 있었는데, 상기 제조방법에 따라 제조된 바이오차의 중금속 오염 토양에 적용에 따른 중금속 흡착 효과를 살펴본 결과, 본 발명의 바이오차는 중금속 중에서도 납(Pb)을 효과적으로 감소시키는 것으로 나타났으며, 바이오차를 생산하는 열분해 온도가 증가할수록 항온배양실험을 했을 때, 납(Pb)을 안정화시키는데 더 높은 효율을 보여주었다(도 4 참조).As a result of examining the heavy metal adsorption effect according to the application to the heavy metal contaminated soil of the bio-tea produced according to the above-mentioned production method, the bio-tea of the present invention was found to contain lead (Pb) As the pyrolysis temperature for producing bio-tea increased, it showed a higher efficiency in stabilizing lead (Pb) (see FIG. 4) in a constant temperature incubation experiment.

이와 같은 결과를 통해, 본 발명자들은 상기 제조방법으로 제조된 하수슬러지 바이오차가 토양 내에 함유된 생물에 이용 가능한 형태의 납(Pb)을 고정화(immobilization)시킴으로써 생물이 흡수할 수 없는 형태로 변환시켜 오염된 토양을 안정화시키는 것을 실험적으로 입증하였다.As a result, the inventors of the present invention found that the sewage sludge bio-car produced by the above-described method can be converted into a form that can not be absorbed by living organisms by immobilizing lead (Pb) Lt; RTI ID = 0.0 > soil. ≪ / RTI >

그러므로 본 발명의 바이오차는 토양 내 중금속 흡착의 소재로서 유용하게 사용될 수 있으며, 중금속 중에서도 납(Pb)을 효과적으로 흡착시킬 수 있다.Therefore, the bio-tea of the present invention can be effectively used as a material for heavy metal adsorption in soil, and can effectively adsorb lead (Pb) in heavy metals.

따라서 본 발명은 상기 제조방법으로 제조된 중금속 흡착용 바이오차 및 이를 유효성분으로 포함하는 토양개량용 조성물도 추가적으로 제공한다.
Accordingly, the present invention further provides a biochip for heavy metal adsorption produced by the above production method and a composition for improving soil comprising the same as an active ingredient.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are for further illustrating the present invention, and the scope of the present invention is not limited to these examples.

<< 실시예Example 1> 1>

본 발명의 The 바이오차Bio tea 제조 Produce

<1-1> <1-1> 하수슬러지Sewage sludge 수집 collection

하수슬러지 수집 지역은 강원도 춘천시 하수종말 처리시설을 선정하였다. 슬러지 처리 공정은 농축조, 조화조, 탈수기의 공정을 거치며, 수분함량이 가장 적은 상태로 배출하는 탈수기에서 하수슬러지를 수집하였다. 하수슬러지의 수분함량을 줄이기 위해 105℃ 오븐에서 48시간 건조시켰다. 건조된 하수슬러지는 고무망치를 이용하여 파쇄 후 2mm 표준체를 통과된 것을 분석 및 바이오차 생산에 사용하였으며 하기에서는 ‘SS'로 명명하였다.
Sewage sludge collection area was selected as a sewage treatment facility in Chuncheon city, Gangwon province. Sewage sludge was collected from a dehydrator which was processed through concentration tank, conditioning tank and dehydrator process and discharged with the lowest water content. And dried in a 105 ° C oven for 48 hours to reduce the moisture content of the sewage sludge. The dried sewage sludge was crushed using a rubber hammer and passed through a 2 mm standard body for analysis and production of bio-tea. In the following, it was named 'SS'.

<1-2> <1-2> 바이오차Bio tea 제조 Produce

본 실험에서는 하수슬러지를 이용한 바이오차를 생산하기 위해 상기 실시예<1-1>을 통해 제조한 SS를 열분해하였다.In this experiment, SS produced through the above Example <1-1> was pyrolyzed to produce bio-tea using sewage sludge.

자세하게는 Programmed Box-type Muffle Furance(Mod.No: N11/H)[Nabertherm GmbH, Germany]를 이용 분당 7℃의 속도로 승온하여 각 300, 400, 500, 600, 700℃ 조건으로 생산하였으며, 등온시간은 동일하게 3시간 동안 열분해를 진행하였다. 바이오차의 냉각은 회화로에서 상온이 될 때까지(약 12시간) 회화로 내에서 냉각하였다. 이렇게 제작된 본 발명의 바이오차는 각각 열분해 온도에 따라 SBC300, SBC400, SBC500, SBC600, SBC700으로 명명하였으며, 하기 실험의 시료로 사용하였다.
In detail, the temperature was raised at a rate of 7 ° C per minute using Programmed Box-type Muffle Furance (Mod.No: N11 / H) [Nabertherm GmbH, Germany] to produce 300, 400, 500, The pyrolysis was carried out for the same time for 3 hours. The cooling of the bio-tea was allowed to cool to room temperature (about 12 hours) in the painting furnace. The thus-produced bio-tea of the present invention was named as SBC300, SBC400, SBC500, SBC600, and SBC700, respectively, according to the pyrolysis temperature, and used as a sample in the following experiment.

<< 실시예Example 2> 2>

본 발명의 방법으로 제조된 [0050] 바이오차의Bio-car 특성분석 Character analysis

<2-1> <2-1> 바이오차Bio tea 화학성 평가 Chemical evaluation

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 화학성 분석을 위해, 바이오차의 pH 및 EC(electrical conductivity)를 토양오염공정시험방법에 의거해 측정하였다.For the chemical analysis of the bio-tea of the present invention manufactured through Example 1, the pH and EC (electrical conductivity) of the bio-tea were measured according to the soil pollution process test method.

자세하게는 분석용 시료(SS, SBC300, SBC400, SBC500, SBC600, SBC700) 각각 3g씩을 50ml의 PDEF재질의 튜브에 넣은 다음 증류수 15ml를 넣고(1 Soil:5 Water법) 교반한 다음 유리전극(inolab pH 7110 BNC, WTW, Germany)을 이용하여 현탁액의 pH를 측정하였다. pH를 측정한 현탁액을 Whatman No.42로 여과하여 전극(orion 3 star, Thermo, USA)을 이용하여 EC를 측정하였다.3 g each of analytical samples (SS, SBC300, SBC400, SBC500, SBC600, and SBC700) were placed in 50 ml PDEF tubes, 15 ml distilled water was added (1 Soil: 5 Water method) 7110 BNC, WTW, Germany). The pH of the suspension was filtered with Whatman No. 42 and the EC was measured using an electrode (orion 3 star, Thermo, USA).

그 결과, 하기 표 1에서 나타낸 바와 같이, 바이오차 생산에 있어서 열분해온도가 0℃∼700℃로 증가함에 따라 pH가 5.88∼8.12로 증가하는 경향을 확인할 수 있었으며, pH가 증가하는 원인으로는 산성기(acidic group)가 고온에서 휘발되었기 때문에 증가한 것으로 판단되었다. 한편, EC의 경우 열분해온도가 증가함에 따라 증가하는 경향을 보이다가 SBC400에서 가장 높은 수치를 나타내었는데, 그 이유는 400℃에서 바이오차 내에 무기물의 함량이 최고조에 달하여서 높은 수치를 얻은 것으로 판단된다. 또한, SBC500, SBC600, SBC700 순으로 EC가 점차 감소하는 경향을 보이는데, 이는 원재료인 SS가 식물체와 같은 단일물질이 아니고 여러 물질이 섞여있는 혼합물질이기 때문에 다양한 온도 조건이 EC에 영향을 줄 수 있을 것으로 보인다.
As a result, as shown in the following Table 1, it was confirmed that the pH tended to increase from 5.88 to 8.12 as the pyrolysis temperature increased from 0 ° C to 700 ° C in the production of bio-tea, It was judged that the acidic group was increased due to volatilization at high temperature. On the other hand, EC showed a tendency to increase with increasing pyrolysis temperature and showed the highest value in SBC400 because the content of inorganic matter in the bio-tea reached a maximum value at 400 ° C . In addition, EC tends to decrease gradually in the order of SBC500, SBC600, and SBC700. This is because the SS, which is the raw material, is not a single substance such as a plant but a mixture of various substances, Seems to be.

<2-2> <2-2> 바이오차Bio tea 공업분석 평가 Industrial analysis evaluation

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 공업분석을 평가하였다.The industrial analysis of the bio-tea of the present invention prepared in Example 1 was evaluated.

자세하게는 분석용 시료(SS, SBC300, SBC400, SBC500, SBC600, SBC700) 내 함유된 수분함량은 폐기물공정시험법에 따라 측정하였다. 증발접시를 미리 105℃에서 1시간 건조시킨 후 꺼내어 무게를 측정하고, 시료를 넣은 뒤 24시간 건조시킨 다음 데시케이터(desiccator) 안에서 방냉하고 증발접시와 시료의 무게를 정밀히 측정하였다. 그 후 잔류시료를 회화로에서 각 450℃, 750℃에서 30분씩 열분해시켜 휘발분과 회분을 측정하였다. 각각의 값을 중량 백분율로 계산하여 하기 수학식 1에 대입하여 고정탄소의 양을 백분율로 도출하였다.In detail, the water content contained in the analytical samples (SS, SBC300, SBC400, SBC500, SBC600, SBC700) was measured according to the waste process test method. The evaporation dish was preliminarily dried at 105 ° C for 1 hour, and then taken out and weighed. After putting the sample, the sample was dried for 24 hours and then cooled in a desiccator and the weight of the evaporation dish and the sample was precisely measured. After that, the residual samples were pyrolyzed in a painting furnace at 450 ° C and 750 ° C for 30 minutes to measure volatile matter and ash. Each value was calculated as a weight percentage and substituted into the following equation (1) to calculate the amount of fixed carbon as a percentage.

그 결과 하기 표 1에서 나타낸 바와 같이, 수분(Moisture)의 경우 고온에서 제작된 바이오차일수록 함수량이 적은 것을 확인할 수 있다. 또한 휘발분도 감소하는 경향을 보여주는데 이는 고온의 조건에서 유기물들이 휘발되어 고정탄소가 생성됨으로써 감소한 것으로 보인다. 회분(Ash)은 수분(Moisture), 휘발분(Mobile Matter)과 다르게 증가하는 경향을 보이는데, 그 이유는 하수슬러지내 잔류되어있던 유기물인 것으로 판단되었다.
As a result, as shown in the following Table 1, it can be confirmed that the moisture content in the case of Moisture is smaller as the biocham produced at high temperature is. Also, the volatiles tend to decrease because of the volatilization of organics at high temperature and the formation of fixed carbon. The ash tends to increase differently from the moisture and mobile matter because it was considered to be the organic matter remaining in the sewage sludge.

[수학식 1][Equation 1]

수분(%)+휘발류(%)+회분(%)+고정탄소(%) = 100%
Water (%) + volatiles (%) + ash (%) + fixed carbon (%) = 100%

<2-3> <2-3> 바이오차Bio tea 원소분석 Elemental analysis

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 원소를 분석하였다. 분석기기는 원소분석기(FlashEA1112, Thermo, USA)를 이용하여 C, H, O, N, S를 정량하였다. 참고로 원소분석 결과를 통해서 바이오차의 열분해 시 발생하는 물질 중 가스의 발생량 및 조성, 반응 물질 수지를 CEA 코드를 통해 간접적으로 예측할 수 있다.The element of the bio-tea of the present invention prepared through Example 1 was analyzed. H, O, N, and S were quantified using an element analyzer (FlashEA1112, Thermo, USA). For reference, the elemental analysis results can be used to indirectly predict the amount of gas generation, composition, and reactant balance among the substances generated during pyrolysis of biochar through CEA code.

그 결과 하기 표 1에서 나타낸 바와 같이, SBC300의 경우 탄소가 약간 증가하는 것을 확인할 수 있었고, 다른 원소는 대부분 감소하는 경향을 보여주었다. O/C의 경우 제작 온도가 높아질수록 감소한 것을 확인할 수 있다. 이는 O/C의 경우 아마이드 화합물에 이중결합되어 있는 산소가 고온에서 탄소로부터 분리되면서 감소한 것으로 판단된다. 또한 열분해 온도의 증가에 따른 H/C의 비율이 1.98∼0.31%로 감소를 나타내는데 이는 탄소가 고정탄소로(45.14∼69.20%) 변한다는 것을 의미한다. H/C의 감소는 지방족 화합물과 방향족 화합물의 수소가 탄소로부터 분리되면서 나타난 현상으로 판단되어 진다. 전체적으로 원소분석을 통해 탄화도가 상승했음을 알 수 있으며, 공업분석의 결과 또한 휘발분 함량대비 고정탄소의 비율이 증가됨으로 탄화도가 상승되었다는 것을 알 수 있었다. 두 결과에 따라 하수슬러지는 열분해 온도가 증가할수록 연료로서 가치가 향상됨을 확인할 수 있었다.
As a result, as shown in Table 1, SBC300 showed a slight increase in carbon, and other elements showed a tendency to decrease. In the case of O / C, it can be confirmed that as the production temperature increases, it decreases. It is considered that the oxygen bonded to the amide compound in O / C is decreased by separating from carbon at high temperature. Also, the ratio of H / C with increasing pyrolysis temperature is decreased from 1.98 to 0.31%, which means that carbon is changed to fixed carbon (45.14 ~ 69.20%). The decrease of H / C is considered to be the phenomenon that hydrogen of aliphatic compound and aromatic compound is separated from carbon. As a result, it was found that the degree of carbonization was increased due to the increase of the ratio of the fixed carbon to the volatile content as a result of the industrial analysis. As a result, it was confirmed that the value of sewage sludge as fuel increased as the pyrolysis temperature increased.

<2-4> <2-4> 바이오차Bio tea 표면분석 Surface analysis

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 비표면적과 세공크기 등을 알아보기 위해 BET(Brunauer, Emmet, Teller) 분석을 하였고, 분석용 시료(SS, SBC300, SBC400, SBC500, SBC600, SBC700)는 Particle and Pore Size Analysis System을 이용하여 측정하였다.(Brunauer, Emmet, Teller) analysis was performed to examine the specific surface area and pore size of the bio-tea of the present invention prepared in Example 1. The analytical samples (SS, SBC300, SBC400, SBC500, SBC600, SBC700) were measured using Particle and Pore Size Analysis System.

SEM(Scanning electron microscope) 분석은 전자빔과 표면의 상호작용으로 발생되는 여러 종류의 신호로부터 표면특성을 조사하는 분석법으로, SEM(S-4300, HITACHI, Japan)을 이용하여 SS와 SBC300, 400, 500, 600, 700의 표면을 관찰하였다. 시료 입자크기와 입도 분포는 입도분석기(Matersizer2000, Malvern, U.K)로 분석하였다.Scanning electron microscope (SEM) analysis is an analytical method to investigate the surface characteristics from various kinds of signals generated by the interaction of electron beam and surface. Using SEM (S-4300, HITACHI, Japan) , 600, and 700 were observed. Sample particle size and particle size distribution were analyzed with a particle size analyzer (Matersizer 2000, Malvern, UK).

그 결과 하기 표 1에서 나타낸 바와 같이, 열분해온도가 증가 할수록 비표면적의 크기가 4.01∼54.76m2/g으로 증가됨을 관찰할 수 있었으며, 세공용적 또한 0.01∼0.05cm3/g로 증가됨을 알 수 있었다. 특성분석의 전체적인 결과는 비표면적의 증가와 공극률의 증가로 인해 토양개량제로써 입단형성에 도움을 줄뿐더러 안정된 형태의 고정탄소의 형성으로 인해 토양에 이점을 줄 것으로 판단된다. 한편 공극(pore size)의 경우 온도가 증가할수록 공극 크기가 감소하는 것이 일반적이나 본 연구의 결과에서는 감소하는 경향이 크게 나타나지 않는데, 그 이유는 식물과 같은 단일 물질이 아닌 생활폐수가 섞여 있는 혼합물질이기 때문에 일반적인 경향이 나타나지 않는 것으로 추측된다.As shown in Table 1, the specific surface area was increased from 4.01 to 54.76 m 2 / g as the pyrolysis temperature was increased, and the pore volume was also increased to 0.01 to 0.05 cm 3 / g. The overall results of the characterization analysis show that the increase of the specific surface area and the increase of the porosity will contribute to the formation of the soil as a soil remediation agent and the formation of stable form of fixed carbon. On the other hand, in case of pore size, pore size decreases with increasing temperature, but the result of this study does not show a tendency to decrease because it is a mixed material with mixed wastewater It is presumed that the general tendency does not appear.

한편 도 1에서는 표면의 이미지는 나타내었는데, 온도가 높은 조건에서 생산된 바이오차의 경우 공극의 크기가 작아진다는 것을 확인할 수 있다. 그로 인해 공극률이 높아져 다른 바이오차의 연구결과와 마찬가지로 다공성물질로서 수분 및 양분보유능력의 향상을 가져올 것으로 판단되었다.
On the other hand, the image of the surface is shown in FIG. 1, and it can be seen that the size of the pore decreases in the case of the bio-tea produced under the high temperature condition. As a result, porosity was increased and it was judged that it would improve water and nutrient retention ability as a porous material like the results of other biochains.

pHpH ECEC YieldYield MoistureMoisture Mobile MatterMobile Matter Resident MatterResident Matter AshAsh CC HH NN SS OO H/CH / C O/CO / C BETBET
SurfaceSurface
AreaArea
(dS/m)(dS / m) (%) (%) (m(m 22 /g)/ g) 5.8825.882 5.055.05 -- 4.504.50 48.0948.09 11.5311.53 35.9035.90 27.6027.60 4.564.56 4.114.11 0.860.86 24.0224.02 1.981.98 0.650.65 4.014.01 6.7596.759 0.1290.129 70.1370.13 1.091.09 19.7919.79 22.4822.48 56.6356.63 30.7230.72 3.113.11 4.114.11 0.680.68 11.1611.16 1.221.22 0.270.27 4.464.46 6.5506.550 0.8590.859 57.4057.40 0.540.54 8.798.79 23.5423.54 67.1267.12 26.6226.62 1.931.93 4.074.07 0.440.44 10.6710.67 0.870.87 0.300.30 14.0814.08 7.2667.266 0.5520.552 53.8253.82 0.660.66 7.497.49 19.9719.97 71.8771.87 20.1920.19 1.081.08 2.842.84 0.440.44 9.819.81 0.640.64 0.360.36 26.1626.16 8.3288.328 0.4390.439 51.2151.21 0.510.51 5.805.80 19.0619.06 74.6374.63 24.7624.76 0.830.83 2.782.78 0.410.41 8.418.41 0.400.40 0.260.26 35.8135.81 8.1258.125 0.3910.391 50.2750.27 0.610.61 4.114.11 16.6316.63 76.5576.55 22.0422.04 0.570.57 1.731.73 0.420.42 7.097.09 0.310.31 0.240.24 54.7654.76

<< 실시예Example 3> 3>

본 발명 Invention 바이오차의Bio-car 작용기작 평가 Evaluation of action mechanism

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 열처리 전 후 각각의 시료에 대한 화학결합상태를 알아보기 위하여 FT-3000(Bio-Rad, USA)을 이용하여 작용기를 분석하였다.In order to examine the chemical bonding state of each sample before and after the heat treatment of the bio-tea of the present invention prepared in Example 1, functional groups were analyzed using FT-3000 (Bio-Rad, USA).

