KR101512652B1 - Method for enhancing resistance against fungal disease of grape by treating signal molecules - Google Patents

Method for enhancing resistance against fungal disease of grape by treating signal molecules Download PDF

Info

Publication number
KR101512652B1
KR101512652B1 KR1020120103803A KR20120103803A KR101512652B1 KR 101512652 B1 KR101512652 B1 KR 101512652B1 KR 1020120103803 A KR1020120103803 A KR 1020120103803A KR 20120103803 A KR20120103803 A KR 20120103803A KR 101512652 B1 KR101512652 B1 KR 101512652B1
Authority
KR
South Korea
Prior art keywords
grape
grapes
hydrogen peroxide
gaba
primer
Prior art date
Application number
KR1020120103803A
Other languages
Korean (ko)
Other versions
KR20140037537A (en
Inventor
윤해근
안순영
김선애
한재현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020120103803A priority Critical patent/KR101512652B1/en
Publication of KR20140037537A publication Critical patent/KR20140037537A/en
Application granted granted Critical
Publication of KR101512652B1 publication Critical patent/KR101512652B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/36Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids
    • A01N37/38Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system
    • A01N37/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a singly bound oxygen or sulfur atom attached to the same carbon skeleton, this oxygen or sulfur atom not being a member of a carboxylic group or of a thio analogue, or of a derivative thereof, e.g. hydroxy-carboxylic acids having at least one oxygen or sulfur atom attached to an aromatic ring system having at least one carboxylic group or a thio analogue, or a derivative thereof, and one oxygen or sulfur atom attached to the same aromatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/42Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing within the same carbon skeleton a carboxylic group or a thio analogue, or a derivative thereof, and a carbon atom having only two bonds to hetero atoms with at the most one bond to halogen, e.g. keto-carboxylic acids
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/18Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds
    • A01N57/20Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-carbon bonds containing acyclic or cycloaliphatic radicals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법, 상기 방법에 의해 제조된 스틸벤 또는 GABA 함량이 증가된 포도, 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법, 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤 또는 GABA 함량 증진용 또는 포도의 곰팡이병에 대한 내성 증진용 조성물을 제공한다.The present invention relates to a method for increasing the stilbene or gamma-aminobutyric acid (GABA) content of grapes comprising the step of treating a signaling substance or hydrogen peroxide in a grape, a method for increasing the content of stilbene or GABA produced by the method A method for increasing tolerance to fungal diseases of grapes, including the step of treating increased grapes, signaling substances or hydrogen peroxide in grapes, increasing the content of stilbenes or GABA in grapes containing plant signaling substances or hydrogen peroxide as active ingredients The present invention provides a composition for enhancing tolerance to a mold or a disease of a grape.

Description

신호전달물질 처리에 의한 포도의 곰팡이병에 대한 내성을 증진시키는 방법{Method for enhancing resistance against fungal disease of grape by treating signal molecules}FIELD OF THE INVENTION [0001] The present invention relates to a method for enhancing tolerance to fungal diseases of grapes by treatment with a signaling substance,

본 발명은 신호전달물질 처리에 의한 포도의 곰팡이병에 대한 내성을 증진시키는 방법에 관한 것으로, 더욱 상세하게는 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법, 상기 방법에 의해 제조된 스틸벤 또는 GABA 함량이 증가된 포도, 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법, 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤 또는 GABA 함량 증진용 조성물 또는 포도의 곰팡이병에 대한 내성 증진용 조성물에 관한 것이다.The present invention relates to a method of enhancing tolerance to fungal diseases of grapes by treatment with signal transduction materials, and more particularly to a method of treating grape stilbene or hydrogen peroxide, A method for increasing the content of gamma-aminobutyric acid (GABA), a method for treating grape mold disease comprising treating staphylococcal or GABA-rich grape produced by the method, signaling substance or hydrogen peroxide in the grape , A plant signaling substance or a composition for enhancing stilbene or GABA content of grape containing hydrogen peroxide as an active ingredient or a composition for enhancing tolerance to fungal diseases of grape.

식물의 병 방어 기작은 병원균의 침입뿐만 아니라 자외선 처리나 신호전달물질 등과 같은 비생물적 스트레스에 의해서도 유도되는데, 이러한 비생물적 스트레스 요인이 되는 신호전달물질에는 호흡억제제, 전착제, 항생제, 생장조절제, 중금속 및 유도인자(elicitor) 등이 있다. 식물의 방어 반응은 신호전달 경로의 복잡한 네트워크를 통해 이루어지는데, 내생 신호전달물질에는 살리실산(SA), 자스몬산(JA), 에틸렌(ET)이 포함되며, 이와 같은 방어기작에서 메틸자스몬산, 에틸렌, 살리실산, 과산화수소 등은 병 저항성을 매개하는 중요한 조절인자이다. 에틸렌, 메틸자스몬산, 살리실산은 식물에서 국부 또는 전신적인 병 저항성 반응을 유도하는 중요한 신호전달물질이며, 이러한 신호전달물질의 인위적인 외부 처리는 병원균 감염에 의해 활성화되는 저항성 관련 유전자들을 유도한다. 또한, 파이토알렉신(Phytoalexin)은 저분자의 2차 대사산물로 병원균에 감염 후 축적되는 항균물질이며, 식물이 병원균, 중금속, UV, AlCl3 등과 비생물적 스트레스에 반응하여 생산하기도 한다. 포도에서 생산되는 파이토알렉신에는 간단한 스틸벤인 레스베라트롤(trans-3,5,4'-trihydroxystilbene) 및 배당체와 생화학적으로 관련된 화합물인 비니페린(viniferins)과 테로스틸벤(pterostilbene, trans-3,5 dimethoxy-4'-hydroxystilbene)이 포함된다. Plant defense mechanisms are also induced not only by pathogens, but also by abiotic stresses such as ultraviolet rays and signaling substances. These signaling substances, which are abiotic stressors, include respiratory inhibitors, antibiotics, Heavy metals and elicitors. Plant defense responses are mediated through a complex network of signaling pathways, including endogenous signaling pathways including salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) , Salicylic acid, and hydrogen peroxide are important regulators that mediate disease resistance. Ethylene, methyl jasmonic acid, and salicylic acid are important signaling molecules that induce local or systemic disease resistance responses in plants, and an artificial external treatment of these signaling substances induces resistance-related genes that are activated by pathogenic infection. Phytoalexin is a low-molecular secondary metabolite. It is an antimicrobial substance that accumulates after infection with pathogens. It also produces plants in response to pathogenic bacteria, heavy metals, UV, AlCl 3, and other abiotic stresses. Phytoalexin produced in grapes contains viniferins and pterostilbene (trans-3, trans-3, 4-dihydroxyphenyl), which are biochemically related compounds with simple stilbene, trans-3,5,4'- trihydroxystilbene, 5 dimethoxy-4'-hydroxystilbene).

포도는 세계적으로 중요한 과수 중 하나이지만 재배 시에는 수많은 세균, 곰팡이, 바이러스 등과 같은 병원균에 감염되기 쉽다. 포도에서 잿빛곰팡이병은 늦은 우기나 높은 상대습도가 지속될 때에 성숙과에 감염되어 발병하며, 수확 후에도 발병하는데 농업적으로 중요한 토마토, 딸기, 오이, 구근류, 절화, 관상화 등 여러 작물에서도 심각한 문제를 일으킨다.Grape is one of the most important fruit trees in the world, but it is susceptible to many pathogens such as germs, fungi and viruses during cultivation. Gray molds in grapes are susceptible to maturity during late summer or high relative humidity and develop after harvest, causing serious problems in many crops such as tomatoes, strawberries, cucumbers, bulbs, cut flowers, .

포도의 잿빛곰팡이병은 보트리티스 시네리아(B. cinerea)에 의해 발생되며, 주로 꽃과 열매에 발병하는데, 특히 개화기에 시설 하우스에서 심하게 발생하여 지역에 따라 포도 생산에 큰 영향을 주는 요인이다. 신호전달물질 처리에 의한 병 저항성 관련 유전자들의 유도나 스틸벤 화합물과 같은 파이토알렉신의 축적은 이러한 병원균에 대한 저항성을 증진시킬 수 있을 것으로 예상되며, 본 발명에서는 3가지의 신호전달물질 및 과산화수소를 캠벨얼리 및 거봉 잎에 처리하여 병 저항성 관련 유전자들을 유도하고 다양한 스틸벤 화합물 및 GABA 물질의 축적에 의한 잿빛곰팡이병의 발생 억제 효과를 확인하였다.The gray mold of the grape is caused by B. cinerea , which mainly affects flowers and fruits, especially in the flowering stage, which is a serious factor in the production of grapes depending on the region . Induction of disease resistance-related genes by treatment of signaling substances or accumulation of phytoalexins such as stilbene compounds is expected to enhance resistance to these pathogens. In the present invention, three signaling substances and hydrogen peroxide And gabbana to induce disease resistance genes and to inhibit the development of gray mold disease by accumulation of various stilbene compounds and GABA substances.

한국공개특허 제2003-0021976호에서는 포도 유래의 천연 항암물질인 레스베라트롤의 함량을 증폭시킨 레스베라트롤 강화 포도 및 그 생산방법이 개시되어 있고, 한국등록특허 제0582737호에서는 환경인자를 이용한 레스베라트롤 고함유 포도의 생산방법이 개시되어 있으나, 본 발명에서와 같이 곰팡이병에 대한 내성이 증진된 포도의 제조방법 및 그에 따른 포도에 관해서는 밝혀진 바가 없다.Korean Patent Publication No. 2003-0021976 discloses resveratrol-fortified grapes that amplify the content of resveratrol, a natural anticancer substance derived from grapes, and a production method thereof. Korean Patent No. 0582737 discloses a resveratrol- Production methods have been disclosed. However, as in the present invention, the method for producing grapes having enhanced resistance to fungal diseases and the grapes therefrom have not been disclosed.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명에서는 포도 잎에 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)의 신호전달물질 또는 과산화수소를 분무 처리한 결과, 포도의 스틸벤(stilbene) 및 GABA(gamma-aminobutyric acid) 함량이 증가되었고, 또한 포도의 잿빛곰팡이병에 대한 내성이 증가된 것을 확인함으로써, 본 발명을 완성하였다.SUMMARY OF THE INVENTION The present invention has been made in view of the above-described needs, and it is an object of the present invention to provide a method of spraying grape leaves with Ethepton, methyl jasmonic acid (MJ) or salicylic acid (SA) stilbene) and GABA (gamma-aminobutyric acid) were increased, and the tolerance to gray mold of grapes was also increased, thus completing the present invention.

상기 과제를 해결하기 위해, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법을 제공한다.In order to solve the above-mentioned problems, the present invention provides a method for increasing stilbene or GABA (gamma-aminobutyric acid) content of grapes, comprising the step of treating the grape with a signaling substance or hydrogen peroxide.

또한, 본 발명은 상기 방법에 의해 제조된 스틸벤 또는 GABA 함량이 증가된 포도를 제공한다.The present invention also provides stilbenes or grapes with increased GABA content produced by the method.

또한, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법을 제공한다.The present invention also provides a method for increasing tolerance to fungal diseases of grapes comprising the step of treating signaling substances or hydrogen peroxide in grapes.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤 또는 GABA 함량 증진용 조성물을 제공한다.The present invention also provides a composition for increasing stilbene or GABA content of grape containing plant signaling substance or hydrogen peroxide as an active ingredient.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 곰팡이병에 대한 내성 증진용 조성물을 제공한다.The present invention also provides a composition for enhancing tolerance to a fungal disease of grape containing a plant signaling substance or hydrogen peroxide as an active ingredient.

본 발명은 재배과정 중 포도에 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)의 신호전달물질 또는 과산화수소를 분무 처리한 결과, 포도의 스틸벤 및 GABA 함량의 증가 및 포도의 잿빛곰팡이병에 대한 내성 증가에 뛰어난 효과가 있는 것을 확인하였다. 따라서, 본 발명의 제조 방법에 의해 생산된 포도는 항암 및 항균활성의 스틸벤 및 GABA를 고도로 함유함으로써 이를 유효성분으로 하는 기능성 식품 및 의약품용 조성물을 제조할 수 있어 식품산업 및 의약품 산업상 매우 유용한 발명이며, 포도 곰팡이병에 대한 내성이 증진된 포도 식물체를 제공할 수 있어, 포도 산업의 생산성 증가에 크게 이바지할 수 있다.The present invention is based on the finding that spraying of grape with ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA) signaling agent or hydrogen peroxide during the cultivation process results in an increase in the content of stilben and GABA in the grape, And it was confirmed that there is an excellent effect on the increase of tolerance. Therefore, the grapes produced by the production method of the present invention can contain a high content of stilbenes and GABA having anticancer and antimicrobial activity, thereby making it possible to produce a functional food and a pharmaceutical composition containing the same as an effective ingredient, which is very useful in the food industry and the pharmaceutical industry The present invention can provide a grape plant having enhanced tolerance to grape mold disease, which can greatly contribute to an increase in the productivity of the grape industry.

도 1은 신호전달물질을 처리한 캠벨얼리 및 거봉 포도나무 잎에서의 방어관련 유전자의 발현 분석을 나타낸다. 신호전달물질을 처리하고 일정 시간이 경과된 후 총 RNA를 분리하여 cDNA를 합성하고 RT-PCR 분석을 수행하였으며, RNA의 동량을 확인하기 위하여 베타-액틴 유전자를 대조구로 사용하였다. (CHI; chalcone isomerase, CHS; chalcone synthase, CYP; cytochrome p450, FLS; flavonol synthase, GST; glutathione-S-transferase, TLP; thaumatine-like protein, PRP; proline rich protein, CI; cold induced protein, LOX; lipoxygenase, STSY; stilbene synthase, Cell wall; Cell wall protein, Mei5; meiosis 5, PGIP; Polygalacturonase-inhibiting protein, Sir; sirtuin)
도 2는 신호전달물질 및 과산화수소를 처리한 후 보트리티스 시네리아를 접종한 포도나무 잎에서의 잿빛곰팡이병 발생 억제를 나타낸다. (A) 캠벨얼리, (B) 거봉.

Figure 112012075858842-pat00001
, 대조구(물 처리),
Figure 112012075858842-pat00002
1000 ppm 에테폰 처리,
Figure 112012075858842-pat00003
10 mM H2O2 처리,
Figure 112012075858842-pat00004
0.5 mM 메틸자스몬산 처리,
Figure 112012075858842-pat00005
1 mM 살리실산 처리. 수직 바는 SEs를 나타낸다 (n=9).
도 3은 신호전달물질을 처리한 거봉 포도나무 잎에서의 GABA 함량 변화를 나타낸다. Cont, 물 처리; MeJ, 메틸자스몬산; SA, 살리실산.Figure 1 shows the expression analysis of the defense-related genes in Campbell and vine leaves treated with the signaling substance. After a period of time had elapsed, total RNA was isolated and cDNA was synthesized and analyzed by RT-PCR. Beta-actin gene was used as a control to confirm the equivalence of RNA. (CHI) chalcone isomerase (CHS), chalcone synthase (CYP), cytochrome p450, FLS, flavonol synthase, GST, glutathione- S- transferase, TLP, thaumatin-like protein, PRP, proline rich protein lipoxygenase, STSY, stilbene synthase, cell wall, cell wall protein, Mei5, meiosis 5, PGIP, polygalacturonase-inhibiting protein,
Figure 2 shows the inhibition of gray mold fungal disease on vine leaves inoculated with Vortex sinceria after treatment with signaling substance and hydrogen peroxide. (A) The campbell, (B) The barb.
Figure 112012075858842-pat00001
, Control (water treatment),
Figure 112012075858842-pat00002
1000 ppm of tepone treatment,
Figure 112012075858842-pat00003
10 mM H 2 O 2 process,
Figure 112012075858842-pat00004
0.5 mM methyl jasmonate treatment,
Figure 112012075858842-pat00005
Treatment with 1 mM salicylic acid. The vertical bars represent SEs (n = 9).
FIG. 3 shows the change in the GABA content in the jabon vine leaves treated with the signaling substance. Cont, water treatment; MeJ, methyl jasmonic acid; SA, salicylic acid.

본 발명의 목적을 달성하기 위하여, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법을 제공한다.In order to accomplish the object of the present invention, the present invention provides a method for increasing stilbene or gamma-aminobutyric acid (GABA) content of grapes comprising treating a grape with a signaling substance or hydrogen peroxide.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In a method according to an embodiment of the present invention the signaling substance can be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), preferably ethephon, methyl jasmonic acid (MJ) (SA), but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질의 처리 농도는 바람직하게는 450~1100ppm 에테폰, 0.08~0.6mM 메틸자스몬산(MJ) 또는 0.4~1.1mM 살리실산(SA)이며, 과산화수소의 처리 농도는 4~11mM일 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the treatment concentration of the signal transduction material is preferably 450 to 1100 ppm of TEPE, 0.08 to 0.6 mM of methyl jasmonic acid (MJ) or 0.4 to 1.1 mM of salicylic acid (SA) May be 4 to 11 mM, but is not limited thereto.

본 발명의 일 구현 예에 따른 방법에서, 상기 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리할 수 있으나, 이에 제한되지 않는다. 상기 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리는 당업계에 공지된 임의의 방법을 이용할 수 있으며, 특정 방법에 특별히 제한되는 것은 아니다.In the method according to one embodiment of the present invention, the signal transduction material or hydrogen peroxide can be sprayed or sprayed onto the grape leaves, but is not limited thereto. The method of spraying or spraying the signal transmitting substance or hydrogen peroxide on the grape leaves may be any method known in the art and is not particularly limited to a specific method.

본 발명의 일 구현 예에 따른 방법에서, 상기 포도는 거봉(Kyoho), 델라웨어(Delaware), 캠벨얼리(Campbell Early), 세리단, MBA, 머루 또는 청포도(Niagara)일 수 있으며, 바람직하게는 캠벨얼리 또는 거봉 포도일 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the grape may be Kyoho, Delaware, Campbell Early, Seri Da, MBA, Mauro or Niagara, ≪ / RTI > or grapevine grapes.

본 발명의 일 구현 예에 따른 방법에서, 상기 스틸벤은 레스베라트롤(resveratrol), 피세아타놀(Piceatannol) 또는 피세이드(piceid)일 수 있으나, 이에 제한되지 않는다.In a method according to an embodiment of the present invention, the stilbene may be, but is not limited to, resveratrol, piceatannol or piceid.

스틸벤은 페닐프로파노이드(phenylpropanoid) 경로에서 파생된 2차 대사산물의 하나인 파이토알렉신(phytoalexin)의 일종으로, 화합물의 생리적 활성은 항산화 작용과 관련이 있으며, 이러한 스틸벤의 라디칼 소거능은 수산기(-OH)의 개수와 상관성이 있으며, 또한 레스베라트롤의 수산화 유도체인 피세아타놀이 레스베라트롤보다 강한 항산화 활성을 갖는다.Stilbene is a kind of phytoalexin, one of the secondary metabolites derived from the phenylpropanoid pathway. The physiological activity of the compound is related to antioxidant activity, and the radical scavenging ability of stilbene It has a correlation with the number of hydroxyl groups (-OH), and has a stronger antioxidative activity than resveratrol, a hydroxylated derivative, pisatanol, resveratrol.

또한, 본 발명은 상기 방법에 의해 제조된 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량이 증가된 포도를 제공한다.The present invention also provides grapes with increased stilbene or GABA (gamma-aminobutyric acid) content produced by the method.

GABA는 식물체 내에서 활성산소 스트레스에 대한 방어반응을 유도하는 물질로서 과산화 수소수의 축적을 제거하는 역할을 하며, 곤충의 공격 등의 외부 스트레스에 저항하는 기작을 유도한다. 식물체 내에서의 GABA 함량의 증가는 선충과 곤충에 저항성을 발휘하는 것으로, 식물체에서의 병원균의 침입에 의해 생성되는 활성산소의 증가는 체내의 GABA 함량의 증가와 연관이 있다.GABA is a substance that induces a defense reaction against reactive oxygen stress in the plant. It removes the accumulation of hydrogen peroxide and induces a mechanism to resist external stress such as insect attack. The increase in GABA content in plants is indicative of resistance to nematodes and insects, and the increase in reactive oxygen species produced by pathogen infestation in plants is associated with an increase in GABA content in the body.

본 발명의 일 구현 예에 따른 상기 포도는 거봉(Kyoho), 델라웨어(Delaware), 캠벨얼리(Campbell Early), 세리단, MBA, 머루 또는 청포도(Niagara)일 수 있으며, 바람직하게는 캠벨얼리 또는 거봉 포도일 수 있으나, 이에 제한되지 않는다.The grape according to one embodiment of the present invention may be Kyoho, Delaware, Campbell Early, Seri Da, MBA, Mauro or Niagara, preferably Campbell or Geobong grapes But is not limited thereto.

또한, 본 발명은 포도에 신호전달물질 또는 과산화수소를 처리하는 단계를 포함하는 포도의 곰팡이병에 대한 내성을 증가시키는 방법을 제공한다.The present invention also provides a method for increasing tolerance to fungal diseases of grapes comprising the step of treating signaling substances or hydrogen peroxide in grapes.

본 발명의 일 구현 예에 따른 방법에서, 상기 곰팡이병은 보트리티스 시네리아에 의해 발병되는 잿빛곰팡이병일 수 있으나, 이에 제한되지 않는다.In the method according to one embodiment of the present invention, the fungal disease may be, but is not limited to, a gray mold disease caused by V. vivax.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 스틸벤(stilbene) 또는 GABA(gamma-aminobutyric acid) 함량 증진용 조성물을 제공한다. 상기 조성물은 유효성분으로 식물 신호전달물질 또는 과산화수소를 포함하며, 상기 식물 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리함으로서 스틸벤 또는 GABA 함량을 증가시킬 수 있는 것이다. The present invention also provides a composition for enhancing stilbene or GABA (gamma-aminobutyric acid) content of grapes containing plant signaling substances or hydrogen peroxide as active ingredients. The composition includes an active ingredient, a plant signaling substance or hydrogen peroxide, and the plant signaling substance or hydrogen peroxide can be sprayed or sprayed on the grape leaves to increase the content of stilbene or GABA.

본 발명의 일 구현 예에 따른 조성물에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In a composition according to an embodiment of the present invention the signaling substance may be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), preferably ethephon, methyl jasmonic acid (MJ) (SA), but is not limited thereto.

또한, 본 발명은 식물 신호전달물질 또는 과산화수소를 유효성분으로 함유하는 포도의 곰팡이병에 대한 내성 증진용 조성물을 제공한다. 상기 조성물은 유효성분으로 식물 신호전달물질 또는 과산화수소를 포함하며, 상기 식물 신호전달물질 또는 과산화수소를 포도 잎에 분무 또는 살포 처리함으로서 포도의 곰팡이병에 대한 내성을 증가시킬 수 있는 것이다. The present invention also provides a composition for enhancing tolerance to a fungal disease of grape containing a plant signaling substance or hydrogen peroxide as an active ingredient. The composition comprises an effective component, a plant signaling substance or hydrogen peroxide, and the plant signaling substance or hydrogen peroxide can be sprayed or sprayed onto a grape leaf to increase tolerance to fungal diseases of the grape.

본 발명의 일 구현 예에 따른 조성물에서, 상기 신호전달물질은 에틸렌, 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있고, 바람직하게는 에테폰, 메틸자스몬산(MJ) 또는 살리실산(SA)일 수 있으나, 이에 제한되지 않는다.In a composition according to an embodiment of the present invention the signaling substance may be ethylene, ethephon, methyl jasmonic acid (MJ) or salicylic acid (SA), preferably ethephon, methyl jasmonic acid (MJ) (SA), but is not limited thereto.

본 발명의 일 구현 예에 따른 조성물에서, 상기 곰팡이병은 보트리티스 시네리아에 의해 발병되는 잿빛곰팡이병일 수 있으나, 이에 제한되지 않는다.
In the composition according to an embodiment of the present invention, the fungal disease may be, but is not limited to, a gray mold disease caused by V. vivax.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

재료 및 방법Materials and methods

포도나무 잎의 다양한 신호전달물질 처리Various signaling materials treatment of vine leaves

비닐하우스에서 생육 중인 캠벨얼리 및 거봉 포도나무의 잎에 에테폰(500ppm, 1000ppm), H2O2(5mM, 10 mM), 메틸자스몬산(MJ, 0.1mM, 0.5 mM), 살리실산(SA, 0.5mM, 1 mM)의 4가지 물질을 두가지 농도로 구분하여 충분히 분무처리 하였다. 분무처리 후 포도 잎은 각각 0, 1, 6, 24, 48 및 72 시간에 시료를 채취하고 -80℃에 보관하면서 총 RNA를 추출하고 RT-PCR에 이용하였다. 에테폰, 과산화수소 및 메틸자스몬산은 증류수로 녹이고 각각의 농도로 희석하였으며, 살리실산은 에탄올로 녹인 후 증류수로 희석하였다.
(500 ppm, 1000 ppm), H 2 O 2 (5 mM, 10 mM), methyl jasmonic acid (MJ, 0.1 mM, 0.5 mM) and salicylic acid (SA, 0.5 mM, 1 mM) were divided into two concentrations and sprayed sufficiently. After spraying, the grape leaves were sampled at 0, 1, 6, 24, 48 and 72 hours, respectively, and stored at -80 ° C. Total RNA was extracted and used for RT-PCR. Ethepton, hydrogen peroxide and methyl jasmonic acid were dissolved in distilled water and diluted to the respective concentrations. Salicylic acid was dissolved in ethanol and diluted with distilled water.

gun RNARNA 분리 및  Separation and RTRT -- PCRPCR 분석 analysis

총 RNA를 포도잎으로부터 분리하고, PrimeScriptTM 1st strand cDNA synthesis kit(TaKaRa Bio Inc., Japan)를 이용하여 총 RNA 1㎍으로부터 첫번째 가닥 cDNA를 합성하고 PCR 반응을 위한 주형으로 사용하였다. 베타-액틴 및 16개의 방어반응 관련 유전자 염기서열을 바탕으로 프라이머를 제작하였다(표 1). 1차 변성(94℃, 5분), 증폭 반응 35 회 (변성 94℃, 45초; 어닐링 55℃, 45초; 증폭 72℃, 1분), 최종 증폭(7분, 72℃)으로 PCR을 수행하였으며 PCR 산물을 아가로스 겔(1%)에서 밴드를 확인하였다.Total RNA was isolated from grape leaves and first strand cDNA was synthesized from 1 μg of total RNA using PrimeScript 1 st strand cDNA synthesis kit (TaKaRa Bio Inc., Japan) and used as a template for PCR reaction. Primers were prepared based on the nucleotide sequences related to beta-actin and 16 defense reactions (Table 1). PCR was performed with primary denaturation (94 ° C., 5 min), amplification reaction 35 times (denaturation at 94 ° C. for 45 sec, annealing at 55 ° C. for 45 sec, amplification at 72 ° C. for 1 min.) And final amplification (7 min, 72 ° C.) And the PCR product was identified on agarose gel (1%).

Figure 112012075858842-pat00006
Figure 112012075858842-pat00006

신호전달물질 처리에 의한 잿빛곰팡이병 발생 억제 조사Inhibition of Gray Mold Fungal Disease by Signal Transduction

12시간 교호로 형광등을 조사하며 PDA에서 5일간 배양한 잿빛곰팡이병균(Botrytis cinerea)의 분생포자를 수집하였다. 0.24% 감자 덱스트로스 브로스(0.8% NaCl 함유)에 보트리티스 시네리아 포자 현탁액(106 포자/ml)을 조제한 후, 연필 끝을 이용하여 고르게 상처를 가한 포도나무 잎 뒷면에 20㎕의 포자 현탁액을 에펜도르프 리피터(파이펫)를 이용하여 포도 잎 뒷면의 상처 위에 접종하였다. 또한 균사체 접종은 PDA에서 5일간 배양한 잿빛곰팡이병균의 균사체를 포함한 아가 블럭을 상처부위에 치상하여 접종하였다. 병원균을 접종한 포도 잎은 25℃ 습실에서 4일 경과한 후 괴사 반점의 크기 변화를 측정하였으며, 무처리 잎과 신호전달물질 처리 잎 각각 9장에 대하여 조사하였다.
The cells were incubated for 5 days in a PDA irradiated with fluorescent lamps in an alternating manner for 12 hours, and the gray mold fungus ( Botrytis cinerea ) were collected. (10 6 spores / ml) was added to 0.24% potato dextrose broth (containing 0.8% NaCl), and 20 μl of spore suspension was added to the back of the vine leaf evenly wounded with a pencil tip Was inoculated onto the scar on the back of the grape leaf using Eppendorf repeater (pipet). The mycelial inoculation was performed by inoculating the agar block containing the mycelium of the gray mold fungus cultured in the PDA for 5 days. The number of necrotic spots was measured after 4 days at 25 ℃ in the laboratory of grape leaves inoculated with pathogenic bacteria.

GABAGABA (γ-(? aminobutyricaminobutyric acidacid ) 및 ) And HPLCHPLC 분석 analysis

GABA의 추출은 물질을 처리한 포도나무 잎 1g에 액체 질소를 첨가하여 완전히 마쇄한 후 10ml의 3% TCA(trichloroacetic acid)를 가하여 다시 3분 동안 마쇄 하여 얻은 추출액을 25,000x g로 20분간 원심분리를 하였다. 상층액은 취하여 -20℃에 보관하면서 HPLC에 주입하여 GABA 함량을 분석하였다. HPLC/FLD를 이용하여 GABA의 정성 및 정량 분석을 실시하였다.
The extraction of GABA was performed by adding liquid nitrogen to 1 g of the vine leaf treated with 10 ml of 3% TCA (trichloroacetic acid) and grinding for 3 minutes. The extract was centrifuged at 25,000 × g for 20 minutes Respectively. The supernatant was collected and stored at -20 ° C and injected into HPLC to analyze GABA content. Qualitative and quantitative analysis of GABA was performed using HPLC / FLD.

스틸벤Stilben (( StilbeneStilbene ) 화합물의 추출 및 ) ≪ / RTI > HPLCHPLC 분석 analysis

스틸벤 화합물의 추출은 물질을 처리한 포도나무 잎 1g에 액체 질소를 첨가하여 완전히 마쇄한 후 4ml의 80%(v/v) 메탄올을 가하여 다시 3분 동안 마쇄하여 얻은 추출액을 25,000x g로 20분간 원심분리 하였다. 상층액은 취하여 -20℃에 보관하면서 HPLC에 주입하여 스틸벤 함량을 분석하였다. 스틸벤 화합물은 HPLC-질량 분광광도계(model 2695 HPLC, model 3100 MS, Waters, USA)를 이용하여 분석하였으며, 분석방법은 Choi 등(2011 Kor. J. Hort. Sci. Technol. 29:374-381)의 방법과 같은 조건으로 실험을 실시하였다.
To extract the stilbene compound, liquid nutrient was added to 1 g of the treated vine leaves and the mixture was thoroughly crushed. 4 ml of 80% (v / v) methanol was added, and the mixture was again grinded for 3 minutes. And centrifuged. The supernatant was collected and stored at -20 ° C and injected into HPLC to analyze stilbene content. The stilbene compound was analyzed using an HPLC-mass spectrophotometer (model 2695 HPLC, model 3100 MS, Waters, USA). The analytical method was Choi et al. (2011 Kor. J. Hort. Sci. Technol. 29: 374-381 ) Were performed under the same conditions.

실시예Example 1. 신호전달물질 처리에 의한 포도 방어관련 유전자의 발현비교 1. Expression of genes related to grape defense by signal transduction

표 1의 총 38개의 프라이머를 사용하여 RT-PCR을 실시하였다. 특이적으로 발현되는 유전자를 찾기 위해 먼저 cDNA를 섞어서 RT-PCR을 실시하여 유전자를 선발하고 이에 대하여 다시 개별 RT-PCR을 진행하였다. 캠벨얼리 포도에서는 총 8개의 선발된 유전자 중에서 에테폰을 처리한 경우, CYP(cytochrome p450), TLP(thaumatin-like protein)은 발현이 증가하였고, CHS(chalcone synthesis)에서는 감소 되었으며, 메틸자스몬산을 처리한 후에는 CLP(chitinase-like protein), LOX(lipoxygenase), PRP(proline-rich protein), TLP(thaumatin-like protein) 등의 유전자 발현이 증가하였으며, 살리실산을 처리한 경우에는 CHS(chalcone synthesis), PGIP(polygalacturonase-inhibiting protein), 설투인(sirtuin) 등의 유전자 발현이 증가하였다. 거봉 포도에서는 총 14개의 선발된 유전자 중에서 에테폰을 처리한 경우에는 CHI(chalcone isomerase), CHS(chalcone synthesis), CYP(cytochrome p450), FLS(flavonol synthase), GST(glutathione-S-transferase), TLP(thaumatin-like protein) 등의 유전자 발현이 증가하는 경향을 나타내었고, PRP(proline-rich protein)은 유전자의 발현이 감소하였다(도 1). 메틸자스몬산을 처리한 경우, CI(cold induced protein), LOX(lipoxygenase), STSY(stilbene synthase) 등 3개의 유전자의 발현이 증가하였으며, 살리실산을 처리한 경우에서는 Mei5(cell wall protein, meiosis 5), PGIP(polygalacturonase-inhibiting protein), STSY(sirtuin, stilbene synthase) 등의 유전자 발현이 증가하였다(도 1). 전체적으로 CYP, 설투인, STSY 및 TLP 등의 유전자가 강하게 발현하는 경향을 보였다.
RT-PCR was performed using a total of 38 primers shown in Table 1. In order to find genes specifically expressed, RT-PCR was performed by mixing the cDNAs first, and the individual genes were selected and RT-PCR was performed again. Among the eight selected genes in the Campbell grape, the expression of CYP (cytochrome p450) and TLP (thaumatin-like protein) increased in chitosan, chalcone synthesis (CHS) The expression of chitinase-like protein (LOP), lipoxygenase (LOX), proline-rich protein (PRP) and thaumatin-like protein (TLP) increased, and CHS (chalcone synthesis) , Polygalacturonase-inhibiting protein (PGIP), and sirtuin. Chalcone isomerase (CHI), chalcone synthesis (CHS), cytochrome p450, FLS (flavonol synthase), glutathione S- transferase (GST) TLP (thaumatin-like protein), and PRP (proline-rich protein) showed a decrease in gene expression (Fig. 1). The expression of three genes including cold inducible protein (CI), LOX (lipoxygenase) and STSY (stilbene synthase) increased in the case of treatment with methyl jasmonic acid. Mei5 (cell wall protein, meiosis 5) , PGIP (polygalacturonase-inhibiting protein) and STSY (sirtuin, stilbene synthase) (Fig. 1). Overall, genes such as CYP, serotonin, STSY and TLP tended to be strongly expressed.

실시예Example 2. 신호전달물질 처리에 의한 포도 잿빛곰팡이병의 발생 억제 2. Inhibition of grape-gray mold disease by treatment with signaling substance

잿빛곰팡이병 발생 및 억제에 대한 다양한 신호전달물질 처리 효과를 확인하기 위하여 캠벨얼리와 거봉 포도나무 잎에 에테폰, 과산화수소, 메틸자스몬산 또는 살리실산을 각각 두가지 농도로 분무하고 보트리티스 시네리아를 접종한 후 병반 형성 및 병반의 크기를 조사하였다. 캠벨얼리 및 거봉 품종에서 신호전달물질 처리에 의해서 잿빛곰팡이병의 발생이 억제되는 것으로 나타났다(도 2). In order to investigate the effect of various signal transduction agents on the occurrence and inhibition of gray mold, we sprayed two concentrations of Ethepton, hydrogen peroxide, methyl jasmonic acid or salicylic acid in Campbell and Jubon vine leaves, The lesion formation and lesion size were examined. The occurrence of gray mold was inhibited by the treatment of signaling substances in the Campbellies and hermaphrodites (Fig. 2).

캠벨얼리 및 거봉에서 상처 유무에 상관없이 포자현탁액이나 균총을 접종한 경우 모두에서 균사 생장을 억제하는 것으로 나타났다. 상처를 주고 포자현탁액을 접종한 식물체에서 상처가 없는 경우에 비해 병반의 크기가 캠벨얼리에서 1.4-9배, 거봉에서 1.2-7배 정도 더 크게 진전되었으며, 균총을 접종한 경우에는 캠벨얼리에서는 상처를 주고 접종한 것이 무상처 접종에 비해 1.2-3배 정도 균사 생장이 높은 경향이었으나 거봉에서는 상처 유무에 상관없이 균사 생장이 무처리구에 비해 억제되었다.
It was shown that the growth of mycelial growth was suppressed in all cases of spore suspension or inoculation regardless of whether it was wounded or not. The size of the lesion was 1.4-9 times larger in Campbell, and 1.2-7 times larger in Seabong than in the case of scarring and spore suspension inoculated. In case of inoculation, Mycorrhizal growth was higher by 1.2-3 times than that of non - wounded inoculation.

실시예Example 3.  3. 스틸벤Stilben 화합물 및  The compounds and GABAGABA 함량 분석 Content analysis

포도 잎에 에테폰, 과산화수소, 메틸자스몬산 또는 살리실산을 각각 저농도와 고농도로 살포한 후 시간 별로 채취하여 스틸벤 화합물의 함량을 분석하였다. 각 화합물은 해당 m/z의 SIR 크로마토그램에서 보유시간(retention time)을 지표로 하여 확인하였으며, 각 화합물의 함량은 표준물질의 확보가 가능한 트란스-레스베라트롤(trans-resveratrol)과 비교하여 피크 면적의 상대적 비율에 의해 산출하였다(Choi, 2011 Kor. J. Hort. Sci. Technol. 29:374-381). 캠벨얼리 및 거봉의 스틸벤 화합물 함량은 레스베라트롤 보다 항산화활성이 높은 피세아타놀(piceatannol)이 약간 더 많았으며, 특히 트란스-피세이드(trans-Piceid)의 함량은 5가지 화합물 중에서 가장 많이 검출되었으며, 균사 생장 억제 효과가 높은 메틸자스몬산 처리에서 많이 검출되었다(표 2 및 3). 본 발명에서 신호전달물질 처리에 의한 스틸벤 화합물의 증가가 잿빛곰팡이병의 균사 생장 억제와 관련이 있는 것으로 판단된다. The content of stilbene compounds was determined by spraying latex, hydrogen peroxide, methyl jasmonic acid, or salicylic acid at low and high concentrations, respectively, on the grape leaves. Each compound was identified by the retention time as an index in the SIR chromatogram of the corresponding m / z. The content of each compound was compared with that of trans-resveratrol, (Kor, J. Hort. Sci. Technol. 29: 374-381). The contents of stilbene compounds of Campbell and Geobong were slightly higher than those of resveratrol (piceatannol). Especially, the content of trans- Piceid was found to be the highest among the five compounds. (Table 2 and Table 3). In the present invention, it is considered that the increase of the stilbene compound by the signaling substance treatment is related to the inhibition of mycelial growth of the gray mold.

본 발명에서 저농도와 고농도의 3가지 신호전달물질 및 과산화수소 처리에 의한 스틸벤 화합물의 함량은 표 2 및 3에 나타내었다. 캠벨얼리와 거봉 두 품종 모두에서 스틸벤 화합물 중 레스베라트롤이나 피세아타놀 보다는 생리활성이 낮은 배당체 형태인 트란스/시스-피세이드가 비교적 많은 함량을 나타내었으며, 아글리콘(aglycone) 형태인 트란스/시스-레스베라트롤은 미량 검출되었다. 특히 피세이드는 트란스형이 시스형 보다 많았으며, 캠벨얼리의 트란스-피세이드 함량이 거봉보다 많았다. 캠벨얼리, 거봉 두 품종 모두에서 레스베라트롤은 미량 검출되었으나, 거봉에서는 레스베라트롤의 수산화 유도체인 피세아타놀의 함량이 캠벨얼리보다 더 많이 검출되었는데, Lorenz 등(2003 Nitric Oxide 9:64-76)은 레스베라트롤의 수산화 유도체인 피세아타놀이 레스베라트롤 보다 더 강한 항산화 활성을 가진다고 하였다.In the present invention, the contents of the three signaling substances of low concentration and high concentration and the stilbene compound by the hydrogen peroxide treatment are shown in Tables 2 and 3. Among the stilbene compounds, both of Campbell and Geobong showed a relatively high content of trans / cis-physeide, which is a glycoside form having a lower physiological activity than resveratrol or pychethanol, and the aglycone type trans / cis-resveratrol Was detected. Especially, Fisshide had more trans-type than cis-type, and Trans-Fisshide content of Campbell was higher than Geobong. Lorenz et al. (2003 Nitric Oxide 9: 64-76) found that the content of resveratrol hydroxide derivative, fisethanol, was higher than that of Campbell, Phosphatasol has a stronger antioxidant activity than resveratrol.

신호전달물질 처리에 의한 GABA 함량 변화는 도 3에 나타내었다. GABA 함량은 모든 신호전달물질 처리에서 무처리구 보다 높게 나타났으며, 처리 24시간 후의 GABA 함량이 48시간 후보다 더 높게 나타났다. 특히 에테폰 처리의 경우 24시간 후보다 48시간 후의 GABA 함량이 급격히 증가한 것을 알 수 있었으며, 3가지의 신호전달물질 및 과산화수소 처리 중에서는 살리실산 처리구에서 대체적으로 GABA 함량이 높게 나타났다. The change in GABA content by signal transduction treatment is shown in FIG. GABA content was higher than that of untreated control in all signal transduction materials, and GABA content after 24 hours of treatment was higher than that after 48 hours. Especially, it was found that GABA content increased rapidly after 24 hours in the treatment with Ettenon, and GABA content was higher in salicylic acid treatment among the three signaling substances and hydrogen peroxide treatment.

본 발명에서는 식물체에 신호전달물질 및 과산화수소를 처리하였을 경우, 포도나무잎에서 GABA의 함량이 증가하였고, 함량이 증가된 식물체에서 포도 잿빛곰팡이병의 발생이 감소하였다. 즉 신호전달물질 및 과산화수소 처리에 의해서 식물체 내의 다양한 방어반응유전자의 활성화와 스틸벤 화합물의 축적 및 GABA의 축적에 의해 병해에 대한 저항성이 증가되는 것으로 사료된다.In the present invention, when the plant was treated with a signaling substance and hydrogen peroxide, the content of GABA in the vine leaves was increased and the occurrence of grape gray mold was decreased in the plants with increased contents. In other words, by the signaling substance and hydrogen peroxide treatment, it is considered that resistance to disease is increased by activation of various defense reaction genes in plants, accumulation of stilbene compounds and accumulation of GABA.

포도 잎에 신호전달물질을 처리한 후의 항산화 활성이 높은 스틸벤 화합물의 함량이 증가한 것은 포도의 기능성 강화와 또한 이러한 파이토알렉신 물질에 의한 병 저항성 향상에도 큰 도움을 줄 것으로 판단된다. 본 발명에서 3가지의 신호전달물질 및 과산화수소를 포도 잎에 처리하여 병 저항성 관련 유전자들의 발현이 유도되고 스틸벤 파이토알렉신의 함량이 증가하여 포도 잿빛곰팡이병의 균사 생장을 억제하는 효과를 확인하였다. 이것은 이러한 신호전달물질 처리가 포도에서 여러 병원균의 발생을 억제하거나 항산화 활성을 가지고 있는 스틸벤 화합물의 함량 증가는 건강 기능성 물질로서의 이용을 가능하게 할 것으로 판단된다. The increase of antioxidant activity of the stilbene compounds after treatment with the signal transduction substance in the grape leaves is considered to enhance the function of the grape and also to improve the disease resistance by the phytoalexin substance. In the present invention, three signaling substances and hydrogen peroxide were treated on grape leaves to induce the expression of disease resistance-related genes, and the content of stilbene phytoalexin was increased to inhibit mycelial growth of grape mold fungi. It is considered that this signaling substance treatment inhibits the generation of various pathogens in the grapes or that the increase of the content of stilbene compounds having antioxidant activity may be used as a health functional substance.

Figure 112012075858842-pat00007
Figure 112012075858842-pat00007

Figure 112012075858842-pat00008
Figure 112012075858842-pat00008

<110> Industry-Academic Cooperation Foundation, Yeungnam University <120> Method for enhancing resistance against fungal disease of grape by treating signal molecules <130> PN12254 <160> 38 <170> KopatentIn 2.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 aatatcccac tcttgccg 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 cctggaggat catagttg 18 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atctcactct tctcatgc 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tacctggagg atcatagt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cttgtctcta cgcttctc 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aacacgaacc gagttacg 18 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 acgtcgttgc tttcttgctt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaccaatctg gggagtttgt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acgatcccat atgcaccact 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tccactgccc acattacaga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcctcacaag ctgatgcaag 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gaaagacagc cggacaagac 20 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aaccaggaca cagatcgt 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggtacaatt gctcctgg 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cttgtctcta cacttctc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtatggactt tcgcctct 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gcaacatatt cagggatc 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 attgaaattg agttgata 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ccagagtgac agatatta 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gccctggccg aagttcct 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 cacgagaaac cctggaag 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gtcgaatagc ttcaatgc 18 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 gcatggcact ctgctggtac c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggggattggt agtccaaggt c 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ggatccatac aagtaccgtc c 21 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caaggaccct ccaattctcc tg 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gatctgtctg gggaaatggc 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcttctccaa tcccttaacc c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ggcgatcaaa gtccatggta g 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcttctccaa tcccttaacc c 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaagtcgtgg ctgtggatct g 21 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 cagcccaaat cagcttcctt tc 22 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgaggtccga aacaactg 18 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtctttgtg tgcaacaa 18 <210> 35 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtcaaccaat gcacctac 18 <210> 36 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ggtggatcat cctgtgga 18 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 acgagaaatc gtgagggatg 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 attctgcctt tgcaatccac 20 <110> Industry-Academic Cooperation Foundation, Yeungnam University <120> Method for enhancing resistance against fungal disease of grape          by treating signal molecules <130> PN12254 <160> 38 <170> Kopatentin 2.0 <210> 1 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 aatatcccac tcttgccg 18 <210> 2 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 cctggaggat catagttg 18 <210> 3 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 atctcactct tctcatgc 18 <210> 4 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tacctggagg atcatagt 18 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cttgtctcta cgcttctc 18 <210> 6 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 aacacgaacc gagttacg 18 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 acgtcgttgc tttcttgctt 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaccaatctg gggagtttgt 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acgatcccat atgcaccact 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 tccactgccc acattacaga 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tcctcacaag ctgatgcaag 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gaaagacagc cggacaagac 20 <210> 13 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 aaccaggaca cagatcgt 18 <210> 14 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 aggtacaatt gctcctgg 18 <210> 15 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cttgtctcta cacttctc 18 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 gtatggactt tcgcctct 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 gcaacatatt cagggatc 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 attgaaattg agttgata 18 <210> 19 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 ccagagtgac agatatta 18 <210> 20 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gccctggccg aagttcct 18 <210> 21 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 cacgagaaac cctggaag 18 <210> 22 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gtcgaatagc ttcaatgc 18 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 gcatggcact ctgctggtac c 21 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 ggggattggt agtccaaggt c 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 ggatccatac aagtaccgtc c 21 <210> 26 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 caaggaccct ccaattctcc tg 22 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 gatctgtctg gggaaatggc 20 <210> 28 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 gcttctccaa tcccttaacc c 21 <210> 29 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 ggcgatcaaa gtccatggta g 21 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 30 gcttctccaa tcccttaacc c 21 <210> 31 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 31 gaagtcgtgg ctgtggatct g 21 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 32 cagcccaaat cagcttcctt tc 22 <210> 33 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 33 cgaggtccga aacaactg 18 <210> 34 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 34 ggtctttgtg tgcaacaa 18 <210> 35 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 35 gtcaaccaat gcacctac 18 <210> 36 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 36 ggtggatcat cctgtgga 18 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 37 acgagaaatc gtgagggatg 20 <210> 38 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 38 attctgcctt tgcaatccac 20

Claims (9)

포도에 과산화수소를 처리하는 단계를 포함하는 포도의 GABA(gamma-aminobutyric acid) 함량을 증가시키는 방법.A method for increasing the gamma-aminobutyric acid (GABA) content of grapes comprising the step of treating the grape with hydrogen peroxide. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020120103803A 2012-09-19 2012-09-19 Method for enhancing resistance against fungal disease of grape by treating signal molecules KR101512652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120103803A KR101512652B1 (en) 2012-09-19 2012-09-19 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120103803A KR101512652B1 (en) 2012-09-19 2012-09-19 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020140064129A Division KR20140092272A (en) 2014-05-28 2014-05-28 Method for enhancing resistance against fungal disease of grape by treating signal molecules
KR1020140158177A Division KR101512656B1 (en) 2014-11-13 2014-11-13 Composition for increasing gamma-aminobutyric acid content of grape comprising hydrogen peroxide as effective component

Publications (2)

Publication Number Publication Date
KR20140037537A KR20140037537A (en) 2014-03-27
KR101512652B1 true KR101512652B1 (en) 2015-04-17

Family

ID=50646331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120103803A KR101512652B1 (en) 2012-09-19 2012-09-19 Method for enhancing resistance against fungal disease of grape by treating signal molecules

Country Status (1)

Country Link
KR (1) KR101512652B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108850142B (en) * 2018-06-12 2024-01-30 新疆农业科学院农产品贮藏加工研究所 Method for improving activity of grape superoxide dismutase by using salicylic acid and application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Caryologia, 60(1-2), p. 169-171(2007)*
Plant Physiol. Vol. 44, pp.183-188(1969)*

Also Published As

Publication number Publication date
KR20140037537A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
Singh et al. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection
Lakkis et al. Strengthening grapevine resistance by Pseudomonas fluorescens PTA-CT2 relies on distinct defense pathways in susceptible and partially resistant genotypes to downy mildew and gray mold diseases
Harm et al. Evaluation of chemical and natural resistance inducers against downy mildew (Plasmopara viticola) in grapevine
Mikulic-Petkovsek et al. Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection
Engelbrecht et al. Expression of defence-related genes against Phytophthora cinnamomi in five avocado rootstocks
Krishnan et al. An insight into Hevea-Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling
De Bona et al. Dual mode of action of grape cane extracts against Botrytis cinerea
Konan et al. Effect of methyl jasmonate on phytoalexins biosynthesis and induced disease resistance to Fusarium oxysporum f. sp. Vasinfectum in cotton (Gossypium hirsutum L.)
Yan et al. The effect of the root-colonizing Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defense shifts to fitness benefits and higher fruit quality
Thabet et al. Antifungal activities of clove oil against root rot and wilt pathogens of tomato plants
Fantaye et al. Restoring (E)-β-caryophyllene production in a non-producing maize line compromises its resistance against the fungus colletotrichum graminicola
Haidar et al. Application methods and modes of action of Pantoea agglomerans and Paenibacillus sp. to control the grapevine trunk disease-pathogen, Neofusicoccum parvum
Xie et al. Targeted acquisition of Fusarium oxysporum f. sp. niveum toxin-deficient mutant and its effects on watermelon Fusarium wilt
Li et al. CsMYB60 confers enhanced resistance to fusarium solani by increasing Proanthocyanidin biosynthesis in cucumber
KR101512656B1 (en) Composition for increasing gamma-aminobutyric acid content of grape comprising hydrogen peroxide as effective component
Zarraonaindia et al. Holistic understanding of the response of grapevines to foliar application of seaweed extracts
KR101512652B1 (en) Method for enhancing resistance against fungal disease of grape by treating signal molecules
Rguez et al. Tetraclinis articulata essential oil emulsion use as alternative to chemical fungicide to control tomato grey mould disease
KR20140092272A (en) Method for enhancing resistance against fungal disease of grape by treating signal molecules
Rana et al. Phenolic compounds under stress
An et al. A novel Trichoderma asperellum isolate promoting the growth, detoxification, and antifungal abilities of Arabidopsis thaliana seedlings under Fusarium oxysporum toxin stress
Eldarier et al. Biosynthesis of silver nanoparticles via Haplophyllum tuberculatum (Forssk.) A. Juss.(Rutaceae) and its use as bioherbicide
Chanthini et al. Inhibition of pathogen and induction of resistance against early blight: Alternaria solani Sorauer in tomato plants (Solanum lycopersicum L.) through external application of compounds from seaweed Chaetomorpha antennina Bory
Tlais et al. Ecological linkages between biotechnologically relevant autochthonous microorganisms and phenolic compounds in sugar apple fruit (Annona squamosa L.)
Jafarbeigi et al. Expression patterns of ASR1, PIN2, and PAL genes in tomato and eggplant after treatment with different inducers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 5