KR20140042705A - 온도 측정 기구 및 온도 측정 방법 - Google Patents

온도 측정 기구 및 온도 측정 방법 Download PDF

Info

Publication number
KR20140042705A
KR20140042705A KR1020130114315A KR20130114315A KR20140042705A KR 20140042705 A KR20140042705 A KR 20140042705A KR 1020130114315 A KR1020130114315 A KR 1020130114315A KR 20130114315 A KR20130114315 A KR 20130114315A KR 20140042705 A KR20140042705 A KR 20140042705A
Authority
KR
South Korea
Prior art keywords
temperature
illuminance
temperature sensor
measured
light emitting
Prior art date
Application number
KR1020130114315A
Other languages
English (en)
Other versions
KR101732216B1 (ko
Inventor
도모히로 스즈키
도모키 혼다
가즈히로 오오야
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013012332A external-priority patent/JP6047411B2/ja
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20140042705A publication Critical patent/KR20140042705A/ko
Application granted granted Critical
Publication of KR101732216B1 publication Critical patent/KR101732216B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/068Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling parameters other than temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/457Correlation spectrometry, e.g. of the intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

광원을 열원으로 하는 열처리 장치에 있어서, 종래의 비접촉 온도 측정으로서는 정확한 온도를 측정하기 어렵던 대상물 및 온도 대역에 있어서 정확한 온도 측정을 행한다.
온도 측정 기구는, 복수의 발광 소자 유닛(30)과 웨이퍼(W) 사이에 배치되며 발광 소자 유닛(30)으로부터의 조도 u를 측정하는 조도 모니터(50)와, 온도 센서(20a)와, 조도 u와 온도 센서(20a)에 의해 모의적으로 측정된 모의 온도 Tc에 기초해서, 웨이퍼(W)의 실제 온도 P를 추정하는 연산부(152)를 갖고 있다. 연산부(152)에 있어서의 웨이퍼(W)의 실제 온도 P의 추정은, 미리 구해진, 조도 u와 상기 조도 u에 있어서 추정되는 웨이퍼(W)의 온도 y의 상관 관계인 제 1 상관 관계와, 미리 구해진, 온도 센서(20a)에 의해 모의적으로 측정된 모의 온도 Tc와 조도 u에 있어서 추정되는 웨이퍼(W)의 온도 y의 상관 관계인 제 2 상관 관계에 기초해서 행해진다.

Description

온도 측정 기구 및 온도 측정 방법{TEMPERATURE MEASURING APPARATUS AND TEMPERATURE MEASURING METHOD}
본 발명은, 광원을 열원으로 하는 열처리 장치에 있어서의 온도 측정 기구 및 온도 측정 방법에 관한 것이다.
예컨대, 반도체 디바이스의 제조 공정에서는, 예컨대 반도체 웨이퍼(이하, '웨이퍼'라 함) 상에 성막을 행하는 성막 처리나 열처리 등의 각종 처리가 순차적으로 행해진다. 이온 주입후의 열처리에 있어서는, 확산을 최소한으로 억제하기 위해서 보다 고속의 승강온(昇降溫)이 요구되는데, 최근 반도체 디바이스의 미세화, 고집적화에 따라, 그 요구는 특히 현저하다. 보다 고속의 승강온을 행하는 열처리 장치의 열원으로서는, 예컨대 LED가 이용된다.
LED를 이용하는 데 있어서는, 고속 승온에 대응하기 위해서 LED가 고밀도로 배치되지만, LED는 고온이 되면 발광량이 저하된다. 이 때문에, 예컨대 특허문헌 1에는, LED를 냉매의 기화열에 의해 냉각하는 방법이 제안되어 있다.
일본 특허 공개 제 2010-153734호 공보
그런데, 가열원으로서 예컨대, 전기식의 히터 등을 이용한 경우, 가열원의 온도를 열전쌍 등에 의해 직접 측정하고, 상기 측정치에 기초해서 웨이퍼의 온도 제어가 행해진다. 한편, LED와 같은 발광 소자를 열원으로서 이용하는 경우에는, 열전쌍 등의 접촉식의 온도계를 이용해서 직접 열원의 온도를 측정할 수는 없다.
이 때문에, 열원으로서 발광 소자를 이용한 경우에 웨이퍼의 온도를 측정하기 위해서는, 내부에 열전쌍을 매립한 더미 웨이퍼에 발광 소자로부터 광을 조사하고, 더미 웨이퍼 내의 열전쌍에 의해 온도를 측정하거나, 방사 온도계 등의 비접촉식의 온도계를 이용하는 것이 생각된다.
그러나, 더미 웨이퍼를 이용한 경우, 처리 대상으로 하는 웨이퍼를 실제로 열처리할 때의 온도를 실시간으로 측정할 수 없다. 이 때문에, 웨이퍼의 온도 제어를 정밀도 좋게 행하는 것은 어렵다. 또한, 방사 온도계는, 웨이퍼의 열처리 온도로서 채용되는 100℃ 정도의 온도 대역에서는 측정 오차가 커서, 정확한 온도를 측정할 수 없다. 이 때문에, 특허문헌 1에도 나타난 바와 같이, 종래에는, 예컨대 웨이퍼에 온도계를 접촉시켜서 상기 웨이퍼의 온도를 직접 측정하고, 이 측정치에 기초해서 웨이퍼의 온도 제어가 행해진다.
그러나, 웨이퍼에 온도계를 접촉시켜서 온도를 측정하는 경우, 설치할 수 있는 온도계의 수에도 제약이 있기 때문에, 웨이퍼 전체면에 걸쳐서 정밀도 좋은 온도를 얻는 것은 곤란하다. 이 때문에, 정밀도 좋게 웨이퍼의 온도 제어를 행하기 어려웠다.
본 발명은 이러한 점을 감안해서 이루어진 것으로, 광원을 열원으로 하는 열처리 장치에 있어서, 종래의 비접촉 온도 측정으로는 정확한 온도를 측정하기 어렵던 대상물 및 온도 대역에서 정확한 온도 측정을 행하는 것을 목적으로 하고 있다.
상기 목적을 달성하기 위해서, 본 발명은, 복수의 발광 소자를 열원으로 이용해서 피처리체를 열처리하는 열처리 장치에서, 피처리체의 온도를 측정하는 온도 측정 기구로서, 대향해서 마련된 상기 복수의 발광 소자와 상기 피처리체 사이에 배치되어서, 상기 발광 소자로부터의 조도를 측정하는 조도 모니터와, 상기 피처리체의 온도를 모의적으로 측정하는 온도 센서와, 상기 조도 모니터에 의해 측정된 조도와 상기 온도 센서에 의해 모의적으로 측정된 모의 온도에 기초해서, 상기 피처리체의 실제 온도를 추정하는 연산부를 갖고, 상기 연산부에서의 상기 피처리체의 실제 온도의 추정은, 미리 구해진, 상기 조도 모니터에 의해 측정한 조도와 상기 측정된 조도에 있어서 추정되는 피처리체의 온도의 상관 관계인 제 1 상관 관계와, 미리 구해진, 상기 온도 센서에 의해 모의적으로 측정된 모의 온도와 상기 측정된 조도에 있어서 추정되는 상기 피처리체의 온도의 상관 관계인 제 2 상관 관계에 기초해서 행해지는 것을 특징으로 하고 있다.
본 발명에 의하면, 상기 조도 모니터의 측정 결과와 상기 온도 센서의 측정 결과와, 미리 구한 제 1 상관 관계 및 제 2 상관 관계에 기초해서 피처리체의 실제 온도를 추정하기 때문에, 종래의 비접촉 온도 측정으로는 정확한 온도를 측정하기 어렵던 대상물 및 온도 대역에 있어서 정확한 온도 측정을 행할 수 있다.
다른 관점에 의한 본 발명은, 복수의 발광 소자를 열원으로 이용해서 피처리체를 열처리하는 열처리 장치에서, 피처리체의 온도를 측정하는 온도 측정 방법으로서, 대향해서 마련된 상기 복수의 발광 소자와 상기 피처리체 사이에 배치된 조도 모니터에 의해, 상기 발광 소자로부터의 조도를 측정하고, 온도 센서에 의해 상기 피처리체의 온도를 모의적으로 측정하며, 상기 조도 모니터에 의해 측정된 조도와 상기 온도 센서에 의해 모의적으로 측정된 모의 온도에 기초해서, 상기 피처리체의 실제 온도를 추정하고, 상기 제어부에서의 상기 피처리체의 실제 온도의 추정은, 미리 구해진, 상기 조도 모니터에 의해 측정한 조도와 상기 측정된 조도에 있어서 추정되는 피처리체의 온도의 상관 관계인 제 1 상관 관계와, 상기 온도 센서에 의해 모의적으로 측정된 모의 온도와 상기 측정된 조도에 있어서 추정되는 상기 피처리체의 온도의 상관 관계인 제 2 상관 관계에 기초해서 행해지는 것을 특징으로 하고 있다.
본 발명에 의하면, 광원을 열원으로 하는 열처리 장치에 있어서, 종래의 비접촉 온도 측정으로는 정확한 온도를 측정하기 어렵던 대상물 및 온도 대역에 있어서 정확한 온도 측정을 행하는 것을 목적으로 하고 있다.
도 1은 본 실시 형태에 따른 온도 측정 장치를 구비한 열처리 장치의 구성의 개략을 나타내는 종단면도,
도 2는 발광 소자 유닛 구성의 개략을 나타내는 평면도,
도 3은 열원 구성의 개략을 나타내는 평면도,
도 4는 제어부 구성의 개략을 나타내는 설명도,
도 5는 제어부에서의 실제 온도의 추정 방법의 개략을 나타내는 흐름도,
도 6은 제 1 상관 함수 및 제 2 상관 함수를 나타내는 설명도,
도 7은 다른 실시 형태에 따른 지지 핀의 구성의 개략을 나타내는 종단면도,
도 8은 다른 실시 형태에 따른 온도 측정 장치를 구비한 열처리 장치의 구성의 개략을 나타내는 종단면도,
도 9는 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도,
도 10은 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도,
도 11은 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도,
도 12는 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도,
도 13은 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도,
도 14는 본 실시예와 비교예의 확인 시험의 결과를 나타내는 설명도이다.
이하, 본 발명의 실시 형태의 일례에 대해서, 도면을 참조하여 설명한다. 도 1은, 본 발명의 실시 형태에 따른 온도 측정 기구를 구비한 열처리 장치(1)의 개략 구성을 나타내는 종단면도이다.
열처리 장치(1)는, 피처리체로서의 실리콘 기판인 웨이퍼(W)를 탑재하는 탑재대(10)가 마련된 대략 원통 형상의 처리 용기(11)를 갖고 있다. 처리 용기(11)는, 탑재대(10) 상방의 열처리부(12)와, 탑재대(10)의 외측에 마련된 가스 확산부(13)를 갖고 있다. 탑재대(10)의 상면에는 웨이퍼(W)를 지지하는 지지 핀(20)이 복수 마련되어 있다. 지지 핀(20)의 내부에는, 온도 센서(20a)가 내장되어 있다. 이 때문에, 온도 센서(20a)에 의해 상기 웨이퍼(W)를 탑재하는 지지 핀(20)의 온도를 측정함으로써, 웨이퍼(W)의 온도를 모의적으로 측정할 수 있다. 온도 센서로서는 예컨대, 열전쌍 등이 이용된다. 한편, 열전쌍 등의 온도 센서(20a) 자체를 지지 핀(20)으로서 이용해도 된다. 또한, 웨이퍼(W)의 온도를 모의적으로 측정한다는 것은, 웨이퍼(W)와 접촉하는 지지 핀(20)의 온도를 온도 센서(20a)에 의해 측정하는 것뿐만 아니라, 웨이퍼(W)를 온도 센서(20a)에 의해 지지하고, 웨이퍼(W)에 온도 센서(20a)를 접촉시키는 것에 의해 측정하는 경우를 포함한다.
처리 용기(11)의 천판(11a)의 하면에는, 열원(21)이 마련되어 있다. 열원(21)은 복수의 발광 소자 유닛(30)에 의해 구성되어 있다. 각 발광 소자 유닛(30)은, 탑재대(10)에 탑재된 웨이퍼(W)에 광을 조사하도록, 탑재대(10)에 대향해서 마련되어 있다. 각 발광 소자 유닛(30)은, 전극(31)을 통해서 지지판(31a)으로 지지되고, 지지판(31a)은 천판(11a)으로 지지되어 있다. 천판(11a)의 내부에는 도시하지 않은 냉매관이 마련되고, 그 내부에 냉각수를 통수시킴으로써, 발광 소자의 냉각이 행해진다.
발광 소자 유닛(30)은, 도 2에 나타낸 바와 같이 육각형으로 형성된 지지판(32)을 갖고, 상기 지지판(32)의 표면에 발광 소자(33)가 다수 배치되어 있다. 발광 소자(33)로서는, 예컨대 발광 다이오드(LED)가 이용된다. 각 발광 소자(33) 사이에는 반사층(34)이 형성되어 있어서, 발광 소자(33)로부터의 광을 반사시킴으로써 탑재대(10)를 향해서 유효하게 광을 취출할 수 있다. 발광 소자(33) 및 반사층(34)은 지지판(32)에 의해 지지되어 있다. 한편, 반사층(34)의 반사율은 예컨대, 0.8 이상이다.
각 발광 소자(33)는, 반구형상으로 형성된 렌즈층(도시 생략)으로 덮여져 있다. 렌즈층은 굴절률이 높은 LED와 굴절률이 1인 공기와의 사이의 굴절률을 갖고, LED로부터 공기중으로 광이 직접 사출되는 것에 의한 전반사를 완화하기 위해서 마련된다. 렌즈층을 마련함으로써 각 발광 소자(33)의 측면으로부터도 광을 취출할 수 있다. 또한, 측면으로부터 취출된 광은 반사층(34)에 의해 반사되어 탑재대(10)를 향해서 조사된다. 그리고, 열원(21)은 예컨대, 도 3에 나타낸 바와 같이, 하나의 발광 소자 유닛(30)의 육각 형상의 지지판(32)의 변이 서로 인접하도록 배치되어 구성되어 있다. 이러한 배치 구성으로 함으로써 모든 발광 소자 유닛(30)이 간극 없이 배치된다. 발광 소자 유닛(30) 사이의 소정의 위치에는, 후술하는 반사광 모니터(51)가 발광 소자 유닛(30)에 삽입 관통되어 복수 배치되어 있다.
하나의 발광 소자 유닛(30)에는, 1000~2000개 정도의 발광 소자(33)가 탑재되어 있다. 발광 소자(33)로서 사용되는 LED로서는, 광의 파장이 자외~근적외의 범위, 바람직하게는 360~1000nm의 범위의, 예컨대 GaN(질화갈륨)이나 GaAs(갈륨비소) 등의 화합물 반도체가 이용된다. 한편, 가열 대상이 실리콘제의 웨이퍼인 경우, 실리콘 웨이퍼에 의한 흡수율이 높은 950~970nm 부근의 파장을 갖는 GaAs계의 재료로 이루어지는 LED를 이용하는 것이 바람직하다.
천판(11a)의 상면에는, 각 발광 소자 유닛(30)에 전류를 공급하는 전원(40)이 복수 배치되어 있다. 전원(40)은, 후술하는 제어부(150)에 접속되어 있고, 각 발광 소자 유닛(30)에 공급하는 전류는 제어부(150)에 의해 개별적으로 제어된다.
또한, 처리 용기(11)의 천판(11a)에는, 상기 처리 용기(11) 내에, 도시하지 않은 처리 가스 공급 기구로부터 소정의 처리 가스를 도입하는 처리 가스 공급관(41)이 접속되어 있다. 처리 용기(11)의 가스 확산부(13)의 바닥부에는, 도시하지 않은 배기 장치에 접속된 배기관(42)이 접속되어 있고, 이 배기관(42)을 통해서 처리 용기(11) 내를 배기할 수 있다.
탑재대(10)와 발광 소자 유닛(30) 사이에는, 발광 소자 유닛(30)으로부터 웨이퍼(W)를 향해서 조사된 광을 투과하는 광투과 부재(43)가, 탑재대(10)의 상면과 소정의 거리만큼 이격되어 배치되어 있다. 광투과 부재(43)는, 천판(11a)의 하면으로부터 수직 아래쪽으로 연장되어 내려가는 수직 하부(11b)의 하단에, 예컨대 나사 고정 등에 의해 지지되어 있다. 수직 하부(11b)는 원 고리 형상으로 형성되어 있고, 발광 소자 유닛(30)은, 수직 하부(11b)와 해당 수직 하부(11b)의 하단으로 지지되는 광투과 부재(43)에 의해 둘러싸인 공간의 내부에 수용된 상태로 되어있다. 한편, 광투과 부재(43)로서는, 예컨대 석영 등이 사용된다.
