KR20140082103A - Method for manufacturing cigs photoreceptive layer using laser - Google Patents

Method for manufacturing cigs photoreceptive layer using laser Download PDF

Info

Publication number
KR20140082103A
KR20140082103A KR1020120151504A KR20120151504A KR20140082103A KR 20140082103 A KR20140082103 A KR 20140082103A KR 1020120151504 A KR1020120151504 A KR 1020120151504A KR 20120151504 A KR20120151504 A KR 20120151504A KR 20140082103 A KR20140082103 A KR 20140082103A
Authority
KR
South Korea
Prior art keywords
cigs
seed layer
layer
laser
cig
Prior art date
Application number
KR1020120151504A
Other languages
Korean (ko)
Inventor
김경보
박영준
윤현주
백제훈
김무진
김종상
이재륭
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120151504A priority Critical patent/KR20140082103A/en
Publication of KR20140082103A publication Critical patent/KR20140082103A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a method for manufacturing a CIGS light absorption layer using laser which includes: a step of forming a copper-indium-gallium-selenium (CIGS) or copper-indium-gallium (CIG) seed layer on a substrate; a step of crystallizing the seed layer by emitting the laser; and a step of forming a CIGS or CIG light adsorption layer by growing the crystallized seed layer. The thickness of the seed layer is 300 nm or less (except 0 nm). According to the present invention, the crystallinity of the light absorption layer is excellent. Process speed is improved. The deformation of a substrate is not generated.

Description

레이저를 이용한 CIGS 광흡수층의 제조방법{METHOD FOR MANUFACTURING CIGS PHOTORECEPTIVE LAYER USING LASER}[0001] The present invention relates to a method of manufacturing a CIGS light absorbing layer using a laser,

본 발명은 레이저를 이용한 CIGS(구리-인듐-갈륨-셀레늄) 광흡수층의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a CIGS (copper-indium-gallium-selenium) light absorbing layer using a laser.

고효율 태양전지 결정상(α-CIGS)을 만드는데 있어서 주로 증발법(evaporation method)을 이용하거나 박막을 코팅한 후에 고온으로 열처리하는 방법이 널리 활용되고 있다.
In order to produce a high efficiency solar cell crystalline phase (α-CIGS), the evaporation method or a method of heat treatment at a high temperature after coating a thin film is widely used.

일례로서, 특허문헌 1에서는 CIGS 구성물 중 선택된 1종의 물질을 고체상태에서 CIGS 시료와 함께 진공 밀폐시킨 후, 고체상태의 상기 물질이 기화되도록 열처리시키는 1차 열처리 단계, 상기 CIGS시료의 표면 또는 입자 사이에서, 기체상태의 상기 물질이 응결되어 막을 형성하도록 열처리시키는 2차 열처리 단계 및 상기 CIGS시료의 표면 또는 입자 사이에서, 상기 막을 형성한 상기 물질의 그레인(Grain)이 성장되도록 열처리시키는 3차 열처리 단계를 포함하는 것을 특징으로 하는 3단계 열처리에 의한 CIGS 박막 제조 방법을 제시하고 있다.
For example, in Patent Document 1, a first heat treatment step of subjecting a selected one of CIGS constituents to vacuum sealing with a CIGS sample in a solid state, followed by heat treatment to vaporize the solid material, A second heat treatment step of subjecting the material in a gaseous state to heat treatment so as to form a film and a third heat treatment in which a grain of the material forming the film is grown between the surfaces or the particles of the CIGS sample, The present invention also provides a method of manufacturing a CIGS thin film by a three-step heat treatment.

또 다른 방법으로는 2단계 공정법이 있는데, 2단계 공정법은 스퍼터링에 의해 CIG 혹은 CIGS 전구체(precursor) 박막을 기판 위에 형성하고, 전구체의 CIGS 화합물 반도체 조성을 완화하기 위해 약 550℃의 고온전기로에서 급속 열처리를 한다.
Another method is a two-step process. In the two-step process, a CIG or CIGS precursor thin film is formed on a substrate by sputtering. In order to relax the CIGS compound semiconductor composition of the precursor, a high temperature electric furnace Rapid heat treatment is performed.

상기 3단계 공정법 혹은 2단계 공정법은 소성로 또는 전기로를 사용하는 경우 소성로 또는 전기로에서 발생하는 열을 대류 등을 통해 간접적으로 전달하게 되므로 열손실이 많아지며, 균일하게 열전달하기 어렵고, 공정속도가 느리며, 고온 열처리에 의하여 기판이 변형될 수 있으며 결정성이 떨어진다는 문제점이 있다.In the case of using the sintering furnace or the electric furnace, the heat generated from the sintering furnace or the electric furnace is transferred indirectly through the convection or the like, so that the heat loss is increased, the heat transfer is not uniformly performed, And the substrate may be deformed by the high temperature heat treatment and the crystallinity is deteriorated.

한국 공개특허공보 2009-0100692호Korean Patent Publication No. 2009-0100692

본 발명의 일 측면은 에너지 손실을 최소화하면서도 공정속도가 개선되며 기판의 변형이 없으며 결정성이 우수한 CIGS 광흡수층의 제조방법을 제시하고자 한다.
One aspect of the present invention is to propose a method of manufacturing a CIGS light absorbing layer which is improved in process speed while minimizing energy loss, and has no substrate deformation and excellent crystallinity.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 기판 상에 구리-인듐-갈륨(이하, "CIG") 또는 구리-인듐-갈륨-셀레늄(이하, "CIGS") 씨드층을 형성하는 단계, 상기 씨드층에 레이저를 조사하여 결정화하는 단계, 및 상기 결정화된 씨드층을 성장시켜 CIG 또는 CIGS 광흡수층을 형성하는 단계를 포함하며, 상기 씨드층의 두께는 300nm이하(0nm 제외)인, 레이저를 이용한 CIGS 광흡수층 제조방법을 제공한다.In order to achieve the above object, an aspect of the present invention is to provide a method of forming a copper-indium-gallium (hereinafter referred to as "CIG") or copper-indium-gallium-selenium (hereinafter referred to as "CIGS" Forming a CIG or CIGS light absorbing layer by growing the crystallized seed layer, wherein the seed layer has a thickness of 300 nm or less (excluding 0 nm) And a method of manufacturing a CIGS light absorbing layer using a laser.

본 발명의 일 측면에 따르면, 광흡수층의 결정성이 우수하고, 공정속도가 개선되며, 기판의 변형이 없다는 장점이 있다.According to one aspect of the present invention, there is an advantage that the crystallinity of the light absorbing layer is excellent, the process speed is improved, and the substrate is not deformed.

이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 CIGS 광흡수층 제조방법을 상세히 설명한다.
Hereinafter, a method of manufacturing a CIGS light absorbing layer of the present invention will be described in detail so that those skilled in the art can easily carry out the present invention.

태양전지에는 광을 흡수하기 위한 흡수층이 형성되는데, 이러한 광흡수층은 박막형으로 제조된다.In the solar cell, an absorber layer for absorbing light is formed. Such a light absorber layer is formed into a thin film.

박막형 광흡수층은 태양 전지의 광전 흡수 변환 효율을 높이기 위하여 구리(CU), 인듐(In), 갈륨(Ga) 및 셀레늄(Se)의 조성을 가지는 CIGS 박막이 사용된다. 이는, CIGS가 높은 광 흡수 계수와 넓은 밴드갭을 가질 수 있어 광학적으로 안정성이 높고, 높은 광전 흡수 변환 효율을 나타내고 있기 때문이다.
In the thin film type light absorbing layer, a CIGS thin film having a composition of copper (CU), indium (In), gallium (Ga) and selenium (Se) is used to increase the photoelectric conversion efficiency of a solar cell. This is because CIGS has a high light absorption coefficient and a wide band gap, and thus has high optical stability and high photoelectric absorption conversion efficiency.

상기 광흡수층의 효율은 광흡수층을 이루는 물질들의 결정화도에 크게 좌우된다. 종래에는 주로 고온을 가하여 이들 물질들의 결정화를 유도하였으나, 본 발명에서는 광흡수층이 본격적으로 성장하기 전에 광흡수층을 이루는 물질과 동일한 물질을 사용하여 박막 형태의 씨드층(seed layer) 형성하고 이를 레이저를 조사하여 성장시킴으로써 결정화를 유도하고자 한다.
The efficiency of the light absorbing layer depends greatly on the degree of crystallization of the materials constituting the light absorbing layer. In the present invention, a seed layer is formed in the form of a thin film using the same material as that of the light absorbing layer before the light absorbing layer is fully grown. To induce crystallization.

이를 위하여, 먼저, 기판 상에 구리-인듐-갈륨(이하, "CIG") 또는 구리-인듐-갈륨-셀레늄(이하, "CIGS") 씨드층을 형성한다.To this end, a seed layer of copper-indium-gallium (hereinafter "CIG") or copper-indium-gallium-selenium (hereinafter "CIGS") is formed on a substrate.

상기 씨드층은 공지의 물리적 증착 방법을 이용하여 형성할 수 있으며, 구체적으로 열증발법, 전자빔 증발법, 진공증착법, 스터퍼링법, 화학증착법(CVD), 유기금속화학증착법(MOCVD), 레이저분자빔증착법(L-MBE), 또는 펄스레이저증착법(PLD)에 의하여 형성할 수 있다. 이 외에도 프린팅법에 의하여 형성할 수도 있다. 바람직하게는, 진공증착법 또는 스퍼터링법을 이용할 수 있으며, 상기 스퍼터링법은 DC, RF, DC 마그네트론(magnetron), RF 마그네트론(magnetron), 바이어스(bias) 스퍼터링 및 반응성(reactive) 스퍼터링으로부터 선택되는 방법을 이용할 수 있다.
The seed layer may be formed using a known physical vapor deposition method. Specifically, the seed layer may be formed by a thermal evaporation method, an electron beam evaporation method, a vacuum deposition method, a stuffering method, a chemical vapor deposition method (CVD), an organic metal chemical vapor deposition method (MOCVD) (L-MBE), or pulsed laser deposition (PLD). Alternatively, it may be formed by a printing method. Preferably, a vacuum deposition method or a sputtering method may be used. The sputtering method may be selected from DC, RF, DC magnetron, RF magnetron, bias sputtering, and reactive sputtering. Can be used.

물리적 증착을 위한 전구체는 구리, 인듐 또는 갈륨; 이들의 유기화합물; 또는 이들로부터 선택되는 합금을 이용할 수 있으며, 전구체는 금속환산으로 구리:인듐:갈륨의 몰비로 1:x:1-x가 되게 투입하고, 여기서 x는 0<x<1을 만족하도록 조절하여 투입한다. 상기 구리인듐 합금 및 구리갈륨 합금은 구리-인듐-갈륨 박막층이 구리:인듐:갈륨의 몰비로 1:x:1-x가 되도록 투입하고, 여기서 x는 0<x<1을 만족할 수 있는 혼합비를 갖는 합금을 선택하여 이용하는 것이 바람직하다. 여기에 셀레늄 전구체를 더 증착할 수 있다. 상기 구리-인듐-갈륨 박막층을 형성하기 위한 공정은 예시일 뿐, 이들로 한정하는 것은 아니며, 공지의 물리적 진공 증착 공정을 이용한 구리-인듐-갈륨 박막층을 형성할 수 있는 기술은 어떠한 것이든 이용할 수 있다. Precursors for physical vapor deposition include copper, indium or gallium; These organic compounds; Or an alloy selected therefrom can be used. The precursor is added in a molar ratio of copper: indium: gallium in terms of metal so as to be 1: x: 1-x, wherein x is adjusted so as to satisfy 0 <x < do. The copper indium alloy and the copper gallium alloy are mixed so that the copper-indium-gallium thin film layer is 1: x: 1-x in terms of molar ratio of copper: indium: gallium, wherein x satisfies 0 <x <1 Is selected and used. Here, a selenium precursor can be further deposited. The process for forming the copper-indium-gallium thin film layer is merely an example, but the present invention is not limited thereto, and any technique for forming a copper-indium-gallium thin film layer using a known physical vacuum deposition process can be used have.

가령, 프린팅법을 이용할 경우에는 CIG 또는 CIGS의 나노입자를 용매에 혼합하여 졸/겔 상태로 생성한 후 이를 스크린 인쇄법이나 잉크젯법을 이용하여 기판에 도포하여 형성하게 된다.
For example, when the printing method is used, nanoparticles of CIG or CIGS are mixed with a solvent to form a sol / gel state, and the resultant solution is applied to a substrate by a screen printing method or an ink jet method.

본 발명은 기판 상부에 CIG 또는 CIGS 씨드층을 형성한 후, 레이저를 조사하여 결정화한다.In the present invention, a CIG or CIGS seed layer is formed on a substrate, and then a laser is irradiated to crystallize the seed layer.

레이저를 이용하여 씨드층을 완전히 용해시킨 후 결정화를 진행시키면 결정립의 사이즈가 크게 성장하게 되고 이로써 전체적인 결함 빈도를 감소시킬 수 있다. 이를 위하여 레이저의 에너지 밀도는 라인빔(ELA)의 경우 300~600mJ/㎠, SLS(Sequential Laterial Solidification)의 경우 700~1200mJ/㎠인 것이 바람직하다. 또한, 레이저 파장은 300~800nm 영역을 사용하는 것이 가능하며, UV 및 단파장 영역을 사용시 흡수율을 높여 결정화도를 향상시킬 수 있다. When the seed layer is completely dissolved by using a laser and crystallization proceeds, the size of crystal grains grows greatly, thereby reducing the overall defect frequency. For this, the energy density of the laser is preferably 300 to 600 mJ / cm 2 for the line beam (ELA) and 700 to 1200 mJ / cm 2 for the SLS (Sequential Laterial Solidification). In addition, the laser wavelength can be in the range of 300 to 800 nm, and in the case of UV and short wavelength region, the absorption rate can be increased and the crystallinity can be improved.

레이저를 조사하여 결정화하는 과정에서 온도를 500~1500℃로 조정할 수 있는데, 일반적으로 온도를 높이면 결정화되는 시간을 지연시킬 수 있으므로 결정립을 키우게 되어 광흡수율이 우수한 광흡수층을 성장시킬 수 있고, 광전 변화율이 증가되어, 고효율의 태양 전지를 구현할 수 있게 된다.In general, when the temperature is raised, the time for crystallization can be delayed. Therefore, crystal grains are increased, so that a light absorption layer having excellent light absorption rate can be grown, and a photoelectric conversion ratio And thus a solar cell with high efficiency can be realized.

본 발명의 씨드층의 결정화도는 90%이상인 것이 광흡수층 성장을 위해 바람직하다.
The crystallinity of the seed layer of the present invention is preferably 90% or more for the light absorption layer growth.

상기 결정화된 씨드층를 성장시켜 CIG 또는 CIGS 광흡수층을 형성한다.The crystallized seed layer is grown to form a CIG or CIGS light absorption layer.

그 수단으로써, 열증발법, 전자빔 증발법, 스터퍼링법, 화학증착법(CVD), 유기금속화학증착법(MOCVD), 레이저분자빔증착법(L-MBE) 또는 펄스레이저증착법(PLD)을 이용할 수 있다. 이때는 진공법 및 비진공법 어느 것을 사용하여도 무방하나, 진공법의 경우 CIGS 물질 자체만 기판에서 결정화되어 성장하고 불순물이 개입될 여지가 없으므로 효율이 더 좋다.
As such means, thermal evaporation, electron beam evaporation, stampering, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), laser molecular beam evaporation (L-MBE) or pulsed laser deposition (PLD) . In this case, either vacuum method or non-vacuum method may be used, but in the case of vacuum method, CIGS material itself is crystallized in the substrate and grown, and the efficiency is better because there is no room for impurities to intervene.

본 발명에 의하여 형성되는 씨드층을 포함한 CIG 또는 CIGS 광흡수층의 두께는 1.0~2.0㎛인 것이 효율성 측면에서 바람직하다. CIG 또는 CIGS 광흡수층의 두께가 너무 얇은 경우 광흡수량이 현저히 감소하여 효율 저하가 발생되고, 너무 두꺼운 경우는 생산성 측면에서 좋지 않다. The thickness of the CIG or CIGS light absorbing layer including the seed layer formed by the present invention is preferably 1.0 to 2.0 占 퐉 in terms of efficiency. When the thickness of the CIG or CIGS light absorbing layer is too thin, the light absorption amount is remarkably reduced and the efficiency is lowered. When the thickness is too large, the productivity is not good.

상기 방법으로 기판상에 CIG 또는 CIGS 광흡수층 위에 버퍼층을 형성하고, 상기 버퍼층 위에 윈도우층 및 상부전극을 형성하여, CIGS 태양전지를 제조할 수 있다.A CIGS solar cell can be manufactured by forming a buffer layer on the CIG or CIGS light absorption layer on the substrate and forming a window layer and an upper electrode on the buffer layer.

상기 기판은 태양전지에 주로 사용되는 공지의 기판을 사용할 수 있으며, 구체적으로는 스틸 기판, 유리기판, 소다라임유리기판, 몰리브데늄이 코팅된 소다라임 유리기판, 세라믹기판, 반도체기판 또는 이들로부터 선택된 기판에 몰리브데늄을 코팅한 기판을 이용할 수 있다.
The substrate may be a known substrate mainly used in a solar cell, and may be a steel substrate, a glass substrate, a soda lime glass substrate, a molybdenum-coated soda lime glass substrate, a ceramic substrate, a semiconductor substrate, A substrate coated with molybdenum on a selected substrate can be used.

Claims (5)

기판 상에 구리-인듐-갈륨(이하, "CIG") 또는 구리-인듐-갈륨-셀레늄(이하, "CIGS") 씨드층을 형성하는 단계;
상기 씨드층에 레이저를 조사하여 결정화하는 단계; 및
상기 결정화된 씨드층을 성장시켜 CIG 또는 CIGS 광흡수층을 형성하는 단계를 포함하며,
상기 씨드층의 두께는 300nm이하(0nm 제외)인, 레이저를 이용한 CIGS 광흡수층 제조방법.
Forming a seed layer of copper-indium-gallium (hereinafter "CIG") or copper-indium-gallium-selenium (hereinafter "CIGS") on a substrate;
Irradiating the seed layer with a laser to crystallize the seed layer; And
And growing the crystallized seed layer to form a CIG or CIGS light absorbing layer,
Wherein the seed layer has a thickness of 300 nm or less (excluding 0 nm).
제 1항에 있어서,
CIG 또는 CIGS 광흡수층을 형성하는 단계는 열증발법, 전자빔 증발법, 스터퍼링법, 화학증착법(CVD), 유기금속화학증착법(MOCVD), 레이저분자빔증착법(L-MBE) 또는 펄스레이저증착법(PLD)에 의하여 수행되는 것인, 레이저를 이용한 CIGS 광흡수층 제조방법.
The method according to claim 1,
The step of forming the CIG or CIGS light absorbing layer may be performed by a thermal evaporation method, an electron beam evaporation method, a stuffering method, a CVD method, an MOCVD method, a laser molecular beam evaporation method (L-MBE) PLD). &Lt; / RTI &gt;
제 1항에 있어서,
상기 레이저의 에너지 밀도는 300~1200mJ/㎠인 것인, 레이저를 이용한 CIGS 광흡수층 제조방법.
The method according to claim 1,
Wherein the laser has an energy density of 300 to 1200 mJ / cm &lt; 2 &gt;.
제 1항에 있어서,
상기 씨드층은 CIG 또는 CIGS의 전구체를 상기 기판상에 도포함으로써 형성되는 것인, 레이저를 이용한 CIGS 광흡수층 제조방법.
The method according to claim 1,
Wherein the seed layer is formed by applying a precursor of CIG or CIGS on the substrate.
제 1항에 있어서,
CIG 또는 CIGS 광흡수층의 두께는 1.0~2.0㎛인 것인, 레이저를 이용한 CIGS 광흡수층 제조방법.

The method according to claim 1,
Wherein the thickness of the CIG or CIGS light absorbing layer is 1.0 to 2.0 占 퐉.

KR1020120151504A 2012-12-21 2012-12-21 Method for manufacturing cigs photoreceptive layer using laser KR20140082103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120151504A KR20140082103A (en) 2012-12-21 2012-12-21 Method for manufacturing cigs photoreceptive layer using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120151504A KR20140082103A (en) 2012-12-21 2012-12-21 Method for manufacturing cigs photoreceptive layer using laser

Publications (1)

Publication Number Publication Date
KR20140082103A true KR20140082103A (en) 2014-07-02

Family

ID=51733099

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120151504A KR20140082103A (en) 2012-12-21 2012-12-21 Method for manufacturing cigs photoreceptive layer using laser

Country Status (1)

Country Link
KR (1) KR20140082103A (en)

Similar Documents

Publication Publication Date Title
US9911887B2 (en) Chalcogenide-based materials and improved methods of making such materials
Vanalakar et al. A review on pulsed laser deposited CZTS thin films for solar cell applications
KR101004452B1 (en) Group i-?-? quaternary or higher alloy semiconductor films
CN102484164A (en) Compound thin-film solar cell and method for producing same
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
JP2009105130A (en) Manufacturing method of photoelectromotive element
CN109082631B (en) Ga2O3Transparent conductive film and preparation method thereof
KR20090023094A (en) Manufacture method for zno-containing compound semiconductor layer
Nadarajah et al. Sputtered cadmium sulfide (CdS) buffer layer for kesterite and chalcogenide thin film solar cell (TFSC) Applications
JP2007149746A (en) Transparent oxide semiconductor junction
KR20140074441A (en) Flexible thin film type Solar Cell and Method for manufacturing the same
JP5378534B2 (en) Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same
KR20140082103A (en) Method for manufacturing cigs photoreceptive layer using laser
KR20150023102A (en) A solar cell comprising czts thin film with uniform composition and a method of manufacturing the same
CN102424951A (en) Method for preparing semi-polarity p-type ZnO polycrystalline film
Bodnar et al. Structural and optical properties of AgIn5S8 films prepared by pulsed laser deposition
KR20150064930A (en) Fabrication Method of Flexible CZTS Films and its application to Thin Film Solar Cells and Thin Film Solar Cells
KR20130007188A (en) Production method of cigs thin film
KR20140082870A (en) Method for manufacturing cigs photoreceptive layer using reflection of laser beam
KR101114635B1 (en) Preparation method of cadmium telluride thin film for solar cell using spray process
KR101410671B1 (en) Fabrication method of CIS thin films and its application to CIS thin film solar cells
KR101552967B1 (en) Fabrication Method of CZTS Thin Films using one-step sputtering and its application to Thin Film Solar Cells and Thin Film Solar Cells
KR101410673B1 (en) Fabrication method of CIGS thin films and its application to CIGS thin film solar cells
JPH08195499A (en) Manufacture of chalcopyrite compound film
JP2017011128A (en) Semiconductor thin film forming dispersing liquid, solar cell, and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application