그 결과 도 2에서 나타낸 바와 같이, 바이오차를 제작하는 온도가 증가함에 따라 피크(peak)가 점점 나타나지 않는 것을 확인할 수 있다. 이는 SBC700의 경우 고온으로 인해 대부분의 산소, 수소 원소가 휘발이 되고 안정된 탄소구조가 잔류하기 때문인 것으로 판단되었다. 안정화된 탄소구조가 잔류한다는 결과는 도 2에서 Aromatic C-H의 피크가 열분해 온도가 증가할수록 생성되는 것을 통해 확인할 수 있었다.
As a result, as shown in FIG. 2, it can be seen that peaks do not gradually appear as the temperature for producing the bio-tea increases. This is because most of the oxygen and hydrogen elements are volatilized due to the high temperature and the stable carbon structure remains in the SBC700. The result that the stabilized carbon structure remained was confirmed in FIG. 2 that the peak of Aromatic CH was generated as the pyrolysis temperature was increased.

<< 실시예Example 4> 4>

본 발명 Invention 바이오차의Bio-car 입도분석Particle size analysis 평가 evaluation

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 입자크기와 입도 분포를 측정하기 위해 입도분석기(Matersizer2000, Malvern, U.K)로 분석하였다.The particle size and particle size distribution of the bio-tea of the present invention prepared in Example 1 were analyzed by a particle size analyzer (Matersizer 2000, Malvern, UK).

그 결과 도 3에서 나타낸 바와 같이, SBC300~700의 입자크기에 따른 막대그래프가 표기 되어있으며, SBC600과 SBC700의 그래프 모습이 비슷하지만 입자의 크기를 나타내는 범위가 BC700이 좀 더 작다는 것을 알 수 있었다. 이 결과는 온도가 상승한다는 점에서 입도의 크기가 그만큼 작아졌다는 것을 알 수 있었다. 이러한 결과는 반응온도 상승 구간에서도 하수슬러지의 플록과 세포벽의 파괴가 진행되어 짐을 유추할 수 있다(Han, S. K., S, H.W., Choi, C. S., Kim, H., Lee, S.E., “Physicochemical Properties of Sewage Sludge according to Thermal Hydrolysis Reaction Temperature,” Journal of Material Cycles and Waste Managemnet, 29(4), 414∼420(2012)).
As a result, as shown in FIG. 3, a bar graph corresponding to the particle size of SBC300-700 is shown, and although the SBC600 and SBC700 graphs are similar, the range of the particle size is smaller than BC700 . This result shows that the size of the particle size is reduced as the temperature rises. These results suggest that floc and cell wall destruction of sewage sludge proceeds even during the rising temperature of the reaction (Han, SK, S, HW, Choi, CS, Kim, H., Lee, Sewage Sludge according to Thermal Hydrolysis Reaction Temperature, &quot; Journal of Material Cycles and Waste Managemnet, 29 (4), 414-420 (2012)).

<< 실시예Example 5> 5>

본 발명 Invention 바이오차의Bio-car 납( lead( PbPb ) 오염 토양 적용에 따른 안정화 효과) Stabilization effect by contaminated soil application

<5-1> 납(<5-1> Lead ( PbPb ) 오염 토양 수집) Contaminated soil collection

납 오염 토양은 강원도 원주시 신림석담광산 휴·폐광산에 인근에 위치해 있는 농경지 토양을 사용하였다. 폐광산 주변의 토양틀은 광미와 폐석으로 인해 발생하는 납(Pb), 비소(As), 구리 (Cu)등의 유해한 중금속으로 오염된 상태였다. 채취한 오염토양은 풍건한 뒤 식물잔사 등을 제거하고 2mm 표준체를 사용하여 체거름하였다. 이 후 토양 및 식물체분석법 (농업과학 기술원, 2000)으로 분석하여 결과를 국립농업과학원에서 제공하는 한국토양정보시스템에 적용한 결과 오염토양은 일반 논토양의 양분범위에 있는 것으로 나타났다(국립농업과학원,2005).
Lead - contaminated soils were cultivated soil located in the vicinity of Sunglim - Seokdam mine site in Wonju, Gangwon - do. Soil frames around abandoned mines were contaminated with harmful heavy metals such as lead (Pb), arsenic (As), and copper The contaminated soil was removed from the soil after drying and sieved using a 2 mm standard. Soil and plant analysis method (Agricultural Science and Technology Institute, 2000) and analysis results were applied to Korean soil information system provided by National Academy of Agricultural Sciences, ).

<5-2> 납(<5-2> Lead ( PbPb ) 오염 토양의 화학성 평가Evaluation of chemical properties of contaminated soil

상기 실시예<5-1>을 통해 준비한 납 오염 토양의 화학성을 평가하기 위하여, pH, EC, OM, Ca, K, Mg, P2O5, NH4, NO3, T-N, T-C함량을 분석하였다.The contents of pH, EC, OM, Ca, K, Mg, P2O5, NH4, NO3, T-N and T-C were analyzed in order to evaluate the chemical properties of the lead contaminated soil prepared in Example <5-1>.

토양의 pH와 EC(electrical conductivity)는 1Soil:5Water법, 유기물함량은 Tyurin법, 유효인산은 Lancaster법, 암모니아태 및 질산태 질소는 Kjeldahl 증류법, 치환성 양이온은 1M-NH4OAc (pH 7.0)로 침출하여 유도결합 플라즈마 발광광도계(ICP-OES, GBC Integra XL, Australia)로 분석하였다(NIAST, 2000). 한편, 총탄소(T-C)와 총질소(T-N)는 원소분석기(vario MAX CN, Elementar, Germany)로 분석을 실시하였다.The pH and EC of the soil were determined by 1Soil: 5Water method, the organic content was determined by Tyurin method, the effective phosphate was determined by Lancaster method, ammonia and nitrate nitrogen were extracted by Kjeldahl distillation method, and the substitutional cations were extracted by 1M-NH4OAc (pH 7.0) (ICP-OES, GBC Integra XL, Australia) (NIAST, 2000). The total carbon (T-C) and total nitrogen (T-N) were analyzed with an elemental analyzer (vario MAX CN, Elementar, Germany).

그 결과는 하기 표 2에서 나타내었다.
The results are shown in Table 2 below.

납(Pb) 오염 토양의 화학성 분석Chemical analysis of lead (Pb) contaminated soil 샘플Sample pHpH ECEC OMOM CaCa KK MgMg NaNa P2O5 P 2 O 5 NH4NH4 NO3NO3 T-NT-N T-CT-C dS/mdS / m g/kgg / kg mg/kgmg / kg %% CKCK 7.07.0 0.540.54 30.2530.25 8.408.40 0.270.27 1.351.35 0.360.36 289289 9.629.62 29.2329.23 0.120.12 1.151.15

<5-3> 납(<5-3> Lead ( PbPb ) 오염 토양의 실내항온배양실험) Indoor incubation experiment of contaminated soil

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 납(Pb) 오염 토양에 처리에 따른 토양의 화학성 변화를 살펴보기 위하여, 상기 오염 토양에 본 발명의 바이오차를 처리한 후 토양의 pH, EC, OM, Ca, K, Mg, P2O5, NH4, NO3, T-N, T-C함량을 분석하였다.In order to examine chemical properties of the soils contaminated with lead (Pb) contaminated soil of the present invention prepared in Example 1, the soil pH of the soil after treatment with the present invention was measured, EC, OM, Ca, K, Mg, P2O5, NH4, NO3, TN and TC contents were analyzed.

자세하게는 분석용 시료(SS, SBC300, SBC400, SBC500, SBC600, SBC700)를 토양무게에 비례하여 1%, 3%, 5%로(w/w) 적용하였고, 각 처리구마다 3번의 반복수를 두어 CK 3개, SS(1, 3, 5%) 각 3개, SBC300, 400, 500, 600, 700(1, 3, 5%) 각 3개 씩 하여 총 57개를 35일간 항온배양 하였다.In detail, analytical samples (SS, SBC300, SBC400, SBC500, SBC600, SBC700) were applied in 1%, 3% and 5% (w / w) proportional to the soil weight and 3 replicates per treatment Three CKs and three SSs (1, 3, and 5%) and three SBC300, 400, 500, 600, and 700 (1, 3, and 5%) were incubated for 35 days.

그 결과는 하기 표 3에서 나타내었다.
The results are shown in Table 3 below.

SampleSample pH
1:5
pH
1: 5
ECEC OMOM CaCa KK MgMg NaNa PP 22 OO 55 NHNH 44 NONO 33 T-NT-N T-CT-C
dS/mdS / m g/kgg / kg mg/kgmg / kg %% SSSS (1%) (One%) 6.646.64 1.151.15 32.5032.50 8.328.32 0.330.33 1.451.45 0.370.37 272272 8.588.58 176.93176.93 0.200.20 1.881.88 SSSS (3%) (3%) 6.366.36 3.013.01 32.2832.28 7.737.73 0.300.30 1.261.26 0.220.22 341341 24.5024.50 309.64309.64 0.270.27 2.172.17 SSSS (5%) (5%) 6.246.24 3.543.54 42.6642.66 8.158.15 0.400.40 1.591.59 0.300.30 380380 59.3959.39 339.50339.50 0.360.36 2.532.53 300 (1%)300 (1%) 6.986.98 0.670.67 31.7931.79 7.647.64 0.470.47 1.241.24 0.240.24 313313 8.758.75 54.6654.66 0.170.17 1.831.83 300 (3%)300 (3%) 7.007.00 0.760.76 35.5435.54 8.328.32 0.350.35 1.531.53 0.350.35 327327 6.596.59 56.7056.70 0.220.22 2.152.15 300 (5%)300 (5%) 6.996.99 0.860.86 36.6836.68 7.907.90 0.360.36 1.491.49 0.260.26 332332 4.904.90 56.1856.18 0.280.28 2.302.30 400 (1%)400 (1%) 7.007.00 0.680.68 32.4832.48 7.387.38 0.300.30 1.211.21 0.240.24 353353 5.605.60 53.3253.32 0.170.17 1.811.81 400 (3%)400 (3%) 7.037.03 0.870.87 37.6537.65 7.397.39 0.340.34 1.251.25 0.350.35 418418 5.195.19 53.7953.79 0.230.23 2.112.11 400 (5%)400 (5%) 7.007.00 0.920.92 36.9636.96 7.557.55 0.370.37 1.251.25 0.330.33 435435 4.904.90 58.4058.40 0.260.26 2.252.25 500 (1%)500 (1%) 7.037.03 0.590.59 30.1530.15 7.697.69 0.300.30 1.281.28 0.340.34 307307 6.776.77 53.9653.96 0.200.20 2.082.08 500 (3%)500 (3%) 7.027.02 0.670.67 36.7836.78 7.417.41 0.320.32 1.281.28 0.210.21 317317 7.597.59 49.1949.19 0.230.23 2.352.35 500 (5%)500 (5%) 6.966.96 0.640.64 37.4637.46 6.916.91 0.320.32 1.261.26 0.060.06 415415 5.375.37 48.2448.24 0.320.32 2.732.73 600 (1%)600 (1%) 6.976.97 0.530.53 29.6929.69 7.697.69 0.300.30 1.311.31 0.180.18 303303 6.426.42 43.8743.87 0.200.20 2.092.09 600 (3%)600 (3%) 6.896.89 0.520.52 35.4035.40 7.377.37 0.310.31 1.281.28 0.260.26 323323 5.545.54 48.5448.54 0.220.22 2.262.26 600 (5%)600 (5%) 6.986.98 0.660.66 36.9536.95 7.047.04 0.300.30 1.231.23 0.050.05 356356 5.485.48 43.1143.11 0.260.26 2.502.50 700 (1%)700 (1%) 6.966.96 0.530.53 28.4428.44 7.297.29 0.300.30 1.311.31 0.030.03 309309 3.563.56 44.0844.08 0.180.18 2.052.05 700 (3%)700 (3%) 6.986.98 0.550.55 32.9732.97 7.467.46 0.300.30 1.291.29 0.040.04 282282 4.964.96 41.4241.42 0.200.20 2.232.23 700 (5%)700 (5%) 7.007.00 0.600.60 37.6537.65 7.357.35 0.310.31 1.331.33 0.090.09 336336 5.255.25 41.7741.77 0.210.21 2.452.45

한편, 실내항온배양실험 후 토양을 채취하고 풍건한 뒤 중금속 추출을 위한 시료로 사용하였다.
After the incubation, the soil was collected and used as a sample for the extraction of heavy metals.

<5-4> 본 발명 &Lt; 5-4 > 바이오차의Bio-car 중금속 흡착 효과 Heavy metal adsorption effect

상기 실시예 1을 통해 제조한 본 발명의 바이오차의 납(Pb) 오염 토양에 적용에 따른 토양의 안정화 평가를 위하여, 상기 실시예<5-4>에서 실내항온배양 실험이 끝난 토양시료를 채취하여 밀봉 후 실험실로 운반한 뒤 풍건하여 2mm 이하의 표준체로 체거름하여 분석을 실시하였다.In order to evaluate the stabilization of the soil according to the application to the lead (Pb) contaminated soil of the bio-tea of the present invention manufactured through Example 1, the soil sample after the indoor temperature incubation experiment in Example <5-4> After sealing, it was transported to the laboratory and analyzed by air drying and sieving with a standard body of 2 mm or less.

국내 토양오염공정시험방법인 0.1N HCl 추출, 1M CaCl2 추출 및 0.43M CH3COOH 추출 각각은 토양환경보전법상 오염기준을 평가할 때 사용하는 방법으로서 본 연구에서도 분석용 시료(SS, SBC300, SBC400, SBC500, SBC600, SBC700)를 무게에 비례하여 5%(w/w)씩 처리한 후 35일이 경과한 시점에 오염농도 기준치 이하로의 감소여부를 살펴보기 위하여 추출을 실시하였다.Domestic soils contaminated process test method of extraction 0.1N HCl, 1M CaCl 2 and extracted 0.43M CH 3 COOH extraction each sample for analysis in this study, a method for use in assessing the soil contaminated environmental conservation law based on (SS, SBC300, SBC400 , SBC500, SBC600, and SBC700) were weighed 5% (w / w) in proportion to the weight.

먼저, 0.1N HCl 추출은 토양 10g를 용기에 취하고 0.1N HCl 50ml을 가하여 30℃에서 1시간 동안 교반하고 Whatman No.42로 여과하였으며, 이 후 여액 내의 잔여 중금속 이온의 농도는 ICP-OES(Perkins Elmer Optima 2000DV)를 이용하여 분석하였다. 또한, 1M CaCl2 추출은 토양 5g을 용기에 취하고 1M CaCl2을 200ml 가하여 상온에서 24시간 동안 30 rpm으로 교반하고 10분간 원심분리하여 상청액을 받아, 이 후 여액 내의 잔여 중금속 이온의 농도는 ICP-OES(Perkins Elmer Optima 2000DV)를 이용하여 분석하였다. 또한, 0.43M CH3COOH 추출은 토양 5g을 용기에 취하고 0.43M CH3COOH 200ml를 가하여 상온에서 16시간 교반하고 30 rpm으로 교반하고 10분간 원심분리하여 상청액을 받아, 이 후 여액 내의 잔여 중금속 이온의 농도는 ICP-OES(Perkins Elmer Optima 2000DV)를 이용하여 분석하였다.First, 0.1 N HCl extraction was carried out by taking 10 g of soil into a container, adding 50 ml of 0.1 N HCl, stirring at 30 ° C for 1 hour, filtering with Whatman No. 42, and then concentration of residual heavy metal ions in the filtrate was measured by ICP-OES Elmer Optima 2000DV). Further, 1M CaCl 2 extraction is received, the supernatant was stirred at 30 rpm for 24 hours at room temperature, it was added 200ml of 1M CaCl 2 taken 5g of soil in containers and centrifuge for 10 minutes, the concentration of the heavy metal ions remaining in the filtrate is then ICP- OES (Perkins Elmer Optima 2000DV). In addition, 0.43M CH 3 COOH extraction was carried out by taking 5 g of soil in a container, adding 200 ml of 0.43 M CH 3 COOH, stirring at room temperature for 16 hours, stirring at 30 rpm, centrifugation for 10 minutes to obtain a supernatant, Were analyzed using ICP-OES (Perkins Elmer Optima 2000DV).

그 결과 하기 도 4에서 나타낸 바와 같이, 본 발명의 바이오차는 중금속 중에서도 납(Pb)을 효과적으로 감소시키는 것으로 나타났으며, 바이오차를 생산하는 열분해 온도가 증가할수록 항온배양실험을 했을 때, 납(Pb)을 안정화시키는데 더 높은 효율을 보여주었다. 특히 700℃에서 생산한 바이오차를 5% 적용한 토양을 0.1N HCl등 중금속 추출법으로 추출한 결과 무처리구의 납(Pb)농도보다 약 51.1% 적은량의 Pb가 추출 되는 것을 확인할 수 있었다. 또한 하수슬러지 내에 함유되어 있는 Cu와 Zn의 경우도 미량감소하는 경향을 나타내었다. 위와 같은 특성분석과 실내항온배양실험을 통해 토양 내 납(Pb) 안정화와 토양개량제로서 재활용 가능성이 가능한 결과가 도출되었다.
As a result, as shown in FIG. 4, the biocide of the present invention effectively reduced lead (Pb) in heavy metals. When the pyrolysis temperature for producing bio-tea was increased, ), Which is more efficient for stabilization. Especially, it was confirmed that Pb extracted by the heavy metal extraction method such as 0.1N HCl was less than the lead (Pb) concentration by 5%. In addition, Cu and Zn contents in sewage sludge also showed a tendency to decrease. As a result of the above characteristics analysis and indoor temperature incubation experiment, it was possible to stabilize lead (Pb) in soil and possible recycling possibility as soil improvement agent.

실험결과 본 발명의 바이오차는 생산되는 온도가 높아질수록 다공성물질로 변한다는 것을 알 수 있었다. pH의 경우 일반적인 바이오차의 연구와 같이 증가하는 경향을 나타내었고, EC의 경우 증가와 감소의 경향을 확인 할 수 있었는데, 이는 무기물의 최고점이 되는 온도의 존재와 식물체와 같은 단일물질이 아닌 혼합물질이기 때문에 그러한 경향이 나타난 것으로 보인다. 또한, 본 발명의 바이오차는 다른 바이오차와 같이 표면적이 넓고 다공성물질이기 때문에 수분 및 양분보유능력, pH의 염기화로 인해 산성토양이 주를 이루는 우리나라에서 토양개량제로서 활용이 가능하다.
As a result, it was found that the bio-tea of the present invention changed into a porous material as the temperature at which it was produced increased. In the case of pH, the tendency to increase and decrease was observed as in the case of general biochemical studies. In the case of EC, the tendency of increase and decrease could be confirmed by the existence of temperature which is the peak of inorganic matter, It seems to have appeared. In addition, since the bio-tea of the present invention has a wide surface area and is a porous material like other bio-tea, it can be utilized as a soil improving agent in Korea where acidic soil is dominant due to basicity of water and nutrient retention ability and pH.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described with reference to the preferred embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. The scope of the present invention is defined by the appended claims rather than by the foregoing description, and all differences within the scope of equivalents thereof should be construed as being included in the present invention.

Claims (8)

(a) 하수슬러지를 준비하는 단계;
(b) 상기 준비된 하수슬러지를 고온에서 건조시키는 단계;
(c) 상기 건조된 하수슬러지를 분쇄하는 단계; 및
(d) 상기 분쇄물을 열분해하는 단계를 포함하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법.
(a) preparing sewage sludge;
(b) drying the prepared sewage sludge at a high temperature;
(c) pulverizing the dried sewage sludge; And
(d) thermally decomposing the pulverized material. The method for producing biochar using sewage sludge according to claim 1,
제1항에 있어서,
상기 (b) 단계는 하수슬러지를 100℃ 내지 110℃에서 수분함량이 1% 내지 10%가 되도록 건조시키는 것을 특징으로 하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법.
The method according to claim 1,
Wherein the step (b) comprises drying the sewage sludge at a temperature ranging from 100 ° C to 110 ° C to a moisture content of 1% to 10%.
제1항에 있어서,
상기 (c) 단계는 건조된 하수슬러지를 1mm 내지 3mm의 입도가 되도록 분쇄하는 것을 특징으로 하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법.
The method according to claim 1,
Wherein the step (c) comprises pulverizing the dried sewage sludge to a particle size of 1 mm to 3 mm.
제1항에 있어서,
상기 (d) 단계는 분쇄물을 7℃/min의 속도로 승온하여 300℃ 내지 700℃ 범위에서 2시간 내지 4시간 동안 열분해를 진행하는 것을 특징으로 하는 하수슬러지를 이용한 바이오차(Biochar) 제조방법.
The method according to claim 1,
Wherein the step (d) comprises heating the pulverized product at a rate of 7 ° C / min and pyrolyzing the product at a temperature of 300 ° C to 700 ° C for 2 hours to 4 hours. The method for producing a biochar using the sewage sludge .
제1항 내지 제4항 중 어느 한 항의 방법으로 제조된 토양 내 중금속 흡착용 바이오차(Biochar).A biochar for adsorbing heavy metals in soil produced by the method of any one of claims 1 to 4. 제5항에 있어서,
상기 중금속은 납(Pb)인 것을 특징으로 하는 중금속 흡착용 바이오차(Biochar).
6. The method of claim 5,
Wherein the heavy metal is lead (Pb).
제6항에 있어서,
상기 바이오차는 토양 내에 함유된 생물에 이용 가능한 형태의 납(Pb)을 고정화(immobilization) 시킴으로써 생물이 흡수할 수 없는 형태로 변환시켜 오염된 토양을 안정화시키는 것을 특징으로 하는 중금속 흡착용 바이오차(Biochar).
The method according to claim 6,
Characterized in that the bio-car is immobilized with a lead (Pb) in a form usable in the soil to transform it into a form that can not be absorbed by the organism, thereby stabilizing the contaminated soil (Biochar ).
제5항의 중금속 흡착용 바이오차(Biochar)를 유효성분으로 함유하는 토양개량용 조성물.A composition for soil improvement comprising a biochar for adsorbing heavy metals (Biochar) as an active ingredient.
KR1020130029526A 2013-03-20 2013-03-20 Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil KR20140115019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130029526A KR20140115019A (en) 2013-03-20 2013-03-20 Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130029526A KR20140115019A (en) 2013-03-20 2013-03-20 Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil

Publications (1)

Publication Number Publication Date
KR20140115019A true KR20140115019A (en) 2014-09-30

Family

ID=51758462

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130029526A KR20140115019A (en) 2013-03-20 2013-03-20 Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil

Country Status (1)

Country Link
KR (1) KR20140115019A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961324A (en) * 2015-07-17 2015-10-07 南通天蓝环保能源成套设备有限公司 Sludge conditioner before sludge incineration and application thereof
CN105127189A (en) * 2015-09-30 2015-12-09 河南行知专利服务有限公司 Compound method for restoring soil polluted by heavy metal
CN105170641A (en) * 2015-09-30 2015-12-23 河南行知专利服务有限公司 Combined remediation method for heavy metal contaminated soil
CN105419807A (en) * 2015-12-17 2016-03-23 东南大学 Curing agent for heavy metal and organic matter combined polluted soil, and preparation and application methods for curing agent
CN105776401A (en) * 2016-03-16 2016-07-20 中国科学院生态环境研究中心 Method for removing heavy metal by pretreated sludge
CN107126924A (en) * 2017-05-27 2017-09-05 湖南大学 Modified magnetic sludge organism charcoal and its preparation method and application
KR20180022397A (en) * 2016-08-24 2018-03-06 주식회사 경동아그로 Soil composition using biochar, and preparation method of the same
KR20180097193A (en) * 2017-02-22 2018-08-31 세종대학교산학협력단 Method for absorbing and removing arsenic using paper mill sludge
KR20180115541A (en) * 2017-04-13 2018-10-23 주식회사 경동아그로 Soil composition, soil conditioner, organic fertilizer using biochar and useful microorganism, and preparation method of the same
CN108723074A (en) * 2018-05-04 2018-11-02 浙江工业大学 A method of stabilizing restoration of soil polluted by heavy metal using sludge base charcoal ash
CN110523767A (en) * 2019-09-05 2019-12-03 安徽科技学院 A method of pulp thickening heavy metal-polluted soil is carbonized using feces of livestock and poultry hydro-thermal
KR20200051918A (en) * 2018-11-05 2020-05-14 강성철 Manufacturing Method of Biochar for Promoting Crop Growth and Fertilizer Comprising the Same as an Effective Ingredient
CN111151564A (en) * 2019-09-21 2020-05-15 郑州大学 Remediation method for heavy metal Cd and polycyclic aromatic hydrocarbon combined contaminated soil
CN113290043A (en) * 2021-03-25 2021-08-24 同济大学 Mine ecological greening matrix material and preparation method and application thereof
CN114931929A (en) * 2022-05-20 2022-08-23 中铁上海工程局集团市政环保工程有限公司 Iron-based sludge/plastic composite biochar adsorbing material, and preparation method and application thereof
CN115215519A (en) * 2022-07-19 2022-10-21 常熟理工学院 Detoxification method of thallium-polluted river sediment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104961324A (en) * 2015-07-17 2015-10-07 南通天蓝环保能源成套设备有限公司 Sludge conditioner before sludge incineration and application thereof
CN105127189A (en) * 2015-09-30 2015-12-09 河南行知专利服务有限公司 Compound method for restoring soil polluted by heavy metal
CN105170641A (en) * 2015-09-30 2015-12-23 河南行知专利服务有限公司 Combined remediation method for heavy metal contaminated soil
CN105419807A (en) * 2015-12-17 2016-03-23 东南大学 Curing agent for heavy metal and organic matter combined polluted soil, and preparation and application methods for curing agent
CN105419807B (en) * 2015-12-17 2018-07-20 东南大学 The curing agent and methods for making and using same of heavy metal and organic compound contaminated soil
CN105776401A (en) * 2016-03-16 2016-07-20 中国科学院生态环境研究中心 Method for removing heavy metal by pretreated sludge
KR20180022397A (en) * 2016-08-24 2018-03-06 주식회사 경동아그로 Soil composition using biochar, and preparation method of the same
KR20180097193A (en) * 2017-02-22 2018-08-31 세종대학교산학협력단 Method for absorbing and removing arsenic using paper mill sludge
KR20180115541A (en) * 2017-04-13 2018-10-23 주식회사 경동아그로 Soil composition, soil conditioner, organic fertilizer using biochar and useful microorganism, and preparation method of the same
CN107126924B (en) * 2017-05-27 2019-08-30 湖南大学 Modified magnetic sludge organism charcoal and its preparation method and application
CN107126924A (en) * 2017-05-27 2017-09-05 湖南大学 Modified magnetic sludge organism charcoal and its preparation method and application
CN108723074A (en) * 2018-05-04 2018-11-02 浙江工业大学 A method of stabilizing restoration of soil polluted by heavy metal using sludge base charcoal ash
CN108723074B (en) * 2018-05-04 2021-04-06 浙江工业大学 Method for stabilizing and repairing heavy metal contaminated soil by using sludge-based carbon ash
KR20200051918A (en) * 2018-11-05 2020-05-14 강성철 Manufacturing Method of Biochar for Promoting Crop Growth and Fertilizer Comprising the Same as an Effective Ingredient
CN110523767A (en) * 2019-09-05 2019-12-03 安徽科技学院 A method of pulp thickening heavy metal-polluted soil is carbonized using feces of livestock and poultry hydro-thermal
CN110523767B (en) * 2019-09-05 2021-09-03 安徽科技学院 Method for extracting soil heavy metals by using livestock and poultry manure hydrothermal carbonization waste liquid
CN111151564A (en) * 2019-09-21 2020-05-15 郑州大学 Remediation method for heavy metal Cd and polycyclic aromatic hydrocarbon combined contaminated soil
CN113290043A (en) * 2021-03-25 2021-08-24 同济大学 Mine ecological greening matrix material and preparation method and application thereof
CN114931929A (en) * 2022-05-20 2022-08-23 中铁上海工程局集团市政环保工程有限公司 Iron-based sludge/plastic composite biochar adsorbing material, and preparation method and application thereof
CN115215519A (en) * 2022-07-19 2022-10-21 常熟理工学院 Detoxification method of thallium-polluted river sediment
CN115215519B (en) * 2022-07-19 2023-12-01 常熟理工学院 Detoxification method of thallium-polluted river sediment

Similar Documents

Publication Publication Date Title
KR20140115019A (en) Manufacturing method of biochar using sewage sludge and its effect on Pb immobilization in soil
Wang et al. Co-pyrolysis of sewage sludge and organic fractions of municipal solid waste: Synergistic effects on biochar properties and the environmental risk of heavy metals
Zhang et al. Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars
Adhikari et al. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar
Malwade et al. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics
Yuan et al. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge
Lee et al. Comparison of heavy metal adsorption by peat moss and peat moss-derived biochar produced under different carbonization conditions
Bashir et al. Influence of organic and inorganic passivators on Cd and Pb stabilization and microbial biomass in a contaminated paddy soil
Nie et al. Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils
Murtaza et al. Biochar for the management of nutrient impoverished and metal contaminated soils: Preparation, applications, and prospects
CN110918055A (en) Composite material for efficiently removing phosphorus in wastewater, preparation method and application thereof
Rafique et al. In situ immobilization of Cr and its availability to maize plants in tannery waste–contaminated soil: effects of biochar feedstock and pyrolysis temperature
Karimi et al. Using industrial sewage sludge-derived biochar to immobilize selected heavy metals in a contaminated calcareous soil
Shakya et al. Potential of biochar for the remediation of heavy metal contaminated soil
CN110144221B (en) Modifier and preparation method and application thereof
Abukari et al. A comprehensive review of the effects of biochar on soil physicochemical properties and crop productivity
Januševičius et al. The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods
Azeem et al. Cow bone-derived biochar enhances microbial biomass and alters bacterial community composition and diversity in a smelter contaminated soil
Kim et al. Examination of three different organic waste biochars as soil amendment for metal-contaminated agricultural soils
Anwari et al. Effects of biochar amendment on soil problems and improving rice production under salinity conditions
Cheng et al. Application of biochar and compost improved soil properties and enhanced plant growth in a pb–zn mine tailings soil
Han et al. Simultaneous enhancement of soil properties along with water-holding and restriction of Pb–Cd mobility in a soil-plant system by the addition of a phosphorus-modified biochar to the soil
Saleem et al. Carbon potentials of different biochars derived from municipal solid waste in a saline soil
Banu et al. Biochar: A black carbon for sustainable agriculture
Gąsior et al. Biochar application in the mercury ions adsorption from aqueous solutions

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application