광투과 부재(43)의 상면, 환언하면 광투과 부재(43)의 발광 소자 유닛(30)측에는, 발광 소자 유닛(30)으로부터 웨이퍼(W)를 향해서 조사되는 광의 조도를 측정하는 조도 모니터(50)가 복수 배치되어 있다. 조도 모니터(50)로서는, 예컨대 포토다이오드 등의 수광 소자가 이용된다. 이와 같이, 조도 모니터(50)를, 탑재대(10)의 상면으로부터 이격해서 마련된 광투과 부재(43)에 배치함으로써, 조도 모니터(50)의 그림자가 웨이퍼(W)에 전사되는 것을 억제할 수 있다. 조도 모니터(50)는 도시하지 않은 배선에 의해 후술하는 제어부(150)에 접속되어 있고, 조도 모니터(50)로 검출된 광은, 조도 모니터(50)에서 전기 신호로 변환되어 제어부(150)에 입력된다. 한편, 웨이퍼(W)로의 그림자 전사를 방지하는 관점에서, 조도 모니터(50)는 1~2mm 각(角) 정도의 소형의 센서를 이용하는 것이 바람직하다. 또한, 배선에 대해서도, 인쇄나 도금에 의해 광투과 부재(43)의 전체면에 성막하고, 에칭 등에 의해 폭 0.2mm 이하 정도의 배선 패턴을 형성하는 것이 바람직하다.
또한, 광투과 부재(43)의 상방이며 천판(11a)의 하면에는, 웨이퍼(W)에 의해 반사된 발광 소자 유닛(30)으로부터의 광을 측정하는 반사광 모니터(51)가 복수 마련되어 있다. 반사광 모니터(51)는, 발광 소자 유닛(30)을 검출하지 않고, 또한 웨이퍼(W)에서의 반사광을 검출할 수 있도록, 수광부(51a)가 발광 소자 유닛(30)의 하단면보다 아래쪽에 위치하도록 배치되어 있다. 반사광 모니터(51)도 조도 모니터(50)와 마찬가지로 도시하지 않은 배선에 의해 제어부(150)에 접속되어 있다.
제어부(150)는, 예컨대 컴퓨터이다. 제어부(150)는, 도 4에 나타낸 바와 같이, 조도 모니터(50)나 반사광 모니터(51)로부터의 신호가 입력되는 입력부(151), 입력부(151)로부터 입력된 데이터를 연산하는 연산부(152)와, 소정의 데이터를 기억하는 기억부(153), 각 전원(40)이나 기타 기기의 동작을 제어하기 위한 신호를 출력하는 출력부(154)를 갖고 있다. 본 실시 형태에 따른 온도 측정 기구는, 지지 핀(20)에 내장된 온도 센서(20a), 조도 모니터(50), 반사광 모니터(51) 및 제어부(150)에 의해 구성되어 있다.
연산부(152)의 기능에 대해서 상세하게 설명한다. 도 5에 나타낸 바와 같이 연산부(152)에서는, 입력부(151)에 입력된 조도 모니터(50)로 검출된 광의 조도로부터 반사광 모니터(51)로 검출된 광의 조도를 빼는 보정을 행하여, 웨이퍼(W)에 조사된 광의 조도 u를 산출한다. 이어서, 웨이퍼(W)의 온도와 웨이퍼(W)에 조사된 광의 조도 u와 상기 조도 u에 있어서 추정되는 웨이퍼(W)의 온도와의 상관 관계(제 1 상관 관계)를 수식화한 제 1 상관 함수와, 지지 핀(20)에 내장된 온도 센서(20a)에 의해 모의적으로 측정된 웨이퍼(W)의 모의 온도 Tc와, 상기 모의 온도 Tc로부터 추정되는 웨이퍼(W)의 온도의 상관 관계(제 2 상관 관계)를 수식화한 제 2 상관 함수에 기초해서, 옵저버(160)를 생성한다.
여기서, 제 1 상관 함수와, 제 2 상관 함수의 산출 방법에 대해서 설명한다. 도 6에 나타낸 바와 같이, 제 1 상관 함수(161) 및 제 2 상관 함수(162)는, 수식에 의해 표현된다. 제 1 상관 함수(161)의 y는, 상술한, 조도 u에 있어서 추정되는 웨이퍼(W)의 온도로, 예컨대 그 내부에 열전쌍 등의 온도 측정 수단을 내장한 웨이퍼(W)와 대략 동일 직경 형상의 더미 웨이퍼에, 열원(21)으로부터 광을 조사하고, 웨이퍼(W)에 조사된 광의 조도 u에 있어서 온도 측정 수단에 의해 측정되는 온도로서, 미리 시험 등에 의해 구해진다. 제 1 상관 함수(161)의 A, B, C는 각각 행렬식으로, 각 조도 모니터(50)에 대응하는 것이다. 그리고, 이미 알고 있는 값인 조도 u와 같이 이미 알고 있는 값인 온도 y에 기초해서, A, B, C가 구해진다. 한편,이 제 1 상관 함수(161)는 기억부(153)에 미리 기억되어 있다.
제 2 상관 함수(162)의 Tc는, 상술한 바와 같이, 지지 핀(20)에 내장된 온도 센서(20a)에 의해 모의적으로 측정된 더미 웨이퍼 또는 웨이퍼(W) 중 적어도 어느 한 모의 온도이고, 제 2 상관 함수(162)의 F, G, H도, 제 1 상관 함수(161)의 A, B, C와 마찬가지로 각각 행렬식이다. 그리고, 제 2 상관 함수(162)는 상술한 시험 등에 의해 미리 구해진 기지의 값인 온도 y와, 마찬가지로 이미 알고 있는 값인 모의 온도 Tc에 기초해서, F, G, H가 구해진다. 이 제 2 상관 함수(162)도, 기억부(153)에 미리 기억되어 있다.
그리고, 기억부(153)에 기억된 제 1 상관 함수(161)의 A, B, C 및 제 2 상관 함수(162)의 F, G, H에 기초해서 생성된 옵저버(160)에는, 도 5에 나타낸 바와 같이, 광의 조도 u와, 온도 센서(20a)로 측정한 모의 온도 Tc가 입력된다. 옵저버(160)에서는, 조도 u 및 모의 온도 Tc의 비교 연산 결과에 기초해서, 시뮬레이션이 행해져서, 웨이퍼(W)의 실제 온도인 실제 온도 P가 추정된다. 한편, 옵저버(160)에서의 게인 K로서는, 예컨대 칼만 필터 등을 이용할 수 있다.
웨이퍼(W)의 실제 온도 P가 추정되면, 연산부(152)에서는, 웨이퍼(W)를 원하는 온도로 제어하며, 환언하면, 추정된 실제 온도 P와 웨이퍼(W)의 온도 설정치의 차를 제로로 하기 위해서, 발광 소자 유닛(30)에 전류를 공급하는 전원(40)에의 전류 지령치를 산출한다. 상기 산출된 전류 지령치는, 출력부(154)로부터 각 전원(40)에 대해 출력된다.
한편, 기억부(153)에는, 각 전원(40)이나 기타 기기 등을 제어하여, 열처리 장치(1)를 동작시키기 위한 프로그램도 저장되어 있다. 한편, 상기 프로그램은, 예컨대 컴퓨터 판독 가능한 하드 디스크(HD), 플렉시블 디스크(FD), 컴팩트 디스크(CD), 자기 광학 디스크(MO), 메모리 카드 등의, 컴퓨터에서 판독 가능한 기억 매체에 기록되어 있던 것으로, 그 기억 매체로부터 제어부(150)에 인스톨된 것이어도 된다.
본 실시 형태에 따른 열처리 장치(1)는 이상과 같이 구성되어 있으며, 다음으로 본 실시 형태에 따른 열처리 장치(1)에 있어서의 웨이퍼(W)의 열처리에 대해서 설명한다.
웨이퍼(W)의 열처리시에는, 우선 처리 용기(11) 내에 웨이퍼(W)가 반입되고, 탑재대(10) 상에 탑재되어 유지된다. 이어서, 배기관(42)을 통해서 처리 용기(11) 내를 배기함과 아울러, 처리 가스 공급관(41)으로부터 소정의 처리 가스가 공급된다. 이와 병행해서, 천판(11a) 내부의 도시하지 않은 냉매관에 냉각수가 통수된다.
이어서, 제어부(150)의 출력부(154)로부터 각 전원(40)으로 소정의 전류 지령치가 출력되고, 이에 따라 발광 소자 유닛(30)으로부터 웨이퍼(W)로 광이 조사된다.
이어서 연산부(152)의 옵저버(160)에서는, 온도 센서(20a)에 의한 모의 온도 Tc와 광의 조도 u에 기초해서 웨이퍼(W)의 실제 온도 P가 실시간으로 추정된다. 그 후, 추정된 실제 온도 P와 웨이퍼(W)의 온도 설정치의 차를 제로로 하기 위해서, 각 발광 소자 유닛(30)에 전류를 공급하는 전원(40)에 대한 전류 지령치가 산출되고, 상기 산출된 전류 지령치가 출력부(154)로부터 전원(40)으로 출력된다. 이로써, 각 발광 소자 유닛(30)에 대한 전류치가 개별적으로 제어되어, 각 발광 소자 유닛(30)마다의 조도가 제어된다. 이로써, 웨이퍼(W)의 온도가, 면내 균일하게 원하는 온도로 제어된다.
이상의 실시 형태에 의하면, 조도 모니터에 의한 측정 결과인 조도 u와, 온도 센서(20a)에 의한 측정 결과인 모의 온도 Tc와, 미리 구한 제 1 상관 함수(161)와, 미리 구한 제 2 상관 함수(162)에 기초해서 옵저버(160)를 생성한다. 그리고, 옵저버(160)에 있어서 온도 센서(20a)에 의한 모의 온도 Tc와 조도 모니터(50)에 의한 조도 u에 기초해서 웨이퍼(W)의 실제 온도 P를 추정하기 때문에, 종래의 비접촉 온도 측정으로서는 정확한 온도를 측정하기 어렵던 대상물 및 온도 대역에서도, 웨이퍼(W)가 정확한 온도를 파악할 수 있다. 또한, 옵저버(160)를 이용함으로써, 더미 웨이퍼로서는 불가능했던, 실시간의 웨이퍼(W)의 온도 측정을 행할 수 있다. 이로써, 정확한 온도에 기초해서 열원(21)의 출력을 제어하는 것이 가능해지고, 그 결과, 보다 정확한 웨이퍼(W)의 온도 제어를 행할 수 있다.
또한, 조도 u를, 조도 모니터(50)로 검출된 광의 조도로부터 반사광 모니터(51)로 검출된 광의 조도를 뺀 것으로 해서 구하기 때문에, 웨이퍼(W)의 표면에 흡수되어 열로 변환된 에너지의 양을 정확하게 파악하여, 보다 정확한 실제 온도 P의 추정치를 얻을 수 있다. 환언하면, 반사광 모니터(51)로 검출된 광의 조도에 기초해서, 웨이퍼(W) 표면의 광의 흡수율을 구할 수 있기 때문에, 흡수율이 상이한 웨이퍼(W)의 열처리를 실시할 때에도 정확한 실제 온도 P의 추정치를 얻을 수 있다. 한편, 웨이퍼(W)로부터의 반사광이 작아서 무시할 수 있는 경우 등에는, 조도 모니터(50)로 검출된 광의 조도를 조도 u로 해도 되며, 반사광 모니터(51)는 반드시 설치할 필요는 없다.
한편, 본 발명자 등에 의하면, 웨이퍼(W)의 온도가 변화되는 과도적인 상태에 있어서의 추정치는, 웨이퍼(W)의 온도 변화가 적은 정상 상태에 있어서의 추정치보다 그 정밀도가 약간 뒤떨어진다는 것이 확인되었다. 이것은, 지지 핀(20)이나 온도 센서(20a)가 소정의 열 저항을 갖고, 또한 지지 핀(20)이나 온도 센서(20a)에서의 방열이 있기 때문이며, 따라서 과도 상태에 있어서는 웨이퍼(W)의 실제 온도와 지지 핀(20)의 온도가 일치하지 않는 것이 원인이라고 생각된다. 이 때문에, 과도 상태에 있어서의 추정치를 향상시키기 위해서, 예컨대 지지 핀 내에 복수의 온도 센서를 마련하여 열 저항의 영향을 보정하도록 해도 된다. 이러한 지지 핀의 구성에 대해서 구체적으로 설명한다.
도 7에 나타낸 바와 같이, 지지 핀(60)은, 예컨대 3개의 온도 센서(60a, 60b, 60c)와, 상기 온도 센서(60a, 60b, 60c)를 둘러싸는 통 형상의 보호관(61)을 갖고 있다. 온도 센서(60a)로서는 일반적인 시스(sheath) 열전쌍이 이용되고, 웨이퍼(W)는 상기 온도 센서(60a)의 선단에서 지지된다. 온도 센서(60b, 60c)는 예컨대 열전쌍으로, 온접점(溫接点)(온도 측정부)이 온도 센서(60a)의 시스에 접착하여 마련되어 있다. 이 때, 온도 센서(60b, 60c)는, 온접점과 웨이퍼(W)와의 거리(L, L')가 각각 상이하게 마련되어 있다. 이렇게 함으로써, 온도 센서(60b, 60c)에 의해, 온도 센서(60a)에 있어서 웨이퍼(W)와의 거리가 상이한 위치의 온도를 측정할 수 있다. 이로써, 온도 센서(60a) 자체의 온도와 웨이퍼(W)로부터의 거리의 관계를 얻을 수 있다. 도 7에서는, 웨이퍼(W)로부터 가장 먼 위치에 온접점을 배치한 열전쌍을 온도 센서(60c)로 하고, 온도 센서(60a)와 온도 센서(60c)의 사이에 온접점이 위치하도록 배치한 열전쌍을 온도 센서(60b)로 해서 도시하고 있다.
한편, 온도 센서(60a)로서는, 웨이퍼(W)를 지지할 수 있는 것이라면 반드시 시스 열전쌍일 필요는 없고, 보호통을 구비한 저항 온도계 등의 다른 온도계를 이용해도 된다. 또한, 온도 센서(60b, 60c)도 온도 센서(60a)의 온도를 측정할 수 있는 것이면 되고, 온도 센서(60b, 60c)로 어떠한 형식의 온도계를 이용할지는 임의로 설정이 가능하다.
보호관(61) 내에는, 예컨대 알루미나 분말이나 실리카 분말 등의, 저열전도 재료가 충전되어 있다. 이로써, 각 온도 센서(60a, 60b, 60c)로부터의 방열을 억제하여, 웨이퍼(W)와의 온도차가 커지지 않게 하고 있다. 한편, 보호관(61) 자체에 대해서도 저열전도 재료에 의해 구성하는 것이 바람직하다.
지지 핀(60)을 이용한 경우의 열처리 장치(1)에서는, 예컨대 도 8에 나타낸 바와 같이, 각 지지 핀(60)으로부터는 온도 센서(60a, 60b, 60c)에 의해 모의적으로 측정된 온도가 제어부(150)의 연산부(152)에 각각 입력된다.
연산부(152)에서는, 각 온도 센서(60a, 60b, 60c) 사이의 거리와 각 온도 센서(60a, 60b, 60c)에 의한 측정 온도의 관계로부터, 지지 핀(60), 온도 센서(60a)의 열 저항율이나, 온도 센서(60a)에서의 온도 분포를 구한다. 그리고, 이 구해진 열 저항율 등에 기초해서 온도 센서(60a)에서 측정된 온도를 보정하고, 상기 보정된 온도에 기초해서 웨이퍼(W)의 실제 온도 P를 추정한다. 이로써, 웨이퍼(W)의 온도가 변화되는 과도적인 상태에 있어서의 실제 온도 P의 추정치의 정밀도를 향상시킬 수 있다. 한편, 지지 핀(60)에 있어서의 온도 센서(60b, 60c)의 배치나 설치 수는, 웨이퍼(W)를 지지하기 위한 온도 센서(60a)의, 과도 상태에 있어서의 온도 변화를 구할 수 있으면 임의로 설정이 가능하고, 본 실시 형태로 한정되는 것이 아니다.
(실시예)
다음으로 발명자들이, 실시예로서, 본 발명의 실시 형태에 따른 온도 측정 기구를 구비한 열처리 장치(1)에 의해 직경 300mm인 웨이퍼(W)의 온도를 측정하고, 그 측정 결과를 비교예로서의, 내부에 온도 센서가 마련된 더미 웨이퍼를 이용한 온도 측정의 결과(실측치)와 비교했다. 이 때, 웨이퍼(W)의 온도 측정에는 지지 핀(20)을 이용했다. 또한, 제어부(150)에 의한 전원(40)에의 전류 지령치의 피드백 제어는 특별히 행하지 않고, 전류치는 일정하게 했다. 도 9, 도 10, 도 11에 그 결과를 나타낸다. 도 9는 웨이퍼(W)의 중심 부근, 도 10은 웨이퍼(W)의 중심으로부터 146mm의 외주부 부근, 도 11은 중간의 웨이퍼(W)의 중심으로부터 74mm의 위치에 있어서의 온도이다. 도 9, 도 10, 도 11의 가로축은 가열부터의 경과 시간, 세로축은 온도를 나타낸다.
어느 경우에도, 가열 개시부터 50초까지의 기간에 있어서는, 더미 웨이퍼에 의한 실측치와 연산부(152)에 의한 실제 온도 P의 추정치에 차이가 생기고 있지만, 그 이후의 기간에 있어서는 실측치와 추정치는 거의 일치하여, 온도 측정 기구에 의해 정확한 온도를 구하는 것이 확인되었다. 한편, 가열 개시 직후에서의 실측치와 추정된 실제 온도 P의 차이는, 연산의 초기치가 상이하기 때문에, 그리고 상술 한 바와 같이 지지 핀(20)의 온도 센서(20a)와 웨이퍼(W)의 온도차가 원인이다. 그러나 옵저버(160)의 기능에 의해, 시간의 경과와 같이 추정된 실제 온도 P가 더미 웨이퍼에 의한 실측치로 수렴되는 것을 확인할 수 있었다.
또한, 지지 핀(20)을 이용해서 웨이퍼(W)의 온도를 측정한 경우의 추정치, 지지 핀(60)을 이용해서 웨이퍼(W)의 온도를 측정한 경우의 추정치, 더미 웨이퍼를 이용해서 측정한 실측치에 대해서도 비교했다. 이 때, 웨이퍼(W)를 우선 36℃까지 승온시켜서 30초간 유지하고, 그 후 130℃까지 약 30초 걸려서 승온시켰다. 도 12, 도 13, 도 14에 그 결과를 나타낸다. 도 12는 웨이퍼(W)의 중심 부근, 도 13은 웨이퍼(W)의 중심으로부터 146mm의 외주부 부근, 도 14는 중간의 웨이퍼(W)의 중심으로부터 74mm의 위치에 있어서의 온도이다. 도 12, 도 13, 도 14의 가로축은 가열부터의 경과 시간, 좌측의 세로축은 온도, 오른쪽의 세로축은 더미 웨이퍼에 의한 실측치와 지지 핀(20, 60)을 이용한 경우의 실제 온도 P의 추정치의 온도차이다. 도면 중에 '○'로 표시되는 그래프는 더미 웨이퍼에 의한 실측치, '△'로 표시되는 그래프는 지지 핀(20)을 이용한 경우의 실제 온도 P의 추정치, '□'로 표시되는 그래프는 지지 핀(60)을 이용한 경우의 실제 온도 P의 추정치이다. 또한, 도면 중의 '▽'는 더미 웨이퍼에 의한 실측치와 지지 핀(20)을 이용한 경우의 실제 온도 P의 추정치의 차이, '◇'는 더미 웨이퍼에 의한 실측치와 지지 핀(60)을 이용한 경우의 실제 온도 P의 추정치의 차이를 각각 나타내고 있다.
지지 핀(20)을 이용해서 실제 온도 P의 추정을 행한 경우에는, 특히 36℃부터 130℃까지 승온시키는 과정에서, 실측치와의 사이에 최대 15℃ 정도의 온도차가 생기는 것이 확인되었다. 한편, 지지 핀(60)을 이용한 경우, 실측치와의 온도차는 승온 과정 전반에 걸쳐서 최대 5℃ 정도로 수렴되는 것이 확인되었다. 이 결과로부터, 도 7에 나타낸 바와 같이, 온도 측정부와 웨이퍼(W)의 거리가 각각 상이하게 온도 센서(60a, 60b, 60c)를 마련한 지지 핀(60)을 이용함으로써 과도적인 상태에 있어서의 추정치의 정밀도를 향상시킬 수 있다는 것을 확인할 수 있었다.
이상, 본 발명의 바람직한 실시 형태에 대해서 설명했지만, 본 발명은 이러한 예로 한정되지 않는다. 당업자라면, 특허청구의 범위에 기재된 기술적 사상의 범주 내에서, 각종 변경예 또는 수정예를 상정할 수 있는 것은 분명하고, 이들에 대해서도 당연히 본 발명의 기술적 범위에 속하는 것으로 이해된다.
1 : 열처리 장치 10 : 탑재대
11 : 처리 용기 11a : 천판
11b : 수직 하부 12 : 열처리부
13 : 가스 확산부 20 : 지지 핀
21 : 열원 30 : 발광 소자 유닛
31 : 전극 32 : 지지판
33 : 발광 소자 34 : 반사층
40 : 전원 41 : 처리 가스 공급관
42 : 배기관 43 : 광투과 부재
50 : 광량 모니터 51 : 반사광 모니터
150 : 제어부 151 : 입력부
152 : 연산부 153 : 기억부
154 : 출력부 160 : 옵저버
161 : 제 1 상관 함수 162 : 제 2 상관 함수
W : 웨이퍼 K : 게인
u : 조도 Tc : 모의 온도

Claims (16)

  1. 복수의 발광 소자를 열원으로 이용해서 피처리체를 열처리하는 열처리 장치에서, 피처리체의 온도를 측정하는 온도 측정 기구로서,
    대향해서 마련된 상기 복수의 발광 소자와 상기 피처리체 사이에 배치되어서, 상기 발광 소자로부터의 조도 u를 측정하는 조도 모니터와,
    상기 피처리체의 온도를 모의적으로 측정하는 온도 센서와,
    상기 조도 모니터에 의해 측정된 조도 u와 상기 온도 센서에 의해 모의적으로 측정된 모의 온도 Tc에 기초해서, 상기 피처리체의 실제 온도를 추정하는 제어부
    를 갖고,
    상기 제어부에서의 상기 피처리체의 실제 온도의 추정은, 미리 구해진, 상기 조도 모니터에 의해 측정한 조도 u와 상기 측정된 조도 u에 있어서 추정되는 상기 피처리체의 온도 y의 상관 관계인 제 1 상관 관계와, 미리 구해진, 상기 온도 센서에 의해 모의적으로 측정된 모의 온도 Tc와 상기 측정된 조도 u에 있어서 추정되는 상기 피처리체의 온도 y의 상관 관계인 제 2 상관 관계에 기초해서 행해지는
    것을 특징으로 하는 온도 측정 기구.
  2. 제 1 항에 있어서,
    상기 제어부는 옵저버인 것을 특징으로 하는 온도 측정 기구.
  3. 제 2 항에 있어서,
    상기 측정된 조도 u에 있어서 추정되는 피처리체의 온도 y는, 온도 측정 수단을 내장한 더미 웨이퍼에 상기 열원으로부터 광을 조사한 경우의, 상기 온도 측정 수단에 의한 측정 온도인 것을 특징으로 하는 온도 측정 기구.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 피처리체에 의해서 반사된 상기 발광 소자로부터의 광을 측정하는 반사광 모니터를 더 갖고,
    상기 제어부는, 상기 반사광 모니터에 의해 측정된 반사광의 조도에 기초해서 상기 조도 모니터에서 측정한 조도 u를 보정하는 기능을 구비하고 있는
    것을 특징으로 하는 온도 측정 기구.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 복수의 발광 소자와 상기 피처리체 사이에 배치되며, 상기 발광 소자로부터의 광을 투과하는 광투과 부재를 더 갖고,
    상기 조도 모니터는, 상기 광투과 부재의 상기 발광 소자측 또는 상기 피처리체측 중 어느 하나에 배치되어 있는
    것을 특징으로 하는 온도 측정 기구.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 온도 센서는, 상기 피처리체를 지지하는 지지 핀에 내장되고 있고, 상기 온도 센서에 의한 상기 모의 온도 Tc의 측정은, 상기 피처리체와 접촉하는 상기 지지 핀의 온도를 측정함으로써 행해지는 것을 특징으로 하는 온도 측정 기구.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 피처리체는 상기 온도 센서에 의해 지지되고,
    상기 피처리체의 모의 온도 Tc의 측정은, 상기 피처리체에 상기 온도 센서를 접촉시킴으로써 행해지는
    것을 특징으로 하는 온도 측정 기구.
  8. 제 7 항에 있어서,
    상기 온도 센서에는, 상기 온도 센서 자체의 온도를 측정하는 다른 온도 센서가 마련되고,
    상기 다른 온도 센서는, 상기 온도 센서에 있어서 기판과의 거리가 상이한 위치의 온도를 측정하도록 복수 배치되며,
    상기 제어부는, 상기 온도 센서와 상기 다른 온도 센서의 측정 결과에 기초해서, 상기 온도 센서에서 측정된 온도를 보정하는
    것을 특징으로 하는 온도 측정 기구.
  9. 복수의 발광 소자를 열원으로 이용해서 피처리체를 열처리하는 열처리 장치에서, 피처리체의 온도를 측정하는 온도 측정 방법으로서,
    대향해서 마련된 상기 복수의 발광 소자와 상기 피처리체 사이에 배치된 조도 모니터에 의해, 상기 발광 소자로부터의 조도 u를 측정하고,
    온도 센서에 의해 상기 피처리체의 온도를 모의적으로 측정하며, 상기 조도 모니터에 의해 측정된 조도 u와 상기 온도 센서에 의해 모의적으로 측정된 모의 온도 Tc에 기초해서, 상기 피처리체의 실제 온도를 추정하고,
    상기 피처리체의 실제 온도의 추정은, 미리 구해진, 상기 조도 모니터에 의해 측정한 조도 u와 상기 측정된 조도 u에 있어서 추정되는 피처리체의 온도 y의 상관 관계인 제 1 상관 관계와, 상기 온도 센서에 의해 모의적으로 측정된 모의 온도 Tc와 상기 측정된 조도 u에 있어서 추정되는 상기 피처리체의 온도 y의 상관 관계인 제 2 상관 관계에 기초해서 행해지는
    것을 특징으로 하는 온도 측정 방법.
  10. 제 9 항에 있어서,
    상기 온도 센서에 의해 모의적으로 측정한 피처리체의 모의 온도 Tc와 상기 조도 모니터에 의해 측정한 조도 u에 기초하는 피처리체의 실제 온도의 추정은, 옵저버를 통해서 행해지는 것을 특징으로 하는 온도 측정 방법.
  11. 제 10 항에 있어서,
    상기 측정된 조도 u에 있어서 추정되는 피처리체의 온도 y는, 온도 측정 수단을 내장한 더미 웨이퍼에 상기 열원으로부터 광을 조사한 경우의, 상기 온도 측정 수단에 의한 측정 온도인 것을 특징으로 하는 온도 측정 방법.
  12. 제 9 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 피처리체에 의해서 반사된 상기 발광 소자로부터의 광을 측정하고, 반사 모니터에 의해 측정된 반사광의 조도에 기초해서 상기 조도 모니터에서 측정한 조도 u를 보정하는 것을 특징으로 하는 온도 측정 방법.
  13. 제 9 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 조도 모니터는, 상기 복수의 발광 소자와 상기 피처리체 사이에 배치되어서 상기 발광 소자로부터의 광을 투과하는 광투과 부재의 상기 발광 소자측 또는 상기 피처리체측 중 어느 하나에 배치되어 있는 것을 특징으로 하는 온도 측정 방법.
  14. 제 9 항 내지 제 13 항 중 어느 한 항에 있어서,
    상기 온도 센서는, 상기 피처리체를 지지하는 지지 핀에 내장되고 있고, 상기 온도 센서에 의한 상기 모의 온도 Tc의 측정은, 상기 피처리체와 접촉하는 상기 지지 핀의 온도를 측정함으로써 행해지는 것을 특징으로 하는 온도 측정 방법.
  15. 제 9 항 내지 제 13 항 중 어느 한 항에 있어서,
    상기 피처리체는 상기 온도 센서에 의해 지지되고,
    상기 피처리체의 모의 온도 Tc의 측정은, 상기 피처리체에 상기 온도 센서를 접촉시킴으로써 행해지는
    것을 특징으로 하는 온도 측정 방법.
  16. 제 15 항에 있어서,
    상기 온도 센서에는, 상기 온도 센서 자체의 온도를 측정하는 다른 온도 센서가 마련되고,
    상기 다른 온도 센서는, 상기 온도 센서에 있어서 기판과의 거리가 상이한 위치의 온도를 측정하도록 복수 배치되며,
    상기 온도 센서와 상기 다른 온도 센서의 측정 결과에 기초해서, 상기 온도 센서로 측정된 온도를 보정하는
    것을 특징으로 하는 온도 측정 방법.
KR1020130114315A 2012-09-28 2013-09-26 온도 측정 기구 및 온도 측정 방법 KR101732216B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012217755 2012-09-28
JPJP-P-2012-217755 2012-09-28
JPJP-P-2013-012332 2013-01-25
JP2013012332A JP6047411B2 (ja) 2012-09-28 2013-01-25 温度測定機構及び温度測定方法

Publications (2)

Publication Number Publication Date
KR20140042705A true KR20140042705A (ko) 2014-04-07
KR101732216B1 KR101732216B1 (ko) 2017-05-02

Family

ID=50651779

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130114315A KR101732216B1 (ko) 2012-09-28 2013-09-26 온도 측정 기구 및 온도 측정 방법

Country Status (1)

Country Link
KR (1) KR101732216B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170051438A (ko) * 2014-09-09 2017-05-11 도쿄엘렉트론가부시키가이샤 열처리 방법 및 열처리 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5394730B2 (ja) 2008-12-26 2014-01-22 東京エレクトロン株式会社 アニール装置およびアニール方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170051438A (ko) * 2014-09-09 2017-05-11 도쿄엘렉트론가부시키가이샤 열처리 방법 및 열처리 장치

Also Published As

Publication number Publication date
KR101732216B1 (ko) 2017-05-02

Similar Documents

Publication Publication Date Title
CN111788666B (zh) 检查装置
JP5107372B2 (ja) 熱処理装置、塗布現像処理システム、熱処理方法、塗布現像処理方法及びその熱処理方法又は塗布現像処理方法を実行させるためのプログラムを記録した記録媒体
EP3799111B1 (en) Inspection device and temperature control method
KR101648082B1 (ko) 화학 증착 챔버 내부의 베이스 가열 제어 장치 및 방법
JP2011525632A (ja) エッチングプロセス内の赤外線伝播による基板温度測定
JP2007187619A (ja) ウェハ型温度センサ、温度測定装置、熱処理装置および温度測定方法
US11796400B2 (en) Lifetime estimating system and method for heating source, and inspection apparatus
CN110829175B (zh) 激光装置
JP2016076529A (ja) 温度測定用支持部材及び熱処理装置
CN114846579A (zh) 热处理装置以及热处理方法
JP6047411B2 (ja) 温度測定機構及び温度測定方法
KR20140042705A (ko) 온도 측정 기구 및 온도 측정 방법
US11740643B2 (en) Temperature control device and method, and inspection apparatus
US11817335B2 (en) Method and system for inspecting processing apparatus
JP2009231353A (ja) アニール装置および過熱防止システム
JP6267162B2 (ja) 熱処理方法及び熱処理装置
KR101204885B1 (ko) Led 발열량 측정 장치 및 측정 방법
US20220028712A1 (en) Apparatus, system, and method for non-contact temperature monitoring of substrate supports
JP2023050652A (ja) 半田付け装置及び半田付け製品の製造方法
KR101596794B1 (ko) 발열량 측정 장치 및 발열량 측정 방법
WO2016039199A1 (ja) 熱処理方法及び熱処理装置
KR102660269B1 (ko) 가열 장치 및 led의 제어 방법
JP2014190801A (ja) 半導体デバイス温度制御装置
KR102572807B1 (ko) 기판의 온도균일도 제어장치 및 제어방법
JP2007234645A (ja) プローバ温度制御装置、及び、方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant