KR20140092272A - Method for enhancing resistance against fungal disease of grape by treating signal molecules - Google Patents

Method for enhancing resistance against fungal disease of grape by treating signal molecules Download PDF

Info

Publication number
KR20140092272A
KR20140092272A KR1020140064129A KR20140064129A KR20140092272A KR 20140092272 A KR20140092272 A KR 20140092272A KR 1020140064129 A KR1020140064129 A KR 1020140064129A KR 20140064129 A KR20140064129 A KR 20140064129A KR 20140092272 A KR20140092272 A KR 20140092272A
Authority
KR
South Korea
Prior art keywords
grapes
grape
hydrogen peroxide
stilbene
primer
Prior art date
Application number
KR1020140064129A
Other languages
Korean (ko)
Inventor
윤해근
안순영
김선애
한재현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020140064129A priority Critical patent/KR20140092272A/en
Publication of KR20140092272A publication Critical patent/KR20140092272A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/02Saturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/06Unsaturated carboxylic acids or thio analogues thereof; Derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/12Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing acyclic or cycloaliphatic radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/26Phosphorus; Compounds thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Provided in the present invention are a method for increasing a stilbene or a gamma-aminobutyric acid (GABA) content of grapes, which comprises a step of treating signaling molecules or hydrogen peroxide in grapes; grapes with the increased stilbene or GABA content manufactured by the method; a method for enhancing a resistance against fungal disease of grapes, which comprises a step of treating a signaling molecules or hydrogen peroxide in grapes; and a composition containing plant signaling molecules or hydrogen peroxide as an active component for increasing stilbene or GABA content of grapes or for increasing the resistance against the fungal disease of grapes.

Description

신호전달물질 처리에 의한 포도의 곰팡이병에 대한 내성을 증진시키는 방법{Method for enhancing resistance against fungal disease of grape by treating signal molecules}Method for enhancing resistance against fungal disease of grape by treating signal molecules}

본 발명은 신호전달물질 처리에 의한 포도의 곰팡이병에 대한 내성을 증진시키는 방법에 관한 것으로, 더욱 상세하게는 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법, 상기 방법에 의해 제조된 스틸벤 또는 GABA 함량이 증가된 포도, 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법, 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤 또는 GABA 함량 증진용 조성물 또는 포도의 곰팡이병에 대한 내성 증진용 조성물에 관한 것이다.The present invention relates to a method of enhancing resistance to fungal diseases of grapes by treatment with a signal transducer, and more particularly, to a stilbene of grapes comprising the step of treating a signal transducer or hydrogen peroxide to grapes or A method of increasing the content of gamma-aminobutyric acid (GABA), grapes with increased stilbene or GABA content prepared by the method, and resistance to fungal diseases of grapes, comprising the step of treating the grapes with a signal transducer or hydrogen peroxide It relates to a method of increasing, a composition for enhancing the stilbene or GABA content of grapes containing a plant signal transducer or hydrogen peroxide as an active ingredient, or a composition for enhancing resistance to fungal diseases of grapes.

식물의 병 방어 기작은 병원균의 침입뿐만 아니라 자외선 처리나 신호전달물질 등과 같은 비생물적 스트레스에 의해서도 유도되는데, 이러한 비생물적 스트레스 요인이 되는 신호전달물질에는 호흡억제제, 전착제, 항생제, 생장조절제, 중금속 및 유도인자(elicitor) 등이 있다. 식물의 방어 반응은 신호전달 경로의 복잡한 네트워크를 통해 이루어지는데, 내생 신호전달물질에는 살리실산(SA), 자스몬산(JA), 에틸렌(ET)이 포함되며, 이와 같은 방어기작에서 메틸자스몬산, 에틸렌, 살리실산, 과산화수소 등은 병 저항성을 매개하는 중요한 조절인자이다. 에틸렌, 메틸자스몬산, 살리실산은 식물에서 국부 또는 전신적인 병 저항성 반응을 유도하는 중요한 신호전달물질이며, 이러한 신호전달물질의 인위적인 외부 처리는 병원균 감염에 의해 활성화되는 저항성 관련 유전자들을 유도한다. 또한, 파이토알렉신(Phytoalexin)은 저분자의 2차 대사산물로 병원균에 감염 후 축적되는 항균물질이며, 식물이 병원균, 중금속, UV, AlCl3 등과 비생물적 스트레스에 반응하여 생산하기도 한다. 포도에서 생산되는 파이토알렉신에는 간단한 스틸벤인 레스베라트롤(trans-3,5,4'-trihydroxystilbene) 및 배당체와 생화학적으로 관련된 화합물인 비니페린(viniferins)과 테로스틸벤(pterostilbene, trans-3,5 dimethoxy-4'-hydroxystilbene)이 포함된다. The disease defense mechanism of plants is induced not only by the invasion of pathogens, but also by abiotic stress such as ultraviolet treatment or signal transducer. Signal transducers that become such abiotic stressors include respiratory inhibitors, electrodeposits, antibiotics, growth regulators, Heavy metals and elicitors. The defense reaction of plants takes place through a complex network of signaling pathways. Endogenous signaling substances include salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). , Salicylic acid, and hydrogen peroxide are important regulators that mediate disease resistance. Ethylene, methyljasmonic acid, and salicylic acid are important signaling substances that induce local or systemic disease resistance responses in plants, and artificial external processing of these signaling substances induces resistance-related genes that are activated by pathogen infection. In addition, phytoalexin is a small molecule secondary metabolite that is an antimicrobial substance that accumulates after infection with pathogens, and plants are also produced in response to abiotic stress such as pathogens, heavy metals, UV, AlCl 3 and the like. Phytoalexins produced in grapes include simple stilbene resveratrol (trans-3,5,4'-trihydroxystilbene) and viniferins and terostilbene, trans-3, which are compounds biochemically related to glycosides. 5 dimethoxy-4'-hydroxystilbene).

포도는 세계적으로 중요한 과수 중 하나이지만 재배 시에는 수많은 세균, 곰팡이, 바이러스 등과 같은 병원균에 감염되기 쉽다. 포도에서 잿빛곰팡이병은 늦은 우기나 높은 상대습도가 지속될 때에 성숙과에 감염되어 발병하며, 수확 후에도 발병하는데 농업적으로 중요한 토마토, 딸기, 오이, 구근류, 절화, 관상화 등 여러 작물에서도 심각한 문제를 일으킨다.Grapes are one of the most important fruit trees in the world, but when grown, they are susceptible to pathogens such as numerous bacteria, fungi, and viruses. Gray mold disease in grapes is caused by infection with mature fruits when the late rainy season or high relative humidity persists, and it develops even after harvesting, causing serious problems in various crops such as tomatoes, strawberries, cucumbers, bulbs, cut flowers, ornamental flowers, which are important agriculturally. .

