KR20140021273A - 일체형 고휘도 편광필름 - Google Patents

일체형 고휘도 편광필름 Download PDF

Info

Publication number
KR20140021273A
KR20140021273A KR1020120087428A KR20120087428A KR20140021273A KR 20140021273 A KR20140021273 A KR 20140021273A KR 1020120087428 A KR1020120087428 A KR 1020120087428A KR 20120087428 A KR20120087428 A KR 20120087428A KR 20140021273 A KR20140021273 A KR 20140021273A
Authority
KR
South Korea
Prior art keywords
polarizing film
layer
film
high brightness
component
Prior art date
Application number
KR1020120087428A
Other languages
English (en)
Other versions
KR101930554B1 (ko
Inventor
조덕재
한정완
백명기
이황규
고승진
Original Assignee
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 웅진케미칼 주식회사 filed Critical 웅진케미칼 주식회사
Priority to KR1020120087428A priority Critical patent/KR101930554B1/ko
Publication of KR20140021273A publication Critical patent/KR20140021273A/ko
Application granted granted Critical
Publication of KR101930554B1 publication Critical patent/KR101930554B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/56Substrates having a particular shape, e.g. non-rectangular

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

본 발명의 일체형 고휘도 편광필름은 제1 광학필름과 반사형 편광필름 사이에 이격을 방지하여 휘도를 증진시킬 수 있다.
본 발명의 반사형 편광자는 평균 광학적 두께가 상이한 복수개의 그룹들이 일체로 형성되므로 코어층 내부 및 코어층과 스킨층 사이에 별도의 접착층 및/또는 보호층(PBL)이 포함되지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다. 또한 평균광학적 두께가 상이한 복수개의 그룹이 형성되므로 가시광선 파장영역의 S파를 모두 반사할 수 있다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다.

Description

일체형 고휘도 편광필름{High luminance multifunctional polarizing film}
본 발명은 일체형 고휘도 편광필름에 관한 것으로서, 보다 상세하게는 한정된 두께에서 광학물성을 극대화시키는데 매우 유리한 일체형 고휘도 편광필름에 관한 것이다.
평판디스플레이 기술은 TV분야에서 이미 시장을 확보한 액정디스플레이(LCD), 프로젝션 디스플레이 및 플라즈마 디스플레이(PDP)가 주류를 이루고 있고, 또 전계방출디스플레이(FED)와 전계발광디스플레이(ELD)등이 관련기술의 향상과 더불어 각 특성에 따른 분야를 점유할 것으로 전망된다. 액정 디스플레이는 현재 노트북, 퍼스널 컴퓨터 모니터, 액정 TV, 자동차, 항공기 등 사용범위가 확대되고 있으며 평판시장의 80%가량을 차지하고 있고 세계적으로 LCD의 수요가 급증해 현재까지 호황을 누리고 있다.
액정디스플레이(LCD)는 백라이트에서 나오는 빛을 액정분자의 광 스위칭 기능을 이용하여 온-오프(on-off)를 제어하는 표시방식이지만, 고품위의 표시를 실현하기 위해서는 여러 종류의 광학필름이 사용되고 있다. 광학필름으로서는 백라이트를 유효하게 사용하기 위한 필름군(확산필름, 프리즘시트, 휘도향상필름 등), 편광판에 사용되는 필름군(편광필름, 편광자 보호필름), 액정 셀과 편광판의 위상차를 보정(補正)하기 위한 위상차 필름 등이 있다.
최근 디스플레이 관련분야 조사발표에 의하면, 프리즘시트, 반사형 편광필름, 확산, 반사필름에 관한 백라이트용 광학필름 시장은 날로 커지고 있다.
현재 시판 중인 편광필름은 흡수형 또는 비흡수형이 있으며, 흡수형에는 요오드계 편광판 또는 염료계 편광판이 있다. 현재 사용되고 있는 편광판의 대부분은 광학특성이 우수한 PVA-요오드계 편광필름이 대표적이다.
PVA-요오드계 편광필름은 폴리비닐알코올(PVA) 필름에 가시광 영역의 빛 흡수 능력을 부여하기 위하여, PVA 필름에 높은 이색성을 가지는 요오드를 흡착시킨 것으로서, 요오드의 구조적 특성으로 인해, 편광자 특성을 갖게 된다. 이때, 편광자 특성이라 함은 등방성인 빛을 한쪽방향의 선형 진동 또는 회전진동 형태의 비등방성 편광으로 변형하여 선택적 편광흡수가 가능하도록 하는 것이다.
그러나, PVA-요오드계 편광필름은 요오드의 높은 승화성과 낮은 내구성으로 인한 필름의 변형을 막기 위하여, 복굴절성이 없고 투광율이 높고 파장 의존성이 없으며, 내열 내습 및 기계적 강도가 높은 트리아세틸 셀룰로오스(TAC) 필름을 보호필름으로 적층하여야 한다.
이에, 상기 요오드의 승화성으로 인한 내구성 문제점을 해결하고자 그 대안으로 등장한 PVA-염료계 흡수형 편광필름은 연신 중, 정렬된 염료자체의 이색성으로 인해, 편광자 특성을 갖게 되며, 고온 및 고습도 조건에서도 높은 내구성을 가지므로 광학특성의 변화가 적어, 특히 내구성이 요구되는 LCD용 고내구성 편광필름으로 적합하다.
또 다른 유형의 편광필름으로는 필름을 통과한 후 반사된 빛의 회전과 이차 반사를 통해 편광기능 및 투과광의 휘도를 향상시키는 반사형 편광필름이다. 상기 반사형 편광필름은 편광기술을 응용해 특정 빛은 내보내고, 특정 빛은 연속적으로 반사시켜 빛의 결손 없이 최대한 빛을 사용할 수 있도록 해 주는 역할을 해주는 필름이다.
반사형 편광필름은 굴절율이 다른 여러 층을 적층하는 방식 등으로 제조되며, 편광의 선형성 부족 등으로 인해 편광필름보다는 LCD등 디스플레이의 광원으로부터의 빛을 최대한 활용하기 위한 휘도향상 용도로 사용되고 있다. 이때, 여러 층을 적층하는 방식이 적용됨에 따라 필름의 박막화 구현이 어렵고, 가격상승의 원인이 된다.
도 1에서 도시된 바와 같이, 일반적인 액정디스플레이(LCD)의 구조는 크게 패널(10)과 백라이트 유닛(20)으로 구성되며, 상기 패널(100)의 후면에 위치한 편광필름(400)을 더욱 상세히 살펴보면[도 2], 편광필름에서 가장 중요한 편광기능을 구현하는 편광자라 불리는 폴리비닐알코올(PVA) 필름(410) 양면에, 상기 PVA 보호용 필름(420, 430)이 적층된다. 이때, LCD 백라이트(200)측에 근접하여 위치한 PVA 보호용 필름(420)상에는 고휘도를 위하여 반사형 편광필름(300)이 삽입되기도 하고, 또 다른 PVA 보호용 필름(430) 상에는 시야각 보상필름(위상차판, 310)이 적층 형성되기도 한다.
그런데, 상술한 바와 같이 흡수형 편광필름 및 보호필름 사이에 반사형 편광필름을 삽입시켜 사용하는 경우 이격이 발생하여 반사형 편광필름에서 출사되는 P파의 일부가 산란되어 흡수형 편광필름에 도달하지 않아 휘도가 저하되는 문제가 발생하였다. 또한, 반사형 편광필름과 흡수형 편광필름을 별도로 설치하여야 하므로 비용이 현저하게 증가하는 문제가 발생하였다.
본 발명은 상술한 문제를 해결하기 위해 안출된 것으로, 본 발명의 첫번째 목적은 제1 광학필름과 반사형 편광필름 사이에 이격을 방지하여 휘도를 증진시킬 수 있는 일체형 고휘도 편광필름을 제공하는 것이다.
본 발명의 두번째 해결하려는 과제는 종래의 다층 반사편광자에 비하여 광학물성을 현저하게 향상된 다층 반사 편광자를 채용한 일체형 고휘도 편광필름을 제공하는 것이다.
상술한 과제를 해결하기 위하여 본 발명은 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 면내 복굴절을 갖는 제1층 및 제1층과 교호적층된 제2층을 포함하는 다층 반사형 편광필름; 상기 반사형 편광필름의 상부에 형성된 점착층 또는 접착층; 및 상기 점착층 또는 접착층의 상부에 형성된 제1 광학필름을 포함하고, 상기 다층 반사형 편광필름은 상기 제1층과 제2층은 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 제1층 및 제2층은 적어도 하나의 축방향으로 신장되며, 상기 제1층과 제2층은 하나의 반복단위를 형성하며, 반복단위들은 원하는 파장의 횡파(S파)를 반사시키기 위하여 그룹을 형성하며, 상기 그룹은 2개 이상이고, 상기 그룹들은 일체로 형성되며, 그룹간 반복단위들의 평균 광학적 두께가 상이한 코어층을 포함한다.
본 발명의 바람직한 일실시예에 따르면 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함할 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 제1 광학필름은 흡수형 편광필름일 수 있으며, 보다 바람직하게는 상기 흡수형 편광필름은 요오드계 또는 염료계 흡수형 편광필름일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 흡수형 편광필름의 적어도 일면에 보호필름을 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제1 광학필름은 위상차 필름일 수 있으며, 바람직하게는 상기 위상차 필름은 λ/4 파장필름 또는 λ/2 파장필름일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 상기 제1 편광은 종파이고, 상기 제2 편광은 횡파일 수 있다.
본 발명의 바람직한 다른 일실시예에 따르면, 상기 제1층은 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI), 엘라스토머 및 사이크로올레핀폴리머 중 어느 하나 이상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제2층은 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI), 엘라스토머 및 사이크로올레핀폴리머 중 어느 하나 이상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 반복단위들은 3개의 파장대역의 광을 반사하기 위하여 3개의 그룹을 형성할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 반복단위들은 4개의 파장대역의 광을 반사하기 위하여 3개의 그룹을 형성할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 원하는 파장은 가시광선 대역을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 동일한 그룹에 포함된 반복단위들의 광학적 두께는 평균 광학적 두께 대비 30% 이내, 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 3개의 반사대역은 450nm, 550nm 및 650nm의 파장대역을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 4개의 반사대역은 350nm, 450nm, 550nm 및 650nm의 파장대역을 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 복수개의 그룹들은 반복단위들의 평균 광학적 두께가 5% 이상, 바람직하게는 10% 이상 상이할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 하나의 그룹에 포함된 반복단위들은 25개 이상, 바람직하게는 50개 이상, 보다 바람직하게는 100개 이상, 가장 바람직하게는 150개 이상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제1층과 제2층의 굴절율의 차이는 신장된 축방향의 굴절율의 차이가 다른 축방향의 굴절율의 차이보다 클 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제1층과 제2층의 굴절율은 2개의 축 방향에 대한 굴절율의 차이가 0.05 이하이고, 나머지 1개의 축방향에 대한 굴절율의 차이가 0.1 이상일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제1층과 제2층 사이에 복굴절 계면이 형성될 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 제1층은 광학적 복굴절성을 가지며, 상기 제2층은 광학적 등방성을 가질 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 그룹과 그룹사이에 접착층이 형성되지 않을 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 코어층과 스킨층 사이에 접착층이 형성되지 않을 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 스킨층은 연신된 것일 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 본 발명의 반사형 편광자를 포함하는 백라이트 유니트를 포함한다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 백라이트 유니트는 상기 반사형 편광자에서 변조된 광을 다시 반사형 편광자로 반사하는 반사수단을 더 포함할 수 있다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 백라이트 유니트를 포함하는 액정 표시장치를 제공한다.
이하, 본 명세서에서 사용된 용어에 대해 간략히 설명한다.
'중합체가 복굴절성을 가진다'는 의미는 방향에 따라 굴절률이 다른 섬유에 빛을 조사하는 경우 중합체에 입사한 빛이 방향이 다른 두 개의 빛 이상으로 굴절된다는 것이다.
'등방성'이라 함은 빛이 물체를 통과할 때, 방향에 상관없이 굴절률이 일정한 것을 의미한다.
'이방성'이라 함은 빛의 방향에 따라 물체의 광학적 성질이 다른 것으로 이방성 물체는 복굴절성을 가지며 등방성에 대응된다.
'광변조'라 함은 조사된 빛이 반사, 굴절, 산란하거나 빛의 세기, 파동의 주기 또는 빛의 성질이 변화하는 것을 의미한다.
'종횡비'라 함은 신장체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 비를 의미한다.
본 발명의 일체형 고휘도 편광필름은 제1 광학필름과 반사형 편광필름 사이에 이격을 방지하여 휘도를 증진시킬 수 있다.
본 발명의 반사형 편광자는 평균 광학적 두께가 상이한 복수개의 그룹들이 일체로 형성되므로 코어층 내부 및 코어층과 스킨층 사이에 별도의 접착층 및/또는 보호층(PBL)이 포함되지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다. 또한 평균광학적 두께가 상이한 복수개의 그룹이 형성되므로 가시광선 파장영역의 S파를 모두 반사할 수 있다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다.
도 1은 일반적인 액정디스플레이(LCD)의 구조에 대한 모식도이다.
도 2는 종래 편광시트의 단면도이다.
도 3은 본 발명의 바람직한 실시일례인 일체화된 편광시트의 모식도이다.
도 4는 본 발명의 일체형 편광시트의 고휘도 원리를 도시한 것이다.
도 5는 본 발명의 바람직한 일실시예에 따른 다층 반사형 편광자의 단면도이다.
도 6은 본 발명의 바람직한 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다.
도 7은 본 발명의 바람직한 또 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다.
도 8은 본 발명에 사용될 수 있는 슬릿형 압출구금의 구금분배판들의 사시도이고, 도 9는은 이들의 저면도이며, 도 10은 결합도이다.
도 11은 본 발명의 바람직한 일구현예에 따른 다층 복합류의 단면도이다.
도 12는 본 발명의 바람직한 일실시예에 따른 2개의 다층 복합류를 형성하기 위하여 2개의 제1 가압수단들을 포함하는 개략도이다.
도 13은 본 발명의 바람직한 일실시예에 따른 2개의 다층 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도이다.
도 14는 본 발명의 바람직한 일실시예에 따른 다층 복합류 및 스킨층의 합지부를 나타내는 개략도이다.
도 15는 본 발명의 바람직한 일실시예에 따른 코트-행거 다이의 단면도이며, 도 16은 측면도이다.
도 17은 본 발명의 바람직한 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.
도 18은 본 발명의 바람직한 다른 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.
도 19는 본 발명의 바람직한 또 다른 일구현예에 따른 다층 반사편광자를 제조하는 장치의 개략도이다.
이하, 본 발명을 첨부된 도면을 참조하여 보다 상세히 설명한다.
본 발명은 다층 반사형 편광필름과 및 상기 반사형 편광필름의 상부에 형성된 제1 광학필름을 일체화시킨 고휘도 편광시트를 제공한다.
본 발명의 편광시트에서 일체화라 함은 상기 제1 광학필름 및 반사형 편광필름(31)이 층간 접합수단에 의하여 일체화된 것이며, 접합수단은 상기 제1 광학필름(33) 및 반사형 편광필름(31)간에 직접 적용되거나, 필요에 따라 상기 층간에 보호필름 또는 이형필름 등이 적층될 경우, 다층간 접착목적으로 적용될 수 있다.
도 3은 본원발명의 바람직한 실시일례인 일체화된 편광시트의 모식도로서, 다층 반사형 편광필름(31)상에 접착층 또는 점착층(32) 및 제1 광학필름(33)을 순차 적층시켜 일체화시킨 구조이다.
도 4와 같이 광원(미도시)에서 조사된 광은 반사형 편광필름(31)에 먼저 도달하여, 연신방향과 수직인 편광(P편광) 부분만 통과하고, 나머지 연신방향의 편광(S편광)은 아래로 반사된다. 이 과정에서 S편광은 하부에서 재반사되어 편광이 바뀌어져서 위로 올라오게 되는데, 바뀐 편광 중에서 P편광은 통과, 나머지 S편광
은 리사이클링(Recycling)되면서 휘도가 상승하게 된다. 이때, 통과된 P편광은 제1 광학필름(33)을 지나면서 99.99% 이상의 편광효율을 구현하게 된다.
따라서, 본 발명의 일체화된 편광필름(30)은 제1 광학필름(33)과 다층 반사형 편광필름(31)을 일체화시킴으로써, 제1 광학필름과 반사형 편광필름 사이에 이격을 방지하여 휘도를 증진시킬 수 있다.
한편, 상술한 제1 광학필름(33)은 흡수형 편광필름이거나, 위상차 필름일 수 있다.
먼저, 본 발명에 사용될 수 있는 흡수형 편광필름을 설명한다. 본 발명에 사용될 수 있는 흡수형 편광필름은 종래에 액정디스플레이에 사용되던 것이라면 제한없이 사용될 수 있으며, 바람직하게는 대표적으로 요오드계 또는 염료계 흡수형 편광필름을 포함한다. 염료계로는 아조계, 안트라퀴논계, 시오인디고계, 페릴렌계 및 프탈론계로 이루어진 군에서 선택되는 염료 또는 펄 염료에서 선택되는 어느 하나를 사용할 수 있다.
또한, 본 발명의 일체화는 점착수단 또는 접착수단에 의한 일체화를 말하며, 바람직하게는 광학손상이 없는 광학접착제 또는 광학점착제에 의한 일체화 방법이며, 이때 점착층 또는 접착층의 두께는 특별히 한정되지 않으나, 0.1 내지 10㎛가 바람직하다.
다음, 본 발명에 사용될 수 있는 위상차 필름을 설명한다. 위상차 필름은 액정표시장치의 STN (수퍼 트위스티드 네마틱 (nematic)) 방식 등에 사용되며, 색보상, 시야각 확대등의 문제를 해결하기 위해 사용되고 있다. 일반적으로, 색보상용 위상차 필름의 재료로서는 폴리카보네이트, 폴리비닐알콜, 폴리술폰, 폴리에테르술폰, 비정질 폴리올레핀 등이 사용되며, 시야각 확대용 위상차 필름 재료로서는 상
기한 재료에 더하여 고분자 액정, 디스코틱 액정 등이 사용되고 있다. 본 발명에 사용될 수 있는 위상차 필름은, 가시광 영역인 측정파장 400 ∼ 700 ㎚, 바람직하게는 400 ∼ 780 ㎚ 에서 직선편광을 원편광으로, 원편광을 직선편광으로 변환하는
작용을 가질 필요가 있다. 이것을 위상차 필름 1 장으로 실현하고자 하면, 측정파장 λ = 400 ∼ 700 ㎚, 바람직하게는 400 ∼ 780 ㎚ 에서 위상차가 λ/4 (㎚) (100 ∼ 175 (바람직하게는 195 ㎚)) 가 되거나 λ/2가 되는 것이 그 위상차 필름의 이상적이며, 통상적인 위상차 필름의 두께를 가질 수 있다.
이를 통해 시야각을 확대할 수 있을 뿐 아니라 액정디스플레이, OLED 등에 널리 활용될 수 있다.
다음, 본 발명에 사용되는 다층 반사형 편광필름을 설명한다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 다층 반사형 편광자는 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 면내 복굴절을 갖는 제1층 및 제1층과 교호적층된 제2층을 포함하고, 상기 제1층과 제2층은 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 제1층 및 제2층은 적어도 하나의 축방향으로 신장되며, 상기 제1층과 제2층은 하나의 반복단위를 형성하며, 반복단위들은 원하는 파장의 횡파(S파)를 반사시키기 위하여 그룹을 형성하며, 상기 그룹은 2개 이상이고, 상기 그룹들은 일체로 형성되며, 그룹간 반복단위들의 평균 광학적 두께가 상이한 코어층을 포함한다.
바람직하게는 코어층의 적어도 일면에 일체로 형성된 스킨층을 선택적으로 포함할 수 있다.
도 5는 본 발명의 바람직한 일실시예에 따른 다층 반사형 편광자의 단면도이다. 구체적으로 코어층(180)의 양면에 스킨층(189, 190)이 일체로 형성되고, 상기 코어층(180)은 2개의 그룹(A, B)로 구획된다. 도면에서 그룹 A와 B를 구획하는 점선은 가상의 선을 의미하는 것이다. 그룹 A에서 제1 성분에 해당하는 제1층(181, 183)과 제2 성분에 해당하는 제2층(182, 184)는 교호적층된다. 여기서 제1층(181)과 제2층(182)은 하나의 반복단위(R1)로 정의되며 그룹 A는 적어도 25개 이상의 반복단위를 포함할 수 있다. 그룹 B 역시 제1층(185, 187)과 제2 성분에 해당하는 제2층(182, 184)는 교호적층된다. 여기서 제1층(185)과 제2층(186)은 하나의 반복단위(R2)로 정의되며 그룹 A는 적어도 25개 이상의 반복단위를 포함할 수 있으며, 바람직하게는 50개 이상, 더욱 바람직하게는 100개 이상, 가장 바람직하게는 150개 이상일 수 있다. 또한 제1층과 제2층의 두께는 서로 동일할 수 있다.
또한 바람직하게는 상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함할 수 있으며 이는 선택적으로 적용될 수 있다.
한편 그룹 A에 포함된 반복단위(R1)들의 평균 광학적 두께와 그룹 B에 포함된 반복단위(R2)들의 평균 광학적 두께가 상이하다. 이를 통해 서로 다른 S파의 파장영역을 반사할 수 있게 되는 것이다. 또한, 그룹 A에 포함된 반복단위들의 광학적 두께는 그룹 A의 평균 광학적 두께를 기준으로 30% 이내, 바람직하게는 20% 이내, 보다 바람직하게는 15% 이내의 광학적 두께편차를 가질 수 있다. 여기에서 광학적 두께(optical thickness)는 n(굴절율) × d(물리적 두께)를 의미한다. 한편 빛의 파장과 광학적 두께는 하기 관계식 1에 따라 정의된다.
[관계식 2]
λ= 2(n1d1 + n2d2)
단 λ는 빛의 파장(nm), n1은 1층 굴절율, n2는 2층 굴절율, d1은 1층 물리적 두께(nm), d2는 2층 물리적 두께(nm)를 의미한다.
그러므로, 그룹 A의 평균 광학적 두께가 200㎚라면 상술한 관계식 2에 의하여 400㎚ 파장의 횡파(S파)를 반사시킬 수 있는 것이다. 이 경우 두께 편차가 20%라면 대략 320 ~ 480㎚ 파장대역을 커버할 수 있다. 만일 그룹 B의 반복단위(R2)들의 평균 광학적 두께가 130㎚라면 관계식 1에 의하여 520㎚ 파장의 횡파(S파)를 반사시킬 수 있으며, 두께편차가 20%라면 대략 420 ~ 620㎚ 파장대역을 커버할 수 있으며 이 경우 그룹 A의 파장대역과 일부 중첩될 수 있어 이를 통해 광변조 효과를 극대화할 수 있다. 또한, 면내 복굴절을 갖는 제1층은 P파는 투과하고 S파는 반사시켜야 하므로 빛이 통과하는 두께방향(z축 굴절율)을 기준으로 굴절율(n)을 설정하고 평균 광학적 두께를 산정할 수 있다.
한편, 그룹과 그룹 사이에 접착층이 없이 일체로 형성된다. 또한 코어층과 스킨층 사이에도 일체로 형성된다. 그 결과 접착층으로 인한 광학물성의 저하를 방지할 수 있을 뿐만 아니라 한정된 두께에 보다 많은 층을 부가할 수 있어 광학물성을 현저하게 개선시킬 수 있으며 제조비용을 현저하게 저감시킬 수 있다. 나아가, 스킨층은 코어층과 동시에 제조된 후 연신공정이 수행되므로 종래의 코어층 연신 후 미연신 스킨층과의 접착과는 달리 본 발명의 스킨층은 적어도 하나의 축방향으로 연신될 수 있다. 이를 통해 미연신 스킨층에 비하여 표면경도가 향상되어 내스크래치성이 개선되며 내열성이 향상될 수 있다.
상기 스킨층은 선택적으로 형성될 수 있다.
도 6은 본 발명의 바람직한 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다. 이를 상기 도 5와의 차이점을 중심으로 설명하면 코어층 내부에 평균 광학적 두께가 상이한 3개 그룹들(A, B, C)이 형성되며 각각의 그룹간 반복단위들의 평균 광학적 두께가 상이하다.
도 7은 본 발명의 바람직한 또 다른 일실시예에 따른 다층 반사형 편광자의 단면도이다. 구체적으로 코어층은 4개의 그룹들이 형성되며, 각각의 그룹들은 각각 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역을 커버하기 위하여 평균 광학적 두께가 조절될 수 있다. 이 경우 코어층의 외곽층은 평균 광학적 두께가 큰 그룹들이 형성되며, 내부층에 평균 광학적 두께가 작은 그룹들이 형성될 수 있다. 한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 반복단위들의 평균 광학적 두께가 결정되어야 한다. 350㎚, 450㎚, 550㎚ 및 650㎚의 광 파장대역에 대응하도록 코어층 내부의 그룹별 반복단위들의 평균 광학적 두께를 설정하려면 그룹간의 제1 성분의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다.
본 발명의 바람직한 일구현예에 따르면, 코어층을 형성하는 제1층과 제2층사이에 복굴절 계면이 형성될 수 있다. 구체적으로, 제1층과 제2층이 교호적층된 다층 반사형 편광자에 있어서, 제1층과 제2층간의 공간상의 X, Y 및 Z축에 따른 굴절률의 실질적인 일치 또는 불일치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으로, 산란능은 굴절률 불일치의 제곱에 비례하여 변화한다. 따라서, 특정 축에 따른 굴절률의 불일치의 정도가 더 클수록, 그 축에 따라 편광된 광선이 더 강하게 산란된다. 반대로, 특정 축에 따른 불일치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란된다. 어떤 축에 따라 제2층의 굴절률이 제1층의 굴절률과 실질적으로 일치되는 경우, 이러한 축에 평행한 전기장으로 편광된 입사광은 제1층의 부분의 크기, 모양 및 밀도와 상관없이 산란되지 않고 제1층을 통과할 것이다. 또한, 그 축에 따른 굴절률이 실질적으로 일치되는 경우, 광선은 실질적으로 산란되지 않고 물체를 통해 통과한다. 보다 구체적으로, 제1편광(P파)는 제2층과 제1층의 경계에 형성되는 복굴절 계면에 영향을 받지 않고 투과되나, 제2편광(S파)는 제2층과 제1층의 경계에 형성되는 복굴절성 계면에 영향을 받아 광의 변조가 일어난다. 이를 통해 P파는 투과되고 S파는 광의 산란, 반사 등의 광의 변조가 발생하게 되어 결국 편광의 분리가 이루어지게 되는 것이다.
따라서, 상기 제1층과 제2층은 그 경계면에서 복굴절 계면을 형성하여야 광변조 효과를 유발할 수 있으므로, 상기 제2층이 광학적 등방성인 경우, 제1층은 복굴절성을 가질 수 있다. 구체적으로, 상기 제1층의 x축 방향의 굴절율이 nX1, y축 방향의 굴절율이 nY1 및 z축 방향의 굴절율이 nZ1이고, 제2층의 굴절율이 nX2, nY2 및 nZ2일 때, nX1과 nY1 사이의 면내 복굴절이 발생할 수 있다. 더욱 바람직하게는 제1층과 제2층은 X, Y, Z축 굴절율 중 적어도 어느 하나가 상이할 수 있으며, 보다 바람직하게는 신장축이 X축인 경우 Y축 및 Z축 방향에 대한 굴절율의 차이가 0.05 이하이고, X축향에 대한 굴절율의 차이가 0.1 이상일 수 있다. 한편 통상적으로 굴절율의 차이가 0.05 이하이면 정합으로 해석된다.
한편, 본 발명의 바람직한 일구현예에 따르면, 상기 다층 반사형 편광자의 전체 레이어 수는 100 ~ 2000 개 일 수 있다. 반복단위의 두께범위는 원하는 광의 파장범위 및 굴절율에 따라 적절하게 설계할 수 있으며, 바람직하게는 65 ~ 300㎚일 수 있다. 반복단위를 형성하는 제1층과 제2층의 두께는 거의 동일하거나 상이할 수 있다. 한편 본 발명에서 코어층의 두께는 10 ~ 300 ㎛이고, 스킨층의 두께는 50 ~ 190㎛일 수 있으나 이에 제한되지 않는다.
다음, 본 발명의 접착층을 포함하지 않으면서 일체로 형성된 다층 반사형 편광자를 제조하는 방법을 설명한다.
먼저, (1) 단계로서, 제1 성분, 제2 성분 및 스킨층 성분을 각각 압출부들에 공급한다. 이 때 스킨층 성분은 스킨층의 유무에 따라 선택적으로 첨가할 수 있다. 상기 제1 성분은 기재를 형성하는 제2 성분의 내부에 분산되는 폴리머로서 통상적인 폴리머가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET),폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있으며 보다 바람직하게는 PEN일 수 있다.
상기 제2 성분은 기재를 형성하는 것으로서 통상적으로 폴리머가 분산된 반사편광자에서 기재의 재질로 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 단독 또는 혼합하여 사용할 수 있으며 보다 바람직하게는 디메틸-2,6-나프탈렌 디카르복실레이트, 디메틸테레프탈레이트 및 에틸렌글리콜, 싸이크로헥산디메탄올(CHDM) 등의 단량체들이 적절하게 중합된 co-PEN일 수 있다.
상기 스킨층 성분은 통상적으로 폴리머가 분산된 반사편광자에서 사용되는 것이라면 제한없이 사용될 수 있으며, 바람직하게는 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU),폴리이미드(PI),폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴혼합(SAN),에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화포리에스테르(UP), 실리콘(SI) 및 사이크로올레핀폴리머를 사용할 수 있다. 상기 폴리카보네이트 얼로이(alloy)는 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)로 이루어질 수 있으며, 보다 바람직하게는 폴리카보네이트와 변성 글리콜 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG)가 5 : 95 ~ 95 : 5의 중량비로 이루어진 폴리카보네이트 얼로이일 수 있다. 한편, 본 발명의 스킨층은 퍼짐 및 연신공정에서 굴절율 변화가 적은 재질을 사용하는 것이 좋으며 보다 바람직하게는 폴리카보네이트 또는 폴리카보네이트 얼로이일 수 있다.
한편, 상기 제1 성분, 제2 성분 및 스킨층 성분을 개별적으로 독립된 압출부들에 공급할 수 있으며 이 경우 압출부는 3개 이상으로 구성될 수 있다. 또한 폴리머들이 섞이지 않도록 별도의 공급로 및 분배구를 포함하는 하나의 압출부에 공급하는 것 역시 본 발명에 포함된다. 상기 압출부는 익스트루더일 수 있으며, 이는 고체상의 공급된 폴리머들을 액상으로 전환시킬 있도록 가열수단 등을 더 포함할 수 있다.
한편, 스킨층 성분은 스킨층의 유무에 따라 선택적으로 포함할 수 있다.
다음, (2) 단계로서 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류는 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 복수개의 복합압출구금에 투입하여 상기 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 형성한다.
구체적으로 도 8 ~ 10은 본 발명에 사용될 수 있는 슬릿형 압출구금의 구금분배판들의 사시도, 저면도 및 결합도이다. 슬릿형 압출구금의 구금분배판들의 결합구조를 내타낸 사시도이다. 슬릿형 압출구금의 상단에 위치하는 제1 구금분배판(S1)은 내부에 제1 성분 공급로(50) 및 제2 성분 공급로(51)로 구성될 수 있다. 이를 통해 상기 압출부를 통해 이송된 제1 성분은 제1 성분 공급로(50)로 투입되고, 제2 성분은 제2 공급로(51)로 공급될 수 있다. 이러한 공급로는 경우에 따라 복수개가 형성될 수 있다. 상기 제1 구금분배판(S1)을 통과한 폴리머들은 하부에 위치하는 제2 구금분배판(S2)로 이송된다. 제1 성분 공급로(50)을 통해 투입된 제1 성분이 유로를 따라 복수개의 제1 성분 공급로들(52, 53)로 분기되어 이송된다. 또한 제2 성분 공급로(51)을 통해 투입된 제2 성분이 유로를 따라 복수개의 제2 성분 공급로들(54, 55, 56)로 분기되어 이송된다. 상기 제2 구금분배판(S2)을 통과한 폴리머들은 하부에 위치하는 제3 구금분배판(S3)로 이송된다.
제1 성분 공급로들(52, 53)을 통해 투입된 제1 성분은 각각 제3 구금분배판(S3)에 형성된 제1 성분공급로들(60, 61, 62, 63, 67, 68, 69, 70)으로 유로를 따라 분기되어 이송된다. 마찬가지로 제2 성분 공급로들(54, 55, 56)을 통해 투입된 제2 성분은 각각 제3 구금분배판(S3)에 형성된 제2 성분공급로들(57, 58, 59, 64, 65, 66, 71, 72, 73)으로 유로를 따라 분기되어 이송된다. 그 뒤 제3 구금분배판(S3)에 형성된 제1 성분공급로들 중 일부 제1 성분 공급로들(60, 67)를 통해 투입된 제1 성분은 제4 구금분배판(S4)에 형성된 유로들 중 첫번째 유로(74)로 이송된다. 마찬가지로 제3 구금분배판(S3)에 형성된 제2 성분공급로들 중 일부 제2 성분 공급로들(57, 64, 71)를 통해 투입된 제1 성분은 제4 구금분배판(S4)에 형성된 유로들 중 두번째 유로(75)로 이송된다. 이런 방식으로 제3 구금분배판(S3)의 제1 성분공급로들을 통해 이송된 제1 성분은 제4 구금분배판(S4)의 홀수번째 유로들(74, 76, 78, 80)로 분배되고, 제3 구금분배판(S3)의 제2 성분공급로들을 통해 이송된 제2 성분은 제4 구금분배판(S4)의 짝수번째 유로들(75, 77, 79)로 이송된다. 이를 통해 제1 성분과 제2 성분이 교호적층될 수 있는 것이다. 이와 같은 원리로 제4 구금분배판(S4)의 하부에 상기 제4 구금분배판의 유로방향에 수직이며 유로수가 더 많은 구금분배판(미도시)를 더 포함할 수 있으며, 이를 반복하여 원하는 레이어수만큼 유로의 개수를 확장하는 것은 당업자에게 자명한 것이다. 한편 동일한 원리로 제4 구금분배판(S4)의 홀수번째 유로들(74, 76, 78, 80)을 통해 이송된 제1 성분은 제5 구금분배판(S5)의 홀수번째 유로들(81, 83, 85, 87, 89, 91, 93)으로 이송되고, 제4 구금분배판(S4)의 짝수번째 유로들(75, 77, 79)을 통해 이송된 제2 성분은 제5 구금분배판(S5)의 짝수번째 유로들(82, 84, 86, 88, 90, 91, 92)로 이송된다. 도 9는 도 8의 슬릿형 압출구금의 저면도로서 제5 구금분배판(S5)의 토출로는 홀 타입으로 이격된 것이 아닌 슬릿형 타입으로 일체로 구성된다. 이를 통해 제1 성분과 제2 성분이 각각의 레이어를 형성하는 것이다. 따라서, 제5 구금분배판(S5)의 슬릿의 개수에 따라서 다층 복합류의 레이어의 개수가 결정될 수 있다. 바람직한 레이어의 수는 100개 이상, 보다 바람직하게는 150개 이상, 더욱 바람직하게는 200개 이상, 가장 바람직하게는 300개 이상일 수 있다. 이후, 제6 구금분배판의 토출구(94)를 통해 다층 복합류가 토출된다. 도 11은 다층 복합류의 단면도로서 제1 성분(100, 102)과 제2 성분(101, 103)이 교호적으로 적층된다. 이 때 하나의 제1 성분(100)과 적층된 제2 성분(101)을 반복단위로 정의할 수 있으며, 하나의 복합류는 다수의 반복단위를 포함한다.
그런데, 상기 도 8 ~ 10은 본 발명의 사용될 수 있는 슬릿형 압출구금에 사용될 수 있는 구금분배판의 예시이며, 제1 성분과 제2 성분이 교호적층된 다층 복합류를 제조하기 위하여 구금분배판의 개수, 구조, 구금홀의 크기, 형상, 제5 구금분배판의 슬릿크기, 토출구의 크기 등을 당업자가 적절하게 설계하여 사용하는 것은 자명한 것이다. 한편, 제5 구금분배판의 저면도의 슬릿들의 직경은 0.17 ~ 0.6㎜일 수 있고, 토출구의 직경이 5 ~ 50㎜일 수 있지만 이에 제한되지 않으며, 이후, 퍼짐공정 및 연신공정 등을 고려하여 슬릿의 직경 등을 설정하는 것은 당업자에기 자명한 것이다.
한편, 상기 복수개의 다층 복합류는 각각 상이한 광의 파장영역 범위를 커버하기 위하여 상이한 다층 복합류를 형성하는 교호적층된 제1 성분과 제2 성분의 반복단위의 광학적 두께, 반복단위의 개수 등이 상이할 수 있다. 이를 위해 각각의 다층 압출구금에 형성되는 구금홀의 크기, 슬릿의 두께, 형상 또는 레이어의 개수가 상이할 수 있다. 이를 통해 최종적으로 퍼짐 및 연신 공정을 거쳐 제조되는 반사형 편광자는 내부에 다수의 반복단위가 뭉쳐 하나의 그룹이 형성되며, 각각의 그룹은 평균 광학적 두께가 상이하도록 설정될 수 있다.
보다 구체적으로 광학적 두께(optical thickness)는 n(굴절율) × d(물리적 두께)를 의미한다. 따라서 만일 다층 복합류가 2개 형성되는 경우 다층 복합류간 제1 성분 및 제2 성분이 동일하여 굴절율의 차이가 없다면 광학적 두께는 물리적 두께(d)의 크기에 비례하게 된다. 그러므로 각각의 다층 복합류에 포함되는 제1 성분과 제2 성분의 반복단위의 물리적 두께(d)의 평균값을 달리하는 것을 통해 다층 복합류간의 광학적 두께의 차이를 유도할 수 있는 것이다. 이를 위해 슬릿형 압출구금에 포함된 슬릿들의 두께를 압출구금마다 다르게 설계하여 평균 광학적 두께가 상이한 다층 복합류들을 제조할 수 있는 것이다.
한편, 가시광선 전체영역을 커버하기 위해서는 다양한 광 파장에 대응하도록 다층 복합류의 평균 광학적 두께가 결정되어야 한다. 예를 들어 3개의 복합류가 구성되고 각자 빛의 파장영역 중 450㎚, 550㎚, 650㎚에 대응하도록 다층 복합류의 반복단위의 평균 광학적 두께를 설정하려면 다층 복합류 간의 반복단위의 평균 광학적 두께가 적어도 5% 이상 상이할 수 있으며, 보다 바람직하게는 10% 이상 상이할 수 있다. 이를 통해 가시광선 전 영역의 S파를 반사할 수 있는 것이다. 이 경우 동일한 반복단위를 형성하는 제1 성분과 제2 성분의 두께는 동일할 수 있다.
또한 하나의 다층 복합류를 형성하는 슬릿형 압출구금에서도 구금홀의 개수, 단면적, 형상, 슬릿의 직경 등이 동일하거나 상이할 수 있다. 나아가 동일한 다층 복합류를 형성하는 반복단위들의 광학적 두께는 평균 광학적 두께 대비 바람직하게는30% 이내, 보다 바람직하게는 20% 이내, 더욱 바람직하게는 15% 이내의 편차를 가질 수 있다. 예를 들어 제1 다층 복합류의 반복단위들의 평균 광학적 두께(optical thickness)가 200㎚라면, 동일한 제1 다층 복합류를 형성하는 반복단위들은 대략 20% 이내의 광학적 두께 편차를 가질 수 있다. 한편 빛의 파장과 광학적 두께는 하기 관계식 1에 따라 정의된다.
[관계식 1]
λ= 4nd
단 λ는 빛의 파장(nm), n은 굴절율, d는 물리적 두께(nm)
그러므로 광학적 두께(nd)에 편차가 발생하면 타겟으로 하는 빛의 파장 뿐만 아니라 이를 포함하는 빛의 파장범위를 커버할 수 있으므로 전체적으로 균일한 광학물성 향상에 큰 도움이 된다. 한편 상기 d는 하나의 층의 두께를 의미하는 것이며, 반복단위는 제1 성분과 제2 성분의 2개의 층으로 구성되므로 제1 성분과 제2 성분의 물리적 두께가 동일하다면 반복단위와 빛의 파장은 하기 관계식 2에 따라 정의될 수 있다.
[관계식 2]
λ= 2(n1d1 + n2d2)
단 λ는 빛의 파장(nm), n1은 1층 굴절율, n2는 2층 굴절율, d1은 1층 물리적 두께(nm), d2는 2층 물리적 두께(nm)를 의미한다.
상술한 광학적 두께의 편차는 하나의 슬릿형 압출구금에서 구금홀의 개수, 단면적, 형상, 슬릿의 직경 등에 편차를 부여하는 것을 통해 달성되거나 또는 퍼짐과정에서의 자연스러운 미세한 압력배분의 등을 통해 자연스럽게 달성될 수 있는 것이다.
따라서, 본 발명의 복수개의 다층 복합류는 복합류를 구성하는 반복단위의 평균 광학적 두께를 상이하게 설정하여 가시광선 전체 영역을 커버할 수 있으며, 하나의 복합류를 형성하는 반복단위에 절절한 광학 두께편차를 부여하여 넓은 파장범위의 S파를 반사할 수 있다. 나아가, 도 8 ~ 10에서는 하나의 슬릿형 압출구금에서 하나의 다층 복합류가 생산되는 것을 예를 들었지만, 슬릿형 압출구금 내부에 섹션을 부가하여 복수개의 다층 복합류를 생산하고 이를 하나의 집합구금을 통해 하나로 합지하는 것 역시 일체화된 슬릿형 압출구금에 해당하여 본 발명에 범위에 속하는 것이다. 또한 슬릿형 압출구금에 포함된 슬릿의 두께를 압출구금마다 다르게 설계하여 평균 광학적 두께가 상이한 다층 복합류들을 제조할 수 있는 것이다.
본 발명의 바람직한 다른 일구현예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 상기 압출부에서 이송된 제1 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제1 가압수단을 통해 각각 상이한 슬릿형 압출구금으로 토출되는 단계를 더 포함할 수 있다. 구체적으로 도 12는 2개의 다층 복합류를 형성하기 위하여 제1 가압수단을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제1 성분이 상기 복수개의 제1 가압수단(130, 131)들에 분기되어 공급되고 각각의 제1 가압수단(130, 131)들에서 각각의 슬릿형 압출구금(132, 133)들에 개별적으로 공급된다. 이 때, 상기 제1 가압수단(130, 131)은 서로 상이한 토출량을 가지며 이를 통해 면적차이가 발생하게 되고 각각의 슬릿형 압출구금(132, 133)이 동일한 스펙(슬릿의 직경 등이 동일한 경우)을 통해 형성된 제1 다층 복합류 및 제2 다층 복합류의 평균 광학적 두께가 상이해질 수 있다.
이를 위해 상기 제1 가압수단(130, 131)의 토출량은 바람직하게는 1 ~ 100 kg/hr일 수 있으나 이에 제한되는 것은 아니다.
한편, 하나의 제1 가압수단이 2개의 슬릿형 압출구금에 제1 성분을 이송하고 상기 2개의 슬릿형 압출구금에서 형성된 2개의 다층 복합류가 합지되어 하나의 다층 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제1 성분 가압수단과 8개의 슬릿형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제1 가압수단이 3개 이상의 슬릿형 압출구금에 제1 성분을 이송하는 것 역시 가능하다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 상기 (1) 단계와 (2) 단계 사이에 압출부에서 이송된 제2 성분은 다층 복합류간 상이한 평균 광학적 두께를 가지기 위하여 상이한 토출량을 갖는 복수개의 제2 가압수단을 통해 각각 상이한 슬릿형 압출구금으로 토출될 수 있다. 구체적으로 도 13은 2개의 다층 복합류를 형성하기 위하여 2개의 제2 가압수단들을 포함하는 개략도로서, 압출부(미도시)에서 이송된 제2 성분이 상기 복수개의 제2 가압수단(140, 141)들에 분기되어 공급되고 각각의 제2 가압수단(140, 141)들에서 각각의 슬릿형 압출구금(142, 143)들에 개별적으로 공급된다. 이 때, 상기 제1 가압수단(150, 151)은 서로 상이한 토출량을 가지며 이를 통해 각각의 슬릿형 압출구금(152, 153)이 동일한 스펙(도성분 공급로등의 형상 직경 등이 동일한 경우)을 통해 형성된 제1 다층 복합류 및 제2 다층 복합류의 제2 성분의 평균 광학적 두께가 상이할 수 있다. 이를 위해 상기 제2 가압수단(150, 151)의 토출량은 바람직하게는 1 ~ 100 kg/hr 일 수 있으나 이에 제한되는 것은 아니다.
한편, 하나의 제2 가압수단이 2개의 슬릿형 압출구금에 제2 성분을 이송하고 상기 2개의 슬릿형 압출구금에서 형성된 2개의 다층 복합류가 합지되어 하나의 다층 복합류를 형성한 후 하나의 그룹이 형성되는 것 역시 가능하다. 이 경우 최종 반사형 편광자는 4개의 제2 성분 가압수단과 8개의 슬릿형 압출구금을 통해 4개의 그룹이 형성될 수 있다. 또한 하나의 제2 가압수단이 3개 이상의 슬릿형 압출구금에 제2 성분을 이송하는 것 역시 가능하다.
다음 (3) 단계로서, 상기 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성한다. 구체적으로 도 14는 다층 복합류의 합지부를 나타내는 개략도로서, 각각의 슬릿형 압출구금을 통해 제조된 복수개의 다층 복합류들(161, 162, 163, 164)을 하나로 합지하여 코어층(165)을 형성하는 것이다. 한편, 상기 합지단계는 별도의 장소에서 수행되거나 일체형의 슬릿형 압출구금을 사용한 경우에는 별도의 집합구금분배판을 통해 하나로 합지할 수 있다. 또한, 다층 복합류이 개수가 많은 경우에는 합지를 용이하게 하기 위하여 일부 다층 복합류를 먼저 합지하고 이들을 다시 합지하는 형태인 다단합지를 수행하는 것 역시 가능하다. 한편, 스킨층 성분 역시 합지부에서 코어층과 동시에 또는 순차적으로 합지되는 것도 가능하다.
한편, 상기 (2) 단계와 (3) 단계 사이 또는 (3) 단계와 (4) 단계 사이에 후술하는 반복단위의 퍼짐현상을 용이하게 수행하기 위하여 별도의 예비퍼짐 단계를 더 수행할 수 있다.
다음, (4) 단계로서 상기 합지된 코어층의 적어도 일면을 압출부에서 이송된 스킨층 성분을 합지한다. 바람직하게는 상기 스킨층 성분은 상기 코어층의 양면에 모두 합지될 수 있다. 양면에 스킨층이 합지되는 경우 상기 스킨층의 재질 및 두께는 서로 동일하거나 상이할 수 있다. 한편, 상술한 바와 같이 스킨층 성분을 동시에 합지하거나 스킨층이 형성되지 않는 경우 본 단계는 생략될 수 있다.
다음, (5) 단계로서 상기 스킨층이 합지된 코어층을 흐름제어부에서 퍼짐을 유도한다. 구체적으로 도 15는 본 발명에 적용될 수 있는 바람직한 흐름제어부의 일종인 코트-행거 다이의 단면도이고, 도 16은 측면도이다. 이를 통해 코어층의 퍼짐정도를 적절하게 조절하여 반복단위를 원하는 파장의 광을 반사하기에 적절한 광학적 두께를 갖도록 조절할 수 있다. 이는 이후 연신공정 시 광학적 두께가 더욱 줄어들 것을 고려하여 적절하게 설계될 수 있다. 구체적으로 도 15에서 유로를 통해 이송된 스킨층이 합지된 코어층이 코트-행거 다이에서 좌우로 넓게 퍼지므로 내부에 포함된 제1 성분 역시 좌우로 넓게 퍼지게 된다. 또한 도 16의 측면도에서 보듯 코트행거다이는 좌우로 넓게 퍼져있지만 상하로 줄어드는 구조를 갖고 있어 스킨층이 합지된 코어층의 수평방향으로 퍼지나 두께방향으로 줄어들게 된다. 이는 파스칼의 원리가 적용되는 것으로서, 밀폐계에서 유체는 일정 압력에 의해 미세한 부분까지 압력을 전달되어지는 원리에 의해 폭 방향으로 넓게 퍼지도록 유도된다. 따라서 다이의 입구 사이즈보다 출구사이즈가 폭방향은 넓어지고 두께는 줄어들게 되는 것이다. 이는 용융액체 상태의 물질은 밀폐계에서 압력에 의해 흐름 및 형상 제어가 가능한 파스칼 원리를 이용하며, 바람직하게는 레이놀드수 2,500 이하의 층류의 흐름이 되도록 폴리머 유속 및 점성 유도가 요구된다. 2,500 이상의 난류의 흐름이 되면, 판상형의 유도가 불균일해져, 광특성의 편차가 발생될 가능성이 있다. 코트-행거 다이의 출구의 좌우 다이폭은 800 ~ 2,500 mm 일 수 있으며, 폴리머의 유체 흐름은 레이놀즈수 2,500 초과되지 않도록 압력을 조정 요구된다. 그 이유는 그 이상일 경우 폴리머 흐름이 난류로 되어 Core의 배열이 흐트러질 수 있기 때문이다. 또한 내부 온도는 265 ~ 310℃일 수 있다.
상기 흐름제어부는 반복단위의 퍼짐을 유도할 수 있는 T-다이 또는 매니폴드 타입의 Coat-hanger 다이일 수 있으나 이에 제한되는 것은 아니며, 코어층의 퍼짐을 유도할 수 있는 것이면 제한없이 사용될 수 있다.
본 발명의 제조방법은 복수개의 복합압출구금을 이용하여 평균 광학적 두께가 상이한 복수개의 다층 복합류를 제조하고 용융상태에서 이를 합지하므로 코어층 내부에 별도의 접착층 및/또는 보호층(PBL)을 필요로 하지 않으면서 가시광선 파장영역의 S파를 모두 반사할 수 있다. 또한 스킨층 역시 용융상태에서 코어층의 적어도 일면에 형성되므로 별도의 접착단계를 거치지 않는다. 이를 통해 제조원가를 현저하게 저감할 수 있을 뿐 아니라 한정된 두께에서 광학물성을 극대화시키는데 매우 유리하다.
본 발명의 바람직한 일구현예에 따르면, 상기 (5) 단계 이후, (6) 흐름제어부에서 이송된 퍼짐이 유도된 편광자를 냉각 및 평활화하는 단계, (7) 상기 평활화 단계를 거친 편광자를 연신하는 단계; 및 (8) 상기 연신된 편광자를 열고정하는 단계를 더 포함할 수 있다.
먼저, (6) 단계로서 흐름제어부에서 이송된 편광자를 냉각 및 평활화하는 단계로서 통상의 반사 편광자의 제조에서 사용되던 냉각하여 이를 고형화하고 이후 캐스팅롤 공정 등을 통해 평활화 단계를 수행할 수 있다.
이후, 상기 평활화 단계를 거친 편광자를 연신하는 공정을 거친다. 상기 연신은 통상의 반사 편광자의 연신공정을 통해 수행될 수 있으며, 이를 통해 제1 성분과 제2 성분간의 굴절율 차이를 유발하여 계면에서 광변조 현상을 유발할 수 있고, 상기 퍼짐유도된 반복단위는 연신을 통해 최종적으로 원하는 광파장 범위에 맞는 광학적 두께를 획득하게 된다. 따라서, 최종 반사 편광자에서 반복단위의 광학적 두께를 조절하기 위해서는 상기 슬릿형 압출구금에서 슬릿형 압출구금의 슬릿직경, 퍼짐유도 조건 및 연신비를 고려하여 적절하게 설정될 수 있는 것이다. 이를 위하여 바람직하게는 연신공정은 일축연신 또는 이축연신을 수행할 수 있으며, 보다 바람직하게는 일축연신을 수행할 수 있다. 일축연신의 경우 연신방향은 길이방향으로 연신을 수행할 수 있다. 또한 연신비는 3 ~ 12배 일 수 있다. 한편, 등방성 재료를 복굴절성으로 변화시키는 방법은 통상적으로 알려진 것이며 예를 들어 적절한 온도 조건 하에서 연신시키는 경우, 중합체 분자들은 배향되어 재료는 복굴절성으로 될 수 있다.
다음, (8) 단계로서 상기 연신된 편광자를 열고정하는 단계를 거쳐 최종적인 반사형 편광자를 제조할 수 있다. 상기 열고정은 통상의 방법을 통해 열고정될 수 있으며, 바람직하게는 180 ~ 200℃ 에서 0.1 ~ 3분 동안 IR 히터를 통해 수행될 수 있다.
한편, 본 발명에서 그룹간 목표로 하는 반복단위의 평균 광학적 두께 가 정해지면 이를 고려하여 슬릿의 규격, 흐름제어부의 규격 및 연신비 등을 적절하게 제어하여 본 발명의 반사형 편광자를 제조할 수 있는 것이다.
본 발명의 바람직한 또 다른 일실시예에 따르면, 제1 성분과 제2 성분이 교호적층된 코어층 및 상기 코어층의 적어도 일면에 형성된 스킨층을 포함하는 다층 반사편광자를 제조하는 장치에 있어서, 제1 성분, 제2 성분 및 스킨층 성분이 개별적으로 투입되는 3개 이상의 압출부; 제1 성분과 제2 성분의 반복단위가 교호적층된 2개 이상의 다층 복합류를 형성하고, 상기 각각의 다층 복합류들은 원하는 파장의 횡파(S파)를 반사하기 위하여, 상기 압출부에서 이송된 제1 성분과 제2 성분을 투입하여 반복단위들의 평균 광학적 두께가 상이한 2개 이상의 다층 복합류를 제조하는 복합압출구금을 포함하는 스핀블록부; 상기 스핀블록부에서 이송된 2개 이상의 다층 복합류를 하나로 합지하여 코어층을 형성하는 컬렉션 블록부; 상기 스킨층 성분이 투입된 압출기와 연통되어 상기 컬렉션 블록부에서 이송된 코어층의 적어도 일면에 스킨층을 합지하는 피드블록부; 및 상기 피드블록부에서 이송된 스킨층이 합지된 코어층의 퍼짐을 유도하는 퍼짐을 유도하는 흐름제어부를 포함하는 다층 반사편광자의 제조장치를 제공한다.
도 17은 본 발명의 바람직한 일구현예에 따른 스킨층과 코어층이 일체로 형성되는 다층반사편광자를 제조하는 장치의 개략도이다. 구체적으로 제1 성분이 투입되는 제1 압출부(220), 제2 성분의 투입되는 제2 압출부(221) 및 스킨층 성분이 투입되는 제3 압출부(222)를 포함한다. 상기 제1 압출부(220)는 4개의 슬릿형 압출구금(223, 224, 225, 226)를 포함하는 스핀블록부(C)에 연통된다. 이 때 제1 압출부(220)은 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)에 제1 성분을 용융상태로 공급한다. 제2 압출부(221) 역시 스핀블록부(C)에 연통되며 이에 포함된 4개의 슬릿형 압출구금(223, 224, 225, 226)에 제2 성분을 용융상태로 공급한다. 4개의 슬릿형 압출구금(223, 224, 225, 226)을 통해 제1성분과 제2성분이 교호적층되며 반복단위들의 평균 광학적 두께가 상이한 4개의 다층 복합류를 생산한다. 이를 위해 상기 4개의 슬릿형 압출구금의 각각의 슬릿직경이 상이할 수 있다. 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)은 도 8에 도시된 슬릿형 압출구금일 수 있다. 또한 4개의 슬릿형 압출구금을 예로 들었지만 일체화된 하나의 슬릿형 압출구금을 사용할 수 있는 것도 본 발명의 범위에 당연히 포함되는 것이다. 상기 4개의 슬릿형 압출구금(223, 224, 225, 226)을 통해 제조된 4개의 다층 복합류들은 컬렉션 블록부(227)에서 하나로 합지되어 하나의 코어층을 형성한다. 이 경우 상기 컬렉션 블록부(227)는 별도로 형성되거나, 일체화된 하나의 슬릿형 압출구금을 사용하는 경우에는 슬릿형 압출구금의 내부에서 집합구금의 형태로 다층 복합류들을 합지할 수 있다. 상기 컬렉션 블록부(227)에서 합지된 코어층은 피드블록부(228)로 이송된 후 제3 압출부(222)에서 이송된 스킨층 성분과 합지된다. 따라서 제3 압출부(222)와 피드블록부(228)는 서로 연통될 수 있다. 이후 스킨층이 합지된 코어층이 흐름제어부(229)로 이송되고 제1 성분의 퍼짐이 유도된다. 바람직하게는 상기 흐름제어부는 T-다이 또는 코트-행거(coat-hanger) 다이일 수 있다. 한편, 스킨층과 코어층이 동시에 합지되는 경우 제3 압출부(222)는 컬렉션 블록부(227)에 연통될 수 있으며 이 경우 피드블록부(228)은 생략될 수 있다.
도 18은 본 발명의 바람직한 다른 일구현예에 따른 폴리머가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 17과 차이점을 중심으로 설명하면, 제1 압출부(220)는 4개의 제1 가압수단들(233, 234, 235, 236)에 제1 성분을 이송한다. 상기 제1 가압수단들(233, 234, 235, 236)은 서로 다른 토출량을 가지며 제1 성분을 복수개의 슬릿형 압출구금(241, 242, 243, 244)으로 토출한다. 제2 압출부(221)는 4개의 제2 가압수단들(237, 238, 239, 240)에 제2 성분을 이송한다. 상기 제2 가압수단들(237, 238, 239, 240)은 서로 다른 토출량을 가지며 제2 성분을 복수개의 슬릿형 압출구금(241, 242, 243, 244)로 토출한다. 4개의 슬릿형 압출구금(241, 242, 243, 244)을 통해 서로 다른 평균 광학적 두께를 갖는 4개의 다층 복합류를 생산한다. 상기 제1 가압수단들, 제2 가압수단들 및 복수개의 슬릿형 압출구금은 스핀블록부(C)를 형성한다.
도 19는 본 발명의 바람직한 또 다른 일구현예에 따른 폴리머가 분산된 반사편광자를 제조하는 장치의 개략도이다. 이를 도 18과 차이점을 중심으로 간단히 설명하면 4개의 그룹을 갖는 다층 반사형 편광자를 제조하기 위하여 4개의 슬릿형 압출구금이 아닌 8개의 슬릿형 압출구금을 사용하며 다단합지를 수행하는 것에 특징이 있다. 구체적으로 제1 가압수단(233)은 2개의 슬릿형 압출구금(250, 251)에 제1 성분을 토출한다. 제2 가압수단(234) 역시 2개의 슬릿형 압출구금(250, 251)에 제1 성분을 토출한다. 상기 2개의 슬릿형 압출구금(250, 251)은 동일한 제1 가압수단 및 제2 가압수단을 통해 제1 성분 및 제2 성분이 이송되었으므로 다층 복합류간의 평균 광학적 두께가 동일하다. 이러한 방식으로 8개의 다층 복합류가 형성되며 이들 다층 복합류들은 2개씩 평균 광학적 두께가 동일하게 된다. 상기 평균 광학적 두께가 동일한 2개의 다층 복합류들은 각각 제1 합지부(258, 259, 260, 261)에서 합지되어 4개의 다층 복합류를 형성하고 상기 4개의 다층 복합류들은 제2 합지부(262)에서 합지되어 하나의 코어층을 형성한다.
한편, 도 19에서는 하나의 제1 가압수단이 2개의 슬릿형 압출구금에 제1 성분을 이송하는 것을 설명하였지만, 2개 이상의 슬릿형 압출구금에 제1 성분을 이송할 수 있는 것은 당업자에게 자명한 것이며 이는 제2 가압수단에도 동일하게 적용될 수 있다.
한편 본 발명에서는 반사형 편광자의 용도를 액정디스플레이를 중심으로 설명하였지만 이에 한정되는 것은 아니며, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.
한편, 본 발명에 사용되는 특정 구조를 갖는 다층 반사편광필름의 구체적인 구성 및 효과에 대하여는 한국특허출원 제2011-0145856의 기재내용을 참조로서 삽입한다.
이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다. 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예 및 실험예에 한정되는 것은 아니다.
<실시예 1>
단계 1 : 흡수형 편광필름의 제조
폴리에틸렌테레프탈레이트 100 중량부에 대하여, 안트라퀴논(anthraquinone)계 이색성 염료(Disperse red 60) 0.2 중량부 혼합한 후 270℃에서 압출하여 200㎛ 두께의 필름을 제조하고, 100℃에서 5배 연신하여 흡수형 편광필름을 제조하였다.
단계 2 : 반사형 편광필름의 제조
구체적으로 제1 성분으로서 굴절율이 1.65인 PEN과, 제2 성분으로서 디메틸테레프탈레이트와 디메틸-2,6-나프탈렌 디카르복실레이트가 6 : 4의 몰비로 혼합된 물질을 에틸렌 글리콜(EG)과 1 : 2의 몰비로 반응시킨 굴절율이 1.64인 co-PEN을 각각 제1 압출부 및 제2 압출부에 투입하였다. 제1 성분과 제2성분의 압출 온도는 295℃로 하고 Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, 스킨층은 280℃ 온도 수준에서 압출공정을 수행하였다.
도 8, 9의 슬릿형 압출구금 4개를 이용하여 평균 광학적 두께가 상이한 4개의 복합류를 제조하였다. 구체적으로 제1 압출부에서 이송된 제1 성분을 4개의 슬릿형 압출구금에 분배하고, 제2 압출부에서 이송된 제2 성분을 4개의 슬릿형 압출구금에 이송하였다. 하나의 슬릿형 압출구금은 300 레이어로 구성되며, 도 9의 제5 구금분배판의 저면의 제1 슬릿형 압출구금의 슬릿의 두께는 0.26㎜, 제2 슬릿형 압출구금의 슬릿두께는 0.21㎜, 제3 슬릿형 압출구금의 슬릿두께는 0.17㎜, 제4 슬릿형 압출구금의 슬릿두께는 0.30㎜ 이고, 제6 구금분배판의 토출구의 직경은 15 mm 15 mm였다. 상기 4개의 슬릿형 압출구금을 통해 토출된 4개의 복합류를 별도의 유로를 통해 이송한 후 컬렉션 블록에서 합지하여 하나의 코어층 폴리머를 형성하였다. 상기 코어층 폴리머를 유속 및 압력구배를 보정하는 도 15, 16의 코트행거다이에서 퍼짐을 유도하였다. 구체적으로 다이 입구의 폭은 200mm이고 두께는 10mm이며 다이출구의 폭은 960 mm이고, 두께는 0.78 mm이며, 유속은 1m/min.이다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하고 MD 방향으로 6배 연신하였다. 이어서 180℃ 에서 2분 동안 IR 히터를 통해 열고정을 수행하여 다층 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.64였다. A그룹은 300층(150 반복단위)이며 반복단위의 두께는 168nm이고, 평균 광학적두께 275.5nm이며 광학적 두께편차는 20% 내외였다. B그룹은 300층(150 반복단위)이며 반복단위의 두께는 138nm이고, 평균 광학적두께 226.3nm이며 광학적 두께편차는 20% 내외였다. C그룹은 300층(150 반복단위)이며 반복단위의 두께는 110nm이고, 평균 광학적두께 180.4nm이며 광학적 두께편차는 20% 내외였다. D그룹은 300층(150 반복단위)이며 반복단위의 두께는 200nm이고, 평균 광학적두께 328nm이며 광학적 두께편차는 20% 내외였다. 제조된 다층 반사형 편광자의 코어층 두께는 92.4 ㎛이다.
단계 3 : 일체형 편광필름 제조
단계 2에서 제조된 반사형 편광필름 일면에, UV 경화형 접착제를 도포한 후, 그 위로 단계 1에서 제조된 흡수형 편광필름을 올려 층간을 접착시킴으로써 일체형의 액정디스플레이 패널후면용 편광필름을 제조하였다.
본 발명의 일체형 고휘도 편광필름은 광변조 성능이 우수하므로, 광의 변조가 요구되는 분야에서 폭넓게 사용가능하다. 구체적으로 모바일디스플레이, LCD, LED 등 고휘도가 요구되는 액정표시장치, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이, OLED 등 평판디스플레이 기술에 널리 사용될 수 있다.
10 : 패널
11: 패널후면용 흡수형 편광필름, 12, 18: 기재
19: 패널전면용 흡수형 편광필름 13: 패턴물질
14: 얼라인먼트층 15: ITO
9: 액정 16: 컬러 PR
17: 오버코트 20: 백라이트 유닛
21: 반사시트 22: 광원
23: 확산판 24: 확산시트
25: 프리즘시트 300: 휘도향상필름(DBEF 필름)
310: 시야각보상필름 400: 종래 편광필름
410: PVA 필름 420: 제1의 PVA 보호용 필름
430: 제2의 PVA 보호용 필름
30: 일체형 편광필름 31: 반사편광필름
32: 접착제층 33: 흡수형 편광필름

Claims (18)

  1. 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위하여, 면내 복굴절을 갖는 제1층 및 제1층과 교호적층된 제2층을 포함하는 다층 반사형 편광필름;
    상기 반사형 편광필름의 상부에 형성된 점착층 또는 접착층; 및
    상기 점착층 또는 접착층의 상부에 형성된 제1 광학필름을 포함하고,
    상기 다층 반사형 편광필름은 상기 제1층과 제2층은 적어도 하나의 축방향으로 굴절율이 상이하고, 상기 제1층 및 제2층은 적어도 하나의 축방향으로 신장되며, 상기 제1층과 제2층은 하나의 반복단위를 형성하며, 반복단위들은 원하는 파장의 횡파(S파)를 반사시키기 위하여 그룹을 형성하며, 상기 그룹은 2개 이상이고, 상기 그룹들은 일체로 형성되며, 그룹간 반복단위들의 평균 광학적 두께가 상이한 코어층을 포함하는 일체형 고휘도 편광필름.
  2. 제1항에 있어서,
    상기 제1 광학필름은 흡수형 편광필름인 것을 특징으로 하는 일체형 고휘도 편광필름.
  3. 제2항에 있어서,
    상기 흡수형 편광필름은 요오드계 또는 염료계 흡수형 편광필름인 것을 특징으로 하는 일체형 고휘도 편광필름.
  4. 제2항에 있어서,
    상기 흡수형 편광필름의 적어도 일면에 보호필름을 더 포함하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  5. 제1항에 있어서,
    상기 제1 광학필름은 위상차 필름인 것을 특징으로 하는 일체형 고휘도 편광필름.
  6. 제5항에 있어서,
    상기 위상차 필름은 λ/4 파장필름 또는 λ/2 파장필름인 것을 특징으로 하는 일체형 고휘도 편광필름.
  7. 제1항에 있어서, 상기 반복단위들은 3개의 파장대역의 광을 반사하기 위하여 3개의 그룹을 형성하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  8. 제1항에 있어서, 상기 반복단위들은 4개의 파장대역의 광을 반사하기 위하여 3개의 그룹을 형성하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  9. 제1항에 있어서, 상기 원하는 파장은 가시광선 대역을 포함하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  10. 제1항에 있어서,
    동일한 그룹에 포함된 반복단위들의 광학적 두께는 평균 광학적 두께 대비 30% 이내의 두께편차를 갖는 것을 특징으로 하는 일체형 고휘도 편광필름.
  11. 제1항에 있어서,
    동일한 그룹에 포함된 반복단위들의 광학적 두께는 평균 광학적 두께 대비 20% 이내의 두께편차를 갖는 것을 특징으로 하는 일체형 고휘도 편광필름.
  12. 제7항에 있어서, 상기 3개의 반사대역은 450nm, 550nm 및 650nm의 파장대역을 포함하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  13. 제8항에 있어서, 상기 4개의 반사대역은 350nm, 450nm, 550nm 및 650nm의 파장대역을 포함하는 것을 특징으로 하는 일체형 고휘도 편광필름.
  14. 제1항에 있어서, 상기 복수개의 그룹들은 반복단위들의 평균 광학적 두께가 10% 이상 상이한 것을 특징으로 하는 일체형 고휘도 편광필름.
  15. 제1항에 있어서, 하나의 그룹에 포함된 반복단위들은 150개 이상인 것을 특징으로 하는 일체형 고휘도 편광필름.
  16. 제1항에 있어서, 상기 제1층과 제2층의 굴절율은 2개의 축 방향에 대한 굴절율의 차이가 0.05 이하이고, 나머지 1개의 축방향에 대한 굴절율의 차이가 0.1 이상인 것을 특징으로 하는 일체형 고휘도 편광필름.
  17. 제1항에 있어서,
    상기 코어층의 적어도 일면에 일체로 형성된 스킨층을 포함하는 일체형 고휘도 편광필름.
  18. 제17항에 있어서,
    상기 그룹과 그룹사이 및 상기 코어층과 스킨층 사이에 접착층이 형성되지 않는 것을 특징으로 하는 일체형 고휘도 편광필름.
KR1020120087428A 2012-08-09 2012-08-09 일체형 고휘도 편광필름 KR101930554B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120087428A KR101930554B1 (ko) 2012-08-09 2012-08-09 일체형 고휘도 편광필름

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120087428A KR101930554B1 (ko) 2012-08-09 2012-08-09 일체형 고휘도 편광필름

Publications (2)

Publication Number Publication Date
KR20140021273A true KR20140021273A (ko) 2014-02-20
KR101930554B1 KR101930554B1 (ko) 2018-12-18

Family

ID=50267798

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120087428A KR101930554B1 (ko) 2012-08-09 2012-08-09 일체형 고휘도 편광필름

Country Status (1)

Country Link
KR (1) KR101930554B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197131A1 (ko) * 2019-03-25 2020-10-01 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (ja) * 1997-08-19 1999-03-05 Seiko Epson Corp 偏光分離器及びそれを用いた液晶表示装置並びに電子機器
JP2004354678A (ja) * 2003-05-29 2004-12-16 Sumitomo Chem Co Ltd 偏光光源装置及び液晶表示装置
KR20080052616A (ko) * 2005-08-31 2008-06-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 반사 편광기의 제조 방법
KR20110002676A (ko) * 2009-07-02 2011-01-10 웅진케미칼 주식회사 일체형 고휘도 편광시트, 그를 적용한 액정디스플레이 패널후면용 편광필름 및 그를 구비한 액정디스플레이

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164634A (ja) * 1997-08-19 1999-03-05 Seiko Epson Corp 偏光分離器及びそれを用いた液晶表示装置並びに電子機器
JP2004354678A (ja) * 2003-05-29 2004-12-16 Sumitomo Chem Co Ltd 偏光光源装置及び液晶表示装置
KR20080052616A (ko) * 2005-08-31 2008-06-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 다층 반사 편광기의 제조 방법
KR20110002676A (ko) * 2009-07-02 2011-01-10 웅진케미칼 주식회사 일체형 고휘도 편광시트, 그를 적용한 액정디스플레이 패널후면용 편광필름 및 그를 구비한 액정디스플레이

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020197131A1 (ko) * 2019-03-25 2020-10-01 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Also Published As

Publication number Publication date
KR101930554B1 (ko) 2018-12-18

Similar Documents

Publication Publication Date Title
KR101201256B1 (ko) 폴리머가 분산된 반사 편광자 제조방법 및 장치
KR101930553B1 (ko) 일체형 고휘도 편광필름
KR101354297B1 (ko) 다층 반사형 편광자
KR101930545B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101930546B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101354360B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101930554B1 (ko) 일체형 고휘도 편광필름
KR101315003B1 (ko) 중합체가 분산된 반사형 편광자
KR101264274B1 (ko) 폴리머가 분산된 반사 편광자 제조방법 및 장치
KR101940319B1 (ko) 다층 반사형 편광자
KR101940322B1 (ko) 일체형 광학필름
KR101354364B1 (ko) 다층 반사형 편광자
KR101930960B1 (ko) 일체형 광학필름
KR101930547B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101931378B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101940321B1 (ko) 다층 반사형 편광자
KR101354284B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101354373B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101930548B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101930549B1 (ko) 다층 반사편광자의 제조방법 및 장치
KR101938893B1 (ko) 폴리머가 분산된 반사 편광자 제조방법 및 장치
KR101930551B1 (ko) 중합체가 분산된 반사형 편광자
KR101931376B1 (ko) 폴리머가 분산된 반사 편광자 제조방법 및 장치
KR101340107B1 (ko) 중합체가 분산된 반사형 편광자

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant