KR101609911B1 - METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD - Google Patents

METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD Download PDF

Info

Publication number
KR101609911B1
KR101609911B1 KR1020137012762A KR20137012762A KR101609911B1 KR 101609911 B1 KR101609911 B1 KR 101609911B1 KR 1020137012762 A KR1020137012762 A KR 1020137012762A KR 20137012762 A KR20137012762 A KR 20137012762A KR 101609911 B1 KR101609911 B1 KR 101609911B1
Authority
KR
South Korea
Prior art keywords
electrical contact
mass
contact material
oxide
internal oxidation
Prior art date
Application number
KR1020137012762A
Other languages
Korean (ko)
Other versions
KR20140001901A (en
Inventor
히데오 구미타
신야 마마다
Original Assignee
가부시키가이샤 토쿠리키 혼텐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 토쿠리키 혼텐 filed Critical 가부시키가이샤 토쿠리키 혼텐
Publication of KR20140001901A publication Critical patent/KR20140001901A/en
Application granted granted Critical
Publication of KR101609911B1 publication Critical patent/KR101609911B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver

Abstract

[과제] Zn을 포함하는 Ag-산화물계 전기 접점 재료는, 전기 접점의 제조에 불가결한 소성 가공성이 낮고, 거의 압연 가공을 실시하는 것이 곤란했기 때문에 전기 접점 재료로서 실용화되어 있지 않았다. [해결수단] Zn을 포함하는 Ag 합금을, 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃의 조건에서 내부 산화 처리를 실시함으로써 결정립계에 다수의 미세한 균열을 발생시키고, 이것을 분쇄함으로써 얻어지는 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 소정의 형상으로 압출 가공하는 Ag-산화물계 전기 접점 재료의 제조 방법.An Ag-oxide-based electrical contact material containing Zn has not been practically used as an electrical contact material since it is difficult to carry out rolling processing with a low degree of plastic workability indispensable for the production of electrical contacts. An Ag alloy containing Zn is subjected to an internal oxidation treatment at an oxygen partial pressure of 0.5 to 5.0 MPa and an oxidation temperature of 600 to 900 ° C to generate a plurality of minute cracks in the grain boundaries, And / or the powder is compression-molded into a desired shape, sintered, and extruded in a predetermined shape.

Description

Ag-산화물계 전기 접점 재료의 제조 방법 및 이에 의해 제조된 전기 접점 재료 {METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an Ag-Oxide-based electrical contact material,

본 발명은 Ag-산화물계 전기 접점 재료의 제조 방법 및 이에 의해 제조된 전기 접점 재료에 관한 것이다.The present invention relates to a method for manufacturing an Ag-oxide-based electrical contact material and an electrical contact material produced thereby.

종래, 전기 접점 재료의 제조 방법으로서는, 소재가 되는 합금을 용해법에 의해 제작하여, 압연 가공, 프레스 가공 등을 실시해서 접점 형상으로 가공한 후, 내부 산화 처리를 실시하는 후 산화법에 의한 제조법이 있다.BACKGROUND ART Conventionally, as a manufacturing method of an electrical contact material, there is a manufacturing method by a post-oxidation method in which an alloy serving as a material is produced by a dissolving method, rolled or pressed to form a contact shape and then subjected to an internal oxidation treatment .

또한, 소재가 되는 합금을 용해법에 의해 제작하여, 판재 등으로 가공한 후, 프레스 커팅 등에 의해 세편(細片)을 제조하고, 세편을 내부 산화 처리하고 나서 소정의 형상으로 압축 성형을 실시하고, 압축 성형된 재료를 압출 가공에 의해 선재철강이나 판재로 가공하고 나서 접점 형상으로 가공하는 예비 산화법에 의한 제조 방법이 있다(예를 들면, 특허문헌 1 참조).Further, it is also possible to produce an alloy which is a raw material by a dissolution method, process it with a plate material or the like, manufacture a piece by press cutting or the like, perform internal oxidation of the piece, There is a manufacturing method using a preliminary oxidation method in which a compression-molded material is processed by extrusion processing into a wire rod steel or a plate material and then processed into a contact shape (see, for example, Patent Document 1).

또한, 금속 분말을 소정의 형상으로 압축 성형한 후, 소결을 실시하고, 압연 가공한 후에 접점 형상으로 가공하는 분말 소결법에 의한 제조 방법이 있다(예를 들면, 특허문헌 2 참조).Further, there is a manufacturing method by a powder sintering method in which a metal powder is compression molded into a predetermined shape, sintered, rolled, and then processed into a contact shape (see, for example, Patent Document 2).

특허문헌 1 : 일본 특허공개공보 특개평7-258769호Patent Document 1: Japanese Patent Application Laid-Open No. 7-258769 특허문헌 2 : 일본 특허공개공보 특개평9-111364호Patent Document 2: JP-A-9-111364

예를 들면, Ag, Zn, Te, Cu, Sb를 포함하는 조성의 합금을 이용하여 전기 접점을 제조하려고 하는 경우, Zn을 포함하는 Ag 합금의 소성 가공성이 나쁘고, 이 때문에 접점의 제조에 불가결한 압연 가공 등의 가공이 곤란하므로, 종래의 전기 접점의 제조 방법인 후 산화법이나 예비 산화법에 의한 제조가 곤란하다.For example, when an electrical contact is to be manufactured using an alloy having a composition including Ag, Zn, Te, Cu, and Sb, the sintering processability of the Ag alloy containing Zn is poor, It is difficult to manufacture by the post-oxidation method or the preliminary oxidation method, which is a conventional method for manufacturing an electrical contact.

또한, 다소의 소성 가공이 가능한 경우에 있어서도, 접점 형상으로 가공한 후에 내부 산화 처리를 실시하면, 산화 팽창에 의해 결정립계에 다수의 미세한 균열이 발생하여, 매우 취약한 상태가 되므로, 그대로는 전기 접점으로서 사용하는 것이 곤란하다. 이와 같이, Zn을 포함하는 Ag-산화물계 전기 접점 재료는 전기 접점의 제조에 불가결한 소성 가공성이 낮고, 압연 가공을 실시하는 것이 곤란하기 때문에, 전기 접점 재료로서 실용화되지 않았다.Further, even in a case where some plastic working is possible, a large number of minute cracks are generated in the crystal grain boundary due to the oxidation expansion when the internal oxidation treatment is performed after processing into the contact shape, resulting in a very fragile state. It is difficult to use. As described above, the Ag-oxide-based electrical contact material containing Zn has low plastic workability which is indispensable for the production of electrical contacts, and it is difficult to carry out the rolling process, and thus it has not been practically used as an electrical contact material.

그렇지만, Zn을 포함하는 Ag 합금이 전기 접점 재료로서 실용 가능한 성능을 갖출 수 있다면, 대량으로 사용되는 접점재료의 단가를 내리는 것이 가능하게 되어 대량 생산에 바람직한 전기 접점 재료를 제공하는 것이 가능하다.However, if the Ag alloy containing Zn can have practical performance as an electrical contact material, it is possible to reduce the unit cost of the contact material used in large quantities, and it is possible to provide a preferable electrical contact material for mass production.

본 발명은, 이러한 문제를 해결하는 것을 과제로 한다.The present invention is intended to solve such a problem.

따라서, 본 발명은, Zn을 포함하는 Ag-산화물계 전기 접점 재료를 제조하기 위해서, 이 조성에 의한 Ag 합금의 특징인 낮은 소성 가공성과, 특정의 내부 산화 조건에서 결정립계에 다수의 미세한 균열이 발생하여 매우 취약해지는 성질에 주목했다. 본 발명은, 용해법에 의해 잉곳을 제작한 후, 잉곳 상태인 채로 내부 산화 처리를 실시함으로써, 결정립계에 다수의 미세한 균열을 발생시켜 매우 취약한 상태로 하고, 그 후, 잉곳을 분쇄 처리함으로써 내부 산화 처리를 마친 Ag 합금의 세편 또는 분말을 얻고 나서, 그 Ag 합금의 세편 또는 분말을 원하는 형상으로 압축 성형을 실시하고, 소결 처리한 후에, 압출 가공에 의해 선재 또는 판재의 전기 접점 재료로 가공하여 최종적인 접점 형상으로 가공할 수 있도록 했다.Therefore, in order to produce an Ag-oxide-based electrical contact material containing Zn, the present invention has a low plastic workability characteristic of the Ag alloy by this composition and a large number of minute cracks in the grain boundaries under specific internal oxidation conditions And noted the very vulnerable nature. The present invention is characterized in that an ingot is produced by a dissolution method and then subjected to an internal oxidation treatment while being kept in an ingot state to cause a plurality of fine cracks to be generated in a crystal grain boundary to be in a very fragile state, The Ag alloy or the powder of the Ag alloy is subjected to compression molding in a desired shape and sintered and then processed into an electrical contact material of a wire or a plate by extrusion processing to obtain a final product So that it can be processed into a contact shape.

본 발명은, 내부 산화 처리를 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃에서 실시한다. 이것은, 지금까지의 실험에 의해 이 내부 산화 조건 이외에서는 내부 산화가 진행하지 않고 Zn을 포함하는 Ag 합금이 내부 산화형 접점으로서 필요한 성질을 얻을 수 없음과 더불어 결정립계에 다수의 미세한 균열을 발생시켜 매우 취약한 상태로 할 수 없어 재료를 압축 성형하기 위해서 필요한 세편이나 분말로 할 수 없었기 때문이다.In the present invention, the internal oxidation treatment is performed at an oxygen partial pressure of 0.5 to 5.0 MPa and an oxidation temperature of 600 to 900 占 폚. This is because, according to the experiments so far, internal oxidation does not proceed except for the internal oxidation condition, and the Ag alloy containing Zn can not obtain the necessary property as the internal oxidation type contact, and besides, many fine cracks are generated in the grain boundaries It can not be made into a fragile state, and it can not be made into a piece or a powder necessary for compression-molding the material.

여기에서, 본 발명에 있어서의 내부 산화 처리에 의해서 결정립계에 다수의 미세한 균열이 발생하는 원인에 대하여 실험에 의해 밝혀진 점을 기술한다.Here, the fact that many fine cracks are generated in the grain boundaries by the internal oxidation treatment in the present invention is revealed by experiments.

종래, 전기 접점의 주류인 Ag-Sn-In계 재료를 내부 산화 처리한 경우, 재료 내부에 산화물이 생성될 때에 재료는 다소 팽창하지만 결정립계에 다수의 미세한 균열은 발생하지 않았다.Conventionally, when an Ag-Sn-In-based material, which is a mainstream of an electrical contact, is subjected to an internal oxidation treatment, the material slightly expands when oxides are generated in the material, but a large number of minute cracks do not occur in the grain boundaries.

Ag-Sn-In계 재료를 내부 산화 처리한 경우, 재료 표면에서 내부 산화를 실시함으로써 생긴 Ag 합금 중의 Sn이나 In 등의 농도 구배를 해소하기 위해서, 재료 표면으로 향해 Ag 합금 중의 Sn이나 In이 확산해 나간다. 이 경우, Sn이나 In의 확산 속도는, 내부 산화시에 재료 표면으로부터 O2가 확산해 나가는 속도보다 빠르기 때문에, 재료 내부에서 약간의 산화물의 응집이 발생하여, 산화물이 많은 개소와 적은 개소가 생긴다. 이 중, 산화물 농도가 낮은 개소는 소성 변형하기 쉬운 상태이다. 내부 산화에 수반하는 산화물 생성에 의한 팽창이 발생한 경우, 이 산화물 농도가 낮고 소성 변형하기 쉬운 개소가 이 팽창에 의한 변형을 흡수하기 때문에 미세한 균열이 발생하지 않는 것이다.In the case where the Ag-Sn-In-based material is subjected to the internal oxidation treatment, Sn or In in the Ag alloy is diffused toward the surface of the material in order to solve the concentration gradient of Sn or In in the Ag alloy produced by internal oxidation at the material surface I will. In this case, the diffusion rate of Sn or In is faster than the rate at which O 2 diffuses from the surface of the material at the time of internal oxidation, so that a little oxide is agglomerated in the material, and a few oxide sites and a small number of sites are generated . Among these, the portions having a low oxide concentration are in a state in which plastic deformation is likely to occur. When the expansion due to the formation of the oxide occurs due to the internal oxidation, the portion where the oxide concentration is low and is liable to be plastically deformed absorbs the deformation due to the expansion, so that fine cracks do not occur.

그러나, 본 발명에 의한 Zn을 포함하는 Ag계 재료를 내부 산화 처리한 경우, 내부 산화시의 Zn의 확산 속도가 Sn이나 In에 비해 느리고, 재료 표면으로부터의 O2의 확산 속도가 빠르기 때문에 Ag 합금중의 산화물의 생성이 빠르고, 전체에 균일하게 산화물이 분산하여 산화물의 응집이 발생하기 어렵다. 이 때문에, Ag-Sn-In계 재료에 비해 전체에 전연성(展延性)이 낮고 내부 산화시에 발생하는 산화물의 팽창을 흡수할 수 없기 때문에, 결정립계에 다수의 미세한 균열이 발생하게 된다. 특히, 본 발명에서 예시한 내부 산화 조건하에서는 이 현상이 현저하게 확인되었다.However, when the Zn-containing Ag-based material according to the present invention is subjected to the internal oxidation treatment, the diffusion rate of Zn during internal oxidation is slower than that of Sn or In, and the diffusion rate of O 2 from the material surface is fast. The oxide in the oxide film is generated rapidly, and the oxide is uniformly dispersed throughout the oxide film, so that the oxide is hardly aggregated. Therefore, compared with the Ag-Sn-In-based material, the entire steel has low spreadability and can not absorb the expansion of the oxide generated during internal oxidation, so that many fine cracks are generated in the grain boundaries. Particularly, under the internal oxidation conditions exemplified in the present invention, this phenomenon was remarkably confirmed.

본 발명에서 예시하는 제조 방법에 의해, 종래, 전기 접점의 제조가 곤란했던 Zn을 포함하는 Ag계 재료를 이용하여 전기 접점을 제조하는 것이 가능하게 되어, 종래의 접점 재료보다 접점 성능이 뛰어난 전기 접점을 제조하는 것이 가능하게 되었다.By the manufacturing method exemplified in the present invention, it is possible to manufacture an electrical contact using an Ag-based material containing Zn, which has conventionally been difficult to manufacture an electrical contact, It has become possible to produce the above-mentioned products.

지금까지의 실험에 의해, Zn을 포함하는 Ag계 재료로서는, Ag 98.7~50질량%, Zn 1~40질량%, Te 0.1~3.0질량%, Cu 0.1~5.0질량%, Sb 0.1~2.0질량%로 배합한 것이 접점 성능이 뛰어난 전기 접점으로서 제조하는 것이 가능한 것임을 알았다.According to the experiments so far, the Ag-based material containing Zn is composed of 98.7 to 50 mass% of Ag, 1 to 40 mass% of Zn, 0.1 to 3.0 mass% of Te, 0.1 to 5.0 mass% of Cu, 0.1 to 2.0 mass% It can be manufactured as an electrical contact having excellent contact performance.

또한, Ag에 Zn을 첨가할 때에, Te, Cu, Sb의 3원소를 아울러 첨가함으로써, 접점 성능이 뛰어난 전기 접점을 제조하는 것이 가능하게 되는 것임을 알았다. 이러한 3원소의 배합 비율은 각각 상기의 최소치 미만에서 내소모성 및 내용착성의 효과가 없어지게 된다. 또한, 각각 상기의 최대치를 초과하면, 산화물이 너무 많아져서 접촉 저항이 증대하고, 나아가서는 온도 상승을 초래하여 용착현상을 발생시키는 요인이 되는 것임을 알았다.Further, it was found that when adding Zn to Ag, addition of three elements of Te, Cu, and Sb together makes it possible to manufacture an electrical contact having excellent contact performance. If the mixing ratio of these three elements is less than the above minimum value, the effect of wear resistance and adhesion is lost. In addition, if each of them exceeds the above-mentioned maximum value, the amount of the oxide is excessively increased, the contact resistance is increased, and furthermore, the temperature is raised and the welding phenomenon is caused.

Zn의 배합 비율을 1~40질량%로 한 이유는, 1질량% 미만에서는 산화물에 의한 원하는 효과를 얻을 수 없기 때문에 첨가하는 의미가 없고, 40질량%를 초과하면 전기 접점으로서 제조가 곤란하게 되어 버리기 때문이다.The reason why the blending ratio of Zn is set to 1 to 40 mass% is that when it is less than 1 mass%, it is not meaningful to add it because a desired effect by the oxide can not be obtained, and when it exceeds 40 mass% It is because it throws away.

또한, 실험에 의해, 상기 합금에 Sn 0.5~8.0질량%, In 1.0~6.0질량%, Ni 0.1~0.3질량% 중 적어도 1종을 더 첨가하면 산화물이 균일하게 석출되도록 제어하여 결정립을 미세화시키는 것에 유효한 것임을 알았다.Further, it has been experimentally found that if at least one of Sn 0.5 to 8.0 mass%, In 1.0 to 6.0 mass%, and Ni 0.1 to 0.3 mass% is further added to the alloy, the oxide is uniformly precipitated to control the grain size I knew it was valid.

Sn, In, Ni의 배합 비율을 상기와 같이 정한 이유는, Sn이 0.5 질량% 미만, In이 1.0 질량% 미만, Ni가 0.1 질량% 미만에서, 산화물이 균일하게 석출되도록 제어하여 결정립을 미세화시키는 효과를 얻을 수 없었기 때문이다. 또한, Sn이 8.0 질량%, In가 6.0 질량%를 초과하면, 산화물이 응집하여 내부 산화 불량이 발생하고, Ni가 0.3 질량%를 초과하면 균일한 용해가 곤란하게 되는 것을 알 수 있었기 때문이다.The reason why the blend ratio of Sn, In and Ni is determined as described above is as follows. When the content of Sn is less than 0.5 mass%, the content of In is less than 1.0 mass%, and the content of Ni is less than 0.1 mass% The effect was not obtained. On the other hand, when the content of Sn exceeds 8.0 mass% and the content of In exceeds 6.0 mass%, the oxides aggregate to cause internal oxidation failure, and when Ni exceeds 0.3 mass%, uniform dissolution becomes difficult.

또한, 실험에 의해, Mn, Ga, Mg, Bi 중 적어도 1종을 0.01~0.3질량%의 범위에서 첨가함으로써, 전기 접점으로서의 성능을 더욱 향상시키는 것이 가능함을 알았다. 이것은 미세한 산화물을 결정 조직 내에 석출시킴으로써 내소모성이나 내용착성을 향상시킬 수 있기 때문이다. 더욱이, 이러한 첨가량이 0.01질량% 미만에서는 그 효과를 얻지 못하고, 0.3질량%를 초과하면 산화물이 응집하여 내부 산화 불량이 발생하는 것을 알 수 있었다.Further, it has been found through experiments that the performance as an electrical contact can be further improved by adding at least one of Mn, Ga, Mg and Bi in the range of 0.01 to 0.3 mass%. This is because precipitation of fine oxides into the crystal structure can improve the wear resistance and the wear resistance. Further, when the added amount is less than 0.01 mass%, the effect is not obtained. When the added amount exceeds 0.3 mass%, the oxide coagulates and internal oxidation failure occurs.

본 발명의 전기 접점 재료에 의한 전기 접점은, 내용착성, 내아크 소모성, 저접촉저항 등의 전반적인 전기 특성이 뛰어나고, 여러 가지의 접점 용도에 있어서도 뛰어난 특성을 가지는 것임을 알았다.It has been found that the electrical contact by the electrical contact material of the present invention is excellent in general electrical properties such as resistance to wear, arc endurance and low contact resistance, and has excellent characteristics in various contact applications.

이에 의해, Ag 합금 중에 Zn을 함유하고, 대량으로 사용되는 접점 재료로서, 단가가 낮고, 대량 생산에 바람직한 전기 접점 재료를 제공하는 것이 가능하게 되었다.As a result, it became possible to provide an electrical contact material which contains Zn in the Ag alloy and has a low unit cost and is suitable for mass production as a contact material used in large quantities.

본 발명의 실시예를 표 1에 의해 설명한다.Examples of the present invention will be described with reference to Table 1.

표 1에 나타낸 각 실시예의 재료를, 용해에 의해 두께 20mm, 폭 50mm, 길이 50mm의 잉곳으로 제조한 후, 잉곳 상태인 채로 800℃, 산소 압력 0.5MPa에서 약 120 시간 정도 내부 산화 처리를 실시한다.The ingot having the thickness of 20 mm, the width of 50 mm and the length of 50 mm was prepared by dissolving the materials of each of the examples shown in Table 1, and the ingot was subjected to the internal oxidation treatment at 800 DEG C and the oxygen pressure of 0.5 MPa for about 120 hours .

그 후, 분쇄기를 이용해 잉곳을 분쇄하여 세편 및/또는 분말을 제조한다. 제조한 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 압출 가공에 의해, 직경 4mm의 선재로 하고, 신선(伸線) 가공 및 열처리에 의해 직경 2mm의 선재로 했다. 이 때, 가공율은 75%였다.Thereafter, the ingot is pulverized by using a pulverizer to produce a piece and / or a powder. The produced pieces and / or powder were compression-molded into a desired shape, sintered, and extruded to obtain a wire having a diameter of 4 mm, and a wire rod having a diameter of 2 mm was formed by wire drawing and heat treatment. At this time, the processing rate was 75%.

다음에, 상기 선재를 성형 프레스에 의해 두께 0.8mm, 폭 및 길이를 2.5mm의 각형이 되도록 성형 가공을 실시한 후, DC 200, 300, 350V에서 용착시험을 실시했다.Next, the wire was subjected to a forming process so as to have a square shape with a thickness of 0.8 mm, a width and a length of 2.5 mm by a molding press, and then subjected to a welding test at DC 200, 300, and 350 V.

더욱이, 비교를 위해서 종래예로서 Ag-Sn-In계의 예비 산화형 접점의 예를 2개 제작하여 비교 시험을 실시했다.Further, for comparison, two examples of the Ag-Sn-In pre-oxidation type contacts were produced as a conventional example, and a comparative test was conducted.

자료번호Article number 조성(질량%)Composition (% by mass) 내용착성Fusing 내마모성Abrasion resistance 접촉저항Contact resistance AgAg ZnZn TeTe CuCu SbSb SnSn InIn NiNi MnMn GaGa MgMg BiBi 실시예1Example 1 50.050.0 40.040.0 3.03.0 5.05.0 2.02.0 실시예2Example 2 98.798.7 1.01.0 0.10.1 0.10.1 0.10.1 실시예3Example 3 86.486.4 1.01.0 0.10.1 0.10.1 0.10.1 8.08.0 4.04.0 0.30.3 실시예4Example 4 86.686.6 4.04.0 1.01.0 2.02.0 1.01.0 1.01.0 4.04.0 0.10.1 0.300.30 실시예5Example 5 83.283.2 8.08.0 1.01.0 0.50.5 0.70.7 6.06.0 0.30.3 0.300.30 실시예6Example 6 89.189.1 2.02.0 0.50.5 0.80.8 0.80.8 2.52.5 4.04.0 0.30.3 0.010.01 실시예7Example 7 88.388.3 3.03.0 0.80.8 0.50.5 0.80.8 2.02.0 4.04.0 0.30.3 0.200.20 0.100.10 실시예8Example 8 91.291.2 3.03.0 1.01.0 2.02.0 1.01.0 0.50.5 1.01.0 0.30.3 0.010.01 실시예9Example 9 72.572.5 20.020.0 2.02.0 1.51.5 1.21.2 0.80.8 1.51.5 0.30.3 0.150.15 0.050.05 실시예10Example 10 62.162.1 30.030.0 2.52.5 0.80.8 0.50.5 1.51.5 2.02.0 0.30.3 0.200.20 0.100.10 실시예11Example 11 51.651.6 40.040.0 3.03.0 0.50.5 0.30.3 1.01.0 3.03.0 0.30.3 0.300.30 실시예12Example 12 60.760.7 25.025.0 2.02.0 2.02.0 1.81.8 4.04.0 4.04.0 0.30.3 0.100.10 0.100.10 실시예13Example 13 72.472.4 15.015.0 2.52.5 1.01.0 0.80.8 6.06.0 2.02.0 0.20.2 0.050.05 0.050.05 종래예1Conventional Example 1 90.290.2 5.05.0 4.54.5 0.30.3 종래예2Conventional Example 2 88.088.0 8.28.2 3.53.5 0.30.3

*시험전압:DC 200, 300, 350V 시험횟수:각 30회 ◎:매우 양호 ○:양호 △:보통* Test voltage: DC 200, 300, 350V Number of tests: 30 times each ◎: Very good ○: Good △: Normal

Claims (5)

Zn 1~40질량%, Te 0.1~3.0질량%, Cu 0.1~5.0질량%, Sb 0.1~2.0질량%를 포함하고 나머지가 Ag인 Zn을 포함하는 Ag 합금을, 산소 분압 0.5~5.0MPa, 산화 온도 600~900℃의 조건에서 내부 산화 처리를 실시함으로써 결정립계에 다수의 미세한 균열을 발생시키고, 이를 분쇄함으로써 얻어지는 세편 및/또는 분말을 원하는 형상으로 압축 성형한 후, 소결하고, 소정의 형상으로 압출 가공하는 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.An Ag alloy containing Zn in an amount of 1 to 40 mass%, Te in an amount of 0.1 to 3.0 mass%, Cu in an amount of 0.1 to 5.0 mass%, and Sb in an amount of 0.1 to 2.0 mass% A plurality of minute cracks are generated in the grain boundaries by performing an internal oxidation treatment at a temperature of 600 to 900 DEG C and crushing the resulting fine particles and / or powder is compression-molded into a desired shape, followed by sintering, Wherein the Ag-Oxide-based electrical contact material is processed by the method. 삭제delete 제1항에 있어서,
Sn 0.5~8.0질량%, In 1.0~6.0질량%, Ni 0.1~0.3질량% 중 적어도 1종을 더 첨가한 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.
The method according to claim 1,
Wherein at least one of Sn 0.5 to 8.0 mass%, In 1.0 to 6.0 mass%, and Ni 0.1 to 0.3 mass% is further added to the Ag-oxide based electrical contact material.
제3항에 있어서,
Mn, Ga, Mg, Bi 중 적어도 1종을 0.01~0.3질량% 더 첨가한 것을 특징으로 하는 Ag-산화물계 전기 접점 재료의 제조 방법.
The method of claim 3,
Wherein at least one of Mn, Ga, Mg and Bi is further added in an amount of 0.01 to 0.3 mass%.
제1항, 제3 내지 제4항 중 어느 한 항에 기재된 제조 방법에 의해 제조된 Ag-산화물계 전기 접점 재료.An Ag-oxide-based electrical contact material produced by the manufacturing method according to any one of claims 1 to 3.
KR1020137012762A 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD KR101609911B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-257162 2010-11-17
JP2010257162 2010-11-17
PCT/JP2011/067374 WO2012066826A1 (en) 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD

Publications (2)

Publication Number Publication Date
KR20140001901A KR20140001901A (en) 2014-01-07
KR101609911B1 true KR101609911B1 (en) 2016-04-06

Family

ID=46083770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137012762A KR101609911B1 (en) 2010-11-17 2011-07-28 METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD

Country Status (5)

Country Link
JP (1) JP5426752B2 (en)
KR (1) KR101609911B1 (en)
CN (1) CN103210100B (en)
TW (1) TW201231682A (en)
WO (1) WO2012066826A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104419844A (en) * 2013-08-23 2015-03-18 光洋应用材料科技股份有限公司 Silver alloy material
KR101516483B1 (en) * 2013-09-05 2015-05-04 희성금속 주식회사 METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL
KR20160062411A (en) * 2014-11-25 2016-06-02 희성금속 주식회사 METHOD FOR PREPARING OF Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL FOR ELECTRIC SWITCH
KR102290451B1 (en) * 2019-12-23 2021-08-17 박준성 Method for manufacturing contact material
CN112059168B (en) * 2020-08-08 2022-07-05 浙江福达合金材料科技有限公司 Method for preparing silver metal oxide electric contact material based on nano silver wire modification and 3D gradient printing and product thereof
JP2022077654A (en) * 2020-11-12 2022-05-24 オムロン株式会社 MATERIAL FOR CONTACT HAVING Ag ALLOY AS MAIN COMPONENT, CONTACT USING THE MATERIAL FOR CONTACT, AND ELECTRIC APPLIANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789304B2 (en) 1999-04-23 2006-06-21 田中貴金属工業株式会社 Method for producing Ag-ZnO-based electrical contact material and electrical contact material thereof
JP2009030099A (en) * 2007-07-26 2009-02-12 Mitsubishi Material Cmi Kk Silver-oxide based electrical contact material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152315A (en) * 1982-03-04 1983-09-09 古河電気工業株式会社 Method of producing silver-oxide contact material
JPS5967346A (en) * 1982-10-08 1984-04-17 Omron Tateisi Electronics Co Electrical contact material
CN1443864A (en) * 2003-04-17 2003-09-24 章景兴 Silver tin-oxide zinc-oxide alloy electric contact and its production process
CN101608279B (en) * 2009-07-20 2012-10-03 温州宏丰电工合金股份有限公司 Silver oxide electrical contact material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3789304B2 (en) 1999-04-23 2006-06-21 田中貴金属工業株式会社 Method for producing Ag-ZnO-based electrical contact material and electrical contact material thereof
JP2009030099A (en) * 2007-07-26 2009-02-12 Mitsubishi Material Cmi Kk Silver-oxide based electrical contact material

Also Published As

Publication number Publication date
TW201231682A (en) 2012-08-01
CN103210100A (en) 2013-07-17
KR20140001901A (en) 2014-01-07
WO2012066826A1 (en) 2012-05-24
JPWO2012066826A1 (en) 2014-05-12
JP5426752B2 (en) 2014-02-26
CN103210100B (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR101609911B1 (en) METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRICAL CONTACT MATERIAL AND ELECTRICAL CONTACT MATERIAL PRODUCED BY THE METHOD
CN103695682B (en) A kind of silver oxide contact material and preparation method and products thereof with strengthening substrate performance additive
JPS6038452B2 (en) Method of manufacturing sintered contact material
CN105195747A (en) Method for improving uniformity and formability of hard alloy powder ball milling
KR101648645B1 (en) Electrode material for thermal fuses, manufacturing process therefor and thermal fuses using said electrode material
CN103586470B (en) Preparation method of siluer metal oxide graphite composite electric contact material and products thereof
JP3789304B2 (en) Method for producing Ag-ZnO-based electrical contact material and electrical contact material thereof
JP3825275B2 (en) Electrical contact member and its manufacturing method
CN107598176B (en) Preparation process of silver metal oxide electrical contact material
JP2015125935A (en) Electric contact material, and method for manufacturing the same
CN105886813A (en) Silver tin oxide-wolfram electrical contact material and preparation method thereof
CN103589898B (en) Preparation method of compound electric contact material containing silver, metal oxide and tungsten carbide and product thereof
KR20090062864A (en) Agzno electric contact material
JP6719300B2 (en) Ag-Ni-metal oxide-based electrical contact material, method for producing the same, circuit breaker and electromagnetic contactor
CN111020268A (en) Preparation method of silver tin oxide indium oxide contact material with uniform structure
CN110976801A (en) Method for preparing silver tin oxide indium oxide contact material by up-drawing continuous casting process
KR101491932B1 (en) Ag-OXIDE BASED ELECTRICAL CONTACT MATERIAL AND METHOD FOR PREPARING OF THE SAME
JP5017719B2 (en) Copper-based alloy plate excellent in press workability and method for producing the same
CN109594029B (en) Preparation method of AgNi electric contact material with nickel particles dispersed and distributed
JP5326467B2 (en) Method for producing copper alloy wire
CN111636005A (en) Preparation method of silver conductive ceramic electrical contact material
KR20180057104A (en) Electrical contact material and preparation method thereof
KR102500203B1 (en) Electrical contact composites and Manufacturing method thereof
CN106181229B (en) A kind of silver nickel electric contact material fabrication process
JPS61279644A (en) Manufacture of ag-oxide-type electric contact point material

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20190329

Year of fee payment: 4