KR20140052303A - Method for increasing productivity of tricyclo compounds - Google Patents
Method for increasing productivity of tricyclo compounds Download PDFInfo
- Publication number
- KR20140052303A KR20140052303A KR1020120118270A KR20120118270A KR20140052303A KR 20140052303 A KR20140052303 A KR 20140052303A KR 1020120118270 A KR1020120118270 A KR 1020120118270A KR 20120118270 A KR20120118270 A KR 20120118270A KR 20140052303 A KR20140052303 A KR 20140052303A
- Authority
- KR
- South Korea
- Prior art keywords
- ala
- gly
- val
- arg
- leu
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/76—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P17/00—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
- C12P17/18—Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
- C12P17/188—Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y303/00—Hydrolases acting on ether bonds (3.3)
- C12Y303/02—Ether hydrolases (3.3.2)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
삼원환 화합물의 생합성의 초기전구체 (starter unit)인 DHCHC (dihydroxycyclohexanecarboxylic acid)의 합성에 관여하는 코리스메테이즈 (chorismatase)를 암호화하고 있는 유전자 fkbO를 스트렙토마이세스 속 (Streptomyces sp.) 균주에 도입하여 타크롤리무스를 비롯한 삼원환 화합물의 생산성을 향상시키는 방법에 관한 것이다.
The gene fkbO encoding chorismatase involved in the synthesis of dihydroxycyclohexanecarboxylic acid (DHCHC), an early precursor starter unit of biosynthesis of a three-ring compound, is introduced into Streptomyces sp. The present invention relates to a method for improving the productivity of a three-membered ring compound including crawling moth.
타크롤리무스(FK506), 아스코마이신(FK520), 라파마이신(Sirolimus) 등은 삼원환 화합물(tricyclo compounds)로서, 마크롤라이드 계열의 폴리케타이드(polyketide) 화합물이다. 삼원환 화합물은 항진균, 항암, 면역억제활성 등 다양한 생리활성을 가지는 약리적으로 매우 유용한 물질이다. 특히, 타크롤리무스는 장기이식환자의 면역거부반응을 억제하기 위하여 사용하고 있을 뿐 아니라 아토피와 같은 자가면역질환의 치료에도 사용되고 있다. 타크롤리무스는 스트렙토마이세스 츠쿠바엔시스(Streptomyces tsukubaensis) 9993(미국 특허 제4,894,366호), 스트렙토마이세스속 (Streptomyces sp.) ATCC 55098, 스트렙토마이세스속(Streptomyces sp.) ATCC 53770, 스트렙토마이세스 클라불리제루스(Streptomyces clavuligerus) CKD1119 (대한민국 특허 10-0485877), 스트렙토마이세스 카나마이세티쿠스(Streptomyces kanamyceticus) KCC S-043 (KCTC 9225) 등의 균주에서 생산되는 것으로 보고되고 있다(Muramatsu H.등, 2005).Tacrolimus (FK506), ascomycin (FK520) and rapamycin are tricyclo compounds and are macrolide-based polyketide compounds. The ternary ring compound is a pharmacologically very useful substance having various physiological activities such as antifungal, anticancer and immunosuppressive activity. In particular, tacrolimus is used not only for suppression of immune rejection in organ transplant patients but also for the treatment of autoimmune diseases such as atopy. Tacrolimus may be produced by a variety of methods including, but not limited to, Streptomyces tsukubaensis 9993 (US Patent No. 4,894,366), Streptomyces sp. ATCC 55098, Streptomyces sp. ATCC 53770, Have been reported to be produced in strains such as Streptomyces clavuligerus CKD1119 (Korean Patent 10-0485877) and Streptomyces kanamyceticus KCC S-043 (KCTC 9225) (Muramatsu H. et al. , 2005).
삼원환 화합물(Tricyclocompounds)은 폴리케타이드(polyketide)와 비리보좀 유래 펩타이드 (nonribosomal peptide) 혼합형(hybrid) 화합물군에 속한다. 이들의 화학구조는 2개의 탄소유닛(carbon unit)이 축합되어 형성되는 폴리케타이드에 사이클로헥실(cyclohexyl) 구조와 비 단백질성 아미노산 (unusual amino acid)인 피페콜린산(pipecolic acid)이 연결되어 형성된 마크롤라이드(macrolide)계 화합물이다. Tricyclocompounds belong to the hybrid group of polyketide and nonribosomal peptide. Their chemical structure is formed by condensing two carbon units to form a polyketide formed by connecting a cyclohexyl structure to a pipecolic acid (unusual amino acid) Macrolide-based compounds.
미생물이 생산하는 마크롤라이드계 물질의 생합성 기구는 다수의 큰 단백질들의 복합체 (multiple large proteins complex)로 구성되어 있는 거대효소 (megasynthase)이다. 특히 폴리케타이드 부위 생합성은 아실코에이(acyl-CoA)의 반복적 축합(claisen condensation)에 의해 이루어지며, 이들 물질의 생합성을 담당하는 유전자에 의해 암호화되어 있는 효소는 모듈 (module) 형태의 단위로 구성되어 순차적으로 작용하는 것으로 알려져 있다. 이를 소위 모듈 제1형 폴리케타이드 합성효소[modular type I polyketide synthase(PKS)]로 분류한다. 모듈 제1형 폴리케타이드 합성효소(modular type I PKS)는 각 사슬 길이를 연장(elongation)하고 변형(modification)하는 촉매부위(catalytic domain)가 모듈이라는 일련의 세트로 구성되어 있다. 하나의 모듈이 한 사이클씩 진행함에 따라 골격을 구성하는 탄소가 두개씩 커지게 된다. 모듈 제1형 폴리케타이드 합성효소는 효소활성복합체 (multienzyme system)이며, 시작 모듈 (loadingmodule), 다수의 확장 모듈 (multiple extender modules) 그리고 해리 모듈(releasing module)로 구성된 것이 전형적인 모습이다. The mechanism of biosynthesis of the macrolide compounds produced by microorganisms is a megasynthase composed of multiple large protein complexes. In particular, polyketide region biosynthesis is accomplished by the claisen condensation of acyl-CoA, and the enzyme encoded by the gene responsible for the biosynthesis of these substances is expressed as a unit of module And are known to act sequentially. It is classified as a so-called modular type I polyketide synthase (PKS). Modular type 1 polyketide synthase (modular type I PKS) consists of a series of sets of catalytic domains that elongate and modify each chain length. As a module progresses by one cycle, two carbon atoms constituting the skeleton become larger. The module type 1 polyketide synthase is a multienzyme system, and is typically composed of a loading module, multiple extender modules, and a releasing module.
타크롤리무스 생합성은 모듈 제 1형 폴리케타이드와 비리보솜 펩타이드 합성효소로 구성된 생합성 기구가 담당하는 것으로 밝혀졌다 (Motamedi 등 (1998), Eur.J.Biochem, 256, 528-534). 타크롤리무스의 생합성 기구는 fkbA, fkbB, fkbC (폴리케타이드 합성효소 유전자), fkbO (DHCHC 합성 유전자), fkbP (비리보솜 펩타이드 합성효소), fkbL (Lysine cyclodeaminase), fkbD (P450 hydroxylase), fkbM (O-methyl transferse), fkbN (전사조절 유전자), fkbG,H,I,J,K (methoxymalonyl ACP 합성 유전자)와 tcsA, tcsB, tcsC, tcsD (알리말로닐 코에이 합성 유전자)등이 97kb에 걸쳐 존재하고 있다 (Sang Joon Mo 등(2011), JACS, 133, 976-985). Tacrolimus biosynthesis has been shown to be responsible for biosynthetic machinery consisting of modulo type 1 polyketide and non-ribosome peptide synthase (Motamedi et al. (1998), Eur. J. Biochem., 256, 528-534). Other biosynthetic mechanism of Crawley mousse fkbA, fkbB, fkbC (poly Kane Tide synthase gene), fkbO (DHCHC synthetic gene), fkbP (non-ribosomal peptide synthase), fkbL (Lysine cyclodeaminase), fkbD (P450 hydroxylase), fkbM a (O-methyl transferse), fkbN ( transcription control genes), fkbG, H, I, J, etc. K (methoxymalonyl ACP synthesis gene) and tcsA, tcsB, tcsC, tcsD (Ali malonyl Koei synthetic gene) 97kb (Sang Joon Mo et al. (2011), JACS, 133, 976-985).
삼원환 화합물, 대표적으로 타크롤리무스의 생합성은 합성시작 단위물질은 시키메이트(Shikimate)에서 유래된 DHCHC (4,5-dihydroxycyclohex-1-enecarboxylic acid)이며, 여기에 2개의 말로닐 CoA와 2개의 메톡시말로닐 ACP, 5개의 메톡시말로닐 CoA, 1개의 알릴말로닐 CoA의 축합반응으로 골격구조의 사슬이 연장되며, 마지막으로 1개의 L-라이신에서유래된 L-피페콜린산이 축합되는 것으로 알려져 있다. The biosynthesis of the ternary ring compound, typically tacrolimus, is the synthetic starting unit material is DHCHC (4,5-dihydroxycyclohex-1-enecarboxylic acid) derived from Shikimate, in which two malonyl-CoA and two The condensation reaction of methoxymonyl ACP, 5 methoxymonyl CoA and 1 allyl malonyl CoA results in the extension of the backbone chain and finally the condensation of L-pipecolinic acid derived from one L-lysine It is known.
삼원환 화합물을 포함하는 폴리케타이드 화합물은 화학적 합성이 매우 어려우며 야생형 생산균주에 의해 생산되는 양이 매우 적다. 일반적으로 폴리케타이드 화합물은 그 전구체의 공급이 풍부하여야 생산성이 증가된다. 이차 대사산물의 전구체 공급량을 증가시켜 생산성 증대를 이루는 방법은 주로 발효배지에 전구체를 과량 첨가하여 생산성을 증가시키는 방법이 일반적이다. 그러나 이차 대사산물 전구체는 고가이며 다량의 전구체를 배지에 첨가하는 것은 비경제적이다. 또한, 방선균 이차대사산물의 생산성 증대는 무작위적 돌연변이 (random mutagenesis)를 통해 생산성이 증대된 변이체를 확보하는 전통적인 방법을 사용하고 있다. 그러나, 이러한 방법은 생산성이 증대된 변이체를 확보하는데 많은 시간과 노력이 들며 변이체의 활성을 유지하는 것이 어렵다. 그러므로 대사공학적 방법을 통하여 생산성이 증대된 균주를 개발하는 것이 산업적으로 유용하다.
Polycetide compounds containing ternary ring compounds are very difficult to chemically synthesize and produced in very small amounts by wild-type production strains. In general, the polyketide compound must be abundant in its precursor supply to increase productivity. A method of increasing the productivity by increasing the amount of the precursors of the secondary metabolites is generally a method of increasing the productivity by adding an excess amount of the precursor to the fermentation medium. However, secondary metabolite precursors are expensive and it is uneconomical to add large amounts of precursors to the medium. In addition, the productivity of actinomycetes secondary metabolites is increased by random mutagenesis using conventional methods to obtain variants with increased productivity. However, this method takes a lot of time and effort to obtain mutant with increased productivity, and it is difficult to maintain the activity of the mutant. Therefore, it is industrially useful to develop a strain with increased productivity through metabolic engineering.
이에 따라 유전자 조작을 통해 타크롤리무스의 생산성을 증대시키기 위해 타크롤리무스의 생합성 유전자들을 확보하고자 하는 노력들이 이루어져 왔고 최근에 타크롤리무스 생합성 유전자들이 완전하게 밝혀졌다. Thus, efforts have been made to acquire biosynthetic genes of tacrolimus in order to increase the productivity of tacrolimus through gene manipulation. Recently, the genes for tacrolimus biosynthesis have been completely revealed.
최근 연구결과에 의하면 삼원환 화합물의 생합성 기구에서 FkbO와 RapK는 코리스메테이즈 (chorismatase) 활성을 나타내며, 삼원환 화합물 합성시작 단위물질인 DHCHC (3,4 dihydroxycyclohex-1-enecarboxylic acid) 합성에 관여함이 밝혀졌고 (Andexer 등 (2011), PNAS, 108, 4776-4781), 이들 RapK와 FkbO는 70%이상의 높은 상동성을 나타낸다. Recent studies have shown that FkbO and RapK in the biosynthesis mechanism of trivalent cyclic compounds exhibit chorismatase activity and are involved in the synthesis of 3,4-dihydroxycyclohex-1-enecarboxylic acid (DHCHC), the starting unit for the synthesis of tertiary cyclic compounds (Andexer et al. (2011), PNAS, 108, 4776-4781), these RapK and FkbO show high homology of over 70%.
본 발명자들은 이러한 점에 착안하여 합성시작 단위물질을 첨가하지 않고 타크롤리무스 생합성 유전자인 코리스메테이즈를 암호화하는 유전자를 도입하여 삼원환 화합물의 생산성을 증대시킬 수 있을 것이라고 생각하였다. 아직까지 코리스메테이즈를 암호하하고 있는 유전자를 이용하여 삼원환 화합물의 생산을 증대시켰다는 보고 사례는 없다.
In view of this point, the inventors of the present invention thought that it would be possible to increase the productivity of the three-ring compound by introducing a gene encoding the tacrolimus biosynthesis gene, which is a gene encoding tacrolimus, without adding a synthesis starting unit material. There is no report that the use of the gene coding for cholestyramine has increased the production of trivalent cyclic compounds.
본 발명의 목적은 삼원환 화합물 생산균주에 합성시작 단위물질의 합성에 관여하는 코리스메테이즈를 암호화하는 유전자의 과발현을 통해 삼원환 화합물의 생산성을 높이는 방법을 제공하려는 것이다.
It is an object of the present invention to provide a method for enhancing the productivity of a trivalent cyclic compound through overexpression of a gene encoding a chlorimethase involved in synthesis of a starting material for synthesis in a trivalent cyclic compound producing strain.
본 발명자들은 삼원환 화합물인 타크롤리무스의 합성시작 단위물질의 합성에 관여하는 유전자를 조사하고 그 유전자의 과발현을 통해 생산성 증대 효과를 가져오는 방법을 연구하였다. The present inventors investigated a gene involved in the synthesis of a starting material for synthesis of tacrolimus, a three-membered ring compound, and investigated a method for enhancing productivity through overexpression of the gene.
본 발명은 타크롤리무스 생산균주인 스트렙토마이세스 속 균주 내에 코리스메테이즈 단백질을 암호화하는 유전자인 fkbO 유전자의 발현벡터를 도입하여 대사공학적 방법으로 균주를 개량함으로써 생체 내 합성시작 단위물질의 양을 증가시켜 타크롤리무스의 생산성을 향상시키는 방법에 관한 것이다.
In the present invention, the expression vector of the fkbO gene, which is a gene encoding the chrysanthemies protein, is introduced into the Streptomyces sp. Strain, a tacrolimus producing strain, and the amount of the starting material for synthesis in vivo is increased by improving the strain by a metabolic engineering method To improve the productivity of tacrolimus.
본 발명은 코리스메테이즈를 암호화하는 유전자를 삼원환 화합물 생산 스트렙토마이세스 속 균주에 도입하여 삼원환 화합물의 생산을 증대시키는 방법을 제공한다.The present invention provides a method for enhancing the production of a three-membered ring compound by introducing a gene encoding a chorismatease into a strain of Streptomyces producing a three-membered ring compound.
또한, 본 발명은 상기 코리스메테이즈를 암호화하는 유전자가 FkbO 또는 RapK임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법을 제공한다.In addition, the present invention provides a method for enhancing the production of a three-ring compound, wherein the gene encoding the cholesteatoma is FkbO or RapK .
또한, 본 발명은 코리스메테이즈를 암호화하는 유전자를 미생물에서 수득하거나 합성한 것임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법을 제공한다.In addition, the present invention provides a method for enhancing the production of a three-ring compound, which is obtained by obtaining or synthesizing a gene encoding a chlorimethase in a microorganism.
또한, 본 발명은 상기 미생물이 스트렙토마이세스 속임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법을 제공한다.In addition, the present invention provides a method for enhancing the production of a three-ring compound, wherein the microorganism is a Streptomyces strain.
또한, 본 발명은 상기 코리스메테이즈를 암호화하는 유전자를 삼원환 화합물 생산 스트렙토마이세스 속 균주에 도입하여 삼원환 화합물의 생산을 증대시키는 방법이 The present invention also relates to a method for enhancing the production of a three-membered ring compound by introducing a gene coding for the above-mentioned colistemase into a strain of Streptomyces producing a three-membered ring compound
코리스메테이즈를 암호화하는 유전자를 발현벡터에 삽입하는 단계;Inserting a gene encoding a chorismate into an expression vector;
상기 코리스메테이즈 암호화 유전자가 삽입된 발현벡터로 미생물을 형질전환시키는 단계; 및Transforming the microorganism with an expression vector into which the cholesteatism-encoding gene has been inserted; And
상기 형질전환된 미생물과 삼원환 화합물 생산 스트렙토마이세스 속 균주를 콘쥬게이션시켜 스트렙토마이세스 속 균주를 형질전환시키는 단계;를 포함하는 것을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법을 제공한다.
And transforming the transformed microorganism with a strain of the genus Streptomyces producing Streptomyces, to transform Streptomyces spp., Thereby providing a method for enhancing the production of a triple ring compound .
또한, 본 발명은 상기 코리스메테이즈를 암호화하는 유전자의 핵산 서열이 서열번호 5, 서열번호 7 또는 9와 같은 것을 특징으로 한다.In addition, the present invention is characterized in that the nucleotide sequence of the gene encoding the above-mentioned colismatic is the same as that of SEQ ID NO: 5, SEQ ID NO: 7 or 9.
본 발명에 있어서, 상기 코리스메테이즈를 암호화하는 유전자는 서열번호 5, 서열번호 7 또는 9의 염기서열 또는 상기 염기서열 중 하나 이상의 염기가 결실, 치환 또는 삽입된 염기서열일 수 있다.In the present invention, the nucleotide sequence of SEQ ID NO: 5, SEQ ID NO: 7, or SEQ ID NO: 9, or a nucleotide sequence in which at least one base of the nucleotide sequence is deleted, substituted or inserted.
상기 코리스메테이즈를 암호화하는 유전자 서열들은 예시일 뿐 이에 한정되는 것이 아님은 당업자에게 자명하다. 상기 서열들에 대해 실질적인 서열 동일성 또는 실질적인 서열 상동성을 지닌 서열 또한 본 발명의 범주에 포함된다. 여기서 사용된 "실질적인 서열 동일성" 또는 "실질적인 서열 상동성"이라는 용어는 서열이 또 다른 서열과의 실질적인 구조적 또는 기능적 동일성을 나타냄을 표현하기 위해 사용된다. 이러한 차이는 예를 들어 다른 종 간의 코돈 용법의 고유의 변이에 기인한다. 2 이상의 다른 서열 사이의 유의적인 양의 서열 중복 또는 유사성이 있는 경우 이들 서열의 길이 또는 구조가 다르더라도 유사한 물리적 특성을 지니는 경우 구조적 차이는 무시할만한 정도가 된다.It is apparent to those skilled in the art that the gene sequences coding for the above-mentioned chorismetes are not limited to these examples. Sequences having substantial sequence identity or substantial sequence homology to the sequences are also within the scope of the present invention. As used herein, the term "substantial sequence identity" or "substantial sequence identity" is used to denote that the sequence represents substantial structural or functional identity with another sequence. These differences are due, for example, to inherent variations in the codon usage between different species. If there is a significant amount of sequence redundancy or similarity between two or more different sequences, the structural differences will be negligible if they have similar physical properties even if the length or structure of these sequences is different.
본 발명에서 유전공학적 기술과 관련된 사항은 샘브룩 등의 문헌(Sambrook, et al. Molecular Cloning, A Laboratory Manual, Cold Spring Harbor laboratory Press, Cold Spring Harbor, N. Y. (2001)) 및 프레드릭 등의 문헌 (Frederick M. Ausubel et al., Current protocols in molecular biology volume 1, 2, 3, John Wiley & Sons, Inc. (1994))에 개시되어 있는 내용에 의해 좀더 명확해진다.(2001)) and Frederick et al. (Frederick et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (Ausubel et al., Current protocols in molecular biology volume 1, 2, 3, John Wiley & Sons, Inc. (1994)).
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
Advantages and features of the present invention and methods of achieving them will become apparent with reference to the embodiments described in detail below. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.
본 발명에 의하면, 유전자 재조합 방법을 통하여 합성단위물질의 양을 증대시킴으로써 타크롤리무스의 산업적 생산성을 증대시킬 수 있다. 본 발명 방법에 의하여 생산된 타크롤리무스는 항진균제, 아토피성 피부염 치료제 및 면역억제제 용도로 이용할 수 있다.
According to the present invention, it is possible to increase the industrial productivity of tacrolimus by increasing the amount of synthetic unit material through a gene recombination method. The tacrolimus produced by the method of the present invention can be used as an antifungal agent, a therapeutic agent for atopic dermatitis and an immunosuppressant agent.
도 1은 pSET152-SIO와 pSET152-SKO 벡터의 구축 모식도이고,
도 2는 타크롤리무스 합성시작 단위물질 합성유전자가 도입된 형질전환체의 타크롤리무스 생산량을 나타내는 그래프이다.
S. sp : 타크롤리무스 생산균주
pSET152 : pSET152 벡터만 도입된 스트렙토마이세스 속 균주
pSET152-SIO : pSET152-SIO 벡터가 도입된 스트렙토마이세스 속 균주
pSET152-SKO : pSET152-SKO 벡터가 도입된 스트렙토마이세스 속 균주
도 3은 타크롤리무스 합성시작 단위물질 합성유전자가 도입된 형질전환체의 HPLC 분석결과이다. (A)는 S. sp, (B)는 pSET152 벡터만 도입된 스트렙토마이세스 속 균주, (C)는 pSET152-SIO 벡터가 도입된 스트렙토마이세스 속 균주, (D)는 pSET152-SKO 벡터가 도입된 스트렙토마이세스 속 균주.1 is a schematic diagram showing the construction of pSET152-SIO and pSET152-SKO vectors,
FIG. 2 is a graph showing the production amount of tacrolimus of a transformant into which a tacrolimus synthesis starting unit material synthesis gene is introduced.
S. sp: Tacrolimus producing strain
pSET152: Streptomyces sp. strain introduced with only pSET152 vector
pSET152-SIO: pSET152-SIO vector-introduced Streptomyces sp. strain
pSET152-SKO: pSET152-SKO vector-introduced Streptomyces sp. strain
FIG. 3 shows the results of HPLC analysis of a transformant into which a tacrolimus synthesis starting unit material synthesis gene was introduced. (A) is a S. (B) is a strain of Streptomyces genus in which only pSET152 vector is introduced, (C) is a strain of Streptomyces genus in which pSET152-SIO vector is introduced, (D) is a strain of Streptomyces genus in which pSET152- .
본 발명은 삼원환 화합물인 타크롤리무스, 아스코마이신, 라파마이신, 및 그 유도체의 생산성을 증대시키기 위한 대사공학적 방법을 제공하는 것이다. 삼원화 화합물 중 대표적인 타크롤리무스 및 라파마이신 등은 아래의 화학식 1, 화학식 2와 같다. 본 발명은 반응식 1과 같이 작용하는 코리스메테이즈를 발현하여 삼원환 화합물의 생산을 증대시키는 것이다.The present invention provides a metabolic engineering method for increasing productivity of tacrolimus, ascomycin, rapamycin, and derivatives thereof, which are three-ring compounds. Representative tacrolimus and rapamycin among the trivalent compounds are represented by the following formulas (1) and (2). The present invention enhances the production of a three-ring compound by expressing a chrysanthemate acting as in Scheme 1.
<반응식 1><Reaction Scheme 1>
코리스메테이즈를 암호화하고 있는 유전자는 미생물로부터 얻거나, 화학적으로 합성될 수 있으며, 구체적으로 방선균 속 균주에서 얻을 수 있다. 더욱 구체적으로 스트렙토마이세스 츠쿠바엔시스(Streptomyces tsukubaensis) 9993, 스트렙토마이세스속 (Streptomyces sp.) ATCC 55098, 스트렙토마이세스 속 (Streptomyces sp.) KCTC 11604BP, 스트렙토마이세스속(Streptomyces sp.) ATCC 53770, 스트렙토마이세스 클라불리제루스(Streptomyces clavuligerus) CKD1119, 스트렙토마이세스 카나마이세티쿠스(Streptomyces kanamyceticus) KCC S-043(KCTC 9225), 스트렙토마이세스 하이그로스코피쿠스(Steptomyces hygroscopicus) ATCC 29253 또는 이들 균주의 변이체로서 삼원환 화합물을 생성하는 균주 등에서 수득할 수 있다. The gene encoding the chorismate may be obtained from a microorganism or chemically synthesized, and specifically from a strain of actinomycetes. More specifically, Streptomyces tsukubaensis 9993, Streptomyces sp. ATCC 55098, Streptomyces sp. KCTC 11604BP, Streptomyces sp. ATCC 53770, Streptomyces clavuligerus CKD1119, Streptomyces kanamyceticus KCC S-043 (KCTC 9225), Streptomyces hygroscopicus ATCC 29253, or a strain of these strains Or a strain producing a tertiary cyclic compound as a mutant thereof.
본 발명의 구체적인 실시예에서는 스트렙토마이세스 속 KCTC 11604BP 및 스트렙토마이세스 카나마이세티쿠스(Streptomyces kanamyceticus) KCTC 9225에서 폴리케타이드 합성효소를 중심으로 타크롤리무스 생합성 유전자군을 확보하였고, 타크롤리무스 생합성 유전자군에서 코리스메테이즈를 암호화하고 있는 유전자인 fkbO를 얻었다. In a specific example of the present invention, a group of tacrolimus biosynthesis genes was obtained mainly on polyketide synthase in Streptomyces sp . KCTC 11604BP and Streptomyces kanamyceticus KCTC 9225, and tacrolimus biosynthesis FkbO , which is a gene coding for cholesteatase , was obtained from the gene group.
또한, 본 발명의 실시예에서는 삼원환 화합물 중 타크롤리무스의 생산 균주에 코리스메테이즈 발현 유전자를 도입 발현하여 타크롤리무스의 생산을 높이고자 하였다. 그러나 본 발명 삼원환 화합물 생산성 증대방법이 타크롤리무스 생산에만 제한되는 것이 아니며, 이 방법으로 합성개시 단위물질을 다량 생산함으로써 다른 삼원환 화합물의 생산성도 향상시킬 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다. In addition, in the example of the present invention, it was intended to increase the production of tacrolimus by introducing and expressing the expression gene of chrysanthemiis into the production strain of tacrolimus among the three-ring compounds. However, the method of increasing the productivity of a ternary ring compound of the present invention is not limited to the production of tacrolimus, and the productivity of other ternary ring compounds can be improved by mass production of the starting material for synthesis by this method. It is obvious to those of ordinary skill.
이와 같은 전략으로 도 1과 같이 스트렙토마이세스 속 KCTC11604BP 와 스트렙토마이세스 카나마이세티쿠스 KCTC 9225 균주 유래의 합성단위물질 합성효소인 코리스메테이즈를 암호화하고 있는 유전자 fkbO 들을 방선균용 프로모터인 P ermE * 하류에 도입하여 발현벡터를 제작하였다. 사용된 프로모터 P ermE * 및 벡터는 방선균에서 과발현을 위한 일반적인 벡터 및 프로모터로 본 발명 범위가 이에 의해 제한되는 것은 아니다. In the same strategy is also genus Streptomyces KCTC11604BP, such as 1 to Streptomyces Kana Mai Shetty kusu KCTC 9225 strain of the derived gene fkbO in encrypting the koriseu methane rise synthesis unit substance synthetase of Streptomyces promoter for P ermE * downstream To prepare an expression vector. The promoter < RTI ID = 0.0 > PermE * < / RTI & But the scope of the present invention is not limited thereto by general vectors and promoters for overexpression in actinomycetes.
상기 재조합 발현벡터가 도입된 형질전환체에서 타크롤리무스의 생산성을 조사한 결과, 생산균주에 비해 타크롤리무스의 생산성이 무도입균주보다 58%-64% 정도 증가하는 것을 확인하였다.
The productivity of tacrolimus in the transformant into which the recombinant expression vector was introduced was examined. As a result, it was confirmed that the productivity of tacrolimus was increased by 58% -64% as compared with that of the non-introduced strain.
이하 실시예를 들어 본 발명의 구성을 더욱 상세하게 설명한다. 그러나, 본 발명의 실시예는 본 발명의 구성에 대한 설명을 위한 것일 뿐 본 발명의 범위를 제한하지는 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
Hereinafter, the structure of the present invention will be described in more detail with reference to examples. However, it will be apparent to those skilled in the art that the embodiments of the present invention are for illustrative purposes only and are not intended to limit the scope of the present invention.
실시예 1 : 박테리아 계통 및 유전자 조작 Example 1: Bacterial lineage and genetic manipulation
본 발명의 재조합 형질전환체 제조를 위하여 생산균주인 스트렙토마이세스 속 균주를 사용하였다. 유전자 조작은 일반적인 과정에 따라서 E. coli DH5α 내에서 수행하였다 (Sambrook J et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). T-이지 벡터 (T-easy vector, Promega)가 서브클로닝을 위해 사용되었다.
For the production of the recombinant transformant of the present invention, the strain Streptomyces sp. Was used. Genetic manipulation was performed in E. coli DH5a according to the usual procedure (Sambrook J et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). A T-easy vector (Promega) was used for subcloning.
실시예 2 : 배양조건 및 대사체 분석Example 2 Culture Conditions and Metabolism Analysis
타크롤리무스를 생산하는 스트렙토마이세스 속 균주를 ISP4 배지에서 2주 동안 28℃에서 배양하여 생성된 포자를 수집하여 본 실험에 사용하였다. 스트렙토마이세스 속 및 이의 형질전환체의 발효배양은 다음과 같은 조건으로 수행하였다. Streptomyces sp. Strains producing tacrolimus were cultivated in ISP4 medium for 2 weeks at 28 ° C, and the resulting spores were collected and used in this experiment. Fermentation of Streptomyces spp. And its transformants was carried out under the following conditions.
실시예에서 사용한 스트렙토마이세스 속 균주는 스트렙토마이세스속 KCTC11604BP이다.The Streptomyces sp. Strain used in the Examples is Streptomyces sp. KCTC11604BP.
균주를 500㎖ 엘렌마이어 삼각 플라스크에 들어있는 30㎖ 배지 1 (1% 수용성 전분, 0.7% 글리세롤, 0.3% 박토펩톤, 0.3% 효모추출물, 0.5% 소이톤펩톤, pH 6.8)에 가하여 28℃, 240 rpm 조건으로 하루 동안 배양하여 활성화시킨 후, 활성화된 종배양 균주를 500㎖ 엘렌마이어 삼각 플라스크에 들어있는 30㎖ 배지 2(1% 산화 전분, 1% 글리세롤, 2% 소이빈 밀, 0.2% CaCO3, 0.5% CSL, pH 6.5)에 접종하고 동일 조건에서 하루 동안 배양하였다. 배지 2에서 배양된 배양액을 500㎖ 엘렌마이어 삼각 플라스크에 들어있는 30㎖ 배지 3 (7% 산화전분, 1.7% 효모 분말, 0.5% 소이빈 밀, 0.1% (NH4)2SO4, 0.1% CaCO3, pH 8.5)에 최종 배양액 부피의 10% 양을 접종하여 28℃에서 240 rpm으로 6일 동안 배양하였다. The strain was added to 30 ml medium 1 (1% water-soluble starch, 0.7% glycerol, 0.3% bactopeptone, 0.3% yeast extract, 0.5% soybean peptone, pH 6.8) contained in a 500 ml Erlenmeyer Erlenmeyer flask, rpm. After activation, the activated seed culture was inoculated into 30 ml medium 2 (1% oxidized starch, 1% glycerol, 2% soybean wheat, 0.2% CaCO 3 , 0.5% CSL, pH 6.5) and cultured for one day under the same conditions. The culture broth in a medium 2 500㎖ Erlenmeyer 30㎖ medium 3 loaded in a conical flask (7% of oxidized starch, 1.7% of yeast powder, 0.5% soy bean mill, 0.1% (NH 4) 2 SO 4, 0.1% CaCO 3 , pH 8.5) was inoculated with 10% of the volume of the final culture medium and cultured at 28 ° C and 240 rpm for 6 days.
타크롤리무스 추출은 발효 배양액과 동량의 아세톤을 사용하여 수행하였다. 타크롤리무스 화합물은 HPLC를 통하여 정량분석하였다. 흡수파장 210 ㎚, 컬럼온도 60℃였고, 20㎕의 추출액은 C8 컬럼(4.6㎜ × 150 ㎜, Zorbox XDB C8)에 도입하여 분석하였다. 분석조건은 0~40분 동안 아세토나이트릴 40~54%, 0.01% TFA를 함유한 H2O 60~46%였다.
Tacrolimus extraction was carried out using the same amount of acetone as the fermentation broth. The tacrolimus compound was quantitatively analyzed by HPLC. The absorption wavelength was 210 nm and the column temperature was 60 DEG C, and 20 mu l of the extract was introduced into a C8 column (4.6 mm x 150 mm, Zorbox XDB C8). The assay conditions were 40- 54% acetonitrile and 60-46% H 2 O containing 0.01% TFA for 0-40 min.
실시예 3: 발현 플라스미드 제조Example 3: Preparation of expression plasmids
타크롤리무스 합성시작 단위물질인 DHCHC 합성에 관여하는 fkbO 유전자는 스트렙토마이세스 속 KCTC11604BP와 스트렙토마이세스 카나마이세티쿠스 KCTC9225로부터 확보한 게놈 DNA를 주형으로 PCR 방법으로 얻었다. 상기 유전자의 확보시 사용한 프라이머는 표 1과 같다.The fkbO gene involved in DHCHC synthesis as a starting material of tacrolimus synthesis was obtained by PCR using genomic DNA obtained from Streptomyces genus KCTC11604BP and Streptomyces kanamycetics KCTC9225 as a template. The primers used for securing the above genes are shown in Table 1.
스트렙토마이세스 속 KCTC11604BP 유래 fkbO 유전자는 SI-fkbO-F와 SI-fkbO-R 프라이머를 사용하여 PCR 증폭 후 1,136bp의 PCR 산물을 얻었으며, 스트렙토마이세스 카나마이세티쿠스 KCTC 9225 유래 fkbO 유전자는 SK-fkbO-F와 SK-fkbO-R 프라이머를 사용하여 PCR 증폭 후 999bp의 PCR 산물을 얻었다. 각각의 PCR 산물은 pGEM T-easy 벡터에 클로닝한 후 염기서열 분석을 통해 염기서열을 확인하였다. 염기서열이 확인된 스트렙토마이세스 속 KCTC11604BP 유래 fkbO 유전자는 BamHI과 XbaI 제한효소로 절단하여 pGEM T-easy 벡터에서 회수하였고 스트렙토마이세스 카나마이세티쿠스 KCTC 9225 유래의 fkbO 유전자는 XbaI 제한효소로 절단하여 pGEM T-easy 벡터에서 회수하였다. 각각의 fkbO 유전자는 pSET152 벡터 p ermE * 하류의 동일한 제한효소 자리에 삽입하여 도 1과 같은 스트렙토마이세스 속 KCTC11604BP 유래 fkbO 발현벡터 pSET152-SIO와 스트렙토마이세스 카나마이세티쿠스 KCTC 9225 유래 fkbO 발현벡터인 pSET152-SKO를 각각 제작하였다. 본 실시예에서 사용한 pSET152 벡터는 아프라마이신 내성 유전자{acc(3)Ⅳ}를 가지고 있으며, 미생물 유전체에 직접 도입할 수 있는 특성이 있다.
The fkbO gene derived from Streptomyces genus KCTC11604BP was amplified by PCR using SI-fkbO-F and SI-fkbO-R primers, and a 1,136 bp PCR product was obtained. The fkbO gene derived from Streptomyces kanamycetixus KCTC 9225 contained SK PCR products were amplified using -fkbO-F and SK-fkbO-R primers to obtain a 999 bp PCR product. Each PCR product was cloned into pGEM T-easy vector and sequenced by base sequence analysis. The fkbO gene derived from Streptomyces sp. KCTC11604BP having the nucleotide sequence confirmed was digested with BamH I and Xba I restriction enzymes and recovered in the pGEM T-easy vector. The fkbO gene derived from Streptomyces kanamycetixus KCTC 9225 was digested with Xba I restriction enzyme And recovered in pGEM T-easy vector. Each of the fkbO gene pSET152 vector p ermE * downstream same restriction genus Streptomyces KCTC11604BP derived as shown in FIG. 1 by inserting the enzyme spot fkbO expression vector pSET152-SIO and Streptomyces Kana Mai Shetty kusu KCTC 9225 derived fkbO expression of the vector in pSET152-SKO were prepared. The pSET152 vector used in this example has an apramycin-resistant gene { acc (3) IV } and has a property that can be directly introduced into a microorganism genome.
실시예 4; 접합에 의한 방선균의 형질전환Example 4; Transformation of Actinomycetes by Bonding
발현벡터의 방선균으로의 도입은 E.Coli/스트렙토마이세스 간의 콘쥬게이션 방법(Kieser, T. 등, 2000)으로 수행하였다.The introduction of the expression vector into actinomycetes was carried out by a conjugation method between E. coli / streptomyces (Kieser, T. et al., 2000).
pSET152 벡터에 합성시작 단위물질 합성유전자 fkbO가 삽입된 pSET152-SIO와 pSET152-SKO 벡터는 비메틸화 주게(non-methylation donor)로 dam-, dcm-인 E.Coli ET12567/pUZ8002에 도입하였다. 상기 형질전환된 E. Coli를 항생제 25㎍/㎖의 클로람페니콜과, 카나마이신, 아프라마이신이 각각 50㎍/㎖ 되도록 첨가된 2×YT배지(트립톤 16g/ℓ, 효모 추출물 10g/ℓ, NaCl 5g/ℓ)에 접종하고 37℃에서 12~16시간 배양하였고, 0.1㎖의 배양액을 10㎖의 2×YT배지에 옮기고, 37℃에서 광학밀도 0.4가 될 때까지 배양하였다. 배양액의 세포는 2×YT배지로 두 번 세척하고, 0.5㎖의 2×YT배지로 농축하였다. 스트렙토마이세스 속 균주 포자액 200㎕를 원심분리하고 500㎕의 대장균 농축액과 500㎕의 균사액은 서로 혼합한 후 변형 A 배지에 도포하고 28℃에서 16시간 동안 배양한 후 1㎎의 날리딕신산(nalidixic acid)과 1㎎의 아프라마이신을 도말하였다. 형질전환체는 3~7일 후 확인하여 선별하였다.
pSET152 and pSET152-SIO-SKO vector synthesized starting material synthesis unit fkbO gene in the vector pSET152 insert was introduced into the dam-, dcm- of E.Coli ET12567 / pUZ8002 with non-methylated to give (non-methylation donor). The transformed E. coli was cultivated in 2 x YT medium (16 g / l of tryptone, 10 g / l of yeast extract, 5 g / l of yeast), 25 g / / L) and cultured at 37 ° C for 12 to 16 hours. 0.1 ml of the culture was transferred to 10 ml of 2 × YT medium and cultured at 37 ° C. until optical density of 0.4 was reached. Cells of the culture were washed twice with 2xYT medium and concentrated with 0.5ml 2xYT medium. 200 ㎕ of Streptomyces sp. Strain spores was centrifuged, and 500 의 of E. coli concentrate and 500 의 of mycelial solution were mixed with each other and applied to modified A medium. After culturing at 28 캜 for 16 hours, 1 mg of nalidixin (nalidixic acid) and 1 mg of apramycin. The transformants were identified after 3 to 7 days.
실시예 5: 형질전환체에서 타크롤리무스 생산 확인Example 5: Confirmation of production of tacrolimus in a transformant
pSET152-SIO와 pSET152-SKO 발현벡터가 도입된 형질전환체의 타크롤리무스 생산성을 확인한 결과, 도 2와 같이 형질전환하지 않은 생산균주에 비해 나크롤리무스 생산성이 58~64% 정도 증가하는 것을 확인하였고, pSET152 벡터만 도입된 형질전환체는 타크롤리무스 생산성에 변화가 없었다. 이를 통하여 타크롤리무스 합성시작 단위물질 합성 유전자인 fkbO의 과발현으로 타크롤리무스 생산성 증대를 도모할 수 있음을 알 수 있었다. fkbO 유전자가 과발현된 형질전환체에서는 생산균주에 비해 합성시작 단위물질이 증가되어 타크롤리무스의 생산성 향상에 기여하였음을 추측할 수 있다.As a result of confirming the productivity of tacrolimus of the transformants into which the pSET152-SIO and pSET152-SKO expression vectors were introduced, it was confirmed that the productivity of B. clemmimus was increased by 58 ~ 64% , And the productivity of tacrolimus did not change in the transfectants in which only pSET152 vector was introduced. As a result, it was found that the productivity of tacrolimus could be increased by overexpression of fkbO , a synthesis gene of tacrolimus synthesis starting unit material. In the case of the transgenic overexpressing fkbO gene, it is presumed that the synthesis starting unit material was increased as compared with the production strain, thereby contributing to the improvement of productivity of tacrolimus.
본 발명으로 얻어진 pSET152-SIO와 pSET152-SKO 벡터가 도입된 형질전환체와 생산균주로부터 얻은 타크롤리무스 생산성 비교 결과는 도 2와 같다.The results of the tacrolimus productivity comparison obtained from the transformants into which pSET152-SIO and pSET152-SKO vectors were introduced according to the present invention and the production strains are shown in Fig.
<110> Genotech Corp. <120> Method for increasing productivity of tricyclo compounds <130> Genotech-fkbO-121024 <160> 10 <170> KopatentIn 2.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of SI-fkbO <400> 1 cgggatccgt cgcgcgtact tgtctgcatc 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of SI-fkbO <400> 2 gctctagagt ttccccgttt ccctgacttc 30 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer of SK-fkbO <400> 3 gctctagagc atgtctgcgc ccgtcgcg 28 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of SK-fkbO <400> 4 gctctagagc tcaccgcacc accccctc 28 <210> 5 <211> 993 <212> DNA <213> Streptomyces sp. KCTC11604BP <400> 5 gtgcctgtcg cggcaccgta ctgccgcttc gagaagctcg tgccgtcgga cctcgaaggg 60 gacgagaccg tgctcggcgt catcgagcac ggcaccggtc atgccgaggt gtcgctcacg 120 gacggtgtcc cgcgtgccgc ggtgcacacc acgaccttcg aggaggaggc gttcgccgag 180 gtgtggcgcg cgcagccgcc cgtcgagtcc ggccgggacg gaggcatcgc atgggcccgc 240 accgacgagt acctgttcgg tgtcggccgc gtccccgaga gccgggggta cgccgatgcc 300 gtcgcggcgc tctacacgcg ggtcttcggg ctgacccggt ccctgggaca tccgctgctc 360 gcccggacgt ggaactacat cagtgggatc aacgcggcga acgcggacgg gctggaggtg 420 taccgggact tctgcgtggg ccgtgcgcag gcgctggacg cgggcgggat cgacccggcc 480 ggcctgcccg cggccaccgg catcggcacg cacgggggtg gtatcacctg cgtgttcctc 540 gccgcccgcg gcggaacccg gatcaacatc gagaaccctg ccgtcctcac ggcacaccac 600 taccccacgg cgtacggccc gcgccccccg gtcttcgcac gggccacctg gctgggcccg 660 ccgggcgacg gccggctgtt cgtgtccgcg acggccggaa tcctcgggca cgagaccacg 720 caccacggtg atgtgaccgg tcagtgcgag gtcgccctgg acaacatcgc ccgggtcgtg 780 gccgccgaga acctgcaccg gcacggtgtc cggcggggtt acgccctcac cgacgtcgat 840 cacctcaagg tctacgtccg gcgccgcgcg gacctccccg cggtccgccg ggtctgcgcc 900 gcccgcttgg cgagcaccgc gaccgtcgcg tttctgcaca ccgacatcgc ccgtggcgac 960 ctgctcgtgg agatcgaagg agtggtgtcg tga 993 <210> 6 <211> 330 <212> PRT <213> Streptomyces sp. KCTC11604BP <400> 6 Val Pro Val Ala Ala Pro Tyr Cys Arg Phe Glu Lys Leu Val Pro Ser 1 5 10 15 Asp Leu Glu Gly Asp Glu Thr Val Leu Gly Val Ile Glu His Gly Thr 20 25 30 Gly His Ala Glu Val Ser Leu Thr Asp Gly Val Pro Arg Ala Ala Val 35 40 45 His Thr Thr Thr Phe Glu Glu Glu Ala Phe Ala Glu Val Trp Arg Ala 50 55 60 Gln Pro Pro Val Glu Ser Gly Arg Asp Gly Gly Ile Ala Trp Ala Arg 65 70 75 80 Thr Asp Glu Tyr Leu Phe Gly Val Gly Arg Val Pro Glu Ser Arg Gly 85 90 95 Tyr Ala Asp Ala Val Ala Ala Leu Tyr Thr Arg Val Phe Gly Leu Thr 100 105 110 Arg Ser Leu Gly His Pro Leu Leu Ala Arg Thr Trp Asn Tyr Ile Ser 115 120 125 Gly Ile Asn Ala Ala Asn Ala Asp Gly Leu Glu Val Tyr Arg Asp Phe 130 135 140 Cys Val Gly Arg Ala Gln Ala Leu Asp Ala Gly Gly Ile Asp Pro Ala 145 150 155 160 Gly Leu Pro Ala Ala Thr Gly Ile Gly Thr His Gly Gly Gly Ile Thr 165 170 175 Cys Val Phe Leu Ala Ala Arg Gly Gly Thr Arg Ile Asn Ile Glu Asn 180 185 190 Pro Ala Val Leu Thr Ala His His Tyr Pro Thr Ala Tyr Gly Pro Arg 195 200 205 Pro Pro Val Phe Ala Arg Ala Thr Trp Leu Gly Pro Pro Gly Asp Gly 210 215 220 Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Leu Gly His Glu Thr Thr 225 230 235 240 His His Gly Asp Val Thr Gly Gln Cys Glu Val Ala Leu Asp Asn Ile 245 250 255 Ala Arg Val Val Ala Ala Glu Asn Leu His Arg His Gly Val Arg Arg 260 265 270 Gly Tyr Ala Leu Thr Asp Val Asp His Leu Lys Val Tyr Val Arg Arg 275 280 285 Arg Ala Asp Leu Pro Ala Val Arg Arg Val Cys Ala Ala Arg Leu Ala 290 295 300 Ser Thr Ala Thr Val Ala Phe Leu His Thr Asp Ile Ala Arg Gly Asp 305 310 315 320 Leu Leu Val Glu Ile Glu Gly Val Val Ser 325 330 <210> 7 <211> 999 <212> DNA <213> Streptomyces kanamyceticus KCTC9225 <400> 7 atgtctgcgc ccgtcgcggc accgtactgc cgcttcgaga agatcgggtc gccggacctc 60 gaagacgacg agacggtact cggcgtcatc gaacacggca ccggccatac cggggcgtcg 120 ctggtggacg gcgtcccgcg aaccgccttg cacaccacga cccgtgacga ggaggcgttc 180 gccgaggtct ggcacgcgga gccgcccgtc gagtccggta cggacgacgg catcgcgtgg 240 gcccgcaccg gcgagtacct gttcggtgtg gggcgcgtcc ccgagagccg caggtacgcc 300 gatgccgtct cggcgctcta cacgcgcctc ttcgggctga cccggtcgct gggatacccg 360 ctgctcgccc gtacgtggaa ctacgtcagc ggcatcaact cggcgaacgc ggacggcctc 420 gaggtgtacc gggacttctg cgtgggccgc gcccaggcgc tcgacgaggg cggcatcgac 480 ccggcgagca tgcccgcggc caccggcatc ggcacgcacg ggggcggcat cgcctgcgcg 540 ttcatcgcgg cccgcggcgg ggtccgggtc aacatcgaga accccgccgt cctcacggca 600 caccactacc ccgcggcata cggcccgcgc tccccggtct tcgcgcgggc cacctgggtg 660 ggcccgccgg acggtggccg gctgttcgtt tccgcgacgg ccggcattct cggacacgag 720 acgacgcacc acggtgacgt gaccggtcag tgcgaggtcg ccctggacaa catcgcccgg 780 gtcgtcggcg cggagaacct gcgccgccac gggatccggc gggggcacgt cctcgccgac 840 gtcgaccacc tcaaggtcta cgtccgccgc cgcgaggacc tcgcggcggt gcgccgcgtc 900 tgcgccgccc gcctgtcgag caccgcgacc gtcgcgatat tgcacaccga catcgcccgc 960 ggcgacctgc tcgtcgaaat cgagggggtg gtgcggtga 999 <210> 8 <211> 332 <212> PRT <213> Streptomyces kanamyceticus KCTC9225 <400> 8 Met Ser Ala Pro Val Ala Ala Pro Tyr Cys Arg Phe Glu Lys Ile Gly 1 5 10 15 Ser Pro Asp Leu Glu Asp Asp Glu Thr Val Leu Gly Val Ile Glu His 20 25 30 Gly Thr Gly His Thr Gly Ala Ser Leu Val Asp Gly Val Pro Arg Thr 35 40 45 Ala Leu His Thr Thr Thr Arg Asp Glu Glu Ala Phe Ala Glu Val Trp 50 55 60 His Ala Glu Pro Pro Val Glu Ser Gly Thr Asp Asp Gly Ile Ala Trp 65 70 75 80 Ala Arg Thr Gly Glu Tyr Leu Phe Gly Val Gly Arg Val Pro Glu Ser 85 90 95 Arg Arg Tyr Ala Asp Ala Val Ser Ala Leu Tyr Thr Arg Leu Phe Gly 100 105 110 Leu Thr Arg Ser Leu Gly Tyr Pro Leu Leu Ala Arg Thr Trp Asn Tyr 115 120 125 Val Ser Gly Ile Asn Ser Ala Asn Ala Asp Gly Leu Glu Val Tyr Arg 130 135 140 Asp Phe Cys Val Gly Arg Ala Gln Ala Leu Asp Glu Gly Gly Ile Asp 145 150 155 160 Pro Ala Ser Met Pro Ala Ala Thr Gly Ile Gly Thr His Gly Gly Gly 165 170 175 Ile Ala Cys Ala Phe Ile Ala Ala Arg Gly Gly Val Arg Val Asn Ile 180 185 190 Glu Asn Pro Ala Val Leu Thr Ala His His Tyr Pro Ala Ala Tyr Gly 195 200 205 Pro Arg Ser Pro Val Phe Ala Arg Ala Thr Trp Val Gly Pro Pro Asp 210 215 220 Gly Gly Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Leu Gly His Glu 225 230 235 240 Thr Thr His His Gly Asp Val Thr Gly Gln Cys Glu Val Ala Leu Asp 245 250 255 Asn Ile Ala Arg Val Val Gly Ala Glu Asn Leu Arg Arg His Gly Ile 260 265 270 Arg Arg Gly His Val Leu Ala Asp Val Asp His Leu Lys Val Tyr Val 275 280 285 Arg Arg Arg Glu Asp Leu Ala Ala Val Arg Arg Val Cys Ala Ala Arg 290 295 300 Leu Ser Ser Thr Ala Thr Val Ala Ile Leu His Thr Asp Ile Ala Arg 305 310 315 320 Gly Asp Leu Leu Val Glu Ile Glu Gly Val Val Arg 325 330 <210> 9 <211> 1005 <212> DNA <213> Streptomyces hygroscopicus ATCC29253 <400> 9 gtgaggcaat tgactccgcc ggtcacggca ccgtactgcc gcttcgagaa gctcggcgcc 60 tccgatctcg acggcgacga gacacttctc ggcgtcatcg aacatcgcac cggacacacc 120 ggggtttcac tggccgaggg ctgtccccgg acggccgtac acacgacgac ccgcgaggac 180 gagtcgttcg ccgaggcgtg gcacgcggag gggccgaagg agtcgtcgag gcatgatggc 240 gtcgcctggg ctcggacacc tgactacctc ttcggtgtcg cgcgggtgcc cgagggcggc 300 cggtacgcgg ccggcaccgc ggccgtctac accggaatct tcgacctgat cgggacgctg 360 gggtacccca gtctggcccg cacctggaac tacgtcagcg gaatcaacac gccgaacgcc 420 gatggcctcg aggtctaccg ggacttctgt gtgggccgcg ccgaggcgct ggacgcccgt 480 gggatcgacc cggcgaccat gccggcggcg accggcatcg gcgcccacgg cgcgcgcatc 540 acgtgctact tcatcgccgc acgcgccggt gaccgggtca acatggagaa cccggccgtg 600 ctcacggctc accgctaccc gcagcggtac ggcccccgcc cgccggtctt ctccggccac 660 ctggctctcg ccgccggggg cggacggctc ttcgtctccg cgaccgccgg catcgtcggt 720 caggagacgg tgcaccacgg cgacgtcgcc gcgcaatgcg aggtgtcgct cgagaacatc 780 gcccgggtga tcggtgccga gaacctggga cggcacgggc tccgccgggg ctacgccctc 840 gccgacgtcg accatttgaa ggtctatgta cgccaccgcg aggatatttc gaccgtacgt 900 cggatctgcg ccgagcgcct ctcccgcgag gccacggttg ccgtactgca caccgacatc 960 gcgcgcaccg atctgctggt cgagatcgag ggtgtggtgg cgtga 1005 <210> 10 <211> 334 <212> PRT <213> Streptomyces hygroscopicus ATCC29253 <400> 10 Met Arg Gln Leu Thr Pro Pro Val Thr Ala Pro Tyr Cys Arg Phe Glu 1 5 10 15 Lys Leu Gly Ala Ser Asp Leu Asp Gly Asp Glu Thr Leu Leu Gly Val 20 25 30 Ile Glu His Arg Thr Gly His Thr Gly Val Ser Leu Ala Glu Gly Cys 35 40 45 Pro Arg Thr Ala Val His Thr Thr Thr Arg Glu Asp Glu Ser Phe Ala 50 55 60 Glu Ala Trp His Ala Glu Gly Pro Lys Glu Ser Ser Arg His Asp Gly 65 70 75 80 Val Ala Trp Ala Arg Thr Pro Asp Tyr Leu Phe Gly Val Ala Arg Val 85 90 95 Pro Glu Gly Gly Arg Tyr Ala Ala Gly Thr Ala Ala Val Tyr Thr Gly 100 105 110 Ile Phe Asp Leu Ile Gly Thr Leu Gly Tyr Pro Ser Leu Ala Arg Thr 115 120 125 Trp Asn Tyr Val Ser Gly Ile Asn Thr Pro Asn Ala Asp Gly Leu Glu 130 135 140 Val Tyr Arg Asp Phe Cys Val Gly Arg Ala Glu Ala Leu Asp Ala Arg 145 150 155 160 Gly Ile Asp Pro Ala Thr Met Pro Ala Ala Thr Gly Ile Gly Ala His 165 170 175 Gly Ala Arg Ile Thr Cys Tyr Phe Ile Ala Ala Arg Ala Gly Asp Arg 180 185 190 Val Asn Met Glu Asn Pro Ala Val Leu Thr Ala His Arg Tyr Pro Gln 195 200 205 Arg Tyr Gly Pro Arg Pro Pro Val Phe Ser Gly His Leu Ala Leu Ala 210 215 220 Ala Gly Gly Gly Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Val Gly 225 230 235 240 Gln Glu Thr Val His His Gly Asp Val Ala Ala Gln Cys Glu Val Ser 245 250 255 Leu Glu Asn Ile Ala Arg Val Ile Gly Ala Glu Asn Leu Gly Arg His 260 265 270 Gly Leu Arg Arg Gly Tyr Ala Leu Ala Asp Val Asp His Leu Lys Val 275 280 285 Tyr Val Arg His Arg Glu Asp Ile Ser Thr Val Arg Arg Ile Cys Ala 290 295 300 Glu Arg Leu Ser Arg Glu Ala Thr Val Ala Val Leu His Thr Asp Ile 305 310 315 320 Ala Arg Thr Asp Leu Leu Val Glu Ile Glu Gly Val Val Ala 325 330 <110> Genotech Corp. <120> Method for increasing productivity of tricyclo compounds <130> Genotech-fKBO-121024 <160> 10 <170> Kopatentin 2.0 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of SI-fkbO <400> 1 cgggatccgt cgcgcgtact tgtctgcatc 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of SI-fkbO <400> 2 gctctagagt ttccccgttt ccctgacttc 30 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer of SK-fkbO <400> 3 gctctagagc atgtctgcgc ccgtcgcg 28 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer of SK-fkbO <400> 4 gctctagagc tcaccgcacc accccctc 28 <210> 5 <211> 993 <212> DNA <213> Streptomyces sp. KCTC11604BP <400> 5 gtgcctgtcg cggcaccgta ctgccgcttc gagaagctcg tgccgtcgga cctcgaaggg 60 gcgagaccg tgctcggcgt catcgagcac ggcaccggtc atgccgaggt gtcgctcacg 120 gacggtgtcc cgcgtgccgc ggtgcacacc acgaccttcg aggaggaggc gttcgccgag 180 gtgtggcgcg cgcagccgcc cgtcgagtcc ggccgggacg gaggcatcgc atgggcccgc 240 accgacgagt acctgttcgg tgtcggccgc gtccccgaga gccgggggta cgccgatgcc 300 gtcgcggcgc tctacacgcg ggtcttcggg ctgacccggt ccctgggaca tccgctgctc 360 gcccggacgt ggaactacat cagtgggatc aacgcggcga acgcggacgg gctggaggtg 420 taccgggact tctgcgtggg ccgtgcgcag gcgctggacg cgggcgggat cgacccggcc 480 ggcctgcccg cggccaccgg catcggcacg cacgggggtg gtatcacctg cgtgttcctc 540 gccgcccgcg gcggaacccg gatcaacatc gagaaccctg ccgtcctcac ggcacaccac 600 taccccacgg cgtacggccc gcgccccccg gtcttcgcac gggccacctg gctgggcccg 660 ccgggcgacg gccggctgtt cgtgtccgcg acggccggaa tcctcgggca cgagaccacg 720 caccacggtg atgtgaccgg tcagtgcgag gtcgccctgg acaacatcgc ccgggtcgtg 780 gccgccgaga acctgcaccg gcacggtgtc cggcggggtt acgccctcac cgacgtcgat 840 cacctcaagg tctacgtccg gcgccgcgcg gacctccccg cggtccgccg ggtctgcgcc 900 gcccgcttgg cgagcaccgc gaccgtcgcg tttctgcaca ccgacatcgc ccgtggcgac 960 ctgctcgtgg agatcgaagg agtggtgtcg tga 993 <210> 6 <211> 330 <212> PRT <213> Streptomyces sp. KCTC11604BP <400> 6 Val Pro Val Ala Pro Tyr Cys Arg Phe Glu Lys Leu Val Pro Ser 1 5 10 15 Asp Leu Glu Gly Asp Glu Thr Val Leu Gly Val Ile Glu His Gly Thr 20 25 30 Gly His Ala Glu Val Ser Leu Thr Asp Gly Val Pro Arg Ala Ala Val 35 40 45 His Thr Thr Thr Phe Glu Glu Glu Ala Phe Ala Glu Val Trp Arg Ala 50 55 60 Gln Pro Pro Val Glu Ser Gly Arg Asp Gly Gly Ile Ala Trp Ala Arg 65 70 75 80 Thr Asp Glu Tyr Leu Phe Gly Val Gly Arg Val Pro Glu Ser Arg Gly 85 90 95 Tyr Ala Asp Ala Val Ala Ala Leu Tyr Thr Arg Val Phe Gly Leu Thr 100 105 110 Arg Ser Leu Gly His Pro Leu Leu Ala Arg Thr Trp Asn Tyr Ile Ser 115 120 125 Gly Ile Asn Ala Ala Asn Ala Asp Gly Leu Glu Val Tyr Arg Asp Phe 130 135 140 Cys Val Gly Arg Ala Gln Ala Leu Asp Ala Gly Gly Ile Asp Pro Ala 145 150 155 160 Gly Leu Pro Ala Ala Thr Gly Ily Gly Thr His Gly Gly Gly Ile Thr 165 170 175 Cys Val Phe Leu Ala Ala Arg Gly Gly Thr Arg Ile Asn Ile Glu Asn 180 185 190 Pro Ala Val Leu Thr Ala His His Tyr Pro Thr Ala Tyr Gly Pro Arg 195 200 205 Pro Pro Val Phe Ala Arg Ala Thr Trp Leu Gly Pro Pro Gly Asp Gly 210 215 220 Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Leu Gly His Glu Thr Thr 225 230 235 240 His His Gly Asp Val Thr Gly Gln Cys Glu Val Ala Leu Asp Asn Ile 245 250 255 Ala Arg Val Val Ala Ala Glu Asn Leu His Arg His Gly Val Arg Arg 260 265 270 Gly Tyr Ala Leu Thr Asp Val Asp His Leu Lys Val Tyr Val Arg Arg 275 280 285 Arg Ala Asp Leu Pro Ala Val Arg Arg Val Cys Ala Ala Arg Leu Ala 290 295 300 Ser Thr Ala Thr Val Ala Phe Leu His Thr Asp Ile Ala Arg Gly Asp 305 310 315 320 Leu Leu Val Glu Ile Glu Gly Val Val Ser 325 330 <210> 7 <211> 999 <212> DNA <213> Streptomyces kanamyceticus KCTC9225 <400> 7 atgtctgcgc ccgtcgcggc accgtactgc cgcttcgaga agatcgggtc gccggacctc 60 gaagacgacg agacggtact cggcgtcatc gaacacggca ccggccatac cggggcgtcg 120 ctggtggacg gcgtcccgcg aaccgccttg cacaccacga cccgtgacga ggaggcgttc 180 gccgaggtct ggcacgcgga gccgcccgtc gagtccggta cggacgacgg catcgcgtgg 240 gcccgcaccg gcgagtacct gttcggtgtg gggcgcgtcc ccgagagccg caggtacgcc 300 gatgccgtct cggcgctcta cacgcgcctc ttcgggctga cccggtcgct gggatacccg 360 ctgctcgccc gtacgtggaa ctacgtcagc ggcatcaact cggcgaacgc ggacggcctc 420 gggtgtacc gggacttctg cgtgggccgc gcccaggcgc tcgacgaggg cggcatcgac 480 ccggcgagca tgcccgcggc caccggcatc ggcacgcacg ggggcggcat cgcctgcgcg 540 ttcatcgcgg cccgcggcgg ggtccgggtc aacatcgaga accccgccgt cctcacggca 600 caccactacc ccgcggcata cggcccgcgc tccccggtct tcgcgcgggc cacctgggtg 660 ggcccgccgg acggtggccg gctgttcgtt tccgcgacgg ccggcattct cggacacgag 720 acgacgcacc acggtgacgt gaccggtcag tgcgaggtcg ccctggacaa catcgcccgg 780 gtcgtcggcg cggagaacct gcgccgccac gggatccggc gggggcacgt cctcgccgac 840 gcgccgcgtc 900 tgcgccgccc gcctgtcgag caccgcgacc gtcgcgatat tgcacaccga catcgcccgc 960 ggcgacctgc tcgtcgaaat cgagggggtg gtgcggtga 999 <210> 8 <211> 332 <212> PRT <213> Streptomyces kanamyceticus KCTC9225 <400> 8 Met Ser Ala Pro Val Ala Pro Tyr Cys Arg Phe Glu Lys Ile Gly 1 5 10 15 Ser Pro Asp Leu Glu Asp Asp Glu Thr Val Leu Gly Val Ile Glu His 20 25 30 Gly Thr Gly His Thr Gly Ala Ser Leu Val Asp Gly Val Pro Arg Thr 35 40 45 Ala Leu His Thr Thr Thr Arg Asp Glu Glu Ala Phe Ala Glu Val Trp 50 55 60 His Ala Glu Pro Pro Val Glu Ser Gly Thr Asp Asp Gly Ile Ala Trp 65 70 75 80 Ala Arg Thr Gly Glu Tyr Leu Phe Gly Val Gly Arg Val Val Glu Ser 85 90 95 Arg Arg Tyr Ala Asp Ala Val Ser Ala Leu Tyr Thr Arg Leu Phe Gly 100 105 110 Leu Thr Arg Ser Leu Gly Tyr Pro Leu Leu Ala Arg Thr Trp Asn Tyr 115 120 125 Val Ser Gly Ile Asn Ser Ala Asn Ala Asp Gly Leu Glu Val Tyr Arg 130 135 140 Asp Phe Cys Val Gly Arg Ala Gln Ala Leu Asp Glu Gly Gly Ile Asp 145 150 155 160 Pro Ala Ser Met Pro Ala Ala Thr Gly Ile Gly Thr His Gly Gly Gly 165 170 175 Ile Ala Cys Ala Phe Ile Ala Ala Arg Gly Val Val Arg Ile 180 185 190 Glu Asn Pro Ala Val Leu Thr Ala His His Tyr Pro Ala Ala Tyr Gly 195 200 205 Pro Arg Ser Pro Val Phe Ala Arg Ala Thr Trp Val Gly Pro Pro Asp 210 215 220 Gly Gly Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Leu Gly His Glu 225 230 235 240 Thr His His Gly Asp Val Thr Gly Gln Cys Glu Val Ala Leu Asp 245 250 255 Asn Ile Ala Arg Val Val Gly Ala Glu Asn Leu Arg Arg His Gly Ile 260 265 270 Arg Arg Gly His Val Leu Ala Asp Val Asp His Leu Lys Val Tyr Val 275 280 285 Arg Arg Arg Glu Asp Leu Ala Ala Val Arg Arg Val Cys Ala Ala Arg 290 295 300 Leu Ser Ser Thr Ala Thr Val Ala Ile Leu His Thr Asp Ile Ala Arg 305 310 315 320 Gly Asp Leu Leu Val Glu Ile Glu Gly Val Val Arg 325 330 <210> 9 <211> 1005 <212> DNA ≪ 213 > Streptomyces hygroscopicus ATCC29253 <400> 9 gtgaggcaat tgactccgcc ggtcacggca ccgtactgcc gcttcgagaa gctcggcgcc 60 tccgatctcg acggcgacga gacacttctc ggcgtcatcg aacatcgcac cggacacacc 120 ggggtttcac tggccgaggg ctgtccccgg acggccgtac acacgacgac ccgcgaggac 180 gagtcgttcg ccgaggcgtg gcacgcggag gggccgaagg agtcgtcgag gcatgatggc 240 gtcgcctggg ctcggacacc tgactacctc ttcggtgtcg cgcgggtgcc cgagggcggc 300 cggtacgcgg ccggcaccgc ggccgtctac accggaatct tcgacctgat cgggacgctg 360 gggtacccca gtctggcccg cacctggaac tacgtcagcg gaatcaacac gccgaacgcc 420 gatggcctcg aggtctaccg ggacttctgt gtgggccgcg ccgaggcgct ggacgcccgt 480 gggatcgacc cggcgaccat gccggcggcg accggcatcg gcgcccacgg cgcgcgcatc 540 acgtgctact tcatcgccgc acgcgccggt gaccgggtca acatggagaa cccggccgtg 600 ctcacggctc accgctaccc gcagcggtac ggcccccgcc cgccggtctt ctccggccac 660 ctggctctcg ccgccggggg cggacggctc ttcgtctccg cgaccgccgg catcgtcggt 720 cggagacgg tgcaccacgg cgacgtcgcc gcgcaatgcg aggtgtcgct cgagaacatc 780 gcccgggtga tcggtgccga gaacctggga cggcacgggc tccgccgggg ctacgccctc 840 gccgacgtcg accatttgaa ggtctatgta cgccaccgcg aggatatttc gaccgtacgt 900 cggatctgcg ccgagcgcct ctcccgcgag gccacggttg ccgtactgca caccgacatc 960 gcgcgcaccg atctgctggt cgagatcgag ggtgtggtgg cgtga 1005 <210> 10 <211> 334 <212> PRT ≪ 213 > Streptomyces hygroscopicus ATCC29253 <400> 10 Met Arg Gln Leu Thr Pro Pro Val Thr Ala Pro Tyr Cys Arg Phe Glu 1 5 10 15 Lys Leu Gly Ala Ser Asp Leu Asp Gly Asp Glu Thr Leu Leu Gly Val 20 25 30 Ile Glu His Arg Thr Gly His Thr Gly Val Ser Leu Ala Glu Gly Cys 35 40 45 Pro Arg Thr Ala Val His Thr Thr Thr Arg Glu Asp Glu Ser Phe Ala 50 55 60 Glu Ala Trp His Ala Glu Gly Pro Lys Glu Ser Ser Arg His Asp Gly 65 70 75 80 Val Ala Trp Ala Arg Thr Pro Asp Tyr Leu Phe Gly Val Ala Arg Val 85 90 95 Pro Glu Gly Gly Arg Tyr Ala Gly Thr Ala Ala Val Tyr Thr Gly 100 105 110 Ile Phe Asp Leu Ile Gly Thr Leu Gly Tyr Pro Ser Leu Ala Arg Thr 115 120 125 Trp Asn Tyr Val Ser Gly Ile Asn Thr Pro Asn Ala Asp Gly Leu Glu 130 135 140 Val Tyr Arg Asp Phe Cys Val Gly Arg Ala Glu Ala Leu Asp Ala Arg 145 150 155 160 Gly Ile Asp Pro Ala Thr Met Pro Ala Ala Thr Gly Ile Gly Ala His 165 170 175 Gly Ala Arg Ile Thr Cys Tyr Phe Ile Ala Ala Arg Ala Gly Asp Arg 180 185 190 Val Asn Met Glu Asn Pro Ala Val Leu Thr Ala His Arg Tyr Pro Gln 195 200 205 Arg Tyr Gly Pro Arg Pro Pro Val Phe Ser Gly His Leu Ala Leu Ala 210 215 220 Ala Gly Gly Gly Arg Leu Phe Val Ser Ala Thr Ala Gly Ile Val Gly 225 230 235 240 Gln Glu Thr Val His His Gly Asp Val Ala Ala Gln Cys Glu Val Ser 245 250 255 Leu Glu Asn Ile Ala Arg Val Ile Gly Ala Glu Asn Leu Gly Arg His 260 265 270 Gly Leu Arg Arg Gly Tyr Ala Leu Ala Asp Val Asp His Leu Lys Val 275 280 285 Tyr Val Arg His Arg Glu Asp Ile Ser Thr Val Arg Arg Ile Cys Ala 290 295 300 Glu Arg Leu Ser Arg Glu Ala Thr Val Ala Val Leu His Thr Asp Ile 305 310 315 320 Ala Arg Thr Asp Leu Leu Val Glu Ile Glu Gly Val Val Ala 325 330
Claims (5)
A method for enhancing the production of a three-membered ring compound by introducing a gene encoding a chorismatease into a strain of Streptomyces producing a three-membered ring compound.
코리스메테이즈를 암호화하는 유전자는 FkbO 또는 RapK임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법.
The method according to claim 1,
A method for enhancing the production of a three-ring compound, wherein the gene encoding the cholesteatase is FkbO or RapK .
코리스메테이즈를 암호화하는 유전자는 미생물에서 수득하거나 합성한 것임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법.
The method according to claim 1,
A method for enhancing the production of a ternary ring compound, wherein the gene encoding the chorismate is obtained or synthesized in a microorganism.
상기 미생물은 스트렙토마이세스 속임을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법.
The method of claim 3,
Wherein the microorganism is characterized by Streptomyces spp.
상기 방법은
코리스메테이즈를 암호화하는 유전자를 발현벡터에 삽입하는 단계;
상기 코리스메테이즈 암호화 유전자가 삽입된 발현벡터로 미생물을 형질전환시키는 단계; 및
상기 형질전환된 미생물과 삼원환 화합물 생산 스트렙토마이세스 속 균주를 콘쥬게이션시켜 스트렙토마이세스 속 균주를 형질전환시키는 단계;를 포함하는 것을 특징으로 하는, 삼원환 화합물의 생산을 증대시키는 방법.
The method according to claim 1,
The method
Inserting a gene encoding a chorismate into an expression vector;
Transforming the microorganism with an expression vector into which the cholesteatism-encoding gene has been inserted; And
And transforming the Streptomyces sp. Strain by conjugating the transformed microorganism with a strain of Streptomyces producing a three-ring compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120118270A KR20140052303A (en) | 2012-10-24 | 2012-10-24 | Method for increasing productivity of tricyclo compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120118270A KR20140052303A (en) | 2012-10-24 | 2012-10-24 | Method for increasing productivity of tricyclo compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20140052303A true KR20140052303A (en) | 2014-05-07 |
Family
ID=50885561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120118270A KR20140052303A (en) | 2012-10-24 | 2012-10-24 | Method for increasing productivity of tricyclo compounds |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20140052303A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150145806A (en) * | 2014-06-19 | 2015-12-31 | (주) 제노텍 | Transcription regulating sigma factor SigA-vm and producing method for glycopeptide compounds by overexpressing the sigma factor |
CN108192908A (en) * | 2018-01-29 | 2018-06-22 | 天津大学 | The method that tacrolimus fermentation yield is improved using streptomyces tsukubaensis |
-
2012
- 2012-10-24 KR KR1020120118270A patent/KR20140052303A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150145806A (en) * | 2014-06-19 | 2015-12-31 | (주) 제노텍 | Transcription regulating sigma factor SigA-vm and producing method for glycopeptide compounds by overexpressing the sigma factor |
CN108192908A (en) * | 2018-01-29 | 2018-06-22 | 天津大学 | The method that tacrolimus fermentation yield is improved using streptomyces tsukubaensis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4642922B2 (en) | Pyripyropene A biosynthetic gene | |
Kang et al. | Biosynthesis of 3, 5-AHBA-derived natural products | |
Kopp et al. | Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690 | |
CA2767491C (en) | Process for preparation of tacrolimus | |
KR101840483B1 (en) | Method for producing pyripyropene | |
EP2192171B1 (en) | Method for production of non-natural antibiotic | |
US8697409B2 (en) | Ketoreductase mutant | |
KR20140052303A (en) | Method for increasing productivity of tricyclo compounds | |
Heinilä et al. | The Structure and biosynthesis of heinamides A1–A3 and B1–B5, antifungal members of the Laxaphycin lipopeptide family | |
AU2003255681A1 (en) | Polynucleotides and polypeptides coded by said polynucleotides involved in the synthesis of diketopiperazine derivatives | |
JP5864267B2 (en) | Nucleic acid construct comprising pyripyropene biosynthetic gene cluster and marker gene | |
KR100679759B1 (en) | Transformant producing secondary metabolite modified with functional group and novel biosynthesis genes | |
Nishizawa et al. | Cloning and characterization of a new hetero-gene cluster of nonribosomal peptide synthetase and polyketide synthase from the cyanobacterium Microcystis aeruginosa K-139 | |
KR20100039623A (en) | Recombinant microorganism for producing rapamycin and producing method thereof | |
KR101748678B1 (en) | Method for increasing the productivity of glycopeptides compounds | |
Zhang et al. | Identification and characterization of the anti-MRSA WAP-8294A2 biosynthetic gene cluster from Lysobacter enzymogenes OH11 | |
KR101592269B1 (en) | Transcription regulating sigma factor SigA-vm and producing method for glycopeptide compounds by overexpressing the sigma factor | |
CA2441346A1 (en) | Transformants producing substance pf1022 derivatives, methods for producing the same, and novel biosynthesis genes | |
JP2004173537A (en) | Biosynthesis gene for kanamycin | |
Binz | Studies on the biosynthesis and heterologous expression of complex secondary metabolites from streptomycetes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |