KR20100039623A - Recombinant microorganism for producing rapamycin and producing method thereof - Google Patents

Recombinant microorganism for producing rapamycin and producing method thereof Download PDF

Info

Publication number
KR20100039623A
KR20100039623A KR1020080098667A KR20080098667A KR20100039623A KR 20100039623 A KR20100039623 A KR 20100039623A KR 1020080098667 A KR1020080098667 A KR 1020080098667A KR 20080098667 A KR20080098667 A KR 20080098667A KR 20100039623 A KR20100039623 A KR 20100039623A
Authority
KR
South Korea
Prior art keywords
gene
rapamycin
productivity
foreign
pcc
Prior art date
Application number
KR1020080098667A
Other languages
Korean (ko)
Inventor
김재종
임시규
윤여준
정원석
김동환
이미옥
유영지
Original Assignee
(주) 제노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 제노텍 filed Critical (주) 제노텍
Priority to KR1020080098667A priority Critical patent/KR20100039623A/en
Publication of KR20100039623A publication Critical patent/KR20100039623A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/76Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/188Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms
    • C12P17/189Heterocyclic compound containing in the condensed system at least one hetero ring having nitrogen atoms and oxygen atoms as the only ring heteroatoms containing the rifamycin nucleus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y602/00Ligases forming carbon-sulfur bonds (6.2)
    • C12Y602/01Acid-Thiol Ligases (6.2.1)
    • C12Y602/01017Propionate--CoA ligase (6.2.1.17)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/04Other carbon-nitrogen ligases (6.3.4)
    • C12Y603/04014Biotin carboxylase (6.3.4.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y604/00Ligases forming carbon-carbon bonds (6.4)
    • C12Y604/01Ligases forming carbon-carbon bonds (6.4.1)
    • C12Y604/01003Propionyl-CoA carboxylase (6.4.1.3)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for preparing recombinant Streptomyces strain and enhancing rapamycin productivity is provided to improve rapamycin productivity and to produce antibacterial, anti-cancer, and immunity suppressing drugs. CONSTITUTION: A recombinant Streptomyces strain in which rapamycin productivity contains foreign accA1 gene, pccB gene, and prpE gene. The recombinant Straeptomyces strain is obtained using an expression vector(Pset152-pcc) in which a gene is introduced in PermE downstream. The gene encodes carboxylase(pcc) and propionate CoA ligase(PrpE). The foreign accA1 gene and pccB gene is obtained from Streptomyces coelicolor. The foreign prpE gene is obtained from Salmonella typhimurium.

Description

라파마이신 생산성이 증대된 재조합 방선균주 및 라파마이신 생산성 증대방법{Recombinant microorganism for producing rapamycin and producing method thereof}Recombinant microorganism for producing rapamycin and producing method

본 발명은 라파마이신 다량 생산을 위한 재조합 균주 및 이를 이용한 라파마이신 생산성 증대방법에 관한 것이다. The present invention relates to a recombinant strain for the production of large amounts of rapamycin and a method for increasing the productivity of rapamycin using the same.

라파마이신(시롤리무스), FK506(타크롤리무스), FK520(아스코마이신) 등으로 대표되는 매크로사이클릭 락탐 계열의 폴리케타이드(polyketide) 화합물은 항진균(antifungal), 항암(anticancer), 면역억제(immunosuppressant) 활성 등 다양한 생리활성을 나타낸다. Macrocyclic lactam-based polyketide compounds represented by rapamycin (cyrrolimus), FK506 (tacrolimus), FK520 (ascomycin), and the like are antifungal, anticancer, and immunosuppressive. It exhibits various physiological activities such as (immunosuppressant) activity.

이 폴리케타이드 화합물들은 폴리케타이드 합성효소(polyketide synthase, 이하 "PKS"와 혼용함)에 의한 반복적 중합반응으로 합성되는 골격을 기본 구조로 하고, 다양한 부가(tailoring) 효소에 의해 기본 구조가 변형됨으로써 다양한 구조의 생리활성물질이 생합성된다. 이들은 일반적으로 기본적인 합성 단위(precursor)인 말로닐코에이(malonyl-CoA), 메틸말로닐코에이(methylmalonyl-CoA)가 주로 축합반응을 통해 전체적인 골격구조를 형성한다. 이들 폴리케타이드 화합물 중 라파마 이신은 스트렙토마이세스 하이그로스코피쿠스(Streptomyces hygroscopicus)에서 생산되는 항진균제 및 면역억제제(미국특허 US3,929,992호 참조)이며 시장에서 라파뮨(rapamune)이라는 제품명으로 시판된다.These polyketide compounds are based on a skeleton synthesized by repetitive polymerization by polyketide synthase (hereinafter referred to as "PKS"), and the basic structure is modified by various tailing enzymes. As a result, bioactive substances of various structures are biosynthesized. In general, the basic synthetic units (malonyl-CoA), methylmalonyl-CoA (methylmalonyl-CoA) to form the overall skeleton structure mainly through condensation reaction. Of these polyketide compounds, rapamycin is an antifungal and immunosuppressive agent produced by Streptomyces hygroscopicus (see US Pat. No. 3,929,992) and is marketed under the trade name rapamune. .

라파마이신 생합성은 혼합 타입 1 폴리케타이드 합성효소/비리보솜 단백질 합성효소(mixed type1 polyketide synthase/nonribosomal peptide synthetase)로 구성된 생합성 기구가 담당하는 것으로 밝혀졌다(Schwecke 등 (1995), PNAS USA, 92, 7839-7843). 라파마이신의 생합성 기구의 합성시작 단위물질(starter unit)은 시키메이트(shikimate)에서 유래된 DHCHC(4,5-dihydroxycyclohex-1-enecarboxylic acid)이다. 여기에 아세테이트에서 유래된 7개의 말로닐코에이와 프로피오네이트에서 유래된 7개의 메틸말로닐코에이의 축합 반응으로 골격구조의 사슬이 연장되며, 마지막으로 1개의 L-라이신에서 유래된 L-피페콜린산(pipecolic acid)이 축합되는 것으로 추정된다. Rapamycin biosynthesis has been found to be responsible for biosynthetic machinery consisting of mixed type 1 polyketide synthase / nonribosomal peptide synthetase (Schwecke et al. (1995), PNAS USA, 92, 7839-7843). The starter unit for the synthesis of rapamycin biosynthesis is DHCHC (4,5-dihydroxycyclohex-1-enecarboxylic acid) derived from shikimate. Here, the condensation reaction of 7 malonylcoa derived from acetate and 7 methylmalonylcoa derived from propionate extends the chain of skeletal structure, and finally L-pipecoline derived from 1 L-lysine. It is assumed that pipecolic acid is condensed.

일반적으로 폴리케타이드 화합물은 그 전구체의 공급이 풍부하여야 생산성이 증가된다. 미생물 이차대사산물 전구체의 공급을 증가하여 생산성 증대를 이루는 방법은 주로 발효배지에 전구체를 과량 첨가하여 생산성을 증가시키는 방법이 일반적이다. 그러나, 라파마이신의 경우 전구체가 고가이므로 다량의 전구체를 배지에 첨가하는 것은 비경제적이다. 또한, 방선균 이차 대사산물의 생산성 증대는 무작위적인 돌연변이(random mutagenesis)를 통해 생산성이 증대된 변이체를 확보하는 전통적인 방법을 쓰고 있다. 그러나, 이러한 방법은 생산성이 증대된 변이체를 확보하는데 많은 시간과 노력이 들며, 또한 변이체의 활성을 유지하기가 어렵다. 그러 므로, 대사공학적 방법을 통하여 생산성이 증대된 균주를 개발하는 것은 산업적으로 매우 유용하다. In general, polyketide compounds require a rich supply of precursors to increase productivity. The method of increasing productivity by increasing the supply of the microbial secondary metabolite precursor is generally a method of increasing the productivity by adding an excessive amount of the precursor to the fermentation medium. However, for rapamycin, the precursors are expensive, so adding large amounts of precursors to the medium is uneconomical. In addition, the increased productivity of actinomycetes secondary metabolites is using the traditional method of obtaining variants with increased productivity through random mutagenesis. However, this method takes a lot of time and effort to secure variants with increased productivity, and it is also difficult to maintain the activity of the variants. Therefore, it is very useful industrially to develop strains with increased productivity through metabolic methods.

최근 전구체를 합성하는 대사과정을 유전자 변형 혹은 도입과 같은 인위적인 방법으로 조작하여 미생물을 개량함으로써 생체내 전구체량을 늘려 폴리케타이드 등 이차대사산물의 생산성을 높이는 시도가 있었다. 그러한 예로서, 이종 숙주에 폴리케타이드 생합성 유전자를 도입하여 폴리케타이드 화합물을 이종 숙주에서 생산하고자 대장균의 개량을 시도한 것이 보고되었다(미국특허 US 6,939,691 B1; Muri S. 등 J. Ind. Microbiol. & Biotechnol. 2003). 이 발명에서 말로닐코에이 디카복실라아제(malonyl CoA decarboxylase) 유전자인 matA, 말로닐코에이 합성효소(malonyl CoA synthetase) 유전자인 matB와 프로필말로닐코에이 카복실라아제(propylmalonyl-CoA carboxylase; 이하 "pcc"와 혼용함) 유전자인 pccB, accA2 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)로부터 확보하였으며, 말로네이트 전이(mlonate transporter) 유전자인 matC는 라이조비움 트리폴리(Rhizobium trifoli)로부터 확보하여 대장균에 도입하였다. MatABC 혹은 pcc가 발현된 대장균은 세포 내의 아실코에이 양이 증가하였으며, 특히 메틸말로닐코에이와 프로피오닐코에이의 양이 증가되었다. 이렇게 개량된 대장균에 6-DEBS(6-deoxyerythromycin B synthase) 유전자를 도입하여 6-데옥시에리트로놀라이드 B( 6-deoxyerythronolide B)의 생산성을 향상시킨 바 있다. Recently, there has been an attempt to increase the productivity of secondary metabolites such as polyketides by increasing the amount of precursors in vivo by manipulating the metabolic process of synthesizing precursors by artificial methods such as genetic modification or introduction. As an example, attempts have been made to improve E. coli to introduce polyketide biosynthesis genes into heterologous hosts to produce polyketide compounds in heterologous hosts (US Pat. No. 6,939,691 B1; Muri S. et al. J. Ind. Microbiol. & Biotechnol. 2003). In the present invention, the malonyl CoA decarboxylase gene matA, the malonyl CoA synthetase gene matB and the propylmalonyl-CoA carboxylase (hereinafter referred to as "pcc") In combination with the gene pccB, accA2 It was obtained from Streptomyces coelicolor , and the malonate transporter gene, matC, was obtained from Rhizobium trifoli and introduced into E. coli. In Escherichia coli expressing MatABC or pcc, the amount of acylcoa in cells was increased. The 6-DEBS (6-deoxyerythromycin B synthase) gene was introduced into the improved E. coli to improve the productivity of 6-deoxyerythronolide B (6-deoxyerythronolide B).

따라서, 본 발명의 목적은 상기 문제를 해결하려는 것으로서, 고가의 전구체를 배양배지에 첨가하는 방법 대신 라파마이신의 생산성을 높이는 방법을 제공하려는 것이다.Accordingly, an object of the present invention is to solve the above problems, and to provide a method of increasing the productivity of rapamycin instead of adding an expensive precursor to the culture medium.

본 발명자들은 라파마이신 생합성에 필요한 전구체 중 아실코에이의 양을 라파마이신 생산균주에서 조사하고, 부족한 아실코에이의 생체내 증가를 이루어 생산성 증대 효과를 가져오는 방법을 연구하였다. The present inventors investigated the amount of acylcoai among the precursors required for rapamycin biosynthesis in a rapamycin producing strain, and studied a method of increasing productivity by in vivo increase of insufficient acylcoai.

본 발명은 라파마이신 생산 균주인 스트렙토마이세스 하이그로스코피쿠스의 세포내 아실코에이의 프로파일을 확인하고 이를 통하여 부족한 생합성 전구체인 아실코에이, 특히 메틸말로닐코에이가 부족함을 인지하여 대사공학적 방법으로 균주를 개량함으로써 생체 내 메틸말로닐코에이의 양을 증가시켜 라파마이신의 생산성 향상을 이루는 방법에 관한 것이다. The present invention confirms the profile of intracellular acylcoa of rapamycin producing strain Streptomyces hygroscopicus and recognizes the lack of acylcoa, in particular methylmalonylcoa, which is a poor biosynthetic precursor. The present invention relates to a method of improving productivity of rapamycin by increasing the amount of methylmalonylcoay in vivo by improving strains.

본 발명에 의하면, 고가의 전구체를 다량 사용하지 않고도 유전자 재조합방법을 통하여 라파마이신 생산성을 향상시킬 수 있다. 이와 같이 얻어진 라파마이신은 항진균제, 항암제 및 면역억제제 용도로 이용할 수 있다. According to the present invention, rapamycin productivity can be improved through genetic recombination without using a large amount of expensive precursors. The rapamycin thus obtained can be used for antifungal, anticancer and immunosuppressive applications.

본 발명은 라파마이신의 생산성을 높이기 위한 대사공학적 방법을 제공하는 것이다. 라파마이신은 아래의 화학식 1과 같다. The present invention provides a metabolic method for increasing the productivity of rapamycin. Rapamycin is represented by the following Chemical Formula 1.

Figure 112008070240151-PAT00001
Figure 112008070240151-PAT00001

라파마이신의 생산성을 위한 본 발명은 라파마이신 생산방선균인 스트렙토마이세스 하이그로스코피쿠스 ATCC 29253 균주의 라파마이신 발효조건에서의 라파마이신 생합성에 필요한 중요한 전구체로 추정되는 말로닐코에이(malonyl-CoA)와 메틸말로닐코에이를 중심으로 아실코에이 프로파일을 조사하였다. 생산균주의 세포 내에는 특히 메틸말로닐코에이가 존재하지 않았다. 이를 통해 라파마이신 생합성에 메틸말로닐코에이가 절대적으로 부족할 것으로 예측할 수 있는 것이다. 그러므로, 본 발명에서는 부족한 세포 내 메틸말로닐코에이를 공급하는 체계를 대사공학적 방 법으로 야생주에 도입하여 라파마이신의 생산을 높이고자 하였다. 이를 위해 메틸말로닐코에이 생산에 필요한 대사과정이 작동하도록 필요한 효소를 야생주에 발현시키고자 하였다(도 1 참조). The present invention for the productivity of rapamycin and malonyl-CoA (malonyl-CoA) is estimated to be an important precursor for rapamycin biosynthesis of rapamycin fermentation conditions of the rapamycin production actinomycetes Streptomyces hygroscopicus ATCC 29253 The acylcoay profile was investigated around methylmalonylcoay. In particular, methylmalonylcoay was not present in the cells of the production strain. Through this, it can be predicted that methylmalonylcoa is absolutely deficient in rapamycin biosynthesis. Therefore, in the present invention, a system for supplying methylmalonylcoa, which is lacking in cells, was introduced into the wild line by metabolic method to increase the production of rapamycin. To this end, it was intended to express the enzymes required in the wild line to operate the metabolic processes required for methylmalonylcoai production (see Figure 1).

이를 위한 전략으로 도 2와 같은 카복실라아제(pcc)와 프로피오네이트 CoA 리가아제(PrpE)를 암호화하고 있는 유전자를 방선균용 프로모터인 P ermE 하류에 도입하여 발현 벡터(pSET152-pcc)를 제작하였다. 유전자 prpE는 살모넬라 티피뮤리움(Salmonella typhimurium)으로부터 확보하였고, 유전자 accA1pccB는 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)로부터 확보하였다.As a strategy for this, also the carboxyl la kinase (pcc) and the propionate such as 2 CoA Riga by introducing a gene which encodes the kinase (PrpE) a Streptomyces promoter P ermE downstream for was produced in an expression vector (pSET152-pcc) . Gene prpE was obtained from Salmonella typhimurium , and gene accA1 and pccB were obtained from Streptomyces coelicolor .

발현벡터가 도입된 형질전환체의 아실코에이 프로파일과 라파마이신의 생산성을 조사한 결과, 카복실라아제(pcc)가 발현된 형질 전환체의 경우 야생주에 비해 라파마이신 생산성이 2-3배 정도 높으며, 형질 전환체 발효배지에 프로피오네이트를 첨가할 경우 라파마이신 생산성이 6-9배의 증가를 보였다. 또한, 형질 전환체 세포 내의 프로피오닐코에이가 급격한 증가를 나타낸다. 이러한 결과는 pcc 대사과정의 도입으로 배지 내에 존재하는 프로피오네이트가 프로피오닐코에이(propionyl-CoA)를 거쳐 메틸말로닐코에이로 변환되어 라파마이신의 생산에 이용됨으로써 궁극적으로 라파마이신의 생산성 향상이 이루어질 수 있기 때문이다. As a result of examining the acylcoa profile and the productivity of rapamycin of the transformants into which the expression vector was introduced, the carboxylase (pcc) -expressing transformants produced 2-3 times higher productivity of rapamycin than wild strains. The production of rapamycin was 6-9 fold higher when propionate was added to the transformant fermentation broth. In addition, propionylcoa in transformant cells shows a sharp increase. These results suggest that the introduction of pcc metabolism converts propionate in the medium into propionyl-CoA and methylmalonyl-CoA to be used for the production of rapamycin, which ultimately improves the productivity of rapamycin. Because it can be done.

이러한 본 발명은 라파마이신의 산업적 생산균주로의 개발에 응용될 수 있어 그 유용성이 크다고 할 수 있다. The present invention can be said to have great utility since it can be applied to the development of rapamycin as an industrial production strain.

이하 실시예를 들어 본 발명의 구성을 더욱 상세하게 설명한다. 그러나, 본 발명의 예시는 본 발명의 구성에 대한 설명일 뿐 본 발명의 범위를 제한하지는 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다. The configuration of the present invention will be described in more detail with reference to the following Examples. However, it will be apparent to those skilled in the art that the exemplary embodiments of the present invention are merely a description of the configuration of the present invention and do not limit the scope of the present invention.

실시예 1: 박테리아 계통 및 유전적 조작Example 1: Bacterial Lineage and Genetic Manipulation

본 발명의 재조합 형질전환체 제조를 위하여 야생 균주인 스트렙토마이세스 하이그로스코피쿠스 ATCC 29253를 사용하였다. 유전적 조작은 일반적인 과정에 따라서 E. coli DH5α내에서 수행되었다(Sambrook J et al. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). 리트머스 28 (Litmus 28, New England Biolabs), T-이지 벡터 (T-easy vector, Promega) 및 pGEM-3Zf(+) (Promega)가 서브클로닝을 위해 사용되었다.The wild strain Streptomyces hygroscopicus ATCC 29253 was used for the preparation of the recombinant transformants of the present invention. Genetic manipulations were performed in E. coli DH5α according to the general procedure (Sambrook J et al. (2001) Molecular Cloning: A Laboratory Manual, 3 rd Edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY). Litmus 28, New England Biolabs, T-easy vector (Promega) and pGEM-3Zf (+) (Promega) were used for subcloning.

실시예 2: 배양 조건 및 대사체 분석Example 2: Culture Conditions and Metabolite Analysis

스트렙토마이세스 하이그로스코피쿠스 ATCC 29253 및 이의 형질전환체는 M1 한천 배지(0.25% 콘 스팁 분말, 0.3% 효모 추출물, 0.3g 탄산칼슘, 0.03% 황산철, 2.0% 박토아가, 1.0% 밀 전분)에서 2주 동안 30℃로 배양하였다. 야생 균주 및 형질전환체의 색이 흑색으로 변화되었을 때 균사체를 수집하여 본 실험에 사용하였다. 액체 배지를 통한 라파마이신의 생산량 확인시 스트렙토마이세스 하이그로스코 피쿠스는 필요에 따라 적절한 항생제인 아프라마이신(apramycin, 0.5㎎/㎖)이 포함된 5㎖의 TSB 생산 배지(Typtopic Soy broth 3%, 황산철 0.01%, 글루코스 1.5%, 황산으로 pH=6.0 조정)에서 240rpm, 28℃ 조건으로 5일 동안 진탕 배양하였다. 라파마이신 추출시 발효 배지와 동량의 에틸아세테이트를 도입하였고 추출액은 0.1㎖의 메탄올에 녹였다. 라파마이신 화합물의 양은 HPLC(high performance liquid chromatography)를 통하여 정량 분석하였다. 흡수 파장은 277㎚였고, 10㎕의 추출액은 C18 컬럼(4.6㎜ X 250㎜ Watchers 120 OPS-BP 5m, DAISO)에 도입하여 분석하였다. 분석 조건은 0~14분 동안은 메탄올 75%, H2O 25%이며, 15~30분까지는 메탄올 100%였다. Streptomyces hygroscopius ATCC 29253 and its transformants were M1 agar medium (0.25% corn stew powder, 0.3% yeast extract, 0.3 g calcium carbonate, 0.03% iron sulfate, 2.0% bactoagar, 1.0% wheat starch). Incubated at 30 ° C. for 2 weeks. The mycelium was collected and used in this experiment when the color of wild strain and transformant changed to black. In determining the production of rapamycin through liquid medium, Streptomyces hygrosco picus contains 5 ml of TSB production medium (Typtopic Soy broth 3) containing the appropriate antibiotic apramycin (0.5 mg / ml) as needed. %, Iron sulfate 0.01%, glucose 1.5%, pH = 6.0 adjusted with sulfuric acid) was incubated for 5 days at 240 rpm, 28 ℃ conditions. During rapamycin extraction, fermentation medium and the same amount of ethyl acetate were introduced, and the extract was dissolved in 0.1 ml of methanol. The amount of rapamycin compound was quantitatively analyzed by high performance liquid chromatography (HPLC). The absorption wavelength was 277 nm and 10 μl of extract was analyzed by introducing into a C18 column (4.6 mm × 250 mm Watchers 120 OPS-BP 5 m, DAISO). The analysis conditions were 75% methanol and 25% H 2 O for 0 to 14 minutes, and 100% methanol for 15 to 30 minutes.

실시예 3: 세포내 코에이(CoA) 추출 및 분석 방법Example 3: Intracellular CoA Extraction and Analysis Method

스트렙토마이세스 하이그로스코피쿠스 세포 내의 코에이 추출을 위한 추출법 및 분석 방법은 다음과 같다. 2㎖의 마이크로센트리퓨즈 튜브에 500㎕의 15% TCA(triacetic acid)와 800㎕의 실리콘 오일(AR200: DC200, 2:1, δ=1.010)을 넣고 얼음에 담가두었다. 그 위에 800㎕의 세포 배양액을 조심스럽게 넣었다. 그 후 20,000×g 원심분리기에서 5분간 원심분리하고 300㎕ 정도의 TCA 용액을 파스퇴르 파이펫으로 추출하여 OASIS HLB SPE 카트리지를 이용하여 추출하였다. 먼저 카트리지는 3㎖의 메탄올을 흘려 적신 후, 3㎖의 0.15% TCA 용액을 통과시켰다. 세포 추출액을 카트리지에 도입하고 두 번 정도 0.5㎖의 메탄올 암모늄 하이드록사이 드(methanol-ammonium hydroxide (99:1, v/v))로 용리시키고 진공 원심분리장치를 이용하여 실온에서 건조하였다. 그 후 분석시까지 -20℃에 보관하였다. 스트렙토마이세스 하이그로스코피쿠스로부터 추출한 아실코에이 분리액은 Waters/Micromass Quattro micro/MS에 waters 2695 HPLC 장치가 장착된 기기를 통하여 분석하였다. 분석시 250㎜ x 4.6㎜ watchers 120 OPS-BP(5㎕) 역상 크로마토그라피 컬럼을 사용하였다. 용매 속도는 250㎕/min이며 용매 조건은 5mM 암모늄 아세테이트에 0.05% 아세트산 용액(A)과 80% 아세토나이트릴 용액에 5mM 암모늄 아세테이트가 섞여있는 용액(B)를 사용하였다. HPLC 용액은 최초 2분 동안은 용액 B를 10%, 다시 3분 동안 40% 용액 B로 그리고 다시 15분 동안 용액 B 80%를 유지하고 나머지 10분 동안은 용액 B 10%로 돌아오도록 설정하였다. 컬럼을 통과한 용매는 바로 질량분석기로 들어가도록 고안하였고, 작동은 양이온 모드로 진행하였다. ESI-MS/MS 작동시 튜닝 파라미터는 다음과 같다. 캐필러리 전압: 4kV, 콘전압: 50V, 소스온도: 130℃, 탈용매온도: 300℃, 콘기체: 50ℓ/hr, 탈용액 기체 속도: 500L/hr, 스캐닝한 질량의 범위 m/z=200-900Da. Extraction and analysis methods for extracts of Koei in Streptomyces hygroscopicus cells are as follows. 500 μl of 15% triacetic acid (TCA) and 800 μl of silicone oil (AR200: DC200, 2: 1, δ = 1.010) were added to a 2 ml microcentrifuge tube and immersed in ice. 800 μl of cell culture was carefully added thereto. Thereafter, centrifuged for 5 minutes in a 20,000 × g centrifuge, about 300 μl TCA solution was extracted with Pasteur pipette and extracted using an OASIS HLB SPE cartridge. The cartridge was first soaked with 3 ml of methanol and then passed through 3 ml of 0.15% TCA solution. Cell extracts were introduced into the cartridge and eluted twice with 0.5 ml of methanol ammonium hydroxide (99: 1, v / v) and dried at room temperature using a vacuum centrifuge. It was then stored at -20 ° C until analysis. Acylcoa isolates extracted from Streptomyces hygroscopicus were analyzed using an instrument equipped with a Waters 2695 HPLC apparatus in Waters / Micromass Quattro micro / MS. A 250 mm × 4.6 mm watchers 120 OPS-BP (5 μl) reverse phase chromatography column was used for the analysis. The solvent rate was 250 μl / min and the solvent condition was a solution (B) containing 5 mM ammonium acetate in 0.05% acetic acid solution (A) and 80% acetonitrile solution in 5 mM ammonium acetate. The HPLC solution was set to maintain 10% Solution B for the first 2 minutes, 40% Solution B for 3 minutes and 80% Solution B again for 15 minutes and return to Solution B 10% for the remaining 10 minutes. The solvent passed through the column was designed to enter the mass spectrometer directly, and the operation was carried out in cation mode. Tuning parameters for ESI-MS / MS operation are as follows. Capillary voltage: 4 kV, cone voltage: 50 V, source temperature: 130 ° C, desolvent temperature: 300 ° C, cone gas: 50 l / hr, desolvent gas velocity: 500 L / hr, range of scanned mass m / z = 200-900 Da.

실시예 4: 야생 균주의 코에이 정량 분석Example 4 Koei Quantitative Analysis of Wild Strains

야생 균주 스트렙토마이세스 하이그로스코피쿠스 세포 내에 존재하는 아실코에이 추출을 위하여 TSB 생산 배지에 5일 동안 배양하였고 실시예 3과 같이 배양된 세포로부터 아실코에이를 추출하여 정량 분석하였다(표 1). 계산 결과, 말로닐코에이와 아이소부티릴코에이 양이 각각 38.9μM과 55.0μM로 다른 종류의 아실코에이 보다 상대적으로 매우 높았으며, 메틸말로닐코에이는 분리액에 전혀 존재하지 않음을 확인하였다. 메틸말로닐코에이의 양은 라파마이신 생산에 있어서 절대적인 영향을 미치므로 라파마이신 생산에 있어서 메틸말로닐코에이의 양을 증가시키는 것이 직접적인 효과가 있을 것으로 예측하였다. 즉, 유전자 조작을 통하여 메틸말로닐코에이의 양을 증가시키는 것이 라파마이신 생산성 향상에 요구됨을 확인하였다. For acylcoay extraction in wild strain Streptomyces hygroscopicus cells, the cells were cultured in TSB production medium for 5 days, and the acylcoay was extracted and quantitatively analyzed from the cells cultured as in Example 3 (Table 1). . As a result of the calculation, it was confirmed that the amount of malonylcoa and isobutyrylcoa was 38.9 μM and 55.0 μM, respectively, much higher than those of other acylcoae, and methylmalonylcoa was not present in the separation solution. Since the amount of methylmalonylcoay has an absolute effect on the production of rapamycin, it was predicted that increasing the amount of methylmalonylcoa would have a direct effect on the production of rapamycin. In other words, it was confirmed that increasing the amount of methylmalonylcoay through genetic engineering is required to improve the productivity of rapamycin.

아실코에이 종류 Acyl Coy 농도(μM) Concentration (μM) 말로닐코에이 Malonilcoay 38.9 38.9 메틸말로닐코에이 Methylmalonylcoa 0 0 프로피오닐코에이 Propionylcoa 0.4 0.4 부티릴코에이 Butyrylcoai 0.4 0.4 아이소부티릴코에이 Isobutyrylcoei 55.0 55.0 석시닐코에이 Succinylcoay 3.8 3.8

실시예 5: 발현 플라스미드 제조Example 5: Expression Plasmid Preparation

메틸말로닐코에이의 양을 증가시키기 위하여 프로피오네이트로부터 메틸말로닐코에이로 합성되는 pcc (propionyl-CoA carboxylase) 생합성 경로를 도 1과 같이 예측하고 관련 유전자를 클로닝하였다. 우선 프로피오네이트로부터 프로피오닐코에이를 합성하는 코에이 리가아제(CoA-ligase) 유전자인 prpE(Gene ID: 1251890)는 살모넬라 티피뮤리움(Salmonella typhimurium) LT2 게놈 DNA로부터 확보하였고, 프로피오닐코에이를 메틸말로닐코에이로 변형시키는데 필요한 두 개의 유전자 accA1 (Gene ID:SCO4381) 및 pccB (Gene ID:SCO4926)는 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)로부터 PCR 방법으로 확보하였다. AccA1은 카복실라아제의 α-서브유닛으로 바이오틴에 CO2를 부가하는 활성을 나타내며, PccB는 카복실라아제의 β-서브유닛으로 바이오틴에 부가된 Co2를 프로피오닐 코에이로 전이시키는 활성을 나타낸다. 따라서, accA1과 pccB 유전자는 함께 존재하여야 카복실라아제 활성을 나타낼 수 있다.In order to increase the amount of methylmalonylcoa, a pcc (propionyl-CoA carboxylase) biosynthesis pathway synthesized from propionate to methylmalonylcoa was predicted as shown in FIG. 1 and the related genes were cloned. First, prpE (Gene ID: 1251890), a CoA-ligase gene that synthesizes propionylcoa from propionate, was obtained from Salmonella typhimurium LT2 genomic DNA, and propionylcoe. Two genes accA1 (Gene ID: SCO4381) and pccB (Gene ID: SCO4926) needed to transform it to methylmalonylcoei were obtained by PCR from Streptomyces coelicolor . AccA1 is an α-subunit of carboxylase and shows the activity of adding CO2 to biotin, and PccB is a β-subunit of carboxylase and shows the activity of transferring Co2 added to biotin to propionyl coei. Therefore, accA1 and pccB genes must be present together to exhibit carboxylase activity.

상기 유전자 확보시 사용된 프라이머는 아래와 같다.The primers used to secure the gene are as follows.

accA1 유전자 증폭을 위한 프라이머는 Primers for accA1 gene amplification

정방향 : ACGTTCAGATCTTGACTGTTCCGAACAGGG (BglII),Forward: ACGTTC AGATCT TGACTGTTCCGAACAGGG ( Bgl II),

역방향 : ATCGTGATGCATGTCGTCATCGTTCAGTCC (NsiI),Reverse: ATCGTG ATGCAT GTCGTCATCGTTCAGTCC ( Nsi I),

pccB1 유전자 증폭을 위한 프라이머는 Primers for pccB1 gene amplification

정방향 : ATCTCGATGCATCATGCAACCCACCCTAGG (NsiI),Forward direction: ATCTCG ATGCAT CATGCAACCCACCCTAGG ( Nsi I),

역방향 : TGGTCAAAGCTTCTCCTTACAGGGGGATGT (HindIII),Reverse: TGGTCA AAGCTT CTCCTTACAGGGGGATGT ( Hind III),

prpE 유전자 증폭을 위한 프라이머는 Primers for prpE gene amplification

정방향 : CCAGCAAAGCTTCATTCTGGATGTCTCCCTGGA (HindIII),Forward: CCAGCA AAGCTT CATTCTGGATGTCTCCCTGGA ( Hind III),

역방향 : CCACTATCTAGACGCTGAGTCTAACCCGTT (XbaI)이다. Reverse: CCACTA TCTAGA CGCTGAGTCTAACCCGTT ( Xba I).

상기 밑줄로 표시된 제한효소 염기 서열을 이용하여 차례로 유전자를 pSET152 벡터의 P ermE 하류에 도입하여 도 2와 같은 pcc 발현 벡터 pSET15-pcc를 제작하였다. 본 실시예에서 사용한 pSET152 벡터는 아프라마이신 저항 유전자 (acc(3)IV)를 가지고 있으며, 미생물 유전체에 직접 삽입되는 특성을 가지고 있다. Also by using a restriction enzyme indicated by the underlined base sequence in order to introduce the gene ermE P downstream of the vector pSET152 it was prepared pcc expression vector pSET15 pcc-2, and so on. The pSET152 vector used in this example has an apramycin resistance gene ( acc (3) IV ) and has the property of being directly inserted into a microbial genome.

실시예 6: 스트렙토마이세스 하이그로스코피쿠스 형질전환체 제조Example 6: Preparation of Streptomyces hygroscopius transformants

pSET152에 프로피오닐코에이 카복실라아제 생합성 유전자가 삽입된 pSET152-pcc 벡터로 형질전환된 대장균은 30℃에서 2xTY 배지(트립톤 16g/ℓ, 효모 추출물 10g/ℓ, NaCl 5g/ℓ)를 이용하여 밤새 배양하였다. 다음날 1㎖의 배양액을 25㎖의 2xTY 배지에 옮기고, 37℃에서 광학 밀도 (optical density) 0.25~0.6이 될 때까지 배양하였다. 배양액의 세포는 2xTY 배지로 두 번 세척하고, 0.5㎖의 2xTY로 농축하였다. 스트렙토마이세스 하이그로스코피쿠스(S. hygroscopicus) 포자액(spore stock) 200㎕를 원심분리하고 500㎕ 2xTY 용액에 녹인 후 50℃로 10분 동안 열충격을 가했다. 500㎕의 대장균 농축액과 500㎕의 균사액은 서로 혼합한 후 M1 배지(실시예 1)에 도포하고 28℃에서 16시간 동안 배양한 후 1㎎의 날리딕신산(nalidixic acid)과 1㎎의 아프라마이신(apramycin)을 도말하였다. 형질전환체는 3~7일 후 확인하여 선별하였다.Escherichia coli transformed with pSET152-pcc vector having propionylcoei carboxylase biosynthesis gene inserted into pSET152 using 2xTY medium (tryptone 16g / l, yeast extract 10g / l, NaCl 5g / l) Incubate overnight. The next day 1 ml of the culture was transferred to 25 ml of 2 × TY medium and incubated at 37 ° C. until the optical density became 0.25-0.6. Cells in culture were washed twice with 2 × TY medium and concentrated to 0.5 ml of 2 × TY. 200 μl of S. hygroscopicus spore stock were centrifuged, dissolved in 500 μl 2 × TY solution, and thermal shock was applied at 50 ° C. for 10 minutes. 500 μl E. coli concentrate and 500 μl mycelia were mixed with each other and then applied to M1 medium (Example 1) and incubated at 28 ° C. for 16 hours, followed by 1 mg of nalidixic acid and 1 mg of a. Plamycin (apramycin) was plated. Transformants were identified and selected after 3-7 days.

실시예 7: 형질전환체의 라파마이신생산 확인 및 아실코에이 분석Example 7 Rapamycin Production Confirmation and Acylcoai Analysis of Transformants

pSET152 벡터만을 넣은 스트렙토마이세스 하이그로스코피쿠스(S. hygroscopicus) 균주는 라파마이신 생산량이 5~6㎎/ℓ 수준이었으며, pSET152-pcc가 도입된 형질전환 균주에서는 약10㎎/ℓ 수준의 라파마이신이 생산되어 대조군인 pSET152 벡터로 형질전환된 균주보다 약 2배의 생산성을 나타내었다(도 3). 각각의 균주에 pcc 대사과정의 기질인 소듐 프로피오네이트를 2mM의 농도로 배지에 첨가한 결과, pSET152 벡터로 형질전환된 균주는 약10㎎/ℓ 수준의 라파마이신을 생산하는 반면, pSET152-pcc가 도입된 형질전환체에서는 약 30㎎/ℓ의 라파마이신이 생산되었다. 이를 통하여 메틸말로닐코에이 생합성 효소인 pcc의 과발현 및 이의 기질인 프로피오네이트를 첨가하였을 경우 매우 높은 비율의 생산성 향상을 도모할 수 있음을 알 수 있었다. 이런 결과의 원인을 파악하기 위하여 야생균주 및 돌연변이체의 코엔자임 A(코에이, CoA와 동일한 의미임)를 추출하여 분석하였다(도 4). 확인 결과, 프로피오네이트(도 4에서 "prp"로 표시됨)를 생산 배지에 첨가하였을 경우 대조군과 pcc 대사과정 도입 균주 모두에서 프로피오닐코에이의 양이 증가되었음을 확인할 수 있고, pcc가 과발현된 균주에서는 프로피오닐코에이가 대조군에 비하여 좀더 메틸말로닐코에이의 증가에 이용되어 궁극적으로 라파마이신의 생산성의 향상에 기여하였음을 추측할 수 있다. S. hygroscopicus with pSET152 vector only The strain had a rapamycin production level of 5-6 mg / l, and the transformed strain with pSET152-pcc produced about 10 mg / l of rapamycin, which was about twice as high as the strain transformed with the control pSET152 vector. The productivity of was shown (Fig. 3). In each strain, sodium propionate, a substrate for pcc metabolism, was added to the medium at a concentration of 2 mM, and the strain transformed with the pSET152 vector produced about 10 mg / L of rapamycin, whereas pSET152-pcc About 30 mg / L of rapamycin was produced in the transformants. This suggests that over-expression of the methylmalonylcoay biosynthetic enzyme pcc and propionate, the substrate thereof, result in a very high rate of productivity improvement. In order to determine the cause of this result, coenzyme A (coei, the same meaning as CoA) of wild strains and mutants was extracted and analyzed (FIG. 4). As a result, when propionate (indicated as "prp" in FIG. 4) was added to the production medium, it was confirmed that the amount of propionylcoei was increased in both the control and the pcc metabolic process introduction strains, and the pcc was overexpressed. It can be inferred that propionylcoA was used to increase methylmalonylcoay more than the control group, and ultimately contributed to the improvement of the productivity of rapamycin.

도 1은 프로피오닐코에이 대사과정을 예측한 모식도 및 이와 관련된 효소를 나타낸 것이고,1 shows a schematic diagram predicting propionylcoei metabolism and enzymes related thereto,

도 2는 pSET152-pcc 벡터의 구축모식도이고,2 is a schematic diagram of construction of the pSET152-pcc vector,

도 3은 프로피오닐코에이 대사과정 도입 형질전환체의 라파마이신 생산량을 나타내는 그래프이다.Figure 3 is a graph showing the rapamycin production of the propionylcoa metabolic process introduced transformant.

pSET152: pSET152 벡터만을 넣은 대조군 스트렙토마이세스 하이그로스코피쿠스(S. hygroscopicus) 균주,pSET152: S. hygroscopicus control streptomyces containing only the pSET152 vector Strain,

pSET152(propionate): pSET152 벡터만을 넣은 대조군 스트렙토마이세스 하이그로스코피쿠스(S. hygroscopicus) 균주에 프로피오네이트를 가한 것,pSET152 (propionate): S. hygroscopicus control streptomyces containing only pSET152 vector Adding propionate to the strain,

PCC: 도 2의 SET152-pcc 벡터가 도입된 형질전환 균주,PCC: the transformed strain into which the SET152-pcc vector of FIG. 2 was introduced,

PCC(propionate): 도 2의 SET152-pcc 벡터가 도입된 형질전환 균주에 프로피오네이트를 가한 것.PCC (propionate): Propionate was added to the transformed strain into which the SET152-pcc vector of FIG. 2 was introduced.

도 4는 프로피오닐코에이 대사과정 도입 형질전환체의 아실코에이 LC-MS 분석 결과이다.Figure 4 shows the results of acylcoay LC-MS analysis of propionylcoay metabolic process introduced transformants.

Mm, 메틸말로닐코에이; Su, 석시닐코에이; Pr, 프로피오닐코에이Mm, methylmalonylcoei; Su, succinylcoay; Pr, propionylcoa

<110> Genotech Co., Ltd. <120> Recombinant microorganism for producing rapamycin <130> Genotech-0909-rapamycin <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of accA1 <400> 1 acgttcagat cttgactgtt ccgaacaggg 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of accA1 <400> 2 atcgtgatgc atgtcgtcat cgttcagtcc 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of pccB1 <400> 3 atctcgatgc atcatgcaac ccaccctagg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of pccB1 <400> 4 tggtcaaagc ttctccttac agggggatgt 30 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> forward primer of prpB <400> 5 ccagcaaagc ttcattctgg atgtctccct gga 33 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of prpB <400> 6 ccactatcta gacgctgagt ctaacccgtt 30 <110> Genotech Co., Ltd. <120> Recombinant microorganism for producing rapamycin <130> Genotech-0909-rapamycin <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of accA1 <400> 1 acgttcagat cttgactgtt ccgaacaggg 30 <210> 2 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of accA1 <400> 2 atcgtgatgc atgtcgtcat cgttcagtcc 30 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer of pccB1 <400> 3 atctcgatgc atcatgcaac ccaccctagg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of pccB1 <400> 4 tggtcaaagc ttctccttac agggggatgt 30 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> forward primer of prpB <400> 5 ccagcaaagc ttcattctgg atgtctccct gga 33 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of prpB <400> 6 ccactatcta gacgctgagt ctaacccgtt 30  

Claims (8)

외래 accA1 유전자, pccB 유전자 및 prpE 유전자를 포함하며, 라파마이신 생산성이 증대된 재조합 방선균주.Recombinant actinomycetes containing foreign accA1 gene, pccB gene and prpE gene, with increased rapamycin productivity. 제1항에 있어서, The method of claim 1, 상기 외래 accA1 유전자 및 pccB 유전자는 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)로부터 수득한 것임을 특징으로 하는, 라파마이신 생산성이 증대된 재조합 방선균주.The foreign accA1 gene and pccB gene are rapamycin, characterized in that obtained from Streptomyces coelicolor ( Streptomyces coelicolor ). Recombinant actinomycetes with increased productivity. 제1항에 있어서, The method of claim 1, 상기 외래 prpE 유전자는 살모넬라 티피뮤리움(Salmonella typhimurium)으로부터 수득한 것임을 특징으로 하는, 라파마이신 생산성이 증대된 재조합 방선균주.The foreign prpE gene is obtained from Salmonella typhimurium , characterized in that the rapamycin productivity of the recombinant actinomycetes increased. 제1항에 있어서, The method of claim 1, 상기 방선균주는 스트렙토마이세스 하이그로스코피쿠스(Streptomyces hygroscopicus)인 것을 특징으로 하는, 라파마이신 생산성이 증대된 재조합 방선균 주.The actinomycete strain is Streptomyces hygroscopicus ( Streptomyces hygroscopicus ), characterized in that the recombinant actinomycetes increased rapamycin productivity. 외래 accA1 유전자, pccB 유전자 및 prpE 유전자를 재조합하여 세포 내 메틸말로닐코에이의 함량을 증대시킴으로써 방선균주 내 라파마이신 생산성을 증대시키는 방법.A method for increasing rapamycin productivity in actinomycetes by recombining foreign accA1 gene, pccB gene and prpE gene to increase the amount of methylmalonylcoay in cells. 제5항에 있어서, The method of claim 5, 상기 외래 accA1 유전자 및 pccB 유전자는 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)로부터 수득한 것임을 특징으로 하는, 방선균주 내 라파마이신 생산성을 증대시키는 방법. Wherein the foreign accA1 gene and pccB gene is obtained from Streptomyces coelicolor ( Streptomyces coelicolor ), characterized in that the method for increasing the rapamycin productivity in actinomycetes. 제5항에 있어서, The method of claim 5, 상기 외래 prpE 유전자는 살모넬라 티피뮤리움(Salmonella typhimurium)으로부터 수득한 것임을 특징으로 하는, 방선균주 내 라파마이신 생산성을 증대시키는 방법. The foreign prpE gene is characterized in that obtained from Salmonella typhimurium , a method for increasing rapamycin productivity in actinomycetes. 제5항에 있어서,The method of claim 5, 상기 방선균주는 스트렙토마이세스 하이그로스코피쿠스(Streptomyces hygroscopicus)인 것을 특징으로 하는, 방선균주 내 라파마이신 생산성을 증대시키는 방법.The actinomycete strain is Streptomyces hygroscopicus , characterized in that the method for increasing rapamycin productivity in actinomycetes.
KR1020080098667A 2008-10-08 2008-10-08 Recombinant microorganism for producing rapamycin and producing method thereof KR20100039623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080098667A KR20100039623A (en) 2008-10-08 2008-10-08 Recombinant microorganism for producing rapamycin and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080098667A KR20100039623A (en) 2008-10-08 2008-10-08 Recombinant microorganism for producing rapamycin and producing method thereof

Publications (1)

Publication Number Publication Date
KR20100039623A true KR20100039623A (en) 2010-04-16

Family

ID=42215988

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080098667A KR20100039623A (en) 2008-10-08 2008-10-08 Recombinant microorganism for producing rapamycin and producing method thereof

Country Status (1)

Country Link
KR (1) KR20100039623A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525309B1 (en) * 2013-08-26 2015-06-02 이화여자대학교 산학협력단 A bacterium Streptomycess overexpressing rapX or rapW and a method to increase rapamycin production using the same
KR20220052242A (en) * 2020-10-20 2022-04-27 고려대학교 산학협력단 A mutant strain having enhanced Rapamycin production and process for preparing Rapamycin using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525309B1 (en) * 2013-08-26 2015-06-02 이화여자대학교 산학협력단 A bacterium Streptomycess overexpressing rapX or rapW and a method to increase rapamycin production using the same
KR20220052242A (en) * 2020-10-20 2022-04-27 고려대학교 산학협력단 A mutant strain having enhanced Rapamycin production and process for preparing Rapamycin using the same

Similar Documents

Publication Publication Date Title
Wu et al. The FK520 gene cluster of Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) contains genes for biosynthesis of unusual polyketide extender units
Keatinge-Clay The uncommon enzymology of cis-acyltransferase assembly lines
Höfer et al. Insights into the biosynthesis of hormaomycin, an exceptionally complex bacterial signaling metabolite
RU2540017C2 (en) Isolated polynucleotide, coding polipeptide, involved in pyripyropene a biosynthesis, vector and host cell, containing thereof and method of obtaining pyripyropene a precursor (versions)
Jung et al. Characterization and engineering of the ethylmalonyl-CoA pathway towards the improved heterologous production of polyketides in Streptomyces venezuelae
US7790411B2 (en) Everninomicin biosynthetic genes
He et al. Quartromicin biosynthesis: two alternative polyketide chains produced by one polyketide synthase assembly line
Mo et al. Application of a combined approach involving classical random mutagenesis and metabolic engineering to enhance FK506 production in Streptomyces sp. RM7011
CZ20004913A3 (en) Polyketides and their synthesis
Smith et al. Genetic localization and molecular characterization of the nonS gene required for macrotetrolide biosynthesis in Streptomyces griseus DSM40695
Ozaki et al. Identification of the common biosynthetic gene cluster for both antimicrobial streptoaminals and antifungal 5-alkyl-1, 2, 3, 4-tetrahydroquinolines
Nara et al. Characterization of bafilomycin biosynthesis in Kitasatospora setae KM-6054 and comparative analysis of gene clusters in Actinomycetales microorganisms
RU2587632C2 (en) Method of producing pyripyropene
Zhang et al. Conversion of the high-yield salinomycin producer Streptomyces albus BK3-25 into a surrogate host for polyketide production
Brautaset et al. Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysC polyketide synthase gene in S. noursei ATCC 11455
US8383392B2 (en) Transformant and method for production of non-natural antibiotic
Tatsuno et al. Analysis of modular-iterative mixed biosynthesis of lankacidin by heterologous expression and gene fusion
US8852902B2 (en) Producing a trimethylpentanoic acid using hybrid polyketide synthases
KR20100039623A (en) Recombinant microorganism for producing rapamycin and producing method thereof
Zhao et al. Amide N-glycosylation by Asm25, an N-glycosyltransferase of ansamitocins
Machida et al. Organization of the biosynthetic gene cluster for the polyketide antitumor macrolide, pladienolide, in Streptomyces platensis Mer-11107
US9771606B2 (en) UK-2 biosynthetic gene and method for improving UK-2 productivity using the same
Joon-Hyoung et al. Alternative production of avermectin components in Streptomyces avermitilis by gene replacement
KR20140052303A (en) Method for increasing productivity of tricyclo compounds
Hardter et al. Ethanol Production in Actinomycetes after Expression of Synthetic B and

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application