KR20140063730A - 명확히 획정된 시야각을 가진 led 기반 광원 - Google Patents

명확히 획정된 시야각을 가진 led 기반 광원 Download PDF

Info

Publication number
KR20140063730A
KR20140063730A KR1020147007809A KR20147007809A KR20140063730A KR 20140063730 A KR20140063730 A KR 20140063730A KR 1020147007809 A KR1020147007809 A KR 1020147007809A KR 20147007809 A KR20147007809 A KR 20147007809A KR 20140063730 A KR20140063730 A KR 20140063730A
Authority
KR
South Korea
Prior art keywords
lens element
reflector
transparent lens
led
leds
Prior art date
Application number
KR1020147007809A
Other languages
English (en)
Inventor
짐 더블유. 리
Original Assignee
시카토, 인코포레이티드.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 시카토, 인코포레이티드. filed Critical 시카토, 인코포레이티드.
Publication of KR20140063730A publication Critical patent/KR20140063730A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/04Combinations of only two kinds of elements the elements being reflectors and refractors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • G02B19/0066Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED in the form of an LED array
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/62Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using mixing chambers, e.g. housings with reflective walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Abstract

1개 이상의 LED(102)를 가진 LED 기반 조명장치(100)를 구비한 조명기구(150)는 반사체(125)와 함께 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시킬 수 있는 투명 렌즈요소(170)를 포함한다. 반사체 요소(125)는 LED 기반 조명장치(100)에 탑재된다. 투명 렌즈요소(170)는 제1 및 제2 내부면(171, 173)과 제3 및 제4 외부면(172, 174)을 포함한다. LED에서 방출된 광의 일부는 제1 내부면(171)과 제3 외부면(172)을 통과하고 LED 기반 조명장치(100)의 광축을 향해서 굴절하고 반사체 요소와 상호작용 없이 반사체 요소(125)의 출력 포트에서 출사한다. LED(102)에서 방출된 광의 또 다른 부분은 제2 내부면(173) 및 제4 외부면(174)을 통과하고 광축으로부터 멀리 굴절되고 반사체 요소(125)에 의해 반사된다.

Description

명확히 획정된 시야각을 가진 LED 기반 광원{LED-BASED LIGHT SOURCE WITH SHARPLY DEFINED FIELD ANGLE}
본 발명은 발광 다이오드(LEDs)를 포함하는 조명모듈에 관한 것이다.
일반 조명에서 발광 다이오드의 사용은 조명장치에 의해 생성된 광 출력 레벨 또는 광속(flux)에서의 한계 때문에 여전히 제한적이다. 또한 LED를 사용하는 조명장치는 일반적으로 색점(color point) 불안정성에 의해 규정되는 색 품질이 미흡하다. 색점 불안정성은 부분마다 그리고 시간에 따라 변화한다. 미흡한 색 품질은 또한 미흡한 연색성(color rendering)에 의해 규정되며, 그것은 전혀 또는 거의 파워를 갖지 않는 대역을 가진 LED 광원에 의해 생성된 스펙트럼에 기인한다. 또한, LED를 사용하는 조명장치는 일반적으로 색에서 공간 및/또는 각도 변화를 가진다. 또한, LED를 사용하는 조명장치는 무엇보다도 광원의 색점을 유지하기 위해 필요한 색 제어 전자장치 및/또는 센서의 필요성 때문에, 또는 생산된 LED 중에서 응용을 위한 색 및/또는 광속 요구사항을 충족시키는 일부만을 사용하기 때문에 고가이다.
따라서, 광원으로서 발광 다이오드를 사용하는 조명장치에 대한 개선이 요구된다.
1개 이상의 LED를 가진 LED 기반 조명장치를 구비한 조명기구는, 반사체와 함께 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시키는 것이 가능한 투명 렌즈요소를, 포함한다. 상기 반사체 요소는 LED 기반 조명장치에 탑재된다. 상기 투명 렌즈요소는 제1 및 제2 내부면과 제3 및 제4 외부면을 포함한다. LED로부터 방출된 광의 일부는 제1 내부면과 제3 외부면을 통과하여 LED 기반 조명장치의 광축을 향해 굴절하며, 상기 반사체 요소와 상호작용 없이 상기 반사체 요소의 출력포트에서 출사한다. LED로부터 방출된 광의 또 다른 일부는 제2 내부면과 제4 외부면을 통과하여 상기 광축 밖으로 굴절하며 상기 반사체 요소에 의해 반사된다.
추가의 상세와 실시예 및 기술들은 아래의 상세한 설명에서 설명된다. 이 요약은 본 발명을 한정하지 않는다. 본 발명은 특허청구범위의 청구항들에 의해 정의된다.
도 1, 도 2 및 도 3은 조명장치, 반사체, 광 고정체(light fixture)를 포함하는, 3개의 실시예 조명기구(luminaire)를 도시하고,
도 4는 도 1에서 도시된 것과 같은 LED 기반 조명모듈의 구성요소를 도시하는 분해도이고,
도 5a와 도 5b는 도 1에서 도시된 LED 기반 조명모듈의 단면 사시도를 도시하고,
도 6은 반사체와 함께 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시킬 수 있는 투명 렌즈요소를 구비한 조명기구의 단면도이고,
도 7은 가능한 부분 치수가 표시된 도 6에 도시된 조명기구의 단면도,
도 8은 투명 렌즈요소(170)가 없는 조명기구(150)에 있어서 각도에 따른 큰 각도의 강도 프로파일의 시뮬레이션을 도시하고,
도 9는 투명 렌즈요소(170)를 구비한 도 7의 조명기구(150)에 있어서 각도에 따른 큰 각도의 강도 프로파일의 시뮬레이션을 도시하고,
도 10은 내부면이 기저로부터 외측으로 넓어지는 원통형 표면을 가진 투명 렌즈요소를 구비한 조명기구의 단면도이고,
도 11은 반사체와 함께 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시킬 수 있는 투명 렌즈요소를 구비한 또 다른 조명기구의 단면도이다.
이제 본 발명의 배경 예 및 실시 예를 상세히 설명할 것이며, 이것들은 첨부 도면에 도시되어 있다.
도 1 내지 도 3은 3개의 실시예 조명기구(luminaire)(150)를 도시한다. 도 1에 도시된 조명기구(150)는 직사각형 폼 팩터(form factor)를 가진 조명모듈(100)을 포함한다. 도 2에 도시된 조명기구(150)는 원형 폼 팩터를 가진 조명모듈(100)을 포함한다. 도 3에 도시된 조명기구(150)는 레트로피트(retrofit) 램프 디바이스에 통합되는 조명모듈(100)을 포함한다. 이 실시예들은 설명의 목적을 위한 것이다. 일반적인 다각형 및 타원 형상의 조명모듈의 실시예도 생각할 수 있다. 조명기구(150)는 조명모듈(100), 반사체(125), 및 광 고정체(light fixture)(120)를 포함한다. 도시된 것처럼, 광 고정체(120)는 히트 싱크 기능을 포함하며, 따라서 때로는 히트싱크(120)으로도 지칭된다. 그러나, 광 고정체(120)는 (도시되지 않는) 다른 구조적인 및 장식적인 요소들을 포함할 수 있다(도시되지 않음). 반사체(125)는 조명모듈(100)에서 방출된 광을 평행하게 하거나 편향시키기 위해 조명모듈(100)에 장착된다. 반사체(125)는 알루미늄 또는 구리를 포함하는 재료와 같은 열 전도성 재료로 만들어질 수 있고, 열적으로 조명모듈(100)에 접속될 수 있다. 열은 전도에 의해 조명모듈(100)과 열 전도성 반사체(125)를 통해 흐른다. 열은 또한 열 대류에 의해 반사체(125) 위로 흐른다. 반사체(125)는 복합 파라볼라형 집속체(parabolic concentrator)일 수 있으며, 상기 집속체는 고반사성 재료로 구성되거나 그것으로 코팅된다. 확산체(diffuser) 또는 반사체(125)와 같은 광학요소들이 조명모듈(100)에, 예를 들어, 나사(threads), 클램프, 비틀어잠금(twist-locking) 기구 또는 다른 적절한 설비에 의하여 제거 가능하게 결합될 수 있다. 도 3에 도시된 것과 같이, 반사체(125)는 예를 들면 파장변환 재료, 확산 재료 또는 어떤 다른 원하는 재료로 선택적으로 코팅되는 창(127)과 측벽(126)들을 포함할 수 있다.
도 1 내지 도 3에 도시된 것처럼, 조명모듈(100)은 히트 싱크(120)에 장착된다. 히트 싱크(120)는 알루미늄 또는 구리를 포함하는 재료와 같은, 열 전도성 재료로 만들어질 수 있고, 열적으로 조명모듈(100)에 접속될 수 있다. 열은 전도에 의해 조명모듈(100)과 열 전도성 히트 싱크(120)를 통해 흐른다. 열은 또한 열 대류에 의해 히트 싱크(120) 위로 흐른다. 조명모듈(100)은 히트 싱크(120)에 조명모듈(100)을 고정시키기 위해 스크류 나사(screw threads)에 의해서 히트 싱크(120)에 부착될 수 있다. 조명모듈(100)의 제거와 교체를 용이하게 하기 위해, 조명모듈(100)은, 예를 들어, 클램프(clamp) 기구, 비틀어-잠금 기구, 또는 다른 적절한 설비에 의하여 히트 싱크(120)에 제거할 수 있게 접속될 수 있다. 조명모듈(100)은, 예를 들어, 직접 또는 써멀 그리스(thermal grease), 써멀 테이프(thermal tape), 써멀 패드(thermal pad) 또는 써멀 에폭시(thermal epoxy)를 사용하여, 히트 싱크(120)에 열적으로 접속되는 적어도 하나의 열 전도성 표면을 포함한다. LED의 적당한 냉각을 위해, 보드 위의 LED로 유입하는 전기 에너지의 와트(watt) 당 적어도 50 평방 밀리미터 바람직하게는 100 평방 밀리미터의 열 접촉 면적이 사용되어야 한다. 예를 들면, 20개 LED가 사용되는 경우에 있어서, 1000 내지 2000 평방 밀리미터의 히트 싱크 접촉 면적이 사용되어야 한다. 더 큰 히트 싱크(120)를 사용하는 것은 LED(102)가 더 높은 전력에서 구동되도록 할 수 있고, 또한 다른 히트 싱크 디자인을 허용한다. 예를 들면, 어떤 디자인은 히트 싱크의 방향에 덜 의존하는 냉각 용량을 나타낼 수 있다. 또한, 팬 또는 강제 냉각을 위한 다른 솔루션이 조명장치에서 열을 제거하는데 사용될 수 있다. 전기 접속이 조명모듈(100)에 만들어질 수 있도록 하부 히트 싱크는 구멍(aperture)을 포함할 수 있다.
도 4는 예로서 도 1에 도시된 LED 기반의 조명모듈(100)의 구성요소들의 분해도를 도시한다. 여기에서 LED 기반 조명모듈은 LED가 아니고, LED 광원 또는 고정체이거나 LED 광원 또는 고정체의 구성요소 부품이라는 것을 이해하여야 한다. 예를 들면, LED 기반 조명모듈은 도 3에 도시된 것과 같은 LED 기반 대체 램프(replacement lamp)일 수 있다. LED 기반 조명모듈(100)은 하나 이상의 LED 다이 또는 패키지 LED와, LED 다이 또는 패키지 LED가 부착되는 마운팅 보드를 포함한다. 일 실시예에서, LED(102)는 Philips Lumileds Lighting사에 의해 제조된 Luxeon Rebel과 같은 패키지 LED이다. 예컨대, OSRAM (Oslon 패키지), Luminus Devices(미국), Cree(미국), Nichia(일본), 또는 Tridonic(오스트리아)에 의해 제조된 것과 같은, 다른 유형의 패키지 LED가 또한 사용될 수 있다. 여기에서 정의된 것처럼, 패키지 LED는 와이어 본드 연결부 또는 스터드 범프(stud bump)와 같은 전기 접속부를 포함하는 하나 이상의 LED 다이의 조립체이고, 가능하게는 광학 소자와 열적, 기계적, 및 전기적 인터페이스를 포함할 수도 있다. LED 칩은 일반적으로 약 1 mm x 1 mm x 0.5 mm의 크기를 갖지만, 이러한 치수들은 변할 수 있다. 어떤 실시예에서, LED(102)는 다수의 칩을 포함할 수 있다. 다수의 칩은 비슷한 색이나 예를 들면, 적색, 녹색 및 청색의 다른 색의 빛을 방출할 수 있다. 마운팅 보드(104)는 마운팅 베이스(101)에 부착되고 마운팅 보드 고정 링(103)에 의해 제자리에 고정된다. 또한, LED(102)를 탑재한 마운팅 보드(104)와 마운팅 보드 고정 링(103)은 광원 서브-어셈블리(115)를 구성한다. 광원 서브-어셈블리(115)는 LED(102)를 사용하여 전기 에너지를 광으로 변환한다. 광원 서브-어셈블리(115)로부터 방출된 광은 색 혼합과 색 변환을 위해 광 변환 서브-어셈블리(116)에 조향된다. 광변환 서브-어셈블리(116)는 캐비티 바디(cavity body)(105)와 출력 포트를 포함하며, 출력포트는 출력창(108)으로서 도시되어 있지만 이에 한정되지 않는다. 광 변환 서브-어셈블리(116)는 하부 반사체 인서트(106)와 측벽(107)을 포함하며, 이것은 선택적으로 인서트로 형성될 수 있다. 출력창(108)은, 출력 포트로서 사용되면, 캐비티 바디(105)의 상부에 고정된다. 어떤 실시예에 있어서는, 출력창(108)은 접착제에 의해 캐비티 바디(105)에 고정될 수 있다. 출력창(108)으로부터 캐비티 바디(105)로의 열 발산을 촉진하기 위해, 열 전도성 접착제가 바람직하다. 접착제는 출력창(108)과 캐비티 바디(105)의 경계의 온도에 신뢰성 있게 견뎌야 한다. 또한, 접착제는 출력창(108)으로부터 방출된 광을 흡수하기보다는 입사광을 가능한 많이 반사하거나 투과시키는 것이 바람직하다. 일 실시예에서, Dow Corning(미국)에 의해 제조된 여러 개의 접착제(예컨대, Dow Corning 모델 번호 SE4420, SE4422, SE4486, 1-4173, SE9210) 중 하나의 내열성, 열전도성, 및 광학 특성의 조합은 적합한 성능을 제공한다. 그러나, 다른 열 전도성 접착제도 고려될 수 있다.
측벽 인서트(107)와 캐비티 바디(105)의 내부 측벽들 중 어느 하나는, 선택적으로 캐비티 바디(105) 안에 위치될 때, 임의의 파장 변환된 광뿐만 아니라 LED(102)의 광이 출력 포트 예를 들어 출력창(108) - 광원 서브-어셈블리(115) 위에 장착되는 경우- 을 통하여 전송될 때까지 캐비티(160) 내에서 반사되도록, 반사성을 갖는다. 하부 반사체 인서트(106)는 선택적으로 마운팅 보드(104) 위에 배치될 수 있다. 각 LED(102)의 광 방출 부분이 하부 반사체 인서트(106)에 의해 차단되지 않도록 하부 반사체 인서트(106)는 구멍들을 포함한다. 측벽 인서트(107)는 선택적으로, 캐비티 바디(105)가 광원 서브-어셈블리(115) 위에 장착될 때 측벽 인서트(107)의 내부면들이 광을 LED(102)로부터 출력창으로 조향하도록, 캐비티 바디(105) 안에 위치될 수 있다. 도시된 것처럼, 캐비티 바디(105)의 내부 측벽들은 조명모듈(100)의 상측으로부터 보았을 때 직사각형 형상이지만, 다른 형상이 고려될 수 있다(예를 들면, 클로버(clover) 형상 또는 다각형). 또한, 캐비티 바디(105)의 내부 측벽들은 도시된 것처럼 출력창(108)에 수직이기보다 마운팅 보드(104)로부터 출력창(108)을 향해 점점 가늘어지거나 밖으로 굽을 수 있다.
하부 반사체 인서트(106)와 측벽 인서트(107)는 캐비티(160) 내에서 아래로 반사되는 광이 대략 출력 포트, 예를 들면 출력창(108)을 향해 후방 반사되도록 높은 반사성을 가질 수 있다. 또한, 인서트(106, 107)는 추가의 열 확산체로서 작용하도록 높은 열 전도성을 가질 수 있다. 예를 들면, 인서트(106, 107)는 재료가 높은 반사성과 내구성을 갖도록 처리된 알루미늄계 재료와 같은 높은 열 전도성 재료로 만들어질 수 있다. 예를 들면, 독일 회사인 Alanod에 의해 제조된 Miro®와 같은 재료가 사용될 수 있다. 고 반사성은 알루미늄을 연마처리하거나 하나 이상의 반사성 코팅제로 인서트(106, 107)의 내면을 피복함으로써 달성될 수 있다. 대안으로 인서트(106, 107)는 3M(미국)에 의해 판매되는 Vikuiti™ ESR, Toray(일본)에 의해 제조된 Lumirror™ E60L, 또는 Furukawa Electric Co. Ltd.(일본)에 의해 제조된 것과 같은 미정질 폴리에틸렌 테레프탈레이트(MCPET)로 만들어질 수 있다. 다른 실시예에서, 인서트(106, 107)는 PTFE 재료로 만들어질 수 있다. 어떤 실시예에서, 인서트(106, 107)는 W.L. Gore(미국)과 Berghof(독일)에 의해 판매되는 것과 같은 두께 1 mm 내지 2 mm의 PTFE 재료로 만들어질 수 있다. 또 다른 실시예에서, 인서트(106, 107)는 ESR, E60L, 또는 MCPET와 같은 비금속 층 또는 금속 층과 같은 얇은 반사 층에 의해 지지된(backed) PTFE 재료로 형성될 수 있다. 또한, 높은 확산 반사성 코팅제가 측벽 인서트(107), 하부 반사체 인서트(106), 출력창(108), 캐비티 바디(105), 및 마운팅 보드(104) 중 어느 것에라도 도포될 수 있다. 그와 같은 코팅제는 TiO2, ZnO, 및 BaSO4 입자, 또는 이 재료들의 조합을 포함할 수 있다.
도 5a와 도 5b는 도 1에 도시된 LED 기반 조명모듈(100)의 단면 사시도를 도시한다. 이 실시예에서, 마운팅 보드(104) 위에 배치된 측벽 인서트(107), 출력창(108), 및 하부 반사체 인서트(106)는 LED 기반 조명모듈(100)에서 광 혼합 캐비티(160)를 형성한다(도 5a 참조). LED(102)로부터의 광의 일부는 출력창(108)을 통해 나갈 때까지 광 혼합 캐비티(160) 내에서 반사된다. 출력창(108)을 통해 나가기 전에 캐비티(160) 내에서 광을 반사하는 것은 광을 혼합시키고 LED 기반 조명모듈(100)에서 방출되는 광의 더욱 균일한 분포를 제공하는 효과를 갖는다. 또한, 광이 출력창(108)에서 출사하기 전에 캐비티(160) 내에서 반사할 때, 소정 양의 광이 캐비티(160)에 포함된 파장변환 재료와 상호작용에 의해 색 변환된다.
도 1 내지 도 3에 도시한 것과 같이, LED(102)에 의해 발생된 광은 일반적으로 색 변환 캐비티(160)에 의해 방출되고, 출력창(108)에서 출사하고, 반사체(125)와 상호작용하고, 조명기구(150)에서 출사한다. 일 측면에서, 조명기구(150)로부터 방출된 광을 미리 결정된 원거리(far field) 각도로 명확히 집속하기 위해 투명 렌즈요소가 도입된다. 이 방식에서, 조명기구(150)에서 방출된 광은 미리 결정된 원거리 각도 내에 조명된 모든 점에서 강도가 균일하게 보이며 미리 결정된 원거리 각도를 넘어서는 강도가 급격히 떨어진다. 일 측면에서, 상기 투명 렌즈요소는 LED 기반 조명모듈(100)에서 방출된 광의 일부를 평행하게 하여 이렇게 평행해진 광이 반사체(125)와 상호작용 없이 조명기구(150)에서 출사하도록 하는 복수의 표면을 포함한다. 또한, 투명 렌즈요소는 LED 기반 조명모듈(100)에 의해 방출된 광의 또 다른 일부를 반사체(125)를 향하게 하는 복수의 표면을 포함하며, 반사체(125)는 상기 광을 평행하게 하여 이후 조명기구(150)에서 출사하도록 한다. 이 방식에서, LED 기반 조명모듈(100)에 의해 방출된 광을 일반적으로 반사체(125)의 내부 체적에 쇄도하는 것에 비해서 더욱 명확히 획정된 출력 빔이 조명기구(150)에 의해 발생된다.
LED(102)는 직접 방출에 의해 또는 예를 들면, 형광체 층들이 LED 패키지의 일부로서 LED에 도포된 경우 형광체 변환에 의해, 다른 또는 똑같은 색을 방출할 수 있다. 조명모듈(100)은 적색, 녹색, 청색, 호박색(amber) 또는 시안(cyan)과 같은 유색 LED(102)의 임의의 조합을 사용하거나, LED(102)는 모두 똑같은 색의 광을 생성할 수도 있다. LED들의 일부 또는 모두가 백색 광을 생성할 수도 있다. 또한, LED(102)는 편광(polarized light) 또는 비편광을 방출할 수 있고 LED 기반 조명모듈(100)은 편광 또는 비편광 LED들의 임의의 조합을 사용할 수 있다. 어떤 실시예에서는, LED(102)는 청색 또는 UV 광 중 어느 하나를 방출하는데 이는 이들 파장 범위에서 방출하는 LED들의 효율성 때문이다. 조명모듈(100)로부터 방출된 광은 LED(102)가 색 변환 캐비티(160)에 포함된 파장변환 재료와 조합하여 사용될 때 원하는 색을 가진다. 파장변환 재료들의 광 변환 특성이 캐비티(160) 내의 광의 혼합과 조합된 결과로서 색 변환된 광을 방출한다. 파장변환 재료들의 화학적 및/또는 물리적 특성(두께 및 농도와 같은)과 캐비티(160)의 내부면 상의 코팅제의 기하구조적 특성을 조정함으로써, 출력창(108)을 통해 출력된 광의 특정 색 특성들, 예를 들면 색점, 색온도(color temperature), 및 연색지수(CRI: color rendering index)가 특정될 수 있다.
본 명세서의 목적을 달성하기 위해서, 파장변환 재료는 색 변환 기능, 예를 들면 하나의 피크 파장의 소정 양의 광을 흡수하고, 그에 응답하여, 또 다른 피크 파장의 소정 양의 광을 방출하는 어떤 단일의 화학적 화합물 또는 상이한 화학적 화합물들의 혼합물이다.
하부 반사체 인서트(106), 측벽 인서트(107), 및 캐비티 바디(105), 출력창(108), 및 캐비티 내부에 배치된 다른 구성요소들(도시되지 않음)와 같은 캐비티(160)의 부분들은 파장변환 재료로 코팅되거나 포함할 수 있다. 도 5b는 파장변환 재료로 코팅된 측벽 인서트(107)의 부분들을 도시한다. 또한, 캐비티(160)의 상이한 구성요소들은 같거나 다른 파장변환 재료로 코팅될 수 있다.
예를 들면, 형광체는 다음과 같은 화학식으로 표시되는 세트로부터 선택될 수 있다:
Y3Al5O12:Ce, (YAG:Ce 또는 YAG로도 알려진) (Y,Gd)3Al5O12:Ce, CaS:Eu, SrS:Eu, SrGa2S4:Eu, Ca3(Sc,Mg)2Si3O12:Ce, Ca3Sc2Si3O12:Ce, Ca3Sc2O4:Ce, Ba3Si6O12N2:Eu, (Sr,Ca)AlSiN3:Eu, CaAlSiN3:Eu, CaAlSi(ON)3:Eu, Ba2SiO4:Eu, Sr2SiO4:Eu, Ca2SiO4:Eu, CaSc2O4:Ce, CaSi2O2N2:Eu, SrSi2O2N2:Eu, BaSi2O2N2:Eu, Ca5 (PO4)3Cl:Eu, Ba5 (PO4)3Cl:Eu, Cs2CaP2O7, Cs2SrP2O7, Lu3Al5O12:Ce, Ca8Mg(SiO4)4Cl2:Eu, Sr8Mg(SiO4)4Cl2:Eu, La3Si6N11:Ce, Y3Ga5O12:Ce, Gd3Ga5O12:Ce, Tb3Al5O12:Ce, Tb3Ga5O12:Ce, 및 Lu3Ga5O12:Ce.
일 실시예에서, 조명장치의 색점의 조정은 측벽 인서트(107) 및/또는 출력창(108)을 대체시킴으로써 이루어질 수 있으며, 마찬가지로 이것들은 하나 이상의 파장변환 재료가 코팅되거나 주입될 수 있다. 일 실시예에서 유로퓸 활성화 알칼리 토금속 실리콘 나이트라이드(예컨대, (Sr,Ca)AlSiN3:Eu)와 같은 적색 방출 형광체가 캐비티(160)의 바닥에 있는 하부 반사체 인서트(106)와 측벽 인서트(107)의 일부를 피복하고, YAG 형광체가 출력창(108)의 일부를 피복한다. 또 다른 실시예에서는, 알칼리 토금속 옥시 실리콘 나이트라이드와 같은 적색 방출 형광체가 캐비티(160)의 바닥에 있는 하부 반사체 인서트(106)와 측벽 인서트(107)의 일부를 피복하고, 적색 방출 알칼리 토금속 옥시 실리콘 나이트라이드와 황색 방출 YAG 형광체의 혼합물이 출력창(108)의 일부를 피복한다.
어떤 실시예에서는, 형광체들은 적합한 용매에 바인더 및, 옵션으로, 계면활성제 및 가소제와 함께 혼합된다. 생성된 혼합물은 스프레이(spraying), 스크린 프린팅(screen printing), 블레이드 코팅(blade coating), 또는 다른 적당한 수단의 어느 것에 의해 피착된다. 캐비티를 형성하는 측벽들의 형상 및 높이를 선택함으로써, 및 캐비티 내 형광체로 피복될 부분을 선택함으로써, 그리고 광 혼합 캐비티(160)의 표면들 위의 형광체 층의 층 두께 및 농도를 최적화함으로써, 조명모듈로부터 방출된 광의 색점이 원하는 대로 조정될 수 있다.
일 실시예에서, 단일 유형의 파장변환 재료가 측벽, 예를 들어 도 5b에 도시된 측벽 인서트(107) 위에, 패턴 형성될 수 있다. 예를 들면, 적색 형광체가 측벽 인서트(107)의 다른 영역들 위에 패턴 형성될 수 있고, 황색 형광체가 출력창(108)을 피복할 수 있다. 형광체의 커버리지 및/또는 농도는 상이한 색 온도를 생성하기 위해 변할 수 있다. LED(102)에 의해 생성된 광이 변하면 원하는 색온도를 생성하기 위해 적색 형광체의 피복 면적 및/또는 적색 및 황색 형광체의 농도가 변할 필요가 있다는 것을 이해하여야 한다. 조립된 조각들이 원하는 색 온도를 생성하도록, 측벽 인서트(107) 위의 적색 형광체, 출력창(108) 위의 황색 형광체, 및 LED(102)의 색채 성능은 조립 전에 측정되고 그 성능을 기반으로 선택될 수 있다.
다수의 응용에서, 3100 K(Kelvin) 미만의 상관 색온도(CCT)를 가진 백색 광 출력을 생성하는 것이 바람직하다. 예를 들면, 다수의 응용에서, 2700 K의 CCT를 가진 백색 광이 요구된다. 스펙트럼의 청색 또는 UV 부분에서 방출하는 LED로부터 발생된 광을 3100 K 미만의 CCT를 가진 백색 광 출력으로 변환하기 위해 소정 양의 적색 방출이 일반적으로 필요하다. 필요한 CCT에 도달하기 위해 다음과 같은 적색 방출 형광체들과 황색 형광체를 혼합하기 위한 노력이 이루어지고 있다:
CaS:Eu, SrS:Eu, SrGa2S4:Eu, Ba3Si6O12N2:Eu, (Sr,Ca)AlSiN3:Eu, CaAlSiN3:Eu, CaAlSi(ON)3:Eu, Ba2SiO4:Eu, Sr2SiO4:Eu, Ca2SiO4:Eu, CaSi2O2N2:Eu, SrSi2O2N2:Eu, BaSi2O2N2:Eu, Sr8Mg(SiO4)4Cl2:Eu, Li2NbF7:Mn4 +, Li3ScF6:Mn4 +, La2O2S:Eu3 +, MgO.MgF2.GeO2:Mn4+.
그러나, 출력 광의 색 일관성은 보통 혼합물 내의 적색 형광체 성분에 대한 출력 광의 CCT의 민감성으로 인해 불량하다. 혼합 형광체의 경우에, 특히 조명 응용에서, 불량한 색 분포가 더욱 현저하다. 적색 방출 형광체를 전혀 포함하지 않는 형광체 또는 형광체 혼합물로 출력창(108)을 코팅함으로써, 색 일관성의 문제는 피할 수 있다. 3100 K 미만의 CCT를 가진 백색 광 출력을 생성하기 위해, 적색 방출 형광체 또는 형광체 혼합물이 LED 기반 조명모듈(100)의 측벽들 및 하부 반사체의 어느 것에 피착된다. 3100 K 미만의 CCT를 가진 백색 광 출력을 생성하기 위해, 적색 방출 형광체 또는 형광체 혼합물의 농도뿐만 아니라 특정 적색 방출 형광체 또는 형광체 혼합물(예컨대, 600 nm 내지 700 nm의 피크 파장 방출)이 선택된다. 이 방식에서, LED 기반 조명모듈(100)은 적색 방출 형광체 성분을 포함하지 않는 출력창을 가지고 3100 K 미만의 CCT를 가진 백색 광을 생성할 수 있다.
LED 기반 조명 모듈은 LED들로부터 방출된 광(예를 들면, LED(102)로부터 방출된 청색 광)의 일부를 광자 손실을 최소화하면서 1개 이상의 광 혼합 캐비티(160)에서 더 긴 파장의 광으로 변환하는 것이 요구된다. 빽빽이 들어찬 박막 형광체 층은, 인접한 형광체(phosphor) 입자에 의한 재흡수, 내부 전반사(TIR: total internal reflection), 및 프레넬(Fresnel) 효과와 관련된 손실을 최소화하면서, 입사광의 상당한 부분을 효율적으로 색 변환하기에 적합하다.
도 6은 일 실시예에 의한 조명기구(150)의 단면도를 도시한다. 도시한 것과 같이, 조명기구(150)는 LED 기반 조명모듈(100), 투명 렌즈요소(170), 및 반사체(125)를 포함한다. 투명 렌즈요소(170)는 는 내부면(171, 173)을 포함한다. 또한, 투명 렌즈요소는 외부면(172, 174)을 포함한다. 도시한 것과 같이, LED 기반 조명모듈(100)은 원 형상(예컨대, 도 2에 도시한 것과 같은)을 갖지만 다른 형상들(예컨대, 도 1에 도시한 것과 같은)도 생각할 수 있다.
LED 기반 조명모듈(100)의 LED(102)는 색 변환 캐비티(160)에 직접 광을 방출한다. 광은 색 변환 캐비티(16) 내에서 혼합되고 색 변환되며 그렇게 생성된 광은 LED 기반 조명모듈(100)로부터 방출된다. 상기 광은 연장된 표면(즉, 출력창(108)의 표면) 위로 방출된다. 도 6에 도시한 것과 같이, 방출된 광은 투명 렌즈요소(170)를 통과하며 LED 기반 조명모듈(100)에서 방출된 광이 분할되어 2개의 다른 구역에 입사하도록 굴절된다. LED 기반 조명모듈(100)에서 방출된 광의 일부는 투명 렌즈요소(170)에 의해 평행해지고 반사체(125)와 상호작용 없이 조명기구(150)에서 출사한다. 제1 부분과 구별되는 상기 방출된 광의 또 다른 일부는 투명 렌즈요소(170)에 의해 반사체(125)를 향해서 조향된다. 이렇게 조향된 광은 그 다음에 반사체(125)에 의해 다시 조향되어 조명기구(15)에서 출사한다.
내부면(171, 173)은 LED 기반 조명모듈(100)에 광학적으로 접속된다. 어떤 실시예에서는 내부면(171, 173)은 LED 기반 조명모듈(100)의 애퍼처(예컨대, 출력창(108))으로부터 물리적으로 분리된다. 도 6에 도시한 것과 같은 어떤 다른 실시예에서는, 내부면(171)은 LED 기반 조명모듈(100)의 애퍼처로부터 물리적으로 분리되고 내부면(173)은 LED 기반 조명모듈(100)의 애퍼처로부터 내부면(171)을 향해 연장한다.
도시한 것과 같이, 내부면(171, 173)은 부피에 의해 LED 기반 조명모듈(100)의 애퍼처로부터 분리된다. 어떤 실시예들에서는, 이 부피는 공기를 채워진다. 다른 실시예들에서는, 상기 부피는 액체 또는, 투명 렌즈요소(170)의 재료의 굴절률과 밀접하게 일치하지 않는 굴절률을 가진 고체로 채워질 수 있다.
외부면(172, 174)은 투명 렌즈요소(170)의 몸체에 의해 LED 기반 조명모듈(100)로부터 물리적으로 분리된다. 또한, 외부면(172, 174)은 부피에 의해 반사체(125)로부터 물리적으로 분리된다. 어떤 실시예에서는, 이 부피는 공기(굴절률이 대략 1임)로 채워질 수 있다. 다른 실시예에서는, 상기 부피는 액체 또는, 투명 렌즈요소(170)의 재료의 굴절률과 밀접하게 일치하지 않는 굴절률을 가진 고체로 채워질 수 있다.
표면(171, 172)은 내부면(171)에 입사하는 광이 투명 렌즈요소(170)를 통과하면서 나란히 되도록 성형된다. 그렇게 생성된 평행한 광은, 거의 평행해지고 명확히 획정된(sharply defined) 출력 빔으로서, 조명기구(150)에서 출사한다. 도 6에 도시한 실시예에서, 내부면(171)은 마운팅 보드(104)에 평행한 방위를 갖는 평평한 표면이다. 도 6에 도시한 것과 같이, 외부면(172)은 구 형상이다.
LED 기반 조명모듈(100)은 연장된 표면(예컨대, 출력창(108)) 위로 광을 방출한다. 설명의 목적상, 출력창(108)의 지점(180)에서 방출된 광은 진하게 표시되어 있으며 본 명세서에서 참조된다. 그러나 지점(180)은 LED 기반 조명모듈(100)의 광 방출 표면 위의 어디든지 위치할 수 있다.
지점(180)으로부터 방출된 광의 일부는 마운팅 보드(104)에 수직이고 지점(180)을 통과하는 축(181)으로부터 측정된 각도(A) 내에 들어온다. 각도(A) 내의 광은 내부면(171)에 입사하고, 투명 렌즈요소(170)를 통과하며, 외부면(172)을 통해 출사한다. 상기 광은 투명 렌즈요소(170) 내에서 굴절되어 조명되는 대상에 조향된다. 도시된 실시예에서 외부면(172)은 구면 형상이지만, 다른 형상들도 생각할 수 있다. 예를 들면, 외부면(172)은 원뿔(conical) 표면, 베지어(Bezier) 표면, 비구면, 프레넬(Fresnel) 표면, 전반사(TIR: total internal reflection) 표면, 또는 자유 형태 표면일 수 있다. 어떤 실시예에서는, 외부면(172)은 회절 광학요소 또는 광자 결정면(photonic crystal surface)을 포함할 수 있다. 어떤 실시예에서는, 외부면(172)은 광 추출을 촉진하고 원거리(far field) 빔 프로파일을 매끄럽게 하기 위해 마이크로렌즈 어레이를 포함할 수 있다. 어떤 실시예에서는, 외부면(172)은 광 산란을 촉진하고 결과로서 생성된 원거리 빔 프로파일을 매끄럽게 하기 위해 산란성을 가질 수 있다. 어떤 다른 실시예에서는, 외부면(172)은 반사체(125)와 상호작용 없이 조명기구(150)에서 출사하는 광의 양을 감소시키기 위해 흡수성 재료를 포함할 수 있다. 투명 렌즈요소(170)에 의해 평행하게 되어 반사체(125)와 상호작용 없이 조명기구(150)를 출사하는 광의 양에 비해 반사체(125)로 향하는 광의 비율을 증가시킴으로써, 더욱 좁은 출력 빔 프로파일이 생성된다. 또한, 도시한 실시예에서 내부면(171)은 평면이지만, 다른 형상들도 생각할 수 있다. 예를 들면, 내부면(171)은 구면, 원뿔 표면, 베지어 표면, 비구면, 프레넬 표면, 전반사 표면, 또는 자유 형태 표면일 수 있다. 어떤 실시예에서는, 내부면(171)은 회절 광학요소 또는 광자 결정면을 포함할 수 있다.
표면(173, 174)은 내부면(173)에 입사한 광이 투명 렌즈요소(170)를 통과할 때 주로 반사체(125)로 향하도록 성형된다. 이 광은 반사체(125)로부터 반사되어 조명기구(150)에서 출사한다. 도 6에 도시한 실시예에서, 반사체(125)는 파라볼라 형상이므로 반사체(125)의 내부면에 입사한 광은 거의 평행해진다. 어떤 다른 실시예에서는, 대상의 균일한 조명이 요구된다. 이 실시예들에서는, 박쥐 날개 모양의 방출 패턴이 더욱 바람직하며 반사체(125)는 그에 상응하게 성형된다. 도 6에 도시한 실시예에서, 내부면(173)은 원통 형상의 표면이다. 투명 렌즈요소(170)가 성형(molding) 공정에 의해 제조된다면 투명 렌즈요소(170)의 분리를 용이하게 하기 위해 테이퍼(taper)가 포함될 수 있다. 외부면(174) 역시 원통 형상이지만, 내부면(173)보다 더 큰 테이퍼를 포함한다. 이 방식에서, 내부면(173)에 입사한 광은 투명 렌즈요소(170)를 통과할 때 굴절되므로 광은 반사체(125)를 향하게 된다. 도 10에 도시한 또 다른 실시예에서, 내부면(173)은 투명 렌즈요소(170)의 기저로부터 밖으로 넓어지는 원통 형상 표면이다. 외부면(174) 역시 원통 형상이며, 내부면(173)보다 더 작은 테이퍼를 포함할 수 있다. 도 10에 도시한 기하형태로 인해, 투명 렌즈요소(170)는 한 부품으로 성형될 수 없을 것이다. 따라서, 도 6에 도시한 것과 유사한 디자인을 채택하는 것이 제조 관점에서 유리할 것이다.
도 6에 도시한 것과 같이, 광은 출력창(108)의 한 지점(180)으로부터 방출된다. 지점(180)으로부터 방출된 광의 일부는 마운팅 보드(104)에 평행하게 지점(180)을 통과하는 축(182)으로부터 측정된 각도(B) 내에 있다. 각도(B) 내의 광은 내부면(173)에 입사하고, 투명 렌즈요소(170)를 통과하며, 외부면(174)을 통해 출사한다. 상기 광은 투명 렌즈요소(170) 내에서 굴절되어 반사체(125)로 향한다. 도시된 실시예에서, 외부면(174)은 테이퍼형(tapered) 원통이지만, 다른 형상들도 생각할 수 있다. 예를 들면, 외부면(174)은 구면, 원뿔 표면, 베지어 표면, 비구면, 프레넬 표면, 전반사 표면, 또는 자유 형태 표면일 수 있다. 어떤 실시예에서는, 외부면(174)은 회절 광학요소 또는 광자 결정면을 포함할 수 있다. 또한, 도시된 실시예에서, 내부면(173)은 원통 형상이지만, 다른 형상들도 생각할 수 있다. 예를 들면, 내부면(173)은 구면, 원뿔 표면, 베지어 표면, 비구면, 프레넬 표면, 전반사 표면, 또는 자유 형태 표면일 수 있다. 어떤 실시예에서는, 내부면(173)은 회절 광학요소 또는 광자 결정면을 포함할 수 있다.
도시한 것과 같이, 반사체(125)의 내부면은 파라볼라 형상이지만, 다른 형상들도 생각할 수 있다. 예를 들면, 반사체(125)의 내부면은 타원 표면, 비구면, 원뿔 표면, 베지어 표면, 또는 자유 형태 표면일 수 있다. 어떤 실시예에서는, 반사체(125)는 패싯(faceted) 반사체이거나, 움푹 들어간 피처(dimpled feature)를 포함하거나, 반사성 표면에 미세구조를 포함할 수 있다. 반사체(125)는 광 산란을 촉진하고 원거리 빔 프로파일을 매끄럽게 하기 위해 산란성 표면을 포함할 수 있다. 어떤 실시예에서는, 반사체(125)는 성형에 의해 산란성(diffuse)을 갖도록 만들 수 있다. 어떤 다른 실시예에서는, 반사체(125)는 방전 가공(EDM: electrical discharge machining) 처리 단계에 의해 산란성을 갖도록 만들 수 있다.
도 6에 도시한 것과 같이, LED 기반 조명모듈(100)에서 방출된 광은 투명 렌즈요소(170)에 입사한다. 상기 방출된 광의 일부(예컨대, 지점(180)으로부터 방출된 광 중 각도 A 내의 부분)는 내부면(171)에 입사하고, 투명 렌즈요소(170)의 몸통을 통과하여, 외부면(172)을 통해 출사한다. 내부면(171)과 외부면(172)의 형상은, 내부면(171)과 외부면(172)을 통과한 광이 대체로 축(181)의 방향으로(예컨대, 축(181)에 평행하게) 굴절하도록, 선택된다. 또한, 상기 방출된 광의 또 다른 일부(예컨대, 지점(180)으로부터 방출된 광 중 각도 B 내의 부분)은 내부면(173)에 입사하고, 투명 렌즈요소(170)의 몸통을 통과하여, 외부면(174)을 통해 출사한다. 내부면(173)과 외부면(174)의 형상은, 내부면(173)과 외부면(174)을 통과한 광이 축(181)으로부터 멀어지는 방향(예컨대, 축(181)에 수직하게) 반사체(125)를 향해 굴절하도록, 선택된다.
도 6에 도시한 실시예에서, 각도 A와 각도 B의 합은 대략 90도가 된다. 다시 말하면, 투명 렌즈요소(170)는 LED 기반 조명모듈(100)이 방출한 광의 가능한 많은 부분이 제조의 한계 내에서 내부면(171) 또는 내부면(173)의 어느 하나에 입사하도록 설계된다. 이 방식에서 아주 적은 양의 광이 각도 C에 의해 규정된 부피 내의 투명 렌즈요소(170)에서 출사한다. 이 부피의 투명 렌즈요소(170)에서 출사하는 광은 축(180)을 향해 평행하게 되지도 않고 반사체(125)에 입사하지도 않는다. 따라서, 이 광은 원거리에서 빔 강도의 분포를 확대하며 출력 빔에서 "어깨(shoulder)"처럼 보인다. 각도 C에 의해 규정된 부피에서 가능한 적은 광을 방출함으로써 이 "어깨"를 제거하는 것이 바람직하다.
또한, 너무 큰 반사체(125) 없이 명확히 획정된 강도 프로파일을 가진 출력 빔을 발생시키는 것이 바람직하다. 그러나 반사체(125)의 높이가 감소함에 따라, 각도 C는 더 커진다. 투명 렌즈요소(170)는 상대적으로 짧은 반사체를 가진 조명기구(150)가 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시킬 수 있도록 설계된다. 이것은 각도 C 내에서 방출되는 광량을 최소화시킴으로써 달성된다.
도 7은 도 6을 참조하여 설명한 것과 같이 반사체(125)와 함께 명확히 획정된 큰 각도의 강도 프로파일을 가진 출력 빔을 발생시킬 수 있는 투명 렌즈요소(170)를 구비한 조명기구(150)의 실시예를 도시한다. 도시한 것과 같이, 외부면(172)은 상부가 구면 형상이며 외부면(174)과의 교차점을 향해 직선으로 연장한다. 외부면(174)은 기저부의 직경 13 mm에서 기저부로부터 9 mm 거리에서 측정된 직경 9 mm까지 감소한다. 내부면(173)은 기저부의 직경 7.48 mm에서 기저부로부터 8mm 거리에서 측정된 직경 6.72 mm까지 감소한다. 내부면(171)은 LED 기반 조명모듈(100)의 애퍼처에 평행하게 원형으로 성형된 평평한 표면이며 투명 렌즈요소(170)의 기저부로부터 8 mm 거리에 위치한다. 반사체(125)는 높이가 대략 25 mm이고 출사면의 직경은 대략 47 mm이다. 이 실시예에서, 반사체(125)의 치수는 MR16 조명 규격의 요구사항을 충족하도록 선택된다. 그러나 다른 실시예에서는 다른 치수가 선택될 수 있다.
투명 렌즈요소(170)는 투명재료(예컨대, 광학 등급 PMMA, Zeonex 등)로 제작될 수 있다. 투명 렌즈요소(170)는 적당한 프로세스(예컨대, 몰딩, 압출, 주조, 기계가공 등)에 의해 형성될 수 있다. 투명 렌즈요소(170)는 한 조각의 재료로 구성되거나 적당한 프로세스(예컨대, 용접, 접착 등)에 의해 서로 결합된 2조각 이상의 재료로 구성될 수 있다.
도 8은 투명 렌즈요소(170)가 없는 경우, 도 7을 참조하여 설명한 조명기구(150)에 있어서 각도에 대한 큰 각도의 강도 프로파일의 시뮬레이션을 도시한다. 피크 강도는 빔의 중심(예컨대 축(181))으로부터 5°이내에서 실현되고 그 강도는 빔의 중심으로부터 10°이내에서 급격히 떨어지는 것을 주목할 필요가 있다. 그러나 유의미한 강도는 빔의 중심으로부터 10°내지 30°사이에 잔류한다. 특히, 피크 빔 강도의 대략 3%는 빔의 중심으로부터 20°내지 30°사이에 잔류한다. 이것은 다수의 일반적인 조명 응용에서 바람직하지 않은 출력 빔에서 현저한 "어깨"처럼 보인다.
도 9는 투명 렌즈요소(170)를 구비한 경우, 도 7을 참조하여 설명한 조명기구(150)에 대하여 각도에 대한 큰 각도의 강도 프로파일의 시뮬레이션을 도시한다. 역시, 피크 강도는 빔의 중심(예컨대 축(181))으로부터 5°이내에서 실현되고 그 강도는 빔의 중심으로부터 10°이내에서 급격히 떨어진다. 그러나 강도는 아주 적은 광이 남을 때까지 10°내지 20°사이에서 계속 떨어진다. 특히, 피크 빔 강도의 1% 미만이 빔의 중심으로부터 20°내지 30°사이에 남는다. 출력 빔 강도의 이러한 감소는 출력 빔에서의 현저한 "어깨"를 효과적으로 사라지게 한다. 이것에 의해 다수의 일반적인 조명 응용에서 바람직한 명확히 획정된 출력 빔을 얻는다.
도 7 및 도 9에 도시한 것과 같이, 반사체(125)의 높이와 LED 기반 조명모듈(100)의 애퍼처의 직경 사이의 비율은 5:1 미만이지만, 큰 각도 강도는 중심축으로부터 20°보다 큰 각도에 대해 피크 강도의 1% 미만이다. 또한, 반사체(125)의 출사면의 직경과 LED 기반 조명모듈(100)의 애퍼처의 직경 사이의 비율은 8:1 미만이지만, 큰 각도 강도는 중심축으로부터 20°보다 큰 각도에 대해 피크 강도의 1% 미만이다. 투명 렌즈요소(170)의 표면에 반사-방지 코팅을 추가함으로써, 반사성 손실은 최소화될 수 있으며, 중심축으로부터 20°보다 큰 각도에 대해 피크 강도의 1%의 절반 미만의 큰 각도 강도를 달성하는 것이 가능할 것이다. 특히, 표면(173, 174)은 출력 빔 강도 프로파일에서 불연속을 최소화시키기 위해 반사-방지 코팅을 포함할 수 있다.
도 11은 도 6을 참조하여 설명한 것과 같이 반사체(125)와 함께 명확히 획정된 큰 각도 강도 프로파일을 가진 출력 빔을 발생시킬 수 있는 투명 렌즈요소(170)를 구비한 조명기구(150)의 실시예를 도시한다.
일 측면에서, 내부면(171, 173)의 교차 부근의 일부(도면에서 '191'로 지시된 부분)는 입사광의 산란을 유발하도록 처리된다. 보통, 내부면(171, 173)은 산란은 최소이면서 광 전송을 최대화하도록 구체화된다. 그러나 표면들의 교차부분에서, 기하학적 불완전성에 의해 조명기구(150)의 출력 빔에서 볼 수 있는 광 출력의 불연속(예컨대, 출력 빔에서 볼 수 있는 "다중 영상(ghost image)")이 발생한다. 이러한 불완전을 최소화하기 위해, 내부면(171, 173)의 교차부분 주위의 한정된 영역에 대하여 입사광의 산란을 일으키는 것이 바람직하다. 어떤 실시예들에서는, 표면 부분(191)은 원하는 산란을 달성하기 위해 거칠게 처리된다. 어떤 다른 실시예에서는, 표면 부분(191)은 산란을 일으키는 재료(예컨대, TiO2, ZnO 및 BaSO4 입자, 또는 이 재료들의 조합)로 코팅된다. 어떤 다른 실시예에서는, 내부면(171, 173)의 교차부분 주위의 한정된 영역에 대한 입사광을 흡수하는 것이 바람직하다. 어떤 실시예에서는, 표면 부분(191)은 입사광을 흡수하는 재료(예컨대, 흑색 안료)로 코팅된다. 표면 부분(191)의 크기는 변할 수 있지만, 내부면(171, 173)의 크기에 비해서 작게 유지되어야 한다. 예를 들면, 표면 부분(191)은 내부면(171, 173)을 연결하는 내부 반경을 포함할 수 있다.
또 다른 측면에 있어서, 외부면(172, 174)의 교차 부근의 일부(도면에서 '190'으로 지시됨)는 입사광의 산란을 일으키도록 처리된다. 통상, 외부면(172, 174)은 산란은 최소이면서 광 전송을 최대화하도록 구체화된다. 그러나 조명기구(150)의 출력 빔에서 볼 수 있는 불연속을 최소화하기 위해, 내부면(171, 173)의 교차부분 주위의 한정된 영역에 대하여 입사광의 산란을 일으키는 것이 바람직하다. 어떤 실시예들에서는, 표면 부분(190)은 원하는 산란을 달성하기 위해 거칠게 처리된다. 어떤 다른 실시예에서는, 표면 부분(190)은 산란을 일으키는 재료(예컨대, TiO2, ZnO 및 BaSO4 입자, 또는 이 재료들의 조합)로 코팅된다. 표면 부분(190)의 크기는 변할 수 있다. 예를 들면, 도시한 것과 같이, 표면 부분(190)은 외부면(174)을 포함하지 않지만, 외부면(174)과의 교차점부터 외부면(172)을 따라 연장한다. 도 7에 도시한 실시예에서, 표면 부분(190)은 외부면(174)과의 교차점부터 약 1 mm 외부면(172)을 따라 연장할 수 있다. 어떤 다른 실시예에서는, 표면 부분(190)은 외부면(172)의 전체 직선 부분을 따라 연장할 수 있다. 어떤 다른 실시예들에서는, 표면 부분(190)은 외부면(172)의 전부를 포함할 수 있다. 어떤 다른 실시예에서는, 표면 부분(190)은 외부면(174)의 일부를 포함할 수 있다.
또 다른 실시예에서, 흡수 재료는 큰 각도로 조명기구(150)에서 출사하는 소정 양의 광을 흡수하도록 반사체(125)의 원위 단부에 위치한다. 이 광을 흡수함으로써, 큰 각도로 조명기구(150)를 출사하는 광 출력은 더욱 감소할 수 있다. 어떤 실시예에서는, 상기 흡수 재료는 반사체(125)의 일부에 도포된 코팅제일 수 있다. 어떤 다른 실시예에서는, 흡수성 재료를 포함하는 별도의 부품이 반사체(125)에 부착될 수 있다. 상기 흡수성 재료는 입사광의 유의미한 부분을 흡수하는데 적당한 임의의 재료일 수 있다(예컨대, 검은 페인트, 검게 착색된 플라스틱 등). 흡수성 재료는 반사체(125)에 대해 가변 크기의 영역 위에 위치할 수 있다. 예를 들면, 도 7에 따른 크기의 반사체는 반사체(125)의 끝으로부터 대략 12 mm 연장하는 흡수성 재료로 코팅된 추가 영역을 포함할 수 있다.
이해를 돕기 위해서 특정의 구체적인 실시 예들을 위에서 설명했지만, 본 명세서의 기재는 전술한 특정 실시예에 한정되는 것은 아니며 일반적인 적용성을 갖는다. 예를 들면, 색 변환 캐비티(160)의 어떤 구성요소라도 형광체를 가지고 패턴 형성할 수 있다. 패턴 자체와 형광체 조성은 모두 변할 수 있다. 일 실시예에서, 조명장치는 광 혼합 캐비티(160)의 상이한 영역들에 위치하는 상이한 타입의 형광체들을 포함할 수 있다. 예를 들면, 적색 형광체는 측벽 인서트(107)와 하부 반사체 인서트(106)의 적어도 하나에 위치할 수 있고, 황색 및 녹색 형광체를 출력창(108)의 상부 또는 하부 표면에 위치시키거나 출력창(108) 내에 매립할 수 있다. 일 실시예에서, 상이한 유형의 형광체, 예컨대 적색 및 녹색 형광체를 측벽(107) 위의 상이한 영역에 위치시킬 수 있다. 예를 들면, 측벽 인서트(107)의 제1 영역에 한 유형의 형광체를, 예를 들면, 줄무뉘(stripes), 스폿(spots), 점(dots), 또는 다른 패턴으로 패턴 형성하고, 측벽 인서트(107)의 상이한 제2 영역에 또 다른 유형의 형광체를 위치시킬 수 있다. 원한다면, 캐비티(160) 내의 상이한 영역들에 추가의 형광체들을 사용하고 위치시킬 수 있다. 또한, 원한다면, 캐비티(160) 내에, 예를 들면 측벽들에, 단일 유형의 파장 변환 재료만을 사용하고 패턴 형성할 수 있다. 또 다른 실시예에서, 마운팅 보드 고정링(103)을 사용하지 않고 마운팅 보드(104)를 마운팅 베이스(101)에 직접 고정하기 위해 캐비티 바디(105)를 사용한다. 다른 실시예에서 마운팅 베이스(101)와 히트 싱크(120)는 단일 부품일 수 있다. 또 다른 실시예에서, LED 기반 조명모듈(100)은 도 1, 도 2 및 도 3에서 조명기구(150)의 일부로서 도시되어 있다. 도 3에 도시된 것과 같이, LED 기반 조명모듈(100)은 대체 램프(replacement lamp) 또는 레트로피트 램프(retrofit lamp)의 일부일 수 있다. 그러나, 또 다른 실시예에서, LED 기반 조명모듈(100)을 대체 램프 또는 레트로피트 램프로서 형상화하거나 그와 같이 간주할 수 있다. 따라서, 다양한 수정, 각색, 및 전술한 실시예들의 다양한 특징들의 조합이 청구항들에 제시된 발명의 범위를 벗어나지 않고서 실행될 수 있다.

Claims (22)

  1. 광을 방출하는 1개 이상의 LED를 포함하고 광축을 갖는 LED 기반 조명장치;
    입력 포트 및 출력 포트를 가진 반사체 요소; 및
    제1 표면, 제2 표면, 제3 표면, 및 제4 표면을 포함하는 투명 렌즈요소를 포함하고,
    상기 1개 이상의 LED에서 방출된 광은 상기 반사체 요소의 입력 포트를 통해 상기 LED 기반 조명장치에서 출사하고,
    상기 1개 이상의 LED에서 방출된 광의 제1 부분은 상기 제1 및 제2 표면을 통과하고, 상기 광축으로 굴절하고, 상기 반사체 요소와 상호작용 없이 상기 반사체 요소의 출력 포트에서 출사하고,
    상기 1개 이상의 LED에서 방출된 광의 제2 부분은 상기 제3 및 제4 표면을 통과하고, 상기 광축 밖으로 굴절되고, 상기 반사체 요소에 의해 반사되고, 상기 반사체 요소의 출력 포트와, 상기 제1 표면과 상기 제3 표면의 교차점에 있는 산란 피처를 통해 출사하며,
    상기 산란 피처는 상기 제2 표면의 나머지와 상기 제4 표면의 나머지에는 존재하지 않는, 장치.
  2. 제 1 항에 있어서,
    상기 1개 이상의 LED는 마운팅 보드에 탑재되고, 상기 제1 표면은 상기 마운팅 보드의 표면에 평행한 방위를 갖는 평평한 표면인, 장치.
  3. 제 1 항에 있어서,
    상기 제2 표면은 볼록 표면인, 장치.
  4. 광을 방출하는 1개 이상의 LED를 포함하고 광축을 갖는 LED 기반 조명장치;
    입력 포트 및 출력 포트를 구비하고 상기 LED 기반 조명장치에 탑재되는 반사체 요소; 및
    제1 표면, 제2 표면, 제3 표면, 및 제4 표면을 포함하는 투명 렌즈요소를 포함하고,
    상기 1개 이상의 LED에서 방출된 광은 상기 반사체 요소의 입력 포트를 통해 상기 LED 기반 조명장치에서 출사하고,
    상기 1개 이상의 LED에서 방출된 광의 제1 부분은 상기 제1 및 제2 표면을 통과하고, 상기 광축을 향하여 굴절하고, 상기 반사체 요소와 상호작용 없이 상기 반사체 요소의 출력 포트에서 출사하고,
    상기 1개 이상의 LED에서 방출된 광의 제2 부분은 상기 제3 및 제4 표면을 통과하고, 상기 광축 밖으로 굴절되고, 상기 반사체 요소에 의해 반사되고, 상기 반사체 요소의 출력 포트를 통해 출사하고,
    상기 제3 표면은 상기 투명 렌즈요소의 외부면이고 상기 제3 표면은 일정한 제1 테이퍼(taper) 각도로 특징지어진 원통형으로 테이퍼링되는 표면인, 장치.
  5. 제 4 항에 있어서,
    상기 제4 표면은 제2 테이퍼 각도로 특징지어진 원통형으로 테이퍼링되는 표면인, 장치.
  6. 제 2 항에 있어서,
    상기 투명 렌즈요소는 상기 마운팅 보드에 수직인 방향의 축에 대해서 축-대칭인, 장치.
  7. 제 1 항에 있어서,
    상기 반사체는 상기 투명 렌즈요소를 둘러싸고 상기 투명 렌즈요소로부터 이격되는, 장치.
  8. 제 1 항에 있어서,
    상기 투명 렌즈요소는 투명한 고형 재료로 만들어지는, 장치.
  9. 제 1 항에 있어서,
    상기 투명 렌즈요소는 상기 1개 이상의 LED로부터 이격되고, 상기 투명 렌즈요소와 상기 1개 이상의 LED 사이의 공간은 공기로 채워지는, 장치.
  10. 제 1 항에 있어서,
    상기 투명 렌즈요소는 상기 1개 이상의 LED로부터 이격되고, 상기 투명 렌즈요소와 상기 1개 이상의 LED 사이의 공간은 고형의 투명 재료로 채워지는, 장치.
  11. 연장된 광원으로부터 광 빔을 형성하는 장치에 있어서,
    광축을 가진 LED 기반 조명장치에 탑재된 반사체; 및
    내부면 영역 및 외부면 영역을 포함하는 투명 렌즈요소를 포함하고,
    상기 반사체는 반사면 영역 및 출력 포트를 포함하고,
    상기 내부면 영역은 상기 LED 기반 조명장치를 이격되어 둘러싸고, 상기 외부면 영역은 상기 반사체로부터 이격되며,
    상기 투명 렌즈요소는:
    상기 LED 기반 조명장치 위에 배치된 제1 내부면 및 제2 내부면;
    제1 내부면과 제1 외부면을 통과하는 광이 상기 광축 밖으로 굴절되도록 상기 제1 내부면과 상기 반사체 사이의 광 경로에 배치된 제1 외부면;
    제2 내부면과 제2 외부면을 통과하는 광이 상기 광축을 향하여 굴절되도록 상기 제2 내부면과 상기 출력 포트 사이의 광 경로에 배치된 제2 외부면; 및
    상기 제1 내부면과 상기 제2 내부면의 교차점에 있는 산란 피처를 포함하고,
    상기 산란 피처는 상기 제1 내부면의 나머지 및 상기 제2 외부면의 나머지 위에는 존재하지 않는, 장치.
  12. 제 11 항에 있어서,
    상기 1개 이상의 LED는 마우팅 보드에 탑재되고, 상기 제2 내부면은 상기 마운팅 보드의 표면에 평행한 방위를 갖는 평평한 표면인, 장치.
  13. 제 11 항에 있어서,
    상기 제2 외부면은 볼록 표면인, 장치.
  14. 제 11 항에 있어서,
    상기 제1 내부면은 제1 테이퍼 각도로 특징지어진 원통형으로 테이퍼링되는 표면인, 장치.
  15. 제 14 항에 있어서,
    상기 제1 외부면은 제2 테이퍼 각도로 특징지어진 원통형으로 테이퍼링되는, 장치.
  16. 제 12 항에 있어서,
    상기 투명 렌즈요소는 상기 마운팅 보드에 수직인 방향의 축에 대해서 축-대칭인, 장치.
  17. 제 11 항에 있어서,
    상기 반사체는 상기 투명 렌즈요소를 둘러싸고 상기 투명 렌즈요소로부터 이격되는, 장치.
  18. 제 11 항에 있어서,
    상기 투명 렌즈요소는 투명한 고형 재료로 만들어지는, 장치.
  19. 제 11 항에 있어서,
    상기 투명 렌즈요소는 상기 1개 이상의 LED로부터 이격되고, 상기 투명 렌즈요소와 상기 1개 이상의 LED 사이의 공간은 공기로 채워지는, 장치.
  20. 제 11 항에 있어서,
    상기 투명 렌즈요소는 상기 1개 이상의 LED로부터 이격되고, 상기 투명 렌즈요소와 상기 1개 이상의 LED 사이의 공간은 고형의 투명 재료로 채워지는, 장치.
  21. 제 1 항에 있어서,
    상기 산란 피처는 산란을 일으키는 코팅과 상기 제1 표면 및 제3 표면의 교차점의 조면화(roughening) 중 하나로부터 선택되는, 장치.
  22. 제 11 항에 있어서,
    상기 산란 피처는 산란을 일으키는 코팅과 상기 제1 내부면 및 제2 내부면의 교차점의 조면화 중 하나로부터 선택되는, 장치.
KR1020147007809A 2011-09-09 2012-09-04 명확히 획정된 시야각을 가진 led 기반 광원 KR20140063730A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201161533117P 2011-09-09 2011-09-09
US61/533,117 2011-09-09
US201161566994P 2011-12-05 2011-12-05
US61/566,994 2011-12-05
US13/601,276 2012-08-31
US13/601,276 US8485692B2 (en) 2011-09-09 2012-08-31 LED-based light source with sharply defined field angle
PCT/US2012/053673 WO2013036484A1 (en) 2011-09-09 2012-09-04 Led-based light source with sharply defined field angle

Publications (1)

Publication Number Publication Date
KR20140063730A true KR20140063730A (ko) 2014-05-27

Family

ID=47361703

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147007809A KR20140063730A (ko) 2011-09-09 2012-09-04 명확히 획정된 시야각을 가진 led 기반 광원

Country Status (10)

Country Link
US (1) US8485692B2 (ko)
EP (1) EP2753870A1 (ko)
JP (1) JP2014529174A (ko)
KR (1) KR20140063730A (ko)
CN (1) CN104024728A (ko)
BR (1) BR112014005273A2 (ko)
CA (1) CA2848186A1 (ko)
MX (1) MX2014002813A (ko)
TW (1) TW201315928A (ko)
WO (1) WO2013036484A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170027034A (ko) * 2015-09-01 2017-03-09 엘지이노텍 주식회사 조명 장치
KR20170027035A (ko) * 2015-09-01 2017-03-09 엘지이노텍 주식회사 조명 장치

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752769B2 (en) * 2011-01-12 2017-09-05 Kenall Manufacturing Company LED luminaire tertiary optic system
TWI441362B (zh) * 2011-10-05 2014-06-11 Delta Electronics Inc 發光模組及其發光裝置
KR20130068528A (ko) * 2011-12-15 2013-06-26 삼성전자주식회사 발광 소자 램프
TWI467243B (zh) * 2012-03-23 2015-01-01 Ledlink Optics Inc Lens with block light structure and its module
US20130308338A1 (en) * 2012-05-18 2013-11-21 Uniled Lighting Taiwan Inc. Led cup lamp with light guide
US8770800B1 (en) 2013-03-15 2014-07-08 Xicato, Inc. LED-based light source reflector with shell elements
US20150009682A1 (en) * 2013-07-03 2015-01-08 Christian James Clough Led light
US9052088B2 (en) * 2013-09-20 2015-06-09 Whelen Engineering Company, Inc. Tuned composite optical arrangement for LED array
JP6220250B2 (ja) * 2013-12-10 2017-10-25 シチズン電子株式会社 Led発光装置
DE102013021357B4 (de) * 2013-12-16 2015-11-05 Glashütte Limburg Leuchten Gmbh + Co. Kg Leuchte mit Lichtleiter
US9523480B2 (en) * 2014-04-05 2016-12-20 Whelen Engineering Company, Inc. LED illumination assembly with collimating optic
US10352529B2 (en) 2014-04-05 2019-07-16 Whelen Engineering Company, Inc. Collimating optic for LED illumination assembly having transverse slots on emission surface
MX359451B (es) 2014-05-19 2018-09-27 Whelen Eng Luz de advertencia con lente tintado.
US9500324B2 (en) * 2014-09-02 2016-11-22 Ketra, Inc. Color mixing optics for LED lighting
WO2016041430A1 (zh) * 2014-09-17 2016-03-24 欧普照明股份有限公司 一种led聚光灯
US10405388B2 (en) * 2014-12-11 2019-09-03 Ledvance Llc Variable-beam light source with mixing chamber
US10139078B2 (en) 2015-02-19 2018-11-27 Whelen Engineering Company, Inc. Compact optical assembly for LED light sources
JP6481471B2 (ja) * 2015-03-31 2019-03-13 日亜化学工業株式会社 光学部材、発光装置及び照明装置
US10683971B2 (en) 2015-04-30 2020-06-16 Cree, Inc. Solid state lighting components
CN108027110B (zh) 2015-09-01 2020-07-10 Lg 伊诺特有限公司 照明装置
US10208914B2 (en) 2015-09-09 2019-02-19 Whelen Engineering Company, Inc. Reflector with concentric interrupted reflecting surfaces
US9970629B2 (en) * 2015-10-19 2018-05-15 GE Lighting Solutions, LLC Remote phosphor lighting devices and methods
CN105221942A (zh) * 2015-10-28 2016-01-06 欧普照明股份有限公司 一种照明灯具
WO2017071520A1 (zh) * 2015-10-28 2017-05-04 欧普照明股份有限公司 一种照明灯具
DE102016201347A1 (de) * 2016-01-29 2017-08-03 Zumtobel Lighting Gmbh Optisches System zum Beeinflussen der Lichtabgabe einer Lichtquelle
KR102659369B1 (ko) * 2016-03-23 2024-04-22 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 광학 모듈
CN111033349B (zh) * 2017-04-27 2022-09-16 路创技术有限责任公司 用于减少眩光同时维持led光源的混色和光束控制的全内反射透镜
JP6674416B2 (ja) * 2017-07-11 2020-04-01 株式会社遠藤照明 照明装置
JP7085083B2 (ja) * 2017-09-07 2022-06-16 株式会社アイテックシステム 光照射装置
CN108534018B (zh) * 2018-04-19 2021-06-25 张�浩 一种灯具
CN108730920B (zh) * 2018-04-19 2021-06-25 张�浩 一种不对称配光的照明用光学系统
CN108397722B (zh) * 2018-04-24 2023-07-28 苏州欧普照明有限公司 一种反射器和照明装置
JP6550186B2 (ja) * 2018-12-13 2019-07-24 コイズミ照明株式会社 照明器具
CN109519872A (zh) * 2018-12-24 2019-03-26 马瑞利汽车零部件(芜湖)有限公司 一种侧壁添加花纹的厚壁件光学系统
JP6592217B2 (ja) * 2019-06-05 2019-10-16 コイズミ照明株式会社 照明器具
US10788170B1 (en) * 2019-11-19 2020-09-29 Elemental LED, Inc. Optical systems for linear lighting
US11268676B2 (en) * 2019-12-16 2022-03-08 Lumileds Llc Light-emitting device assembly with light redirection or incidence-angle-dependent transmission through an escape surface
KR102585953B1 (ko) * 2023-01-18 2023-10-05 배명효 방전램프 일체형 렌즈

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600175B1 (en) 1996-03-26 2003-07-29 Advanced Technology Materials, Inc. Solid state white light emitter and display using same
EP2267801B1 (de) 1996-06-26 2015-05-27 OSRAM Opto Semiconductors GmbH Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6680569B2 (en) 1999-02-18 2004-01-20 Lumileds Lighting U.S. Llc Red-deficiency compensating phosphor light emitting device
US6351069B1 (en) 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
TW455908B (en) 1999-04-20 2001-09-21 Koninkl Philips Electronics Nv Lighting system
US6166860A (en) 1999-08-17 2000-12-26 Teledyne Lighting And Display Products, Inc. Screen illumination apparatus and method
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
DE60330023D1 (de) 2002-08-30 2009-12-24 Lumination Llc Geschichtete led mit verbessertem wirkungsgrad
JP4182783B2 (ja) 2003-03-14 2008-11-19 豊田合成株式会社 Ledパッケージ
US7250715B2 (en) 2004-02-23 2007-07-31 Philips Lumileds Lighting Company, Llc Wavelength converted semiconductor light emitting devices
US20060092644A1 (en) 2004-10-28 2006-05-04 Mok Thye L Small package high efficiency illuminator design
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
WO2007018927A2 (en) * 2005-07-22 2007-02-15 Illumination Management Solutions, Inc. A light-conducting pedestal configuration for an led
US7543959B2 (en) 2005-10-11 2009-06-09 Philips Lumiled Lighting Company, Llc Illumination system with optical concentrator and wavelength converting element
WO2007073496A2 (en) 2005-12-22 2007-06-28 Cree Led Lighting Solutions, Inc. Lighting device
US7503676B2 (en) 2006-07-26 2009-03-17 Kyocera Corporation Light-emitting device and illuminating apparatus
KR100900932B1 (ko) 2007-07-31 2009-06-08 주식회사 신우테크 Led 가로등
US8231250B2 (en) * 2007-09-10 2012-07-31 Lighting Science Group Corporation Warm white lighting device
JP4557037B2 (ja) * 2008-04-08 2010-10-06 ウシオ電機株式会社 Led光放射装置
JP5010010B2 (ja) 2010-04-16 2012-08-29 フェニックス電機株式会社 発光装置
US8267553B2 (en) * 2010-11-01 2012-09-18 Amtai Medical Equipment, Inc. LED illuminant module for medical luminaires

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170027034A (ko) * 2015-09-01 2017-03-09 엘지이노텍 주식회사 조명 장치
KR20170027035A (ko) * 2015-09-01 2017-03-09 엘지이노텍 주식회사 조명 장치

Also Published As

Publication number Publication date
TW201315928A (zh) 2013-04-16
MX2014002813A (es) 2014-07-09
WO2013036484A1 (en) 2013-03-14
US8485692B2 (en) 2013-07-16
US20120327655A1 (en) 2012-12-27
CN104024728A (zh) 2014-09-03
BR112014005273A2 (pt) 2017-03-28
JP2014529174A (ja) 2014-10-30
CA2848186A1 (en) 2013-03-14
EP2753870A1 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
KR20140063730A (ko) 명확히 획정된 시야각을 가진 led 기반 광원
US8820951B2 (en) LED-based light source with hybrid spot and general lighting characteristics
TWI582352B (zh) 照明器件及光學元件
US8899767B2 (en) Grid structure on a transmissive layer of an LED-based illumination module
TWI445201B (zh) 具有發光二極體之照明裝置
US20120257386A1 (en) Led based illumination module with a reflective mask
KR20140057290A (ko) 색 변환 표면을 우선 조명하는 led 기반 조명모듈
KR20140057291A (ko) 색 변환 표면을 우선 조명하는 led 기반 조명모듈

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid