KR20140041274A - Hot-rolled steel sheet and method for manufacturing of the same - Google Patents

Hot-rolled steel sheet and method for manufacturing of the same Download PDF

Info

Publication number
KR20140041274A
KR20140041274A KR1020120108405A KR20120108405A KR20140041274A KR 20140041274 A KR20140041274 A KR 20140041274A KR 1020120108405 A KR1020120108405 A KR 1020120108405A KR 20120108405 A KR20120108405 A KR 20120108405A KR 20140041274 A KR20140041274 A KR 20140041274A
Authority
KR
South Korea
Prior art keywords
hot
steel sheet
rolled steel
less
cooling
Prior art date
Application number
KR1020120108405A
Other languages
Korean (ko)
Other versions
KR101455466B1 (en
Inventor
도형협
고강희
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020120108405A priority Critical patent/KR101455466B1/en
Publication of KR20140041274A publication Critical patent/KR20140041274A/en
Application granted granted Critical
Publication of KR101455466B1 publication Critical patent/KR101455466B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

Disclosed are a hot-rolled steel sheet and a manufacturing method thereof, wherein the hot-rolled steel sheet can have a high tensile strength of at least 980 MPa and a high hole expansion property. The manufacturing method of the hot-rolled steel sheet comprises: a step (a) of hot-rolling a slab sheet at a finishing delivery temperature of 880-920°C; a step (b) of firstly cooling the hot-rolled sheet to a middle temperature (MT) of 660-720°C; and a step (c) of secondly cooling the firstly cooled sheet to a coiling temperature (CT) of 460-520°C, and coiling the sheet, wherein the slab sheet comprises 0.04-0.08 wt% of C, 0.3-0.9 wt% of Si, 1.5 to 2.0 wt% of Mn, at most 0.02 wt% of P, at most 0.003 wt% of S, at most 0.02 wt% of Al, 0.04-0.06 wt% of Nb, 0.05-0.07 wt% of Ti, at most 0.12 wt% of V, 0.4-0.6 wt% of Cr, 0.002-0.0025 wt% of B, and remnants of Fe and inevitable impurities. [Reference numerals] (AA) Start; (BB) End; (S110) Hot-roll (FDT: 880-920°C); (S120) Firstly cool (MT: 660-720°C); (S130) Secondly cool/coil (CT: 460-520°C)

Description

열연강판 및 그 제조 방법{HOT-ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING OF THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a hot-rolled steel sheet,

본 발명은 열연강판에 관한 것으로, 보다 상세하게는 홀확장성이 우수한 인장강도 980MPa급 열연강판 및 그 제조 방법에 관한 것이다. The present invention relates to a hot-rolled steel sheet, and more particularly, to a hot-rolled steel sheet having a tensile strength of 980 MPa and excellent in hole expandability and a method of manufacturing the same.

자동차 업계는 나날이 경쟁이 심화됨에 따라 자동차 품질에 대한 고급화, 다양화 요구가 높아지고 있다. 또한, 강화되고 있는 승객 안전 및 환경 규제에 대한 법규를 만족시키고 아울러 연비 효율을 향상시키기 위하여, 경량화 및 고강도화를 추구하고 있다. As the automobile industry becomes more and more intense, there is a growing demand for higher quality and diversification of automobile quality. In addition, in order to satisfy the regulations on passenger safety and environmental regulations that are being strengthened, and to improve fuel efficiency, the company is pursuing weight reduction and strength enhancement.

자동차 샤시 부품용 소재에 적용되는 고강도 열연강판은 높은 인장강도, 복잡한 부품 형상 구현을 위한 고연신성, 고홀확장성 등의 특성이 요구된다.The high strength hot-rolled steel sheet to be applied to automobile chassis component materials is required to have high tensile strength, high elongation for high-complexity part shape, and high-hole expandability.

980MPa급 인장강도를 가지면서 고홀확장성을 갖는 열연강판을 티타늄(Ti)의 함량을 최소 0.1중량%이상 첨가하고, 그 외 니오븀(Nb)과 바나듐(V)을 복합 첨가하는 합금조성을 이용하여 제조하는 방법이 보고된 바 있다.A hot-rolled steel sheet having a tensile strength of 980 MPa and high-hole expandability is manufactured using an alloy composition in which a content of titanium (Ti) is at least 0.1 wt% or more and niobium (Nb) and vanadium (V) Have been reported.

그러나, 티타늄(Ti)의 함량이 0.1중량% 이상인 열연강판은 산소와의 친화력이 높은 티타늄(Ti)이 산소와 반응하여 티타늄 산화물(TiO)을 생성하기 때문에 제강/연주 시 노즐 막힘과 같은 문제를 야기하고 있다.
However, in the hot-rolled steel sheet in which the content of titanium (Ti) is 0.1 wt% or more, titanium (Ti) having high affinity with oxygen reacts with oxygen to produce titanium oxide (TiO) .

본 발명에 관련된 배경기술로는 대한민국 등록특허공보 제10-1159997호(2012.06.19. 등록)에 개시된 홀확장성이 우수한 저탄소 고강도 열연강판 및 그 제조 방법이 있다. As a background art related to the present invention, there is a low-carbon high-strength hot-rolled steel sheet excellent in hole expandability disclosed in Korean Patent Registration No. 10-1159997 (Registered on Jun. 19, 2012) and a manufacturing method thereof.

본 발명의 목적은 합금성분 및 공정 조건 제어를 통하여 인장강도 980MPa 이상의 강도를 가지면서도 홀확장성이 우수한 열연강판 제조 방법을 제공하는 것이다.It is an object of the present invention to provide a method of manufacturing a hot-rolled steel sheet having a strength of 980 MPa or more and tensile strength of 980 MPa or more and excellent hole expandability through control of alloy components and process conditions.

본 발명의 다른 목적은 저티타늄 합금성분계이면서도 인장강도 980MPa 이상의 고강도를 가지며, 홀확장성이 우수한 열연강판 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a hot-rolled steel sheet having a high strength of 980 MPa or higher in tensile strength and a high hole expandability, while being a low titanium alloy component system.

본 발명의 또 다른 목적은 상기의 방법으로 제조되어, 저티타늄 합금성분계이면서도 고강도와 함께 홀확장성이 우수하여 자동차 샤시 부품 등으로 활용될 수 있는 열연강판을 제공하는 것이다.Another object of the present invention is to provide a hot-rolled steel sheet manufactured by the above-described method, which can be utilized as an automobile chassis component and the like because of its high strength and excellent hole expandability, while being a low titanium alloy component system.

상기 목적을 달성하기 위한 본 발명에 따른 열연강판 제조 방법은 (a) 중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6%, 보론(B) : 0.002~0.0025% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 마무리 압연 온도 880~920℃로 열간압연하는 단계; (b) 상기 열간압연된 판재를 660~720℃까지 1차 냉각하는 단계; 및 (c) 상기 1차 냉각된 판재를 권취 온도(CT) 460~520℃로 2차 냉각하여 권취하는 단계;를 포함하는 것을 특징으로 한다.Hot-rolled steel sheet manufacturing method according to the present invention for achieving the above object is (a) wt%, carbon (C): 0.04 ~ 0.08%, silicon (Si): 0.3 ~ 0.9%, manganese (Mn): 1.5 ~ 2.0 %, Phosphorus (P): 0.02% or less, sulfur (S): 0.003% or less, aluminum (Al): 0.02% or less, niobium (Nb): 0.04-0.06%, titanium (Ti): 0.05-0.07%, vanadium (V): 0.12% or less, Chromium (Cr): 0.4 to 0.6%, Boron (B): 0.002 to 0.0025% Rolling; (b) primary cooling the hot rolled plate to 660 - 720 캜; And (c) secondarily cooling the primary-cooled plate material at a coiling temperature (CT) of 460 to 520 ° C. and winding the sheet material.

여기서, 상기 1차 냉각은 냉각속도 50 ~ 150℃/sec 조건으로 실시될 수 있다. 상기 2차 냉각은 냉각속도 80 ~ 200℃/sec 조건으로 실시될 수 있다.Here, the primary cooling may be performed at a cooling rate of 50 to 150 DEG C / sec. The secondary cooling may be carried out at a cooling rate of 80 to 200 DEG C / sec.

상기 목적을 달성하기 위한 본 발명에 따른 열연강판은 중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6%, 보론(B) : 0.002~0.0025% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며, 인장강도 980MPa 이상, 홀확장성 50% 이상 및 연신율 10% 이상을 갖는 것을 특징으로 한다.Hot-rolled steel sheet according to the present invention for achieving the above object by weight, carbon (C): 0.04 ~ 0.08%, silicon (Si): 0.3 ~ 0.9%, manganese (Mn): 1.5 ~ 2.0%, phosphorus (P ): 0.02% or less, sulfur (S): 0.003% or less, aluminum (Al): 0.02% or less, niobium (Nb): 0.04 to 0.06%, titanium (Ti): 0.05 to 0.07%, vanadium (V): 0.12 % Or less, Chromium (Cr): 0.4 ~ 0.6%, Boron (B): 0.002 ~ 0.0025% and the rest of iron (Fe) and inevitable impurities, tensile strength of 980MPa or more, hole expandability 50% or more, elongation 10% It is characterized by having the above.

여기서, 상기 열연강판은 미세조직이, 입상 베이나이트(Granular Bainite; GB)와 템퍼드 마르텐사이트(Temperped Martensite; TM)의 복합조직으로 이루어진다.Here, the hot-rolled steel sheet has a microstructure composed of a composite structure of granular bainite (GB) and tempered martensite (TM).

상기 복합조직은, 부피%로, 상기 입상 베이나이트 40~60% 및 상기 템퍼드 마르텐사이트 40~60%를 포함한다.The composite structure includes, by volume%, 40 to 60% of the particulate bainite and 40 to 60% of the tempered martensite.

본 발명에 따른 방법으로 제조된 열연강판은 티타늄 함량이 0.05~0.07 중량%임에도 인장강도 980MPa 이상의 고강도를 가지며, 아울러 50% 이상의 홀확장성을 가질 수 있다.The hot-rolled steel sheet produced by the method according to the present invention has a high strength of 980 MPa or more in tensile strength and a hole expandability of 50% or more, even though the content of titanium is 0.05 to 0.07% by weight.

또한, 본 발명에 따른 방법으로 제조된 열연강판은 합금원소 저감 및 열연공정 제어만으로 목표로 하는 강도 및 홀확장성 등의 특성을 갖는 강판의 생산이 가능하여 강판 제조 비용을 크게 절감할 수 있다.In addition, the hot-rolled steel sheet produced by the method according to the present invention can produce a steel sheet having characteristics such as strength and hole expandability that are aimed only by reducing the alloying elements and controlling the hot-rolling process, thereby greatly reducing the manufacturing cost of the steel sheet.

이에 따라, 본 발명에 따른 방법으로 제조된 열연강판은 티타늄 산화물의 생성은 억제되고, 고강도와 함께 우수한 홀확장성을 가질 수 있어서, 자동차의 구조부재, 샤시류 등에 유용하게 적용할 수 있다.Accordingly, the hot-rolled steel sheet produced by the method according to the present invention can inhibit the formation of titanium oxide and can have excellent hole expandability with high strength, and thus can be applied to structural members of automobiles, chassis and the like.

도 1은 본 발명의 실시예에 따른 열연강판 제조 방법을 나타낸 공정 순서도이다.
도 2는 본 발명의 실시예 2에 따라 제조된 시편의 미세조직을 나타낸 사진이다.
도 3은 본 발명의 실시예 2에 따라 제조된 시편에서 홀이 확장된 것을 나타낸 사진이다.
도 4는 도 3의 점선 부분을 확대한 미세조직 사진이다.
1 is a process flowchart showing a method for manufacturing a hot rolled steel sheet according to an embodiment of the present invention.
2 is a photograph showing the microstructure of a specimen produced according to Example 2 of the present invention.
3 is a photograph showing holes expanded in a specimen manufactured according to Example 2 of the present invention.
4 is a microstructure photograph of an enlarged portion of a dotted line in Fig.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. It should be understood, however, that the invention is not limited to the disclosed embodiments, but is capable of many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 열연강판 제조 방법에 관하여 상세히 설명하면 다음과 같다.
Hereinafter, a method of manufacturing a hot-rolled steel sheet according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 열연강판은 중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6% 및 보론(B) : 0.002~0.0025%를 포함한다.Hot rolled steel sheet according to the present invention in weight%, carbon (C): 0.04 ~ 0.08%, silicon (Si): 0.3 ~ 0.9%, manganese (Mn): 1.5 ~ 2.0%, phosphorus (P): 0.02% or less, Sulfur (S): 0.003% or less, Aluminum (Al): 0.02% or less, Niobium (Nb): 0.04-0.06%, Titanium (Ti): 0.05-0.07%, Vanadium (V): 0.12% or less, Chromium (Cr ): 0.4 ~ 0.6% and boron (B): 0.002 ~ 0.0025%.

상기 성분들 외 나머지는 철(Fe)과 불가피한 불순물로 이루어진다.The remainder of the above components consist of iron (Fe) and unavoidable impurities.

이하, 본 발명에 따른 열연강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.
Hereinafter, the role and content of each component included in the hot-rolled steel sheet according to the present invention will be described.

탄소(C)Carbon (C)

탄소(C)는 강의 강도 증가에 기여하는 원소이다. 본 발명에 따른 열연강판은 충분한 성형성 및 홀확장성을 확보하기 위하여 상대적으로 적은 양의 탄소를 함유한다. Carbon (C) is an element contributing to the increase in strength of steel. The hot-rolled steel sheet according to the present invention contains a relatively small amount of carbon in order to ensure sufficient moldability and hole expandability.

이러한 탄소는 본 발명에 따른 열연강판 전체 중량의 0.04 ~ 0.08중량%로 첨가되는 것이 바람직하다. 탄소의 첨가량이 0.04중량% 미만일 경우 인장강도 980MPa 이상을 확보하기 어렵다. 반면, 탄소 함량이 0.08중량%를 초과하면, 강중 탄화물 형성이 촉진되어 성형성 및 홀확장성이 저하되는 문제점이 있다.
It is preferable that such carbon is added in an amount of 0.04 to 0.08% by weight based on the total weight of the hot-rolled steel sheet according to the present invention. When the addition amount of carbon is less than 0.04% by weight, it is difficult to secure a tensile strength of 980 MPa or more. On the other hand, if the carbon content exceeds 0.08% by weight, formation of carbide in the steel is promoted, and the formability and hole expandability are deteriorated.

실리콘(silicon( SiSi ))

실리콘(Si)은 탈산제로 작용하며, 특히 본 발명에서는 강판 전체 중량의 0.3 ~ 0.9중량%로 첨가되어 연신율을 향상시키는 역할을 한다. Silicon (Si) serves as a deoxidizer, and in the present invention, it is added in an amount of 0.3 to 0.9 wt% of the total weight of the steel sheet, thereby improving the elongation.

상기 실리콘의 첨가량이 열연강판 전체 중량의 0.3중량% 미만일 경우, 10% 이상의 연신율 확보가 어렵다. 반대로, 실리콘의 첨가량이 강판 전체 중량의 0.9중량%를 초과하는 경우, 연주성이 저하되고, 또한 표면에 SiMn2O4 등과 같은 산화물을 다량 형성하여 도금성이 저하되는 문제점이 있다.
When the addition amount of silicon is less than 0.3 wt% of the total weight of the hot-rolled steel sheet, it is difficult to secure an elongation of 10% or more. On the contrary, when the addition amount of silicon exceeds 0.9 wt% of the total weight of the steel sheet, the performance is deteriorated, and SiMn 2 O 4 Or the like, and the plating performance is deteriorated.

망간(manganese( MnMn ))

망간(Mn)은 고용강화 및 소입성의 증대를 통하여 강의 강도 향상에 기여한다. 상기 망간은 열연강판 전체 중량의 1.5 ~ 2.0중량%로 첨가되는 것이 바람직하다. 망간의 함량이 1.5중량% 미만일 경우, 그 첨가 효과가 불충분하다. 반대로, 망간의 함량이 2.0중량%를 초과하는 경우 소재 두께 방향 중심부에서 망간 밴드가 발달하여 연신율이 저하되고, 탄소당량을 상승시켜 용접성을 저해시킨다.
Manganese (Mn) contributes to the improvement of strength of steel by strengthening solid solution and increasing ingotability. The manganese is preferably added in an amount of 1.5 to 2.0% by weight based on the total weight of the hot-rolled steel sheet. When the content of manganese is less than 1.5% by weight, the effect of the addition is insufficient. On the other hand, when the content of manganese exceeds 2.0% by weight, manganese bands are developed in the center of the material in the thickness direction, the elongation rate is lowered, and the carbon equivalent is increased to deteriorate the weldability.

알루미늄(aluminum( AlAl ))

알루미늄(Al)은 제강시 탈산제로 작용하며, 페라이트 상의 청정화를 유도하여 연신율을 향상시키고, 오스테나이트 상내 탄소(C)의 농화량을 증가시켜 최종 마르텐사이트의 경도를 증가시키는 역할을 한다. 또한, 알루미늄(Al)은 열연강판 내 망간 밴드의 형성을 억제하여 연신율 저하를 방지한다. Aluminum (Al) acts as a deoxidizer during steelmaking, inducing the clarification of the ferrite phase to improve elongation, and increasing the amount of carbon (C) in the austenite phase to increase the hardness of the final martensite. Further, aluminum (Al) suppresses the formation of manganese bands in the hot-rolled steel sheet and prevents the elongation rate from lowering.

상기 알루미늄은 열연강판 전체 중량의 0.02중량 이하%로 첨가되는 것이 바람직하다. 알루미늄의 함량이 0.02중량%를 초과하면, 용접성 및 연속주조성을 저하시키고, 슬라브 내 알루미늄질화물(AlN)을 형성하여 열연 크랙을 유발한다.
The aluminum is preferably added at 0.02% by weight or less of the total weight of the hot rolled steel sheet. If the content of aluminum exceeds 0.02% by weight, the weldability and the continuous casting are reduced, and aluminum nitride (AlN) in the slab is formed to cause hot cracking.

니오븀(Niobium ( NbNb ))

니오븀(Nb)은 강 중에 니오븀계 석출물을 형성하거나, Fe 내 고용 강화를 통하여 제조되는 강판의 강도를 향상시키고, 또한 결정립을 미세화 및 마르텐사이트 분산성을 향상시켜 홀확장성을 향상시키는데 기여한다. 또한, 석출물 형성원소로서 초고강도 확보에 유효하게 작용한다.Niobium (Nb) contributes to enhance the strength of a steel sheet produced by forming a niobium precipitate in the steel, solid solution strengthening in Fe, and improving the crystal grain size and martensite dispersibility to improve hole expandability. Further, it functions effectively in securing ultra-high strength as a precipitate-forming element.

상기 니오븀은 열연강판 전체 중량의 0.04 ~ 0.06중량%로 첨가되는 것이 바람직하다. 니오븀의 첨가량이 0.04중량% 미만인 경우, 강판의 홀확장성 확보가 어렵다. 반대로, 니오븀의 첨가량이 0.06중량%를 초과하는 경우, 성형성이 저하되는 문제점이 있다.
The niobium is preferably added in an amount of 0.04 to 0.06% by weight based on the total weight of the hot-rolled steel sheet. When the addition amount of niobium is less than 0.04 wt%, it is difficult to secure the hole expandability of the steel sheet. On the contrary, when the addition amount of niobium exceeds 0.06% by weight, the moldability is deteriorated.

티타늄(titanium( TiTi ))

티타늄(Ti)은 알루미늄질화물(AlN)의 형성을 방지하고, 고온안정성이 높은 Ti(C, N) 석출물을 생성시킴으로써 용접시 오스테나이트 결정립 성장을 방해하여 용접부 조직 미세화를 통해 용접부 특성을 향상시킨다.Titanium (Ti) prevents the formation of aluminum nitride (AlN) and generates precipitates of Ti (C, N) with high stability at high temperature, thereby preventing the growth of austenite grains during welding, thereby improving the welded characteristics through refinement of the welded structure.

상기 티티늄은 열연강판 전체 중량의 0.05 ~ 0.07중량%로 첨가되는 것이 바람직하다. 티타늄의 함량이 0.05중량% 미만일 경우, 알루미늄질화물의 형성 방지 및 용접부 특성 향상이 불충분하다. 반면에, 티타늄의 함량이 0.07중량%를 초과하는 경우, 조대한 석출물을 생성시킴으로써 강의 충격 특성을 저해시키고, 강중의 탄소와 결합하여 항복비를 높이는 문제점이 있다. 또한, 공기 중의 산소와 반응하여 티타늄 산화물(TiO)을 생성하는 문제점이 있다.
The titanium is preferably added in an amount of 0.05 to 0.07% by weight based on the total weight of the hot-rolled steel sheet. When the content of titanium is less than 0.05% by weight, the prevention of the formation of aluminum nitride and the improvement of the welded property are insufficient. On the other hand, when the content of titanium exceeds 0.07% by weight, coarse precipitates are formed to deteriorate the impact characteristics of the steel and to combine with carbon in steel to increase the yield ratio. Further, there is a problem that titanium oxide (TiO) is produced by reacting with oxygen in the air.

바나듐(V)Vanadium (V)

바나듐(V)은 고용강화 및 저온에서 석출물 형성을 통해 강도 향상에 기여한다. Vanadium (V) contributes to strength enhancement through solid solution strengthening and precipitation at low temperatures.

상기 바나듐은 본 발명에 따른 열연강판 전체 중량의 0.12중량%로 첨가되는 것이 바람직하다. 상기 바나듐은 본 발명에 따른 열연강판 전체 중량의 0.06중량% 이상 첨가될 때, 그 효과를 충분히 발휘한다. 반면, 바나듐을 0.12중량%를 초과하여 첨가할 경우 용접성을 급격히 저하시키고, 저온에서의 과다한 석출에 의하여 권취시 문제를 발생할 수 있다.
The vanadium is preferably added in 0.12% by weight of the total weight of the hot rolled steel sheet according to the present invention. When the vanadium is added at least 0.06% by weight of the total weight of the hot rolled steel sheet according to the present invention, the effect is sufficiently exhibited. On the other hand, when vanadium is added in excess of 0.12% by weight, the weldability is sharply lowered, and problems may occur during winding due to excessive precipitation at low temperatures.

크롬(chrome( CrCr ))

크롬(Cr)은 몰리브덴(Mo)과 마찬가지로, 경화능 증가를 통하여 강의 강도를 향상시키는 역할을 한다. Chromium (Cr), like molybdenum (Mo), enhances the strength of steel by increasing hardenability.

상기 크롬 역시 몰리브덴과 마찬가지로, 본 발명에 따른 열연강판 전체 중량의 0.4중량% 이상 첨가될 때 강도 향상에 충분히 기여한다. 다만, 크롬의 함량이 0.6중량%를 초과하면 제조되는 열연강판의 강도와 연성의 균형이 깨질 수 있으며, 강의 취성을 강하게 한다.
Like the molybdenum, the chromium also sufficiently contributes to the strength improvement when 0.4 wt% or more of the total weight of the hot-rolled steel sheet according to the present invention is added. However, if the content of chromium exceeds 0.6% by weight, the balance between the strength and ductility of the hot-rolled steel sheet to be produced can be broken and the brittleness of the steel is strengthened.

보론(B)Boron (B)

보론(B)은 강력한 소입성 원소로서, 강도 향상에 큰 효과를 얻을 수 있다.Boron (B) is a strong incombustible element and can be greatly effective in improving strength.

상기 보론은 열연강판 전체 중량의 0.002~0.0025중량%로 첨가되는 것이 바람직하다. 보론의 함량이 열연강판 전체 중량의 0.0002중량% 미만일 경우, 충분한 마르텐사이트 상 형성을 얻을 수 없다. 반대로, 보론의 함량이 열연강판 전체 중량의 0.0025중량%를 초과하면, 결정립계에 편석되어 도금성을 저해하는 원소로 작용한다.
The boron is preferably added in an amount of 0.002 to 0.0025% by weight based on the total weight of the hot-rolled steel sheet. When the content of boron is less than 0.0002 wt% of the total weight of the hot-rolled steel sheet, sufficient martensite phase formation can not be obtained. On the contrary, if the content of boron exceeds 0.0025% by weight of the total weight of the hot-rolled steel sheet, it is segregated at grain boundaries and acts as an element inhibiting the plating ability.

인(P)In (P)

인(P)은 강도 향상에 일부 기여하나, 강판 제조시 편석 가능성이 큰 원소로서, 중심 편석은 물론 미세 편석도 형성하여 재질에 좋지 않은 영향을 주며, 또한 용접성을 악화시킬 수 있다. Although phosphorus (P) contributes partly to the strength improvement, it is an element with a high possibility of segregation in the production of steel sheet. It forms fine segregation as well as center segregation, which adversely affects the material and can deteriorate the weldability.

따라서, 인(P)의 함량은 본 발명에 따른 열연강판 전체 중량의 0.02 중량% 이하로 제한되는 것이 바람직하다.
Therefore, the content of phosphorus (P) is preferably limited to 0.02% by weight or less of the total weight of the hot rolled steel sheet according to the present invention.

황(S)Sulfur (S)

황(S)은 망간과 결합하여 MnS와 같은 비금속개재물을 형성하여 용접성을 저해하는 요소이다. Sulfur (S) combines with manganese to form nonmetallic inclusions such as MnS, thereby deteriorating weldability.

따라서, 황(S)의 함량은 본 발명에 따른 열연강판 전체 중량의 0.003중량% 이하로 제한되는 것이 바람직하다.
Therefore, the content of sulfur (S) is preferably limited to 0.003% by weight or less of the total weight of the hot rolled steel sheet according to the present invention.

본 발명에 따른 고강도 열연강판은 상기 조성 및 후술하는 열연 공정 제어에 의하여, 최종 미세조직이, 수 nm 평균 결정립 크기의 석출물인 입상 베이나이트(Granular Bainite; GB)와 템퍼드 마르텐사이트(Temperped Martensite; TM)의 복합조직으로 이루어진다. The high-strength hot-rolled steel sheet according to the present invention is characterized in that the final microstructure is made of granular bainite (GB) and tempered martensite (GB), which are precipitates having an average grain size of several nm. TM).

이 경우, 복합조직은 부피%로, 입상 베이나이트 40~60% 및 템퍼드 마르텐사이트 40~60%를 포함한다. 이러한 미세한 결정립은 홀확장성(HER) 및 연신율(EL) 증가에 기여한다.
In this case, the composite structure contains, by volume%, 40 to 60% of the particulate bainite and 40 to 60% of the tempered martensite. These fine grains contribute to the hole expandability (HER) and elongation (EL) increase.

또한, 본 발명에 따른 열연강판은 기계적 특성 측면에서, 인장강도(TS) 980MPa 이상, 홀확장성(HER) 50% 이상 및 연신율(El) 10% 이상을 갖는 것을 특징으로 한다. 이는 니오븀(Nb)의 복합 첨가에 의해 결정립의 미세화 및 균일 조직 형성으로 평균 결정립 크기가 수 nm인 입상 베이나이트 및 템퍼드 마르텐사이트 형성에 기인한 것이다.
The hot-rolled steel sheet according to the present invention is characterized by having a tensile strength (TS) of 980 MPa or more, a hole expandability (HER) of 50% or more, and an elongation (El) of 10% or more from the viewpoint of mechanical properties. This is attributed to the formation of granular bainite and tempered martensite having an average grain size of several nm due to grain refinement and uniform texture formation by the addition of niobium (Nb).

이하, 상기 특성을 갖는 본 발명에 따른 열연강판 제조 방법에 대하여 설명하기로 한다.Hereinafter, a method for manufacturing a hot-rolled steel sheet according to the present invention having the above-described characteristics will be described.

도 1은 본 발명의 실시예에 따른 열연강판 제조 방법을 나타낸 공정 순서도이다.1 is a process flowchart showing a method for manufacturing a hot rolled steel sheet according to an embodiment of the present invention.

도 1을 참조하면, 도시된 열연강판 제조 방법은 열간압연 단계(S110), 1차 냉각 단계(S120) 및 2차 냉각/권취 단계(S130)를 포함한다.
Referring to FIG. 1, the illustrated hot-rolled steel sheet manufacturing method includes a hot-rolling step (S110), a primary cooling step (S120), and a secondary cooling / winding step (S130).

열간압연Hot rolling

열간압연 단계(S110)에서는 전술한 조성, 즉 중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6% 및 보론(B) : 0.002~0.0025%를 포함하며, 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 열간압연한다.In the hot rolling step (S110), in the above-described composition, that is, by weight%, carbon (C): 0.04 to 0.08%, silicon (Si): 0.3 to 0.9%, manganese (Mn): 1.5 to 2.0%, phosphorus (P) : 0.02% or less, Sulfur (S): 0.003% or less, Aluminum (Al): 0.02% or less, Niobium (Nb): 0.04-0.06%, Titanium (Ti): 0.05-0.07%, Vanadium (V): 0.12% Hereinafter, chromium (Cr): 0.4 ~ 0.6% and boron (B): 0.002 ~ 0.0025%, and hot-rolled slab plate consisting of the remaining iron (Fe) and inevitable impurities.

여기서, 슬라브 판재는 제강공정을 통해 원하는 조성의 용강을 얻은 다음에 연속주조공정을 통해 얻어질 수 있다. Here, the slab plate may be obtained through the continuous casting process after obtaining the molten steel of the desired composition through the steelmaking process.

본 단계에서, 열간압연은 마무리 압연 온도(Finishing Delivery Temperature; FDT) 880~920℃ 조건으로 실시될 수 있다. 마무리 압연 온도(FDT)가 880℃ 미만일 경우, 이상역 압연에 의한 혼립 조직이 발생하는 등의 문제가 발생할 수 있다. 반면에, 마무리 압연 온도(FDT)가 920℃를 초과하는 경우 페라이트 결정립의 조대화로 인하여 강도 및 연성이 감소할 수 있다.In this step, the hot rolling can be carried out at a finishing delivery temperature (FDT) of 880 to 920 占 폚. If the finishing rolling temperature (FDT) is lower than 880 DEG C, a problem such as occurrence of blistering due to abnormal reverse rolling may occur. On the other hand, when the finishing rolling temperature (FDT) exceeds 920 占 폚, strength and ductility may be reduced due to coarsening of the ferrite grains.

한편, 도시하지는 않았으나, 열간압연 전에, 슬라브 판재를 슬라브 재가열 온도(Slab Reheating Temperature; SRT) : 1150~1250℃에서 재가열하는 단계를 더 포함할 수 있다. Meanwhile, although not shown, the slab plate may further include reheating the slab plate at a slab reheating temperature (SRT) of 1150 to 1250 ° C before hot rolling.

본 발명에서, 슬라브 재가열 온도(SRT)가 1150℃ 미만일 경우, 망간 편석대의 재분해 등의 효율이 감소하여, 최종 제조되는 냉연강판의 굽힘 가공성이 저하될 수 있다. 반면에, 슬라브 재가열 온도(SRT)가 1250℃를 초과할 경우, 과도한 가열로 인하여 추가의 효과없이 강판 제조 비용만 상승할 수 있다. 슬라브 재가열에 의하여 주조시 편석된 성분이 재고용될 수 있다.
In the present invention, when the slab reheating temperature (SRT) is less than 1150 ° C, the efficiency of re-splitting of the manganese segregation table decreases, and the bending workability of the cold-rolled steel sheet to be finally produced may be lowered. On the other hand, if the slab reheating temperature (SRT) exceeds 1250 DEG C, the steel plate manufacturing cost can be increased without additional effect owing to excessive heating. Segregated components can be reused during casting by slab reheating.

1차 냉각Primary cooling

1차 냉각 단계(S120)에서는 열간압연된 판재를 660~720℃까지 1차 냉각한다. 1차 냉각에 의하여 입상 베이나이트가 형성될 수 있다. In the primary cooling step (S120), the hot-rolled plate is first cooled to 660 to 720 占 폚. Granular bainite can be formed by primary cooling.

본 단계에서, 냉각 속도는 50 ~ 150℃/sec인 것이 바람직하다. 1차 냉각 속도가 50℃/sec 미만일 경우 페라이트, 펄라이트 변태를 유발할 수 있다. 반대로, 1차 냉각 속도가 150℃/sec를 초과하는 경우, 제조되는 강판의 홀확장성, 인성 등이 저하될 수 있다.
In this step, the cooling rate is preferably 50 to 150 DEG C / sec. If the primary cooling rate is less than 50 ° C / sec, ferrite and pearlite transformation may occur. On the other hand, when the primary cooling rate exceeds 150 ° C / sec, the hole expandability, toughness and the like of the steel sheet to be produced may be lowered.

2차 냉각/Secondary cooling / 권취Coiling

2차 냉각/권취 단계(S130)에서는 1차 냉각된 판재를 권취 온도(Coiling Temperature; CT)로 2차 냉각하여 권취한다. 2차 냉각에 의하여 템퍼드 마르텐사이트가 형성될 수 있다. In the secondary cooling / winding step (S130), the primary cooled plate is secondarily cooled by a coiling temperature (CT) and is wound. Tempered martensite can be formed by secondary cooling.

본 단계에서, 권취 온도(CT)는 460~520℃인 것이 바람직하다. 권취 온도(CT)가 460℃ 미만일 경우, 강판의 홀 확장성 등이 저하될 수 있다. 반면, 권취 온도(CT)가 520℃를 초과하는 경우 충분한 템퍼드 마르텐사이트를 형성하기 어렵다. In this step, the coiling temperature (CT) is preferably 460 to 520 ° C. If the coiling temperature (CT) is less than 460 DEG C, the hole expandability and the like of the steel sheet may be deteriorated. On the other hand, when the coiling temperature (CT) exceeds 520 DEG C, it is difficult to form sufficient tempered martensite.

한편, 본 단계에서 2차 냉각은 80 ~ 200℃/sec의 냉각 속도로 실시되는 것이 바람직하다. 이때, 냉각 속도가 80℃/sec 미만일 경우, 충분한 템퍼드 마르텐사이트를 형성하기 어려워질 수 있다. 반면에, 2냉각 속도가 200℃/sec를 초과하는 경우, 과도한 냉각으로 인하여 홀 확장성 등이 저하될 수 있다.
On the other hand, the secondary cooling in this step is preferably carried out at a cooling rate of 80 to 200 DEG C / sec. At this time, if the cooling rate is less than 80 ° C / sec, it may be difficult to form sufficient tempered martensite. On the other hand, when the two cooling rates exceed 200 DEG C / sec, the hole expandability or the like may be lowered due to excessive cooling.

상기 과정을 통하여 제조되는 열연강판의 최종 미세조직은 입상 베이나이트(GB)와 템퍼드 마르텐사이트(TM)를 포함한다. 이에 따라 본 발명에 따른 열연강판의 최종 미세조직은 2상으로 구성된다.The final microstructure of the hot-rolled steel sheet produced through the above process includes granular bainite (GB) and tempered martensite (TM). Accordingly, the final microstructure of the hot-rolled steel sheet according to the present invention is composed of two phases.

보다 구체적으로, 본 발명에 따른 열연강판은 템퍼드 마르텐사이트가 단면조직 면적률, 즉 부피 %로 40%이상 포함되는 것이 바람직하다. 템퍼드 마르텐사이트가 40% 미만일 경우, 탄소 등 합금성분 첨가량이 상대적으로 적은 것을 감안하면, 목표로 하는 인장강도 980MPa를 달성하기 어렵다. 그리고, 나머지 상인 입상 베이나이트는 40~60%로 포함될 수 있다.More specifically, the hot-rolled steel sheet according to the present invention preferably has tempered martensite at a cross-sectional area ratio, that is, at least 40% by volume. When the tempered martensite is less than 40%, it is difficult to achieve the target tensile strength of 980 MPa in view of the relatively small amount of the additive such as carbon. Further, the remaining granular bainite can be included in the range of 40 to 60%.

상기의 합금성분 및 조직을 갖는 본 발명에 따른 열연강판은 기계적 특성 측면에서, 980MPa 이상, 바람직하게 980 ~ 1050MPa 범위의 인장강도(TS), 50% 이상, 바람직하게 50~80% 범위의 홀확장성(HER) 및 10% 이상, 바람직하게 10~55% 범위의 연신율(EL)을 가질 수 있다.The hot-rolled steel sheet according to the present invention having the above-mentioned alloy component and structure has tensile strength (TS) of not less than 980 MPa, preferably 980 to 1050 MPa, hole expansion of not less than 50%, preferably 50 to 80% (HER) and an elongation (EL) in the range of 10% or more, preferably 10 to 55%.

이 결과, 본 발명에 따른 방법으로 제조되는 열연강판은 티타늄의 함량이 강판 전체 중량의 0.07중량% 이하인 저티타늄 합금성분계이면서도 고강도를 가지며, 홀확장성이 우수하다.As a result, the hot-rolled steel sheet produced by the method according to the present invention has a high strength and a high hole expandability, while being a low-titanium alloy component system in which the content of titanium is 0.07% by weight or less of the total weight of the steel sheet.

이처럼, 본 발명에 따른 열연강판은 저티타늄 합금성분계이면서도 고강도와 더불어 고홀확장성의 확보가 가능하므로, 기존의 티타늄 산화물(TiO) 생성을 억제할 수 있어 자동차 샤시 부품용 소재 중 리어 서스펜션(Rear Suspension) 부품에 활용하기에 적합하며, 그 외 고강도, 고홀확장성을 요구하는 제품에 활용 가능하다.
As described above, the hot-rolled steel sheet according to the present invention can suppress the formation of titanium oxide (TiO 2), because it can secure high-strength and high-hole expandability while being a low titanium alloy component. Therefore, It is suitable for use in parts, and can be applied to products requiring high strength and high hole expandability.

실시예Example

이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. Hereinafter, the configuration and operation of the present invention will be described in more detail with reference to preferred embodiments of the present invention. It is to be understood, however, that the same is by way of illustration and example only and is not to be construed in a limiting sense.

여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
The contents not described here are sufficiently technically inferior to those skilled in the art, and a description thereof will be omitted.

1. 시편의 제조1. Preparation of specimens

표 1에 기재된 조성을 갖는 슬라브 판재를 제조하였다.A slab plate having the composition shown in Table 1 was prepared.

[표 1] [Table 1]

Figure pat00001
Figure pat00001

이후, 슬라브 판재를 1250℃에서 3시간동안 재가열하고, 마무리압연온도 900℃로 열간압연한 후 100℃/sec의 냉각속도로 700℃까지 냉각한 후 다시 150℃/sec의 냉각속도로 500℃까지 냉각하여 권취하여 최종 실시예 1~3 및 비교예 1~2에 따른 열연시편 1~5를 제조하였다.
Thereafter, the slab plate was reheated at 1250 ° C for 3 hours, hot rolled at a finish rolling temperature of 900 ° C, cooled to 700 ° C at a cooling rate of 100 ° C / sec and then cooled to 500 ° C at a cooling rate of 150 ° C / Followed by cooling and winding to prepare hot-rolled specimens 1 to 5 according to the final Examples 1 to 3 and Comparative Examples 1 and 2.

2. 기계적 특성 및 물성 평가2. Evaluation of Mechanical Properties and Properties

표 2는 제조된 열연시편 1~5 각각의 인장시험 결과 및 조직 특성을 나타낸 것이고, 도 2는 본 발명의 실시예 2에 따라 제조된 시편의 미세조직을 나타낸 사진이다.Table 2 shows the tensile test results and the texture characteristics of each of the manufactured hot-rolled specimens 1 to 5, and Fig. 2 is a photograph showing the microstructure of the specimen produced according to Example 2 of the present invention.

표 2에서, 인장강도(TS), 항복비(YS) 및 연신율(EL)은 JIS 5호 시험편에 의거한 인장시험을 통하여 측정하였다.In Table 2, tensile strength (TS), yield ratio (YS) and elongation (EL) were measured by a tensile test according to JIS 5 test specimens.

홀확장성(HER)은 초기 직경(d0:10mm)의 천공 구멍을 형성한 후, 60° 원추펀치로 확장시켜서, 크랙(crack)이 판을 관통한 시점의 구멍 직경(d)으로부터 구해지는 홀 확장률((d-d0)/d0 X 100)로 나타내었다.The hole expandability (HER) was measured by forming a perforation hole having an initial diameter (d 0 : 10 mm) and then expanding it with a conical punch at 60 ° so as to obtain a hole diameter d from a point at which crack penetrated the plate And the hole expansion ratio ((dd 0 ) / d 0 X 100).

조직 특성은 단면조직 면적률, 즉 부피 %로 나타내었다. Tissue properties were expressed as the cross-sectional area ratio, that is, the volume percentage.

[표 2]     [Table 2]

Figure pat00002
Figure pat00002

표 1 및 표 2를 참조하면, 본 발명에서 제시한 조건을 만족하는 실시예 1~3에 따라 제조된 시편 3~5의 경우, 인장강도(TS), 항복비(YS), 연신율(EL) 및 홀확장성(HER)이 목표값을 모두 만족하여, 고강도이면서 홀확장성이 우수한 것을 확인할 수 있다.Tensile strength (TS), yield ratio (YS), elongation (EL) of specimens 3 to 5 prepared according to Examples 1 to 3 satisfying the conditions of the present invention are shown in Tables 1 and 2, And hole expandability (HER) satisfy all of the target values, and it is confirmed that the high strength and the hole expandability are excellent.

또한, 표 2 및 도 2를 참조하면, 조직 특성은 입상 베이나이트(GB)와 템퍼트 마르텐사이트(TM)의 2종의 상을 갖는 복합조직으로 이루어짐을 알 수 있다.Further, referring to Table 2 and FIG. 2, it can be seen that the structure characteristics are composed of a composite structure having two phases of granular bainite (GB) and temperate martensite (TM).

도 3은 본 발명의 실시예 2에 따라 제조된 시편에서 홀이 확장된 것을 나타낸 사진이고, 도 4는 도 3의 점선 부분을 확대한 미세조직 사진이다.FIG. 3 is a photograph showing a hole expanded in a specimen manufactured according to Embodiment 2 of the present invention, and FIG. 4 is a microstructure photograph of an enlarged dotted line portion of FIG.

도 3 및 도 4를 참조하면, 도 3의 홀(310) 주위의 점선 부분(A)에 해당되는 시편 영역이 도 4에 도시된 화살표 방향을 따라 확장되고 있음을 확인할 수 있다. Referring to FIGS. 3 and 4, it can be seen that the specimen region corresponding to the dotted line portion A around the hole 310 in FIG. 3 extends along the arrow direction shown in FIG.

이에 반해, 본 발명에서 제시한 조건을 벗어나는 비교예 1~2에 따라 제조된 시편 1~2의 경우, 인장강도(TS), 항복비(YS), 연신율(EL) 및 홀확장성(HER)이 목표값을 모두 미치지 못하였으며, 특히 홀확장성이 목표값과 거리가 멀었다. 그리고, 조직 특성은 페라이트와 베이나이트 혼합조직(FB)의 단일상으로 이루어짐을 알 수 있다.On the contrary, tensile strength (TS), yield ratio (YS), elongation (EL) and hole expandability (HER) of specimens 1 and 2 prepared according to Comparative Examples 1 and 2, This target value was not satisfied at all, especially the hole expandability was far from the target value. It can be seen that the texture characteristic is composed of single phase of ferrite and bainite mixed structure (FB).

이처럼, 티타늄의 함량을 강판 전체 중량의 0.07중량% 이하로 가져가면서 니오븀(Nb) 등을 첨가하는 합금성분 조절과 더불어 공정 제어를 통해 고강도, 고홀확장성을 갖는 열연강판의 제조가 가능함을 알 수 있다.
As described above, it is possible to manufacture a hot-rolled steel sheet having high strength and high-hole expandability through process control while controlling the content of the alloy by adding niobium (Nb) or the like while bringing the content of titanium to 0.07 wt% or less of the total weight of the steel sheet have.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. Such changes and modifications are intended to fall within the scope of the present invention unless they depart from the scope of the present invention. Accordingly, the scope of the present invention should be determined by the following claims.

S110 : 열간압연 단계
S120 : 1차 냉각 단계
S130 : 2차 냉각/권취 단계
310 : 홀
S110: Hot rolling step
S120: primary cooling step
S130: Second cooling / winding step
310: hole

Claims (6)

(a) 중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6%, 보론(B) : 0.002~0.0025% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지는 슬라브 판재를 마무리 압연 온도(FDT) 880~920℃로 열간압연하는 단계;
(b) 상기 열간압연된 판재를 660~720℃까지 1차 냉각하는 단계; 및
(c) 상기 1차 냉각된 판재를 권취 온도(CT) 460~520℃로 2차 냉각하여 권취하는 단계;를 포함하는 것을 특징으로 하는 열연강판 제조 방법.
(a) By weight%, carbon (C): 0.04 to 0.08%, silicon (Si): 0.3 to 0.9%, manganese (Mn): 1.5 to 2.0%, phosphorus (P): 0.02% or less, sulfur (S) : 0.003% or less, Aluminum (Al): 0.02% or less, Niobium (Nb): 0.04-0.06%, Titanium (Ti): 0.05-0.07%, Vanadium (V): 0.12% or less, Chromium (Cr): 0.4- Hot rolling the slab plate comprising 0.6%, boron (B): 0.002 to 0.0025% and the remaining iron (Fe) and unavoidable impurities at a finish rolling temperature (FDT) of 880 to 920 ° C .;
(b) primary cooling the hot rolled plate to 660 - 720 캜; And
(c) winding the primary cooled sheet by secondary cooling at a coiling temperature (CT) of 460 to 520 ° C .; hot rolled steel sheet manufacturing method comprising a.
제1항에 있어서,
상기 1차 냉각은
냉각속도 50 ~ 150℃/sec 조건으로 실시되는 것을 특징으로 하는 열연강판 제조 방법.
The method of claim 1,
The primary cooling
Hot-rolled steel sheet manufacturing method characterized in that the cooling rate is carried out at 50 ~ 150 ℃ / sec conditions.
제1항에 있어서,
상기 2차 냉각은
냉각속도 80 ~ 200℃/sec 조건으로 실시되는 것을 특징으로 하는 열연강판 제조 방법.
The method of claim 1,
The secondary cooling
And a cooling rate of 80 to 200 占 폚 / sec.
중량%로, 탄소(C) : 0.04 ~ 0.08%, 실리콘(Si) : 0.3 ~ 0.9%, 망간(Mn) : 1.5 ~ 2.0%, 인(P) : 0.02% 이하, 황(S) : 0.003% 이하, 알루미늄(Al) : 0.02% 이하, 니오븀(Nb) : 0.04 ~ 0.06%, 티타늄(Ti) : 0.05 ~ 0.07%, 바나듐(V) : 0.12 % 이하, 크롬(Cr) : 0.4 ~ 0.6%, 보론(B) : 0.002~0.0025% 및 나머지 철(Fe)과 불가피한 불순물로 이루어지며,
인장강도(TS) 980MPa 이상, 홀확장성(HER) 50% 이상 및 연신율(El) 10% 이상을 갖는 것을 특징으로 하는 열연강판.
By weight%, carbon (C): 0.04 to 0.08%, silicon (Si): 0.3 to 0.9%, manganese (Mn): 1.5 to 2.0%, phosphorus (P): 0.02% or less, sulfur (S): 0.003% Or less, aluminum (Al): 0.02% or less, niobium (Nb): 0.04 to 0.06%, titanium (Ti): 0.05 to 0.07%, vanadium (V): 0.12% or less, chromium (Cr): 0.4 to 0.6%, Boron (B): 0.002 ~ 0.0025% and the remaining iron (Fe) and inevitable impurities,
Hot-rolled steel sheet having a tensile strength (TS) of 980 MPa or more, hole expandability (HER) of 50% or more, and elongation (El) of 10% or more.
제4항에 있어서,
상기 열연강판은
미세조직이, 입상 베이나이트(Granular Bainite)와 템퍼드 마르텐사이트(Temperped Martensite)의 복합조직으로 이루어지는 것을 특징으로 하는 열연강판.
5. The method of claim 4,
The hot-
The hot rolled steel sheet, characterized in that the microstructure consists of a composite structure of granular bainite and tempered martensite.
제5항에 있어서,
상기 복합조직은
부피%로, 상기 입상 베이나이트 40~60% 및 상기 템퍼드 마르텐사이트 40~60%를 포함하는 것을 특징으로 하는 열연강판.
6. The method of claim 5,
The composite structure
By volume, 40 to 60% of the granular bainite, and 40 to 60% of the tempered martensite.
KR1020120108405A 2012-09-27 2012-09-27 Hot-rolled steel sheet and method for manufacturing of the same KR101455466B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120108405A KR101455466B1 (en) 2012-09-27 2012-09-27 Hot-rolled steel sheet and method for manufacturing of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120108405A KR101455466B1 (en) 2012-09-27 2012-09-27 Hot-rolled steel sheet and method for manufacturing of the same

Publications (2)

Publication Number Publication Date
KR20140041274A true KR20140041274A (en) 2014-04-04
KR101455466B1 KR101455466B1 (en) 2014-10-27

Family

ID=50651138

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120108405A KR101455466B1 (en) 2012-09-27 2012-09-27 Hot-rolled steel sheet and method for manufacturing of the same

Country Status (1)

Country Link
KR (1) KR101455466B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119702A (en) * 2016-06-21 2016-11-16 宝山钢铁股份有限公司 A kind of 980MPa level hot-rolled high-strength height reaming steel and manufacture method thereof
CN112522582A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Boron-containing high-strength high-hole-expansion steel and manufacturing method thereof
CN114182182A (en) * 2020-09-14 2022-03-15 上海梅山钢铁股份有限公司 Hot-rolled pickled steel plate for refrigerator compressor shell and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101938077B1 (en) 2017-07-26 2019-01-11 현대제철 주식회사 Method for manufacturing hot rolled steel sheet and hot rolled steel sheet thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440431B2 (en) 2010-07-14 2014-03-12 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent paint corrosion resistance and punched portion fatigue characteristics and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119702A (en) * 2016-06-21 2016-11-16 宝山钢铁股份有限公司 A kind of 980MPa level hot-rolled high-strength height reaming steel and manufacture method thereof
CN112522582A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Boron-containing high-strength high-hole-expansion steel and manufacturing method thereof
CN114182182A (en) * 2020-09-14 2022-03-15 上海梅山钢铁股份有限公司 Hot-rolled pickled steel plate for refrigerator compressor shell and manufacturing method thereof

Also Published As

Publication number Publication date
KR101455466B1 (en) 2014-10-27

Similar Documents

Publication Publication Date Title
KR101455466B1 (en) Hot-rolled steel sheet and method for manufacturing of the same
KR101344672B1 (en) High strength steel sheet and method of manufacturing the steel sheet
JP2007063604A (en) Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method
KR20130046967A (en) High strength steel sheet have good wear resistant characteristics and method of manufacturing the steel sheet
KR101109953B1 (en) High strenth hot rolled steel sheet having excellent elongation-stretch flangeability property, and method for manufacturing the same
KR101368547B1 (en) High strength hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20140130325A (en) Hot-rolled steel sheet and method of manufacturing the same
KR101412262B1 (en) High strength cold-rolled steel sheet for automobile with excellent bendability and formability and method of manufacturing the same
KR101159997B1 (en) High strength low carbon hot-rolled steel sheet with excellent hall expansibility and method of manufacturing the low carbon hot-rolled steel
KR101412247B1 (en) Method of manufacturing ultra high strength steel sheet
KR101449137B1 (en) High strength hot-rolled steel having excellent weldability and hydroforming workability and method for manufacturing thereof
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
KR101938077B1 (en) Method for manufacturing hot rolled steel sheet and hot rolled steel sheet thereof
KR101546124B1 (en) Hot-rolled steel and method of manufacturing the same
KR101412365B1 (en) High strength steel sheet and method of manufacturing the same
KR101989236B1 (en) Method for manufacturing hot rolled steel sheet and hot rolled steel sheet thereof
KR101412269B1 (en) Method for manufacturing high strength cold-rolled steel sheet
KR101412286B1 (en) Ultra high strength steel sheet and method of manufacturing the steel sheet
KR20100047016A (en) High tensile hot -rolled steel sheet having excellent stretch flanging formability, and method for producing the same
KR101160016B1 (en) High strength hot-rolled steel for hydroforming with excellent workability and method of manufacturing the hot-rolled steel
KR101185241B1 (en) Ultra-high strength low carbon hot-rolled steel sheet with excellent hall expansibility and weldability and method of manufacturing the low carbon hot-rolled steel
KR101449136B1 (en) Hot-rolled steel sheet having excellent weldability and mehtod for manufacturing thereof
KR20140002281A (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet
KR20120001010A (en) High strength hot-rolled steel sheet with dual phase and method of manufacturing the same
KR20150112490A (en) Steel and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171013

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191011

Year of fee payment: 6