KR20140001901A - Method for producing ag-oxide-based electrical contact material and electrical contact material produced by the method - Google Patents

Method for producing ag-oxide-based electrical contact material and electrical contact material produced by the method Download PDF

Info

Publication number
KR20140001901A
KR20140001901A KR1020137012762A KR20137012762A KR20140001901A KR 20140001901 A KR20140001901 A KR 20140001901A KR 1020137012762 A KR1020137012762 A KR 1020137012762A KR 20137012762 A KR20137012762 A KR 20137012762A KR 20140001901 A KR20140001901 A KR 20140001901A
Authority
KR
South Korea
Prior art keywords
electrical contact
contact material
oxide
mass
producing
Prior art date
Application number
KR1020137012762A
Other languages
Korean (ko)
Other versions
KR101609911B1 (en
Inventor
히데오 구미타
신야 마마다
Original Assignee
가부시키가이샤 토쿠리키 혼텐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 토쿠리키 혼텐 filed Critical 가부시키가이샤 토쿠리키 혼텐
Publication of KR20140001901A publication Critical patent/KR20140001901A/en
Application granted granted Critical
Publication of KR101609911B1 publication Critical patent/KR101609911B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver

Abstract

[과제] Zn을 포함하는 Ag-산화물계 전기 접점 재료는, 전기 접점의 제조에 불가결한 소성 가공성이 낮고, 거의 압연 가공을 실시하는 것이 곤란했기 때문에 전기 접점 재료로서 실용화되어 있지 않았다. [해결수단] Zn을 포함하는 Ag 합금을, 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃의 조건에서 내부 산화 처리를 실시함으로써 결정립계에 다수의 미세한 균열을 발생시키고, 이것을 분쇄함으로써 얻어지는 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 소정의 형상으로 압출 가공하는 Ag-산화물계 전기 접점 재료의 제조 방법.[Problem] The Ag-oxide type electrical contact material containing Zn has not been put into practical use as an electrical contact material because of its low plastic formability, which is indispensable for the manufacture of electrical contacts, and because it is difficult to carry out almost rolling. [Measures] Fine pieces obtained by causing a large number of fine cracks at grain boundaries by pulverizing Ag alloy containing Zn under oxygen partial pressure of 0.5 to 5.0 MPa and oxidation temperature of 600 to 900 ° C. And / or a method for producing an Ag-oxide-based electrical contact material in which the powder is compression molded into a desired shape, followed by sintering and extrusion processing into a predetermined shape.

Description

Ag-산화물계 전기 접점 재료의 제조 방법 및 이에 의해 제조된 전기 접점 재료 {METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD}METHOD FOR PRODUCING AG-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD}

본 발명은 Ag-산화물계 전기 접점 재료의 제조 방법 및 이에 의해 제조된 전기 접점 재료에 관한 것이다.The present invention relates to a method for producing an Ag-oxide based electrical contact material and to an electrical contact material produced thereby.

종래, 전기 접점 재료의 제조 방법으로서는, 소재가 되는 합금을 용해법에 의해 제작하여, 압연 가공, 프레스 가공 등을 실시해서 접점 형상으로 가공한 후, 내부 산화 처리를 실시하는 후 산화법에 의한 제조법이 있다.Conventionally, as a manufacturing method of an electrical contact material, the alloy used as a raw material is produced by the melting method, rolling process, press working, etc. are processed to a contact shape, and after performing internal oxidation process, there exists a manufacturing method by the oxidation method. .

또한, 소재가 되는 합금을 용해법에 의해 제작하여, 판재 등으로 가공한 후, 프레스 커팅 등에 의해 세편(細片)을 제조하고, 세편을 내부 산화 처리하고 나서 소정의 형상으로 압축 성형을 실시하고, 압축 성형된 재료를 압출 가공에 의해 선재철강이나 판재로 가공하고 나서 접점 형상으로 가공하는 예비 산화법에 의한 제조 방법이 있다(예를 들면, 특허문헌 1 참조).Furthermore, after the alloy used as a raw material is produced by a dissolution method and processed into a sheet material or the like, fine pieces are produced by press cutting or the like, the fine pieces are subjected to internal oxidation treatment, and then compression molded into a predetermined shape. There exists a manufacturing method by the preliminary oxidation method which processes a compression-molded material into a wire steel or a board | plate material by extrusion processing, and then processes it to a contact shape (for example, refer patent document 1).

또한, 금속 분말을 소정의 형상으로 압축 성형한 후, 소결을 실시하고, 압연 가공한 후에 접점 형상으로 가공하는 분말 소결법에 의한 제조 방법이 있다(예를 들면, 특허문헌 2 참조).Moreover, there exists a manufacturing method by the powder sintering method which carries out compression molding of a metal powder to a predetermined shape, sinters, and rolls and processes it into a contact shape (for example, refer patent document 2).

특허문헌 1 : 일본 특허공개공보 특개평7-258769호Patent Document 1: Japanese Patent Application Laid-Open No. 7-258769 특허문헌 2 : 일본 특허공개공보 특개평9-111364호Patent Document 2: Japanese Patent Application Laid-Open No. 9-111364

예를 들면, Ag, Zn, Te, Cu, Sb를 포함하는 조성의 합금을 이용하여 전기 접점을 제조하려고 하는 경우, Zn을 포함하는 Ag 합금의 소성 가공성이 나쁘고, 이 때문에 접점의 제조에 불가결한 압연 가공 등의 가공이 곤란하므로, 종래의 전기 접점의 제조 방법인 후 산화법이나 예비 산화법에 의한 제조가 곤란하다.For example, when attempting to manufacture an electrical contact using an alloy having a composition containing Ag, Zn, Te, Cu, and Sb, the plastic workability of the Ag alloy containing Zn is poor, which is indispensable for the manufacture of the contact. Since it is difficult to process, such as rolling, it is difficult to manufacture by the post-oxidation method and the preliminary oxidation method which are conventional manufacturing methods of an electrical contact.

또한, 다소의 소성 가공이 가능한 경우에 있어서도, 접점 형상으로 가공한 후에 내부 산화 처리를 실시하면, 산화 팽창에 의해 결정립계에 다수의 미세한 균열이 발생하여, 매우 취약한 상태가 되므로, 그대로는 전기 접점으로서 사용하는 것이 곤란하다. 이와 같이, Zn을 포함하는 Ag-산화물계 전기 접점 재료는 전기 접점의 제조에 불가결한 소성 가공성이 낮고, 압연 가공을 실시하는 것이 곤란하기 때문에, 전기 접점 재료로서 실용화되지 않았다.In addition, even when some plastic working is possible, if the internal oxidation treatment is performed after processing into a contact shape, a large number of minute cracks are generated at the grain boundaries due to oxidative expansion, and thus become very fragile. Difficult to use As described above, the Ag-oxide-based electrical contact material containing Zn is not practically used as an electrical contact material because of its low plastic formability, which is indispensable for the manufacture of electrical contacts, and the difficulty of performing rolling processing.

그렇지만, Zn을 포함하는 Ag 합금이 전기 접점 재료로서 실용 가능한 성능을 갖출 수 있다면, 대량으로 사용되는 접점재료의 단가를 내리는 것이 가능하게 되어 대량 생산에 바람직한 전기 접점 재료를 제공하는 것이 가능하다.However, if the Ag alloy containing Zn can have a practical performance as an electrical contact material, it becomes possible to lower the unit cost of the contact material used in large quantities, thereby providing a desirable electrical contact material for mass production.

본 발명은, 이러한 문제를 해결하는 것을 과제로 한다.The present invention is intended to solve such a problem.

따라서, 본 발명은, Zn을 포함하는 Ag-산화물계 전기 접점 재료를 제조하기 위해서, 이 조성에 의한 Ag 합금의 특징인 낮은 소성 가공성과, 특정의 내부 산화 조건에서 결정립계에 다수의 미세한 균열이 발생하여 매우 취약해지는 성질에 주목했다. 본 발명은, 용해법에 의해 잉곳을 제작한 후, 잉곳 상태인 채로 내부 산화 처리를 실시함으로써, 결정립계에 다수의 미세한 균열을 발생시켜 매우 취약한 상태로 하고, 그 후, 잉곳을 분쇄 처리함으로써 내부 산화 처리를 마친 Ag 합금의 세편 또는 분말을 얻고 나서, 그 Ag 합금의 세편 또는 분말을 원하는 형상으로 압축 성형을 실시하고, 소결 처리한 후에, 압출 가공에 의해 선재 또는 판재의 전기 접점 재료로 가공하여 최종적인 접점 형상으로 가공할 수 있도록 했다.Accordingly, the present invention provides a low plastic formability, which is characteristic of Ag alloys by this composition, to produce Ag-oxide-based electrical contact materials containing Zn, and generates many fine cracks at grain boundaries under specific internal oxidation conditions. Attention was drawn to very vulnerable properties. In the present invention, after the ingot is produced by the dissolution method, the internal oxidation treatment is performed in the ingot state to generate a large number of fine cracks in the grain boundary, thereby making it very fragile. Then, the internal ingot treatment is performed by grinding the ingot. After obtaining the three pieces or powder of Ag alloy which has been finished, the three pieces or powder of the Ag alloy are subjected to compression molding to a desired shape, and then sintered, and then processed into an electrical contact material of a wire rod or a plate by extrusion, and finally The contact shape can be processed.

본 발명은, 내부 산화 처리를 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃에서 실시한다. 이것은, 지금까지의 실험에 의해 이 내부 산화 조건 이외에서는 내부 산화가 진행하지 않고 Zn을 포함하는 Ag 합금이 내부 산화형 접점으로서 필요한 성질을 얻을 수 없음과 더불어 결정립계에 다수의 미세한 균열을 발생시켜 매우 취약한 상태로 할 수 없어 재료를 압축 성형하기 위해서 필요한 세편이나 분말로 할 수 없었기 때문이다.The present invention performs the internal oxidation treatment at an oxygen partial pressure of 0.5 to 5.0 MPa and an oxidation temperature of 600 to 900 ° C. According to the experiments so far, the internal oxidation does not proceed outside these internal oxidation conditions, and the Ag alloy containing Zn cannot obtain necessary properties as the internal oxidation contact, and also generates a large number of fine cracks at the grain boundary. This is because it could not be made into a fragile state and could not be made into fine particles or powder necessary for compression molding the material.

여기에서, 본 발명에 있어서의 내부 산화 처리에 의해서 결정립계에 다수의 미세한 균열이 발생하는 원인에 대하여 실험에 의해 밝혀진 점을 기술한다.Here, the point which was discovered by experiment about the cause which a large number of micro cracks generate | occur | produce in a grain boundary by the internal oxidation process in this invention is described.

종래, 전기 접점의 주류인 Ag-Sn-In계 재료를 내부 산화 처리한 경우, 재료 내부에 산화물이 생성될 때에 재료는 다소 팽창하지만 결정립계에 다수의 미세한 균열은 발생하지 않았다.Conventionally, when the Ag-Sn-In-based material, which is the mainstream of electrical contacts, is internally oxidized, the material expands slightly when oxides are generated inside the material, but many fine cracks do not occur at grain boundaries.

Ag-Sn-In계 재료를 내부 산화 처리한 경우, 재료 표면에서 내부 산화를 실시함으로써 생긴 Ag 합금 중의 Sn이나 In 등의 농도 구배를 해소하기 위해서, 재료 표면으로 향해 Ag 합금 중의 Sn이나 In이 확산해 나간다. 이 경우, Sn이나 In의 확산 속도는, 내부 산화시에 재료 표면으로부터 O2가 확산해 나가는 속도보다 빠르기 때문에, 재료 내부에서 약간의 산화물의 응집이 발생하여, 산화물이 많은 개소와 적은 개소가 생긴다. 이 중, 산화물 농도가 낮은 개소는 소성 변형하기 쉬운 상태이다. 내부 산화에 수반하는 산화물 생성에 의한 팽창이 발생한 경우, 이 산화물 농도가 낮고 소성 변형하기 쉬운 개소가 이 팽창에 의한 변형을 흡수하기 때문에 미세한 균열이 발생하지 않는 것이다.When the Ag-Sn-In-based material is internally oxidized, Sn or In in the Ag alloy diffuses toward the material surface in order to solve the concentration gradient such as Sn or In in the Ag alloy resulting from internal oxidation on the material surface. Do it. In this case, since the diffusion rate of Sn or In is faster than the rate at which O 2 diffuses from the surface of the material during internal oxidation, some oxides aggregate in the material, resulting in a large number of oxides and a small number of oxides. . Among these, the location with low oxide concentration is a state which is easy to plastically deform. In the case where expansion due to oxide formation accompanying internal oxidation occurs, fine cracks do not occur because a portion having a low oxide concentration and easily susceptible to plastic deformation absorbs deformation due to the expansion.

그러나, 본 발명에 의한 Zn을 포함하는 Ag계 재료를 내부 산화 처리한 경우, 내부 산화시의 Zn의 확산 속도가 Sn이나 In에 비해 느리고, 재료 표면으로부터의 O2의 확산 속도가 빠르기 때문에 Ag 합금중의 산화물의 생성이 빠르고, 전체에 균일하게 산화물이 분산하여 산화물의 응집이 발생하기 어렵다. 이 때문에, Ag-Sn-In계 재료에 비해 전체에 전연성(展延性)이 낮고 내부 산화시에 발생하는 산화물의 팽창을 흡수할 수 없기 때문에, 결정립계에 다수의 미세한 균열이 발생하게 된다. 특히, 본 발명에서 예시한 내부 산화 조건하에서는 이 현상이 현저하게 확인되었다.However, when the Ag-based material containing Zn according to the present invention is internally oxidized, the Ag alloy has a slower diffusion rate of Zn at the time of internal oxidation than Sn or In and a faster diffusion rate of O 2 from the material surface. The formation of oxides in the mixture is fast, and the oxides are uniformly dispersed throughout, making it difficult to aggregate the oxides. For this reason, compared with Ag-Sn-In type material, since all the malleability is low and it cannot absorb the expansion of the oxide which arises at the time of internal oxidation, many fine cracks generate | occur | produce in a grain boundary. In particular, this phenomenon was remarkably confirmed under the internal oxidation conditions exemplified in the present invention.

본 발명에서 예시하는 제조 방법에 의해, 종래, 전기 접점의 제조가 곤란했던 Zn을 포함하는 Ag계 재료를 이용하여 전기 접점을 제조하는 것이 가능하게 되어, 종래의 접점 재료보다 접점 성능이 뛰어난 전기 접점을 제조하는 것이 가능하게 되었다.By the manufacturing method illustrated by this invention, it becomes possible to manufacture an electrical contact using the Ag type material containing Zn which was conventionally difficult to manufacture an electrical contact, and is an electrical contact which is more excellent in contact performance than the conventional contact material. It has become possible to manufacture.

지금까지의 실험에 의해, Zn을 포함하는 Ag계 재료로서는, Ag 98.7~50질량%, Zn 1~40질량%, Te 0.1~3.0질량%, Cu 0.1~5.0질량%, Sb 0.1~2.0질량%로 배합한 것이 접점 성능이 뛰어난 전기 접점으로서 제조하는 것이 가능한 것임을 알았다.According to the experiments so far, as an Ag-based material containing Zn, Ag is 98.7-50 mass%, Zn 1-40 mass%, Te 0.1-3.0 mass%, Cu 0.1-5.0 mass%, Sb 0.1-2.0 mass% It was found that it was possible to manufacture the compound formulated as an electrical contact having excellent contact performance.

또한, Ag에 Zn을 첨가할 때에, Te, Cu, Sb의 3원소를 아울러 첨가함으로써, 접점 성능이 뛰어난 전기 접점을 제조하는 것이 가능하게 되는 것임을 알았다. 이러한 3원소의 배합 비율은 각각 상기의 최소치 미만에서 내소모성 및 내용착성의 효과가 없어지게 된다. 또한, 각각 상기의 최대치를 초과하면, 산화물이 너무 많아져서 접촉 저항이 증대하고, 나아가서는 온도 상승을 초래하여 용착현상을 발생시키는 요인이 되는 것임을 알았다.In addition, when Zn was added to Ag, it was found that by adding three elements of Te, Cu, and Sb together, it was possible to manufacture an electrical contact having excellent contact performance. The blending ratio of these three elements is such that the effects of wear resistance and welding resistance are lost below the minimum value. In addition, it was found that when the above maximum values were respectively exceeded, the amount of oxide was too large to increase the contact resistance, which in turn caused the temperature to rise, thereby causing the deposition phenomenon.

Zn의 배합 비율을 1~40중량%로 한 이유는, 1중량% 미만에서는 산화물에 의한 원하는 효과를 얻을 수 없기 때문에 첨가하는 의미가 없고, 40중량%를 초과하면 전기 접점으로서 제조가 곤란하게 되어 버리기 때문이다.The reason for setting the blending ratio of Zn to 1 to 40% by weight is that it is not meant to be added because the desired effect of the oxide is not obtained at less than 1% by weight. Because it is thrown away.

또한, 실험에 의해, 상기 합금에 Sn 0.5~8.0중량%, In 1.0~6.0중량%, Ni 0.1~0.3중량% 중 적어도 1종을 더 첨가하면 산화물이 균일하게 석출되도록 제어하여 결정립을 미세화시키는 것에 유효한 것임을 알았다.In addition, by experiments, adding at least one of 0.5 to 8.0% by weight of Sn, 1.0 to 6.0% by weight of In, and 0.1 to 0.3% by weight of Ni to the alloy controls the oxide to be uniformly deposited to refine the grains. It was found to be valid.

Sn, In, Ni의 배합 비율을 상기와 같이 정한 이유는, Sn이 0.5 중량% 미만, In이 1.0 중량% 미만, Ni가 0.1 중량% 미만에서, 산화물이 균일하게 석출되도록 제어하여 결정립을 미세화시키는 효과를 얻을 수 없었기 때문이다. 또한, Sn이 8.0 중량%, In가 6.0 중량%를 초과하면, 산화물이 응집하여 내부 산화 불량이 발생하고, Ni가 0.3 중량%를 초과하면 균일한 용해가 곤란하게 되는 것을 알 수 있었기 때문이다.The reason for setting the blending ratio of Sn, In, and Ni as described above is that when the Sn is less than 0.5% by weight, the In is less than 1.0% by weight and the Ni is less than 0.1% by weight, the oxides are uniformly controlled to refine the grains. Because no effect could be obtained. This is because when Sn exceeds 8.0% by weight and In exceeds 6.0% by weight, oxides aggregate to generate internal oxidation defects, and when Ni exceeds 0.3% by weight, uniform dissolution becomes difficult.

또한, 실험에 의해, Mn, Ga, Mg, Bi 중 적어도 1종을 0.01~0.3중량%의 범위에서 첨가함으로써, 전기 접점으로서의 성능을 더욱 향상시키는 것이 가능함을 알았다. 이것은 미세한 산화물을 결정 조직 내에 석출시킴으로써 내소모성이나 내용착성을 향상시킬 수 있기 때문이다. 더욱이, 이러한 첨가량이 0.01중량% 미만에서는 그 효과를 얻지 못하고, 0.3중량%를 초과하면 산화물이 응집하여 내부 산화 불량이 발생하는 것을 알 수 있었다.In addition, by experiment, it was found that by adding at least one of Mn, Ga, Mg, and Bi in the range of 0.01 to 0.3% by weight, it is possible to further improve the performance as an electrical contact. This is because the wear resistance and the welding resistance can be improved by depositing a fine oxide in the crystal structure. Moreover, it was found that the effect was not obtained when the amount of addition was less than 0.01% by weight, and when the content was more than 0.3% by weight, oxides aggregated to cause internal oxidation defects.

본 발명의 전기 접점 재료에 의한 전기 접점은, 내용착성, 내아크 소모성, 저접촉저항 등의 전반적인 전기 특성이 뛰어나고, 여러 가지의 접점 용도에 있어서도 뛰어난 특성을 가지는 것임을 알았다.It was found that the electrical contact by the electrical contact material of the present invention is excellent in general electrical properties such as welding resistance, arc resistance, and low contact resistance, and has excellent characteristics in various contact uses.

이에 의해, Ag 합금 중에 Zn을 함유하고, 대량으로 사용되는 접점 재료로서, 단가가 낮고, 대량 생산에 바람직한 전기 접점 재료를 제공하는 것이 가능하게 되었다.Thereby, it became possible to provide the electrical contact material which contains Zn in Ag alloy, and is low in cost, and suitable for mass production as a contact material used in large quantities.

본 발명의 실시예를 표 1에 의해 설명한다.The Example of this invention is described by Table 1. FIG.

표 1에 나타낸 각 실시예의 재료를, 용해에 의해 두께 20mm, 폭 50mm, 길이 50mm의 잉곳으로 제조한 후, 잉곳 상태인 채로 800℃, 산소 압력 0.5MPa에서 약 120 시간 정도 내부 산화 처리를 실시한다.The material of each Example shown in Table 1 was melt | dissolved into the ingot of thickness 20mm, width 50mm, and length 50mm by melt | dissolution, and internal oxidation process is performed about 800 hours at 800 degreeC and oxygen pressure of 0.5 MPa in an ingot state. .

그 후, 분쇄기를 이용해 잉곳을 분쇄하여 세편 및/또는 분말을 제조한다. 제조한 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 압출 가공에 의해, 직경 4mm의 선재로 하고, 신선(伸線) 가공 및 열처리에 의해 직경 2mm의 선재로 했다. 이 때, 가공율은 75%였다.The ingot is then milled using a mill to produce shreds and / or powders. The produced fine pieces and / or powder were compression molded into a desired shape, followed by sintering, to a wire rod having a diameter of 4 mm by extrusion, and to a wire rod having a diameter of 2 mm by drawing and heat treatment. At this time, the processing rate was 75%.

다음에, 상기 선재를 성형 프레스에 의해 두께 0.8mm, 폭 및 길이를 2.5mm의 각형이 되도록 성형 가공을 실시한 후, DC 200, 300, 350V에서 용착시험을 실시했다.Next, the wire rod was subjected to a molding process using a molding press so as to have a thickness of 0.8 mm, a width, and a length of 2.5 mm, and then a welding test was performed at DC 200, 300, and 350V.

더욱이, 비교를 위해서 종래예로서 Ag-Sn-In계의 예비 산화형 접점의 예를 2개 제작하여 비교 시험을 실시했다.Furthermore, for comparison, two examples of Ag-Sn-In-based pre-oxidized contacts were produced as comparative examples, and comparative tests were performed.

자료번호Document number 조성(질량%)Composition (mass%) 내용착성Welding 내마모성Wear resistance 접촉저항Contact resistance AgAg ZnZn TeTe CuCu SbSb SnSn InIn NiNi MnMn GaGa MgMg BiBi 실시예1Example 1 50.050.0 40.040.0 3.03.0 5.05.0 2.02.0 실시예2Example 2 98.798.7 1.01.0 0.10.1 0.10.1 0.10.1 실시예3Example 3 86.486.4 1.01.0 0.10.1 0.10.1 0.10.1 8.08.0 4.04.0 0.30.3 실시예4Example 4 86.686.6 4.04.0 1.01.0 2.02.0 1.01.0 1.01.0 4.04.0 0.10.1 0.300.30 실시예5Example 5 83.283.2 8.08.0 1.01.0 0.50.5 0.70.7 6.06.0 0.30.3 0.300.30 실시예6Example 6 89.189.1 2.02.0 0.50.5 0.80.8 0.80.8 2.52.5 4.04.0 0.30.3 0.010.01 실시예7Example 7 88.388.3 3.03.0 0.80.8 0.50.5 0.80.8 2.02.0 4.04.0 0.30.3 0.200.20 0.100.10 실시예8Example 8 91.291.2 3.03.0 1.01.0 2.02.0 1.01.0 0.50.5 1.01.0 0.30.3 0.010.01 실시예9Example 9 72.572.5 20.020.0 2.02.0 1.51.5 1.21.2 0.80.8 1.51.5 0.30.3 0.150.15 0.050.05 실시예10Example 10 62.162.1 30.030.0 2.52.5 0.80.8 0.50.5 1.51.5 2.02.0 0.30.3 0.200.20 0.100.10 실시예11Example 11 51.651.6 40.040.0 3.03.0 0.50.5 0.30.3 1.01.0 3.03.0 0.30.3 0.300.30 실시예12Example 12 60.760.7 25.025.0 2.02.0 2.02.0 1.81.8 4.04.0 4.04.0 0.30.3 0.100.10 0.100.10 실시예13Example 13 72.472.4 15.015.0 2.52.5 1.01.0 0.80.8 6.06.0 2.02.0 0.20.2 0.050.05 0.050.05 종래예1Conventional Example 1 90.290.2 5.05.0 4.54.5 0.30.3 종래예2Conventional Example 2 88.088.0 8.28.2 3.53.5 0.30.3

*시험전압:DC 200, 300, 350V 시험횟수:각 30회 ◎:매우 양호 ○:양호 △:보통* Test voltage: DC 200, 300, 350V Number of tests: 30 times each ◎: Very good ○: Good △: Normal

Claims (5)

Zn을 포함하는 Ag 합금을, 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃의 조건에서 내부 산화 처리를 실시함으로써 결정립계에 다수의 미세한 균열을 발생시키고, 이를 분쇄함으로써 얻어지는 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 소정의 형상으로 압출 가공하는 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.Ag alloy containing Zn is subjected to internal oxidation treatment under oxygen partial pressure of 0.5 to 5.0 MPa and oxidation temperature of 600 to 900 ° C. to generate a large number of fine cracks at grain boundaries, and to obtain fine particles and / or powder obtained by pulverizing them. A method for producing an Ag-oxide type electrical contact material, characterized by compression molding into a desired shape, followed by sintering and extrusion into a predetermined shape. 제1항에 있어서,
Zn을 포함하는 Ag 합금을 Ag 98.7~50질량%, Zn 1~40질량%, Te 0.1~3.0질량%, Cu 0.1~5.0질량%, Sb 0.1~2.0질량%로 한 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.
The method of claim 1,
Ag-oxide containing Zn as Ag 98.7-50 mass%, Zn 1-40 mass%, Te 0.1-3.0 mass%, Cu 0.1-5.0 mass%, Sb 0.1-2.0 mass% Method for producing a system electrical contact material.
제2항에 있어서,
Sn 0.5~8.0중량%, In 1.0~6.0중량%, Ni 0.1~0.3중량% 중 적어도 1종을 더 첨가한 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.
3. The method of claim 2,
A method for producing an Ag-oxide type electrical contact material, characterized by further adding at least one of 0.5 to 8.0% by weight of Sn, 1.0 to 6.0% by weight of In, and 0.1 to 0.3% by weight of Ni.
제3항에 있어서,
Mn, Ga, Mg, Bi 중 적어도 1종을 0.01~0.3질량% 더 첨가한 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.
The method of claim 3,
0.01-0.3 mass% of at least 1 sort (s) of Mn, Ga, Mg, and Bi was further added, The manufacturing method of the Ag-oxide type electrical contact material characterized by the above-mentioned.
제1항 내지 제3항 또는 제4항에 의해 제조된 Ag-산화물계 전기 접점 재료.An Ag-oxide based electrical contact material prepared according to claim 1.
KR1020137012762A 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD KR101609911B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010257162 2010-11-17
JPJP-P-2010-257162 2010-11-17
PCT/JP2011/067374 WO2012066826A1 (en) 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD

Publications (2)

Publication Number Publication Date
KR20140001901A true KR20140001901A (en) 2014-01-07
KR101609911B1 KR101609911B1 (en) 2016-04-06

Family

ID=46083770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137012762A KR101609911B1 (en) 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD

Country Status (5)

Country Link
JP (1) JP5426752B2 (en)
KR (1) KR101609911B1 (en)
CN (1) CN103210100B (en)
TW (1) TW201231682A (en)
WO (1) WO2012066826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062411A (en) * 2014-11-25 2016-06-02 희성금속 주식회사 METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL FOR ELECTRIC SWITCH
KR20210081165A (en) * 2019-12-23 2021-07-01 박준성 Method for manufacturing contact material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419844A (en) * 2013-08-23 2015-03-18 光洋应用材料科技股份有限公司 Silver alloy material
KR101516483B1 (en) * 2013-09-05 2015-05-04 희성금속 주식회사 METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL
CN112059168B (en) * 2020-08-08 2022-07-05 浙江福达合金材料科技有限公司 Method for preparing silver metal oxide electric contact material based on nano silver wire modification and 3D gradient printing and product thereof
JP2022077654A (en) * 2020-11-12 2022-05-24 オムロン株式会社 MATERIAL FOR CONTACT HAVING Ag ALLOY AS MAIN COMPONENT, CONTACT USING THE MATERIAL FOR CONTACT, AND ELECTRIC APPLIANCE

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152315A (en) * 1982-03-04 1983-09-09 古河電気工業株式会社 Method of producing silver-oxide contact material
JPS5967346A (en) * 1982-10-08 1984-04-17 Omron Tateisi Electronics Co Electrical contact material
TW517095B (en) * 1999-04-23 2003-01-11 Tanaka Precious Metal Ind Co L Method for producing Ag-ZnO electric contact material and electric contact material produced thereby
CN1443864A (en) * 2003-04-17 2003-09-24 章景兴 Silver tin-oxide zinc-oxide alloy electric contact and its production process
JP4994144B2 (en) * 2007-07-26 2012-08-08 三菱マテリアルシーエムアイ株式会社 Silver-oxide based electrical contact materials
CN101608279B (en) * 2009-07-20 2012-10-03 温州宏丰电工合金股份有限公司 Silver oxide electrical contact material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062411A (en) * 2014-11-25 2016-06-02 희성금속 주식회사 METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL FOR ELECTRIC SWITCH
KR20210081165A (en) * 2019-12-23 2021-07-01 박준성 Method for manufacturing contact material

Also Published As

Publication number Publication date
CN103210100A (en) 2013-07-17
WO2012066826A1 (en) 2012-05-24
JP5426752B2 (en) 2014-02-26
CN103210100B (en) 2015-07-22
KR101609911B1 (en) 2016-04-06
JPWO2012066826A1 (en) 2014-05-12
TW201231682A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
KR20140001901A (en) Method for producing ag-oxide-based electrical contact material and electrical contact material produced by the method
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
JPS6318027A (en) Contact material of silver-metal oxide series and its production
CN105195747A (en) Method for improving uniformity and formability of hard alloy powder ball milling
CN103586470B (en) Preparation method of siluer metal oxide graphite composite electric contact material and products thereof
JP6343447B2 (en) Electrical contact material and manufacturing method thereof
CN101950696A (en) Manufacturing method of silver tin oxide contact alloy material and manufactured alloy thereof
CN107598176B (en) Preparation process of silver metal oxide electrical contact material
CN110499435B (en) Silver-based electric contact material and preparation method thereof
CN110423908B (en) Silver oxide, tin oxide and indium oxide electric contact material capable of rapidly oxidizing silver and preparation method
CN109593981B (en) Preparation method of silver tin oxide contact material for improving sintering property of ingot blank
CN103589898B (en) Preparation method of compound electric contact material containing silver, metal oxide and tungsten carbide and product thereof
CN1316047C (en) Copper-tungsten-carbon-titanium-rare earth alloy material and production thereof
KR20160062411A (en) METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL FOR ELECTRIC SWITCH
KR20090062864A (en) Agzno electric contact material
CN111020268A (en) Preparation method of silver tin oxide indium oxide contact material with uniform structure
CN110976801A (en) Method for preparing silver tin oxide indium oxide contact material by up-drawing continuous casting process
CN109609794A (en) A kind of preparation method of high ductility sliver oxidized tin contactor materials
CN109500392B (en) Preparation method of silver zinc oxide contact material for improving sintering property of ingot blank
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
JP5326467B2 (en) Method for producing copper alloy wire
US6312495B1 (en) Powder-metallurgically produced composite material and method for its production
CN106181229B (en) A kind of silver nickel electric contact material fabrication process
KR20130035557A (en) Method for manufacturing powder metallurgy based electric contact materials using extrusion
KR20180057104A (en) Electrical contact material and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 4