포도의 잿빛곰팡이병은 보트리티스 시네리아(B. cinerea)에 의해 발생되며, 주로 꽃과 열매에 발병하는데, 특히 개화기에 시설 하우스에서 심하게 발생하여 지역에 따라 포도 생산에 큰 영향을 주는 요인이다. 신호전달물질 처리에 의한 병 저항성 관련 유전자들의 유도나 스틸벤 화합물과 같은 파이토알렉신의 축적은 이러한 병원균에 대한 저항성을 증진시킬 수 있을 것으로 예상되며, 본 발명에서는 3가지의 신호전달물질 및 과산화수소를 캠벨얼리 및 거봉 잎에 처리하여 병 저항성 관련 유전자들을 유도하고 다양한 스틸벤 화합물 및 GABA 물질의 축적에 의한 잿빛곰팡이병의 발생 억제 효과를 확인하였다.The gray mold disease of grapes is caused by B. cinerea , and it mainly affects flowers and fruits, especially in the flowering period in facility houses, which is a factor that greatly affects grape production depending on the region. . It is expected that induction of disease resistance-related genes or accumulation of phytoalexin such as a stilbene compound by signal transducer treatment can enhance resistance to these pathogens. In the present invention, three signal transducers and hydrogen peroxide are used in Campbell Early. And it was treated on the leaves of the grapes to induce disease resistance-related genes and confirmed the effect of inhibiting the occurrence of gray mold disease by the accumulation of various stilbene compounds and GABA substances.

한국공개특허 제2003-0021976호에서는 포도 유래의 천연 항암물질인 레스베라트롤의 함량을 증폭시킨 레스베라트롤 강화 포도 및 그 생산방법이 개시되어 있고, 한국등록특허 제0582737호에서는 환경인자를 이용한 레스베라트롤 고함유 포도의 생산방법이 개시되어 있으나, 본 발명에서와 같이 곰팡이병에 대한 내성이 증진된 포도의 제조방법 및 그에 따른 포도에 관해서는 밝혀진 바가 없다.Korean Patent Laid-Open Publication No. 2003-0021976 discloses a resveratrol-fortified grape and a production method thereof, which amplifies the content of resveratrol, a natural anticancer substance derived from grapes, and Korean Patent No. 0582737 discloses grapes containing high resveratrol using environmental factors. Although a production method has been disclosed, a method for producing grapes with improved resistance to fungal diseases as in the present invention and grapes according thereto have not been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 포도 잎에 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)의 신호전달물질 또는 과산화수소를 분무 처리한 결과, 포도의 스틸벤(stilbene) 및 GABA(gamma-aminobutyric acid) 함량이 증가되었고, 또한 포도의 잿빛곰팡이병에 대한 내성이 증가된 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above requirements, and in the present invention, as a result of spraying a signal transducer or hydrogen peroxide of ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA) on grape leaves, stilbene of grapes ( stilbene) and GABA (gamma-aminobutyric acid) content was increased, and by confirming that resistance to gray mold disease of grapes was increased, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법을 제공한다.In order to solve the above problems, the present invention provides a method of increasing the content of stilbene or gamma-aminobutyric acid (GABA) of grapes, including the step of treating the grape with a signal transducer or hydrogen peroxide.

또한, 본 발명은 상기 방법에 의해 제조된 스틸벤 또는 GABA 함량이 증가된 포도를 제공한다.In addition, the present invention provides a grape with an increased content of stilbene or GABA prepared by the above method.

또한, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법을 제공한다.In addition, the present invention provides a method of increasing the resistance to fungal diseases of grapes, comprising the step of treating the grape with a signal transducer or hydrogen peroxide.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤 또는 GABA 함량 증진용 조성물을 제공한다.In addition, the present invention provides a composition for enhancing the stilbene or GABA content of grapes containing a plant signal transducer or hydrogen peroxide as an active ingredient.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 곰팡이병에 대한 내성 증진용 조성물을 제공한다.In addition, the present invention provides a composition for enhancing resistance to fungal diseases of grapes containing a plant signal transducer or hydrogen peroxide as an active ingredient.

본 발명은 재배과정 중 포도에 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)의 신호전달물질 또는 과산화수소를 분무 처리한 결과, 포도의 스틸벤 및 GABA 함량의 증가 및 포도의 잿빛곰팡이병에 대한 내성 증가에 뛰어난 효과가 있는 것을 확인하였다. 따라서, 본 발명의 제조 방법에 의해 생산된 포도는 항암 및 항균활성의 스틸벤 및 GABA를 고도로 함유함으로써 이를 유효성분으로 하는 기능성 식품 및 의약품용 조성물을 제조할 수 있어 식품산업 및 의약품 산업상 매우 유용한 발명이며, 포도 곰팡이병에 대한 내성이 증진된 포도 식물체를 제공할 수 있어, 포도 산업의 생산성 증가에 크게 이바지할 수 있다.The present invention is a result of spray treatment with a signal transducer of ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA) or hydrogen peroxide to grapes during the cultivation process. It was confirmed that it has an excellent effect on increasing resistance to resistance. Therefore, grapes produced by the production method of the present invention contain high levels of anticancer and antibacterial activity of stilbene and GABA, so that functional foods and pharmaceutical compositions using them as active ingredients can be prepared, which is very useful in the food industry and pharmaceutical industry It is an invention, and it is possible to provide a grape plant with improved resistance to grape fungal disease, and thus can greatly contribute to the increase in productivity of the grape industry.

도 1은 신호전달물질을 처리한 캠벨얼리 및 거봉 포도나무 잎에서의 방어관련 유전자의 발현 분석을 나타낸다. 신호전달물질을 처리하고 일정 시간이 경과된 후 총 RNA를 분리하여 cDNA를 합성하고 RT-PCR 분석을 수행하였으며, RNA의 동량을 확인하기 위하여 베타-액틴 유전자를 대조구로 사용하였다. (CHI; chalcone isomerase, CHS; chalcone synthase, CYP; cytochrome p450, FLS; flavonol synthase, GST; glutathione-S-transferase, TLP; thaumatine-like protein, PRP; proline rich protein, CI; cold induced protein, LOX; lipoxygenase, STSY; stilbene synthase, Cell wall; Cell wall protein, Mei5; meiosis 5, PGIP; Polygalacturonase-inhibiting protein, Sir; sirtuin)
도 2는 신호전달물질 및 과산화수소를 처리한 후 보트리티스 시네리아를 접종한 포도나무 잎에서의 잿빛곰팡이병 발생 억제를 나타낸다. (A) 캠벨얼리, (B) 거봉.

Figure pat00001
, 대조구(물 처리),
Figure pat00002
1000 ppm 에테폰 처리,
Figure pat00003
10 mM H2O2 처리,
Figure pat00004
0.5 mM 메틸자스몬산 처리,
Figure pat00005
1 mM 살리실산 처리. 수직 바는 SEs를 나타낸다 (n=9).
도 3은 신호전달물질을 처리한 거봉 포도나무 잎에서의 GABA 함량 변화를 나타낸다. Cont, 물 처리; MeJ, 메틸자스몬산; SA, 살리실산.1 shows the expression analysis of defense-related genes in Campbell-Early and Geobong vine leaves treated with signal transducers. After the signal transduction material was treated and a certain time elapsed, total RNA was isolated to synthesize cDNA, and RT-PCR analysis was performed. In order to confirm the same amount of RNA, the beta-actin gene was used as a control. (CHI; chalcone isomerase, CHS; chalcone synthase, CYP; cytochrome p450, FLS; flavonol synthase, GST; glutathione- S- transferase, TLP; thaumatine-like protein, PRP; proline rich protein, CI; cold induced protein, LOX; lipoxygenase, STSY; stilbene synthase, Cell wall; Cell wall protein, Mei5; meiosis 5, PGIP; Polygalacturonase-inhibiting protein, Sir; sirtuin)
Figure 2 shows the inhibition of the occurrence of gray mold disease in vine leaves inoculated with Botrytis cineria after treatment with a signal transducer and hydrogen peroxide. (A) Campbell Early, (B) Geobong.
Figure pat00001
, Control (water treatment),
Figure pat00002
1000 ppm Ethephon treatment,
Figure pat00003
10 mM H 2 O 2 process,
Figure pat00004
0.5 mM methyljasmonic acid treatment,
Figure pat00005
1 mM salicylic acid treatment. Vertical bars represent SEs (n=9).
Figure 3 shows the change of GABA content in the leaves of the grapevine treated with a signal transducer. Cont, water treatment; MeJ, methyl jasmonic acid; SA, salicylic acid.

본 발명의 목적을 달성하기 위하여, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법을 제공한다.In order to achieve the object of the present invention, the present invention provides a method of increasing the content of stilbene or gamma-aminobutyric acid (GABA) in grapes, including the step of treating the grape with a signal transducer or hydrogen peroxide.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the signal transducer may be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), and preferably, ethephon, methyl jasmonic acid (MJ) or salicylic acid. (SA) may be, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질의 처리 농도는 바람직하게는 450~1100ppm 에테폰, 0.08~0.6mM 메틸자스몬산(MJ) 또는 0.4~1.1mM 살리실산(SA)이며, 과산화수소의 처리 농도는 4~11mM일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the treatment concentration of the signal transducer is preferably 450 to 1100 ppm ethephon, 0.08 to 0.6 mM methyl jasmonic acid (MJ) or 0.4 to 1.1 mM salicylic acid (SA), and hydrogen peroxide The treatment concentration of may be 4 ~ 11mM, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리할 수 있으나, 이에 제한되지 않는다. 상기 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리는 당업계에 공지된 임의의 방법을 이용할 수 있으며, 특정 방법에 특별히 제한되는 것은 아니다.In the method according to an embodiment of the present invention, the signal transducer or hydrogen peroxide may be sprayed or sprayed onto grape leaves, but is not limited thereto. The signal transducer or hydrogen peroxide may be sprayed or sprayed onto grape leaves using any method known in the art, and is not particularly limited to a specific method.

본 발명의 일 구현 예에 따른 방법에서, 상기 포도는 거봉(Kyoho), 델라웨어(Delaware), 캠벨얼리(Campbell Early), 세리단, MBA, 머루 또는 청포도(Niagara)일 수 있으며, 바람직하게는 캠벨얼리 또는 거봉 포도일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the grape may be a grape (Kyoho), a Delaware (Delaware), a Campbell Early (Campbell Early), a seridan, an MBA, a grapefruit or a green grape (Niagara), preferably Campbell Early Or it may be a grape grape, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 스틸벤은 레스베라트롤(resveratrol), 피세아타놀(Piceatannol) 또는 피세이드(piceid)일 수 있으나, 이에 제한되지 않는다.In the method according to an embodiment of the present invention, the stilbene may be resveratrol, piceatannol, or piceid, but is not limited thereto.

스틸벤은 페닐프로파노이드(phenylpropanoid) 경로에서 파생된 2차 대사산물의 하나인 파이토알렉신(phytoalexin)의 일종으로, 화합물의 생리적 활성은 항산화 작용과 관련이 있으며, 이러한 스틸벤의 라디칼 소거능은 수산기(-OH)의 개수와 상관성이 있으며, 또한 레스베라트롤의 수산화 유도체인 피세아타놀이 레스베라트롤보다 강한 항산화 활성을 갖는다.Stilbene is a kind of phytoalexin, one of the secondary metabolites derived from the phenylpropanoid pathway, and the physiological activity of the compound is related to its antioxidant activity, and the radical scavenging ability of stilbene is It is correlated with the number of hydroxyl groups (-OH) and also has a stronger antioxidant activity than resveratrol, which is a hydroxyl derivative of resveratrol.

또한, 본 발명은 상기 방법에 의해 제조된 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량이 증가된 포도를 제공한다.In addition, the present invention provides grapes having an increased content of stilbene or gamma-aminobutyric acid (GABA) prepared by the above method.

GABA는 식물체 내에서 활성산소 스트레스에 대한 방어반응을 유도하는 물질로서 과산화 수소수의 축적을 제거하는 역할을 하며, 곤충의 공격 등의 외부 스트레스에 저항하는 기작을 유도한다. 식물체 내에서의 GABA 함량의 증가는 선충과 곤충에 저항성을 발휘하는 것으로, 식물체에서의 병원균의 침입에 의해 생성되는 활성산소의 증가는 체내의 GABA 함량의 증가와 연관이 있다.GABA is a substance that induces a protective reaction against reactive oxygen stress in plants, plays a role in removing the accumulation of hydrogen peroxide water, and induces a mechanism to resist external stress such as attack by insects. Increasing the GABA content in the plant exhibits resistance to nematodes and insects, and the increase in free radicals produced by the invasion of pathogens in the plant is associated with an increase in the GABA content in the body.

본 발명의 일 구현 예에 따른 상기 포도는 거봉(Kyoho), 델라웨어(Delaware), 캠벨얼리(Campbell Early), 세리단, MBA, 머루 또는 청포도(Niagara)일 수 있으며, 바람직하게는 캠벨얼리 또는 거봉 포도일 수 있으나, 이에 제한되지 않는다.The grapes according to an embodiment of the present invention may be Keobong (Kyoho), Delaware (Delaware), Campbell Early (Campbell Early), Seridan, MBA, berry or green grapes (Niagara), preferably Campbell Early or Geobong grapes May be, but is not limited thereto.

또한, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법을 제공한다.In addition, the present invention provides a method of increasing the resistance to fungal diseases of grapes, comprising the step of treating the grape with a signal transducer or hydrogen peroxide.

본 발명의 일 구현 예에 따른 방법에서, 상기 곰팡이병은 보트리티스 시네리아에 의해 발병되는 잿빛곰팡이병일 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the fungal disease may be a gray mold disease caused by Botrytis cineria, but is not limited thereto.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량 증진용 조성물을 제공한다. 상기 조성물은 유효성분으로 식물 신호전달물질 또는 과산화수소를 포함하며, 상기 식물 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리함으로서 스틸벤 또는 GABA 함량을 증가시킬 수 있는 것이다. In addition, the present invention provides a composition for enhancing the content of stilbene or gamma-aminobutyric acid (GABA) of grapes containing a plant signal transducer or hydrogen peroxide as an active ingredient. The composition includes a plant signaling substance or hydrogen peroxide as an active ingredient, and by spraying or spraying the plant signaling substance or hydrogen peroxide on grape leaves, the content of stilbene or GABA can be increased.

본 발명의 일 구현 예에 따른 조성물에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In the composition according to an embodiment of the present invention, the signal transducer may be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), and preferably, ethephon, methyl jasmonic acid (MJ) or salicylic acid. (SA) may be, but is not limited thereto.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 곰팡이병에 대한 내성 증진용 조성물을 제공한다. 상기 조성물은 유효성분으로 식물 신호전달물질 또는 과산화수소를 포함하며, 상기 식물 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리함으로서 포도의 곰팡이병에 대한 내성을 증가시킬 수 있는 것이다. In addition, the present invention provides a composition for enhancing resistance to fungal diseases of grapes containing a plant signal transducer or hydrogen peroxide as an active ingredient. The composition contains a plant signal transducer or hydrogen peroxide as an active ingredient, and by spraying or spraying the plant signal transducer or hydrogen peroxide on grape leaves, the resistance of grapes to fungal diseases can be increased.

본 발명의 일 구현 예에 따른 조성물에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In the composition according to an embodiment of the present invention, the signal transducer may be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), and preferably, ethephon, methyl jasmonic acid (MJ) or salicylic acid. (SA) may be, but is not limited thereto.

본 발명의 일 구현 예에 따른 조성물에서, 상기 곰팡이병은 보트리티스 시네리아에 의해 발병되는 잿빛곰팡이병일 수 있으나, 이에 제한되지 않는다.
In the composition according to an embodiment of the present invention, the fungal disease may be a gray mold disease caused by botrytis cineria, but is not limited thereto.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by examples. However, the following examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples.

재료 및 방법Materials and methods

포도나무 잎의 다양한 신호전달물질 처리Processing of various signaling substances in vine leaves

비닐하우스에서 생육 중인 캠벨얼리 및 거봉 포도나무의 잎에 에테폰(500ppm, 1000ppm), H2O2(5mM, 10 mM), 메틸자스몬산(MJ, 0.1mM, 0.5 mM), 살리실산(SA, 0.5mM, 1 mM)의 4가지 물질을 두가지 농도로 구분하여 충분히 분무처리 하였다. 분무처리 후 포도 잎은 각각 0, 1, 6, 24, 48 및 72 시간에 시료를 채취하고 -80℃에 보관하면서 총 RNA를 추출하고 RT-PCR에 이용하였다. 에테폰, 과산화수소 및 메틸자스몬산은 증류수로 녹이고 각각의 농도로 희석하였으며, 살리실산은 에탄올로 녹인 후 증류수로 희석하였다.
Ethephon (500ppm, 1000ppm), H 2 O 2 (5mM, 10 mM), methyljasmonic acid (MJ, 0.1mM, 0.5 mM), salicylic acid (SA, 0.5) on the leaves of Campbell-Early and Geobong vines growing in green houses mM, 1 mM) were divided into two concentrations and sufficiently sprayed. After spray treatment, grape leaves were sampled at 0, 1, 6, 24, 48 and 72 hours, respectively, and stored at -80°C to extract total RNA and used for RT-PCR. Ethephon, hydrogen peroxide and methyl jasmonic acid were dissolved in distilled water and diluted to respective concentrations, and salicylic acid was dissolved in ethanol and then diluted with distilled water.

gun RNARNA 분리 및 Separation and RTRT -- PCRPCR 분석 analysis

총 RNA를 포도잎으로부터 분리하고, PrimeScriptTM 1st strand cDNA synthesis kit(TaKaRa Bio Inc., Japan)를 이용하여 총 RNA 1㎍으로부터 첫번째 가닥 cDNA를 합성하고 PCR 반응을 위한 주형으로 사용하였다. 베타-액틴 및 16개의 방어반응 관련 유전자 염기서열을 바탕으로 프라이머를 제작하였다(표 1). 1차 변성(94℃, 5분), 증폭 반응 35 회 (변성 94℃, 45초; 어닐링 55℃, 45초; 증폭 72℃, 1분), 최종 증폭(7분, 72℃)으로 PCR을 수행하였으며 PCR 산물을 아가로스 겔(1%)에서 밴드를 확인하였다.Total RNA was isolated from grape leaves, and the first strand cDNA was synthesized from 1 μg of total RNA using PrimeScript TM 1 st strand cDNA synthesis kit (TaKaRa Bio Inc., Japan) and used as a template for PCR reaction. Primers were prepared based on beta-actin and 16 defense reaction-related gene sequences (Table 1). PCR was performed with the first denaturation (94°C, 5 min), amplification reaction 35 times (denaturation 94°C, 45 sec; annealing 55°C, 45 sec; amplification 72°C, 1 min), final amplification (7 min, 72°C) The PCR product was performed and a band was confirmed on an agarose gel (1%).

Figure pat00006
Figure pat00006

신호전달물질 처리에 의한 잿빛곰팡이병 발생 억제 조사Investigation of inhibition of gray mold disease by treatment of signal transducers

12시간 교호로 형광등을 조사하며 PDA에서 5일간 배양한 잿빛곰팡이병균(Botrytis cinerea)의 분생포자를 수집하였다. 0.24% 감자 덱스트로스 브로스(0.8% NaCl 함유)에 보트리티스 시네리아 포자 현탁액(106 포자/ml)을 조제한 후, 연필 끝을 이용하여 고르게 상처를 가한 포도나무 잎 뒷면에 20㎕의 포자 현탁액을 에펜도르프 리피터(파이펫)를 이용하여 포도 잎 뒷면의 상처 위에 접종하였다. 또한 균사체 접종은 PDA에서 5일간 배양한 잿빛곰팡이병균의 균사체를 포함한 아가 블럭을 상처부위에 치상하여 접종하였다. 병원균을 접종한 포도 잎은 25℃ 습실에서 4일 경과한 후 괴사 반점의 크기 변화를 측정하였으며, 무처리 잎과 신호전달물질 처리 잎 각각 9장에 대하여 조사하였다.
Gray mold pathogens (Botrytis) cultured in PDA for 5 days by alternately irradiating with fluorescent lamps for 12 hours cinerea ) conidia were collected. After preparing Botrytis cineria spore suspension (10 6 spores/ml) in 0.24% potato dextrose broth (containing 0.8% NaCl), 20 µl of spore suspension on the back of the wounded vine leaves evenly using a pencil tip. Was inoculated onto the wound on the back side of grape leaves using an Eppendorf repeater (pipette). In addition, for mycelial inoculation, agar blocks containing the mycelium of gray mold pathogens cultured in PDA were placed on the wound and inoculated. Grape leaves inoculated with pathogens were measured for changes in the size of necrotic spots after 4 days in a humid room at 25°C, and 9 leaves of untreated and signal transducer treated leaves were investigated.

GABAGABA (γ-(γ- aminobutyricaminobutyric acidacid ) 및 ) And HPLCHPLC 분석 analysis

GABA의 추출은 물질을 처리한 포도나무 잎 1g에 액체 질소를 첨가하여 완전히 마쇄한 후 10ml의 3% TCA(trichloroacetic acid)를 가하여 다시 3분 동안 마쇄 하여 얻은 추출액을 25,000x g로 20분간 원심분리를 하였다. 상층액은 취하여 -20℃에 보관하면서 HPLC에 주입하여 GABA 함량을 분석하였다. HPLC/FLD를 이용하여 GABA의 정성 및 정량 분석을 실시하였다.
GABA extraction was carried out by adding liquid nitrogen to 1 g of treated vine leaves, followed by grinding with 10 ml of 3% TCA (trichloroacetic acid) for 3 minutes, and centrifuging the obtained extract at 25,000xg for 20 minutes. I did. The supernatant was taken and stored at -20°C and injected into HPLC to analyze the GABA content. The qualitative and quantitative analysis of GABA was performed using HPLC/FLD.

스틸벤Stillben (( StilbeneStilbene ) 화합물의 추출 및 ) Extraction of compounds and HPLCHPLC 분석 analysis

스틸벤 화합물의 추출은 물질을 처리한 포도나무 잎 1g에 액체 질소를 첨가하여 완전히 마쇄한 후 4ml의 80%(v/v) 메탄올을 가하여 다시 3분 동안 마쇄하여 얻은 추출액을 25,000x g로 20분간 원심분리 하였다. 상층액은 취하여 -20℃에 보관하면서 HPLC에 주입하여 스틸벤 함량을 분석하였다. 스틸벤 화합물은 HPLC-질량 분광광도계(model 2695 HPLC, model 3100 MS, Waters, USA)를 이용하여 분석하였으며, 분석방법은 Choi 등(2011 Kor. J. Hort. Sci. Technol. 29:374-381)의 방법과 같은 조건으로 실험을 실시하였다.
To extract the stilbene compound, add liquid nitrogen to 1 g of treated vine leaves to completely grind it, add 4 ml of 80% (v/v) methanol, and grind for 3 minutes. The resulting extract was added at 25,000xg for 20 minutes. Centrifuged. The supernatant was taken and stored at -20°C and injected into HPLC to analyze the stilbene content. The stilbene compound was analyzed using an HPLC-mass spectrophotometer (model 2695 HPLC, model 3100 MS, Waters, USA), and the analysis method was Choi et al. (2011 Kor. J. Hort. Sci. Technol. 29:374-381 The experiment was conducted under the same conditions as in ).

실시예Example 1. 신호전달물질 처리에 의한 포도 방어관련 유전자의 발현비교 1. Comparison of expression of genes related to grape defense by signal transducer treatment

표 1의 총 38개의 프라이머를 사용하여 RT-PCR을 실시하였다. 특이적으로 발현되는 유전자를 찾기 위해 먼저 cDNA를 섞어서 RT-PCR을 실시하여 유전자를 선발하고 이에 대하여 다시 개별 RT-PCR을 진행하였다. 캠벨얼리 포도에서는 총 8개의 선발된 유전자 중에서 에테폰을 처리한 경우, CYP(cytochrome p450), TLP(thaumatin-like protein)은 발현이 증가하였고, CHS(chalcone synthesis)에서는 감소 되었으며, 메틸자스몬산을 처리한 후에는 CLP(chitinase-like protein), LOX(lipoxygenase), PRP(proline-rich protein), TLP(thaumatin-like protein) 등의 유전자 발현이 증가하였으며, 살리실산을 처리한 경우에는 CHS(chalcone synthesis), PGIP(polygalacturonase-inhibiting protein), 설투인(sirtuin) 등의 유전자 발현이 증가하였다. 거봉 포도에서는 총 14개의 선발된 유전자 중에서 에테폰을 처리한 경우에는 CHI(chalcone isomerase), CHS(chalcone synthesis), CYP(cytochrome p450), FLS(flavonol synthase), GST(glutathione-S-transferase), TLP(thaumatin-like protein) 등의 유전자 발현이 증가하는 경향을 나타내었고, PRP(proline-rich protein)은 유전자의 발현이 감소하였다(도 1). 메틸자스몬산을 처리한 경우, CI(cold induced protein), LOX(lipoxygenase), STSY(stilbene synthase) 등 3개의 유전자의 발현이 증가하였으며, 살리실산을 처리한 경우에서는 Mei5(cell wall protein, meiosis 5), PGIP(polygalacturonase-inhibiting protein), STSY(sirtuin, stilbene synthase) 등의 유전자 발현이 증가하였다(도 1). 전체적으로 CYP, 설투인, STSY 및 TLP 등의 유전자가 강하게 발현하는 경향을 보였다.
RT-PCR was performed using a total of 38 primers in Table 1. To find a gene that is specifically expressed, cDNA was first mixed and RT-PCR was performed to select a gene, and then individual RT-PCR was performed again. In Campbell-Early grapes, when etephon was treated among a total of eight selected genes, the expression of CYP (cytochrome p450) and TLP (thaumatin-like protein) increased, and decreased in CHS (chalcone synthesis), and methyl jasmine was treated. After treatment, gene expression such as chitinase-like protein (CLP), lipoxygenase (LOX), proline-rich protein (PRP), and thaumatin-like protein (TLP) was increased, and CHS (chalcone synthesis) when salicylic acid was treated. , PGIP (polygalacturonase-inhibiting protein), sirtuin, etc. gene expression was increased. Among the 14 selected genes in the grape grapes, CHI (chalcone isomerase), CHS (chalcone synthesis), CYP (cytochrome p450), FLS (flavonol synthase), GST (glutathione- S- transferase), Gene expression such as TLP (thaumatin-like protein) showed a tendency to increase, and PRP (proline-rich protein) showed a decrease in gene expression (FIG. 1). When methyljasmonic acid was treated, the expression of three genes: CI (cold induced protein), LOX (lipoxygenase), and STSY (stilbene synthase) was increased, and when salicylic acid was treated, Mei5 (cell wall protein, meiosis 5) , PGIP (polygalacturonase-inhibiting protein), STSY (sirtuin, stilbene synthase) and the like gene expression was increased (Fig. 1). Overall, genes such as CYP, sultuin, STSY and TLP tended to be strongly expressed.

실시예Example 2. 신호전달물질 처리에 의한 포도 잿빛곰팡이병의 발생 억제 2. Suppression of the occurrence of grape gray mold disease by treatment of signal transducers

잿빛곰팡이병 발생 및 억제에 대한 다양한 신호전달물질 처리 효과를 확인하기 위하여 캠벨얼리와 거봉 포도나무 잎에 에테폰, 과산화수소, 메틸자스몬산 또는 살리실산을 각각 두가지 농도로 분무하고 보트리티스 시네리아를 접종한 후 병반 형성 및 병반의 크기를 조사하였다. 캠벨얼리 및 거봉 품종에서 신호전달물질 처리에 의해서 잿빛곰팡이병의 발생이 억제되는 것으로 나타났다(도 2). In order to check the effect of treatment of various signal transducers on the occurrence and inhibition of gray mold disease, Ethephon, hydrogen peroxide, methyl jasmine or salicylic acid were sprayed on the leaves of Campbell-Early and Geobong vines at two concentrations, and botrytis cineria was inoculated. After the lesion formation and the size of the lesion were investigated. It was found that the occurrence of gray mold disease was suppressed by the treatment of signal transducers in Campbell-Early and Geobong varieties (FIG. 2).

캠벨얼리 및 거봉에서 상처 유무에 상관없이 포자현탁액이나 균총을 접종한 경우 모두에서 균사 생장을 억제하는 것으로 나타났다. 상처를 주고 포자현탁액을 접종한 식물체에서 상처가 없는 경우에 비해 병반의 크기가 캠벨얼리에서 1.4-9배, 거봉에서 1.2-7배 정도 더 크게 진전되었으며, 균총을 접종한 경우에는 캠벨얼리에서는 상처를 주고 접종한 것이 무상처 접종에 비해 1.2-3배 정도 균사 생장이 높은 경향이었으나 거봉에서는 상처 유무에 상관없이 균사 생장이 무처리구에 비해 억제되었다.
It was found that both inoculation of spore suspension or colony with or without wounds in Campbell Early and Geobong suppressed mycelial growth. Compared to the case where there was no wound in the plant that was wounded and inoculated with the spore suspension, the size of the lesion was 1.4-9 times larger in Campbell Early and 1.2-7 times larger in Geobong. The inoculation tended to be 1.2-3 times higher in mycelial growth than the free wound inoculation, but the mycelial growth was suppressed in the Geobong, regardless of the presence of wounds, compared to the untreated group.

실시예Example 3. 3. 스틸벤Stillben 화합물 및 Compounds and GABAGABA 함량 분석 Content analysis

포도 잎에 에테폰, 과산화수소, 메틸자스몬산 또는 살리실산을 각각 저농도와 고농도로 살포한 후 시간 별로 채취하여 스틸벤 화합물의 함량을 분석하였다. 각 화합물은 해당 m/z의 SIR 크로마토그램에서 보유시간(retention time)을 지표로 하여 확인하였으며, 각 화합물의 함량은 표준물질의 확보가 가능한 트란스-레스베라트롤(trans-resveratrol)과 비교하여 피크 면적의 상대적 비율에 의해 산출하였다(Choi, 2011 Kor. J. Hort. Sci. Technol. 29:374-381). 캠벨얼리 및 거봉의 스틸벤 화합물 함량은 레스베라트롤 보다 항산화활성이 높은 피세아타놀(piceatannol)이 약간 더 많았으며, 특히 트란스-피세이드(trans-Piceid)의 함량은 5가지 화합물 중에서 가장 많이 검출되었으며, 균사 생장 억제 효과가 높은 메틸자스몬산 처리에서 많이 검출되었다(표 2 및 3). 본 발명에서 신호전달물질 처리에 의한 스틸벤 화합물의 증가가 잿빛곰팡이병의 균사 생장 억제와 관련이 있는 것으로 판단된다. Ethephon, hydrogen peroxide, methyl jasmonic acid, or salicylic acid were sprayed on grape leaves at low and high concentrations, respectively, and collected by time to analyze the content of stilbene compounds. Each compound was confirmed by using the retention time as an indicator in the SIR chromatogram of the corresponding m/z, and the content of each compound was compared with trans-resveratrol, which can secure a standard, and the peak area Calculated by relative ratio (Choi, 2011 Kor. J. Hort. Sci. Technol. 29:374-381). The content of stilbene compounds in Campbell Early and Geobong was slightly higher in piceatannol, which has higher antioxidant activity than resveratrol, and in particular , the content of trans- Piceid was the most detected among the five compounds. Methyl jasmonic acid treatment with high growth inhibitory effect was detected a lot (Tables 2 and 3). In the present invention, it is determined that the increase of the stilbene compound by the treatment of the signal transducer is related to the inhibition of mycelial growth in gray mold disease.

본 발명에서 저농도와 고농도의 3가지 신호전달물질 및 과산화수소 처리에 의한 스틸벤 화합물의 함량은 표 2 및 3에 나타내었다. 캠벨얼리와 거봉 두 품종 모두에서 스틸벤 화합물 중 레스베라트롤이나 피세아타놀 보다는 생리활성이 낮은 배당체 형태인 트란스/시스-피세이드가 비교적 많은 함량을 나타내었으며, 아글리콘(aglycone) 형태인 트란스/시스-레스베라트롤은 미량 검출되었다. 특히 피세이드는 트란스형이 시스형 보다 많았으며, 캠벨얼리의 트란스-피세이드 함량이 거봉보다 많았다. 캠벨얼리, 거봉 두 품종 모두에서 레스베라트롤은 미량 검출되었으나, 거봉에서는 레스베라트롤의 수산화 유도체인 피세아타놀의 함량이 캠벨얼리보다 더 많이 검출되었는데, Lorenz 등(2003 Nitric Oxide 9:64-76)은 레스베라트롤의 수산화 유도체인 피세아타놀이 레스베라트롤 보다 더 강한 항산화 활성을 가진다고 하였다.In the present invention, the contents of the three signal transducers of low and high concentration and the stilbene compound by hydrogen peroxide treatment are shown in Tables 2 and 3. Among the stilbene compounds in both Campbell-Early and Geobong varieties, trans/cis-piside, a glycoside form with lower physiological activity than resveratrol or piseataol, showed a relatively higher content, and trans/cis-resveratrol, aglycone form. Was detected in trace amounts. In particular, the trans-type of Pisade was higher than that of the cis-type, and Campbell Early's trans-pisade content was higher than that of Geobong. Resveratrol was detected in trace amounts in both Campbell-Early and Geobong cultivars, but in Geobong, piseataol, a hydroxyl derivative of resveratrol, was detected more than Campbell-Early. It was reported that inpiceataol had stronger antioxidant activity than resveratrol.

신호전달물질 처리에 의한 GABA 함량 변화는 도 3에 나타내었다. GABA 함량은 모든 신호전달물질 처리에서 무처리구 보다 높게 나타났으며, 처리 24시간 후의 GABA 함량이 48시간 후보다 더 높게 나타났다. 특히 에테폰 처리의 경우 24시간 후보다 48시간 후의 GABA 함량이 급격히 증가한 것을 알 수 있었으며, 3가지의 신호전달물질 및 과산화수소 처리 중에서는 살리실산 처리구에서 대체적으로 GABA 함량이 높게 나타났다. Changes in GABA content by treatment with signal transducers are shown in FIG. 3. The GABA content was higher than that of the untreated group in all signal transducer treatments, and the GABA content after 24 hours of treatment was higher than that after 48 hours. In particular, in the case of ethephon treatment, it was found that the GABA content increased sharply after 48 hours than after 24 hours. Among the three signal transducers and hydrogen peroxide treatment, the GABA content was generally higher in the salicylic acid treatment group.

본 발명에서는 식물체에 신호전달물질 및 과산화수소를 처리하였을 경우, 포도나무잎에서 GABA의 함량이 증가하였고, 함량이 증가된 식물체에서 포도 잿빛곰팡이병의 발생이 감소하였다. 즉 신호전달물질 및 과산화수소 처리에 의해서 식물체 내의 다양한 방어반응유전자의 활성화와 스틸벤 화합물의 축적 및 GABA의 축적에 의해 병해에 대한 저항성이 증가되는 것으로 사료된다.In the present invention, when the plant was treated with a signal transducer and hydrogen peroxide, the content of GABA was increased in vine leaves, and the occurrence of grape gray mold disease was decreased in the plants with increased content. That is, it is thought that resistance to diseases is increased by activation of various defense reaction genes, accumulation of stilbene compounds, and accumulation of GABA by treatment with signal transducers and hydrogen peroxide.

포도 잎에 신호전달물질을 처리한 후의 항산화 활성이 높은 스틸벤 화합물의 함량이 증가한 것은 포도의 기능성 강화와 또한 이러한 파이토알렉신 물질에 의한 병 저항성 향상에도 큰 도움을 줄 것으로 판단된다. 본 발명에서 3가지의 신호전달물질 및 과산화수소를 포도 잎에 처리하여 병 저항성 관련 유전자들의 발현이 유도되고 스틸벤 파이토알렉신의 함량이 증가하여 포도 잿빛곰팡이병의 균사 생장을 억제하는 효과를 확인하였다. 이것은 이러한 신호전달물질 처리가 포도에서 여러 병원균의 발생을 억제하거나 항산화 활성을 가지고 있는 스틸벤 화합물의 함량 증가는 건강 기능성 물질로서의 이용을 가능하게 할 것으로 판단된다. The increase in the content of stilbene compounds with high antioxidant activity after treatment with signal transducers in grape leaves is thought to be of great help in enhancing the functionality of grapes and also improving disease resistance by these phytoalexin substances. In the present invention, by treating grape leaves with three signaling substances and hydrogen peroxide, expression of disease resistance-related genes was induced, and the content of stilbene phytoalexin was increased, thereby confirming the effect of inhibiting the mycelial growth of grape gray mold disease. It is believed that such signal transduction substance treatment can inhibit the occurrence of various pathogens in grapes, or increase the content of stilbene compounds having antioxidant activity can be used as a health functional substance.

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

<110> Industry-Academic Cooperation Foundation, Yeungnam University <120> Method for enhancing resistance against fungal disease of grape by treating signal molecules <130> PN14150 <160> 38 <170> KopatentIn 2.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 aatatcccac tcttgccg 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 cctggaggat catagttg 18 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atctcactct tctcatgc 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tacctggagg atcatagt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cttgtctcta cgcttctc 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aacacgaacc gagttacg 18 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 acgtcgttgc tttcttgctt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaccaatctg gggagtttgt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acgatcccat atgcaccact 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tccactgccc acattacaga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcctcacaag ctgatgcaag 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gaaagacagc cggacaagac 20 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aaccaggaca cagatcgt 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggtacaatt gctcctgg 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cttgtctcta cacttctc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtatggactt tcgcctct 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gcaacatatt cagggatc 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 attgaaattg agttgata 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ccagagtgac agatatta 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gccctggccg aagttcct 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 cacgagaaac cctggaag 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gtcgaatagc ttcaatgc 18 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 gcatggcact ctgctggtac c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggggattggt agtccaaggt c 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ggatccatac aagtaccgtc c 21 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caaggaccct ccaattctcc tg 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gatctgtctg gggaaatggc 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcttctccaa tcccttaacc c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ggcgatcaaa gtccatggta g 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcttctccaa tcccttaacc c 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaagtcgtgg ctgtggatct g 21 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 cagcccaaat cagcttcctt tc 22 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgaggtccga aacaactg 18 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtctttgtg tgcaacaa 18 <210> 35 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtcaaccaat gcacctac 18 <210> 36 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ggtggatcat cctgtgga 18 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 acgagaaatc gtgagggatg 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 attctgcctt tgcaatccac 20 <110> Industry-Academic Cooperation Foundation, Yeungnam University <120> Method for enhancing resistance against fungal disease of grape by treating signal molecules <130> PN14150 <160> 38 <170> KopatentIn 2.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 aatatcccac tcttgccg 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 cctggaggat catagttg 18 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atctcactct tctcatgc 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tacctggagg atcatagt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cttgtctcta cgcttctc 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aacacgaacc gagttacg 18 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 acgtcgttgc tttcttgctt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaccaatctg gggagtttgt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acgatcccat atgcaccact 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tccactgccc acattacaga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcctcacaag ctgatgcaag 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gaaagacagc cggacaagac 20 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aaccaggaca cagatcgt 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggtacaatt gctcctgg 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cttgtctcta cacttctc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtatggactt tcgcctct 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gcaacatatt cagggatc 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 attgaaattg agttgata 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ccagagtgac agatatta 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gccctggccg aagttcct 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 cacgagaaac cctggaag 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gtcgaatagc ttcaatgc 18 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 gcatggcact ctgctggtac c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggggattggt agtccaaggt c 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ggatccatac aagtaccgtc c 21 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caaggaccct ccaattctcc tg 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gatctgtctg gggaaatggc 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcttctccaa tcccttaacc c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ggcgatcaaa gtccatggta g 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcttctccaa tcccttaacc c 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaagtcgtgg ctgtggatct g 21 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 cagcccaaat cagcttcctt tc 22 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgaggtccga aacaactg 18 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtctttgtg tgcaacaa 18 <210> 35 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtcaaccaat gcacctac 18 <210> 36 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ggtggatcat cctgtgga 18 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 acgagaaatc gtgagggatg 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 attctgcctt tgcaatccac 20

Claims (5)

포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법.A method of increasing tolerance to fungal diseases of grapes comprising the step of treating the grape with a signaling substance or hydrogen peroxide. 제1항에 있어서, 상기 신호전달물질은 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)인 것을 특징으로 하는 방법.2. The method of claim 1, wherein the signal transduction material is ethephon, methyl jasmonic acid (MJ), or salicylic acid (SA). 제1항에 있어서, 상기 곰팡이병은 잿빛곰팡이병인 것을 특징으로 하는 방법.The method of claim 1, wherein the fungal disease is a gray mold disease. 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 곰팡이병에 대한 내성 증진용 조성물.A composition for promoting resistance to a fungal disease of grape containing a plant signaling substance or hydrogen peroxide as an active ingredient. 제4항에 있어서, 상기 곰팡이병은 잿빛곰팡이병인 것을 특징으로 하는 조성물.5. The composition of claim 4, wherein the fungal disease is a gray mold.
KR1020140064129A 2014-05-28 2014-05-28 Method for enhancing resistance against fungal disease of grape by treating signal molecules KR20140092272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140064129A KR20140092272A (en) 2014-05-28 2014-05-28 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140064129A KR20140092272A (en) 2014-05-28 2014-05-28 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120103803A Division KR101512652B1 (en) 2012-09-19 2012-09-19 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Publications (1)

Publication Number Publication Date
KR20140092272A true KR20140092272A (en) 2014-07-23

Family

ID=51739048

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140064129A KR20140092272A (en) 2014-05-28 2014-05-28 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Country Status (1)

Country Link
KR (1) KR20140092272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116584382A (en) * 2023-05-11 2023-08-15 河南科技大学 Application of hydrogen peroxide in improving potassium ion content of grape plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116584382A (en) * 2023-05-11 2023-08-15 河南科技大学 Application of hydrogen peroxide in improving potassium ion content of grape plants
CN116584382B (en) * 2023-05-11 2024-03-22 河南科技大学 Application of hydrogen peroxide in improving potassium ion content of grape plants

Similar Documents

Publication Publication Date Title
Pascale et al. Trichoderma and its secondary metabolites improve yield and quality of grapes
Mikulic-Petkovsek et al. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection
KR101891950B1 (en) Method for inducing resistance to diseases in plants
Engelbrecht et al. Expression of defence-related genes against Phytophthora cinnamomi in five avocado rootstocks
Krishnan et al. An insight into Hevea-Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling
Konan et al. Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. Vasinfectum in cotton (Gossypium hirsutum L.)
Yan et al. The effect of the root-colonizing Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defense shifts to fitness benefits and higher fruit quality
Yangui et al. Potential use of hydroxytyrosol-rich extract from olive mill wastewater as a biological fungicide against Botrytis cinerea in tomato
Ali et al. Application of garlic allelochemicals improves growth and induces defense responses in eggplant (Solanum melongena) against Verticillium dahliae
Rashidi et al. Total phenol, anthocyanin, and terpenoid content, photosynthetic rate, and nutrient uptake of Solanum nigrum L. and Digitaria sanguinalis L. as affected by arbuscular mycorrhizal fungi inoculation
KR101512656B1 (en) Composition for increasing gamma-aminobutyric acid content of grape comprising hydrogen peroxide as effective component
Sák et al. Elicitation phenolic compounds in cell culture of Vitis vinifera L. by Phaeomoniella chlamydospora
Moreno-Escamilla et al. Effect of elicitation on polyphenol and carotenoid metabolism in butterhead lettuce (Lactuca sativa var. capitata)
KR102362631B1 (en) Composition for controlling plant diseases comprising Schizophyllum commune Fr. mycelium culture fluid
KR20140092272A (en) Method for enhancing resistance against fungal disease of grape by treating signal molecules
KR101512652B1 (en) Method for enhancing resistance against fungal disease of grape by treating signal molecules
EP3119205B1 (en) Pathogenic infections
Tlais et al. Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.)
KR100832745B1 (en) Composition for controlling plant diseases which comprises lignan compounds, resorcinol compounds or nutmeg extract and method for controlling plant disease using same
Karn et al. Efficacy of induced resistance chemicals in triggering defense mechanism of pomegranate plants against the pathogenic bacterium Xanthomonas axonopodis pv. punicae
KR102034704B1 (en) Composition for controlling plant diseases comprising saponin compounds isolated from an extract of Maesa japonica, and method for controlling plant diseases using the same
Bondok et al. Riboflavin and humic acid induced resistance in tomato against tobacco mosaic virus (TMV)
CA2836966C (en) Method and composition for controlling fungal phytopathogens with a preparation of galla chinensis
Badr et al. Combined effect of Streptomyces coelicolor and Arbuscular Mycorrhizal Fungi on controlling onion bacterial rots
Felemban The Apocarotenoid β-ionone is a Positive Regulator of Arabidopsis thaliana Response to the Pathogen Botrytis cinerea

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
SUBM Surrender of laid-open application requested