KR20130142808A - 태양전지 및 이의 제조방법 - Google Patents

태양전지 및 이의 제조방법 Download PDF

Info

Publication number
KR20130142808A
KR20130142808A KR1020120066342A KR20120066342A KR20130142808A KR 20130142808 A KR20130142808 A KR 20130142808A KR 1020120066342 A KR1020120066342 A KR 1020120066342A KR 20120066342 A KR20120066342 A KR 20120066342A KR 20130142808 A KR20130142808 A KR 20130142808A
Authority
KR
South Korea
Prior art keywords
buffer layer
layer
high resistance
resistance buffer
forming
Prior art date
Application number
KR1020120066342A
Other languages
English (en)
Inventor
박기곤
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020120066342A priority Critical patent/KR20130142808A/ko
Publication of KR20130142808A publication Critical patent/KR20130142808A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

실시예에 따른 태양전지는, 후면전극층; 상기 후면전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 상기 버퍼층 상에 배치되는 고저항 버퍼층; 및 상기 광 흡수층 및 상기 버퍼층을 관통하는 관통홈을 포함하고, 상기 고저항 버퍼층은 상기 버퍼층 상에 위치하는 제1 고저항 버퍼층 및 상기 관통홈의 내부에 배치되는 제2 고저항 버퍼층을 포함한다.
실시예에 따른 태양전지의 제조방법은, 기판 상에 후면전극층을 형성하는 단계; 상기 후면전극층을 관통하는 제1 관통홈들을 형성하는 단계; 상기 후면전극층 상에 광 흡수층을 형성하는 단계; 상기 광 흡수층 상에 버퍼층을 형성하는 단계; 상기 광 흡수층 및 상기 버퍼층을 관통하는 제2 관통홈들을 형성하는 단계; 상기 제2 관통홈들을 형성하는 단계 이후에, 상기 버퍼층 상에 고저항 버퍼층을 형성하는 단계를 포함한다.

Description

태양전지 및 이의 제조방법{SOLAR CELL AND METHOD OF FABRICATING THE SAME}
실시예는 태양전지 및 이의 제조방법에 관한 것이다.
태양광 발전을 위한 태양전지의 제조방법은 다음과 같다. 먼저, 기판이 제공되고, 상기 기판 상에 후면전극층이 형성되고, 레이저에 의해서 패터닝되어, 다수 개의 이면전극들이 형성된다.
이후, 상기 이면전극들 상에 광 흡수층, 버퍼층 및 고저항 버퍼층이 차례로 형성된다. 상기 광 흡수층을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다. 상기 광 흡수층의 에너지 밴드갭(band gap)은 약 1 내지 1.8 eV 이다.
이후, 상기 광 흡수층 상에 황화 카드뮴(CdS)을 포함하는 버퍼층이 스퍼터링 공정에 의해서 형성된다. 상기 버퍼층의 에너지 밴드갭은 약 2.2 내지 2.4 eV 이다. 이후, 상기 버퍼층 상에 징크 옥사이드(ZnO)를 포함하는 고저항 버퍼층이 스퍼터링 공정에 의해서 형성된다. 상기 고저항 버퍼층의 에너지 밴드갭은 약 3.1 내지 3.3 eV 이다.
이후, 상기 광 흡수층, 상기 버퍼층 및 상기 고저항 버퍼층에 홈 패턴이 형성될 수 있다.
이후, 상기 고저항 버퍼층 상에 투명한 도전물질이 적층되고, 상기 홈패턴이 상기 투명한 도전물질이 채워진다. 이에 따라서, 상기 고저항 버퍼층 상에 투명전극층이 형성되고, 상기 홈 패턴 내측에 접속배선들이 각각 형성된다. 상기 투명전극층 및 상기 접속배선으로 사용되는 물질의 예로서는 알루미늄 도핑된 징크 옥사이드 등을 들 수 있다. 상기 투명전극층의 에너지 밴드갭은 약 3.1 내지 3.3 eV 이다.
이후, 상기 투명전극층 등에 홈 패턴이 형성되어, 다수 개의 태양전지들이 형성될 수 있다. 상기 투명전극들 및 상기 고저항 버퍼들은 각각의 셀에 대응한다. 상기 투명전극들 및 상기 고저항 버퍼들은 스트라이프 형태 또는 매트릭스 형태로 배치될 수 있다.
상기 투명전극들 및 상기 이면전극들은 서로 미스 얼라인되며, 상기 투명전극들 및 상기 이면전극들은 상기 접속배선들에 의해서 각각 전기적으로 연결된다. 이에 따라서, 다수 개의 태양전지들이 서로 전기적으로 직렬로 연결될 수 있다.
이와 같이, 태양광을 전기에너지로 변환시키기 위해서, 다양한 형태의 태양광 발전장치가 제조되고, 사용될 수 있다. 이와 같은 태양광 발전장치는 특허 공개 공보 10-2008-0088744 등에 개시된다.
한편, 기존 공정은 고저항 버퍼층을 형성한 후, 제2 관통홈을 형성함으로써, 상기 제2 관통홈의 내측면에는 션트(shunt)를 방지하기 위한 방지층이 없다는 문제가 있다. 또한, 제2 관통홈을 먼저 형성한 후, 고저항 버퍼층을 형성한다 해도 스퍼터링(sputtering) 공정을 통해서는 공정의 특성상 상기 제2 관통홈의 내측면에 고저항 버퍼층이 잘 증착되지 않는다. 따라서, 광 흡수층 및 버퍼층의 측면에서의 누설전류 발생 가능성이 매우 크고, 이에 따라 신뢰성이 감소한다는 문제가 있다.
실시예는 향상된 광-전 변환 효율을 가지는 태양전지를 제공하고자 한다.
실시예에 따른 태양전지는, 후면전극층; 상기 후면전극층 상에 배치되는 광 흡수층; 상기 광 흡수층 상에 배치되는 버퍼층; 상기 버퍼층 상에 배치되는 고저항 버퍼층; 및 상기 광 흡수층 및 상기 버퍼층을 관통하는 관통홈을 포함하고, 상기 고저항 버퍼층은 상기 버퍼층 상에 위치하는 제1 고저항 버퍼층 및 상기 관통홈의 내부에 배치되는 제2 고저항 버퍼층을 포함한다.
실시예에 따른 태양전지의 제조방법은, 기판 상에 후면전극층을 형성하는 단계; 상기 후면전극층을 관통하는 제1 관통홈들을 형성하는 단계; 상기 후면전극층 상에 광 흡수층을 형성하는 단계; 상기 광 흡수층 상에 버퍼층을 형성하는 단계; 상기 광 흡수층 및 상기 버퍼층을 관통하는 제2 관통홈들을 형성하는 단계; 상기 제2 관통홈들을 형성하는 단계 이후에, 상기 버퍼층 상에 고저항 버퍼층을 형성하는 단계를 포함한다.
실시예에 따른 태양전지는 광 흡수층 및 버퍼층의 측면을 코팅하는 고저항 버퍼층을 포함하고, 이를 통해, 누설 전류를 최소할 수 있고, 광-전 변환 효율을 향상할 수 있다. 또한, 누설 전류에 의한 열점 발생이 억제되어 신뢰성을 향상할 수 있다.
도 1은 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 2 내지 도 10은 실시예에 따른 태양전지의 제조방법을 설명하기 위한 도면들이다.
실시예들의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 “상/위(on)”에 또는 “하/아래(under)”에 형성된다는 기재는, 직접(directly) 또는 다른 층을 개재하여 형성되는 것을 모두 포함한다. 각 층의 상/위 또는 하/아래에 대한 기준은 도면을 기준으로 설명한다.
도면에서 각 층(막), 영역, 패턴 또는 구조물들의 두께나 크기는 설명의 명확성 및 편의를 위하여 변형될 수 있으므로, 실제 크기를 전적으로 반영하는 것은 아니다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.
이하, 도 1을 참조하여, 실시예에 따른 태양전지를 상세하게 설명한다. 도 1은 실시예에 따른 태양전지의 일 단면을 도시한 단면도이다.
도 1을 참조하면, 실시예에 따른 태양전지는, 지지기판(100), 후면전극층(200), 광 흡수층(300), 버퍼층(400), 고저항 버퍼층(500), 전면전극층(600) 및 다수 개의 접속부들(700)을 포함한다.
상기 지지기판(100)은 플레이트 형상을 가지며, 상기 후면전극층(200), 상기 광 흡수층(300), 상기 버퍼층(400), 상기 고저항 버퍼층(500), 상기 전면전극층(600) 및 상기 접속부(700)를 지지한다.
상기 지지기판(100)은 절연체일 수 있다. 상기 지지기판(100)은 유리기판, 플라스틱기판 또는 금속기판일 수 있다. 더 자세하게, 상기 지지기판(100)은 소다 라임 글래스(soda lime glass) 기판일 수 있다. 상기 지지기판(100)은 투명할 수 있다. 상기 지지기판(100)은 리지드하거나 플렉서블할 수 있다.
상기 후면전극층(200)은 상기 지지기판(100) 상에 배치된다. 상기 후면전극층(200)은 도전층이다. 상기 후면전극층(200)으로 사용되는 물질의 예로서는 몰리브덴 등의 금속을 들 수 있다.
또한, 상기 후면전극층(200)은 두 개 이상의 층들을 포함할 수 있다. 이때, 각각의 층들은 같은 금속으로 형성되거나, 서로 다른 금속으로 형성될 수 있다.
상기 후면전극층(200)에는 제 1 관통홈들(TH1)이 형성된다. 상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하는 오픈 영역이다. 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 1 관통홈들(TH1)의 폭은 약 80㎛ 내지 200㎛ 일 수 있다.
상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극층(200)은 다수 개의 후면전극들로 구분된다. 즉, 상기 제 1 관통홈들(TH1)에 의해서, 상기 후면전극들이 정의된다.
상기 후면전극들은 상기 제 1 관통홈들(TH1)에 의해서 서로 이격된다. 상기 후면전극들은 스트라이프 형태로 배치된다.
이와는 다르게, 상기 후면전극들은 매트릭스 형태로 배치될 수 있다. 이때, 상기 제 1 관통홈들(TH1)은 평면에서 보았을 때, 격자 형태로 형성될 수 있다.
상기 광 흡수층(300)은 상기 후면전극층(200) 상에 배치된다. 또한, 상기 광 흡수층(300)에 포함된 물질은 상기 제 1 관통홈들(TH1)에 채워진다.
상기 광 흡수층(300)은 Ⅰ-Ⅲ-Ⅵ족 계 화합물을 포함한다. 예를 들어, 상기 광 흡수층(300)은 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계) 결정 구조, 구리-인듐-셀레나이드계 또는 구리-갈륨-셀레나이드계 결정 구조를 가질 수 있다.
상기 광 흡수층(300)의 에너지 밴드갭(band gap)은 약 1eV 내지 1.8eV일 수 있다.
상기 버퍼층(400)은 상기 광 흡수층(300) 상에 배치된다. 상기 버퍼층(400)은 황화 카드뮴(CdS)를 포함하며, 상기 버퍼층(400)의 에너지 밴드갭은 약 2.2eV 내지 2.4eV이다.
상기 고저항 버퍼층(500)은 상기 버퍼층(400) 상에 배치된다. 상기 고저항 버퍼층(500)은 제1 고저항 버퍼층(510) 및 제2 고저항 버퍼층(520)을 포함한다.
상기 제1 고저항 버퍼층(510)은 상기 버퍼층(400) 상에 위치한다. 상기 제1 고저항 버퍼층(510)은 상기 버퍼층(400)의 상면에만 접촉하는 부분이다.
상기 제2 고저항 버퍼층(520)은 상기 제 2 관통홈들(TH2)의 내부에 배치된다. 상기 제2 고저항 버퍼층(520)은 상기 제 2 관통홈들(TH2)의 내측면에 배치된다. 상기 제2 고저항 버퍼층(520)은 상기 제 2 관통홈들(TH2)의 내측면을 둘러싼다.
상기 제2 고저항 버퍼층(520)은 상기 광 흡수층(300) 및 상기 버퍼층(400)의 측면과 접촉한다. 즉, 상기 제2 고저항 버퍼층(520)은 상기 제 2 관통홈들(TH2) 형성 시, 노출되는 상기 광 흡수층(300) 및 상기 버퍼층(400)의 측면과 접촉할 수 있다.
상기 제2 고저항 버퍼층(520)이 상기 제 2 관통홈들(TH2)의 측면을 코팅함으로써, 누설 전류를 최소할 수 있고, 광-전 변환 효율을 향상할 수 있다. 또한, 누설 전류에 의한 열점 발생이 억제되어 신뢰성을 향상할 수 있다.
상기 제2 고저항 버퍼층(520)의 두께(T)는 300 nm 내지 1.0 ㎛ 일 수 있다. 이는 상기 제 2 관통홈들(TH2)의 폭을 고려한 두께로써, 제 2 관통홈들(TH2) 내에서 상기 전면전극층(600)과 후면전극층(200)이 접속되기 위한 두께(T)이다.
상기 고저항 버퍼층(500)은 불순물이 도핑되지 않은 징크 옥사이드(i-ZnO)를 포함한다. 상기 고저항 버퍼층(500)의 에너지 밴드갭은 약 3.1eV 내지 3.3eV이다.
상기 광 흡수층(300), 상기 버퍼층(400) 및 상기 고저항 버퍼층(500)에는 제 2 관통홈들(TH2)이 형성된다. 상기 제 2 관통홈들(TH2)은 상기 광 흡수층(300)을 관통한다. 또한, 상기 제 2 관통홈들(TH2)은 상기 후면전극층(200)의 상면을 노출하는 오픈영역이다.
상기 제 2 관통홈들(TH2)은 상기 제 1 관통홈들(TH1)에 인접하여 형성된다. 즉, 상기 제 2 관통홈들(TH2)의 일부는 평면에서 보았을 때, 상기 제 1 관통홈들(TH1)의 옆에 형성된다. 상기 제 2 관통홈들(TH2)은 상기 제 1 방향으로 연장되는 형상을 가진다.
상기 제 2 관통홈들(TH2)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
또한, 상기 광 흡수층(300)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 광 흡수부들을 정의한다. 즉, 상기 광 흡수층(300)은 상기 제 2 관통홈들(TH2)에 의해서, 상기 광 흡수부들로 구분된다.
상기 버퍼층(400)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 버퍼들로 정의된다. 즉, 상기 버퍼층(400)은 상기 제 2 관통홈들(TH2)에 의해서, 상기 버퍼들로 구분된다.
상기 고저항 버퍼층(500)은 상기 제 2 관통홈들(TH2)에 의해서, 다수 개의 고저항 버퍼들로 정의된다. 즉, 상기 고저항 버퍼층(500)은 상기 제 2 관통홈들(TH2)에 의해서, 상기 고저항 버퍼들로 구분된다.
상기 전면전극층(600)은 상기 고저항 버퍼층(500) 상에 배치된다. 상기 전면전극층(600)은 투명하며, 도전층이다. 또한, 상기 전면전극층(600)의 저항은 상기 후면전극층(200)의 저항보다 높다.
상기 전면전극층(600)은 산화물을 포함한다. 예를 들어, 상기 전면전극층(600)으로 사용되는 물질의 예로서는 알루미늄 도핑된 징크 옥사이드(Al doped zinc oxide;AZO) 또는 갈륨 도핑된 징크 옥사이드(Ga doped zinc oxide;GZO) 등을 들 수 있다.
상기 버퍼층(400), 상기 고저항 버퍼층(500) 및 상기 전면전극층(600)에는 제 3 관통홈들(TH3)이 형성된다. 상기 제 3 관통홈들(TH3)은 상기 버퍼층(400)의 일부 또는 전부, 상기 고저항 버퍼층(500) 및 상기 전면전극층(600)을 관통할 수 있다. 즉, 상기 제 3 관통홈들(TH3)은 상기 광 흡수층(300)의 상면을 노출시킬 수 있다.
상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2)에 인접하는 위치에 형성된다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 배치된다. 즉, 평면에서 보았을 때, 상기 제 3 관통홈들(TH3)은 상기 제 2 관통홈들(TH2) 옆에 나란히 배치된다. 상기 제 3 관통홈들(TH3)은 상기 제 1 방향으로 연장되는 형상을 가질 수 있다.
상기 제 3 관통홈들(TH3)은 상기 전면전극층(600)을 관통한다. 더 자세하게, 상기 제 3 관통홈들(TH3)은 상기 광 흡수층(300), 상기 버퍼층(400) 및 상기 고저항 버퍼층(500)을 일부 또는 전부 관통할 수 있다.
상기 제 3 관통홈들(TH3)에 의해서, 상기 전면전극층(600)은 다수 개의 전면전극들로 구분된다. 즉, 상기 전면전극들은 상기 제 3 관통홈들(TH3)에 의해서 정의된다.
상기 전면전극들은 상기 후면전극들과 대응되는 형상을 가진다. 즉, 상기 전면전극들은 스트라이프 형태로 배치된다. 이와는 다르게, 상기 전면전극들은 매트릭스 형태로 배치될 수 있다.
또한, 상기 제 3 관통홈들(TH3)에 의해서, 다수 개의 태양전지들(C1, C2...)이 정의된다. 더 자세하게, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 상기 태양전지들(C1, C2...)이 정의된다. 즉, 상기 제 2 관통홈들(TH2) 및 상기 제 3 관통홈들(TH3)에 의해서, 실시예에 따른 태양광 발전장치는 상기 태양전지들(C1, C2...)로 구분된다. 또한, 상기 태양전지들(C1, C2...)은 상기 제 1 방향과 교차하는 제 2 방향으로 서로 연결된다. 즉, 상기 태양전지들(C1, C2...)을 통하여 상기 제 2 방향으로 전류가 흐를 수 있다.
즉, 상기 태양전지 패널(10)은 상기 지지기판(100) 및 상기 태양전지들(C1, C2...)을 포함한다. 상기 태양전지들(C1, C2...)은 상기 지지기판(100) 상에 배치되고, 서로 이격된다. 또한, 상기 태양전지들(C1, C2...)은 상기 접속부들(700)에 의해서 서로 직렬로 연결된다.
상기 접속부들(700)은 상기 제 2 관통홈들(TH2) 내측에 배치된다. 상기 접속부들(700)은 상기 전면전극층(600)으로부터 하방으로 연장되며, 상기 후면전극층(200)에 접속된다. 예를 들어, 상기 접속부들(700)은 상기 제 1 셀(C1)의 전면전극으로부터 연장되어, 상기 제 2 셀(C2)의 후면전극에 접속된다.
따라서, 상기 접속부들(700)은 서로 인접하는 태양전지들을 연결한다. 더 자세하게, 상기 접속부들(700)은 서로 인접하는 태양전지들에 각각 포함된 전면전극과 후면전극을 연결한다.
상기 접속부(700)는 상기 전면전극층(600)과 일체로 형성된다. 즉, 상기 접속부(700)로 사용되는 물질은 상기 전면전극층(600)으로 사용되는 물질과 동일하다.
이하, 도 2 내지 도 10을 참조하여, 실시예에 따른 태양전지의 제조방법을 설명한다. 도 2 내지 도 10은 실시예에 따른 태양전지의 제조방법을 설명하기 위한 도면들이다.
먼저, 도 2를 참조하면, 지지기판(100) 상에 후면전극층(200)이 형성된다.
이어서, 도 3을 참조하면, 상기 후면전극층(200)은 패터닝되어 제 1 관통홈들(TH1)이 형성된다. 이에 따라서, 상기 지지기판(100) 상에 다수 개의 후면전극들, 제 1 연결전극 및 제 2 연결전극이 형성된다. 상기 후면전극층(200)은 레이저에 의해서 패터닝된다.
상기 제 1 관통홈들(TH1)은 상기 지지기판(100)의 상면을 노출하며, 약 80㎛ 내지 약 200㎛의 폭을 가질 수 있다.
또한, 상기 지지기판(100) 및 상기 후면전극층(200) 사이에 확산방지막 등과 같은 추가적인 층이 개재될 수 있고, 이때, 상기 제 1 관통홈들(TH1)은 상기 추가적인 층의 상면을 노출하게 된다.
이어서, 도 4를 참조하면, 상기 후면전극층(200) 상에 광 흡수층(300)이 형성된다. 상기 광 흡수층(300)은 스퍼터링 공정 또는 증발법 등에 의해서 형성될 수 있다.
예를 들어, 상기 광 흡수층(300)을 형성하기 위해서 구리, 인듐, 갈륨, 셀레늄을 동시 또는 구분하여 증발시키면서 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)을 형성하는 방법과 금속 프리커서 막을 형성시킨 후 셀레니제이션(Selenization) 공정에 의해 형성시키는 방법이 폭넓게 사용되고 있다.
금속 프리커서 막을 형성시킨 후 셀레니제이션 하는 것을 세분화하면, 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정에 의해서, 상기 후면전극(200) 상에 금속 프리커서 막이 형성된다.
이후, 상기 금속 프리커서 막은 셀레이제이션(selenization) 공정에 의해서, 구리-인듐-갈륨-셀레나이드계(Cu(In,Ga)Se2;CIGS계)의 광 흡수층(300)이 형성된다.
이와는 다르게, 상기 구리 타겟, 인듐 타겟, 갈륨 타겟을 사용하는 스퍼터링 공정 및 상기 셀레니제이션 공정은 동시에 진행될 수 있다.
이와는 다르게, 구리 타겟 및 인듐 타겟 만을 사용하거나, 구리 타겟 및 갈륨 타겟을 사용하는 스퍼터링 공정 및 셀레니제이션 공정에 의해서, CIS계 또는 CIG계 광 흡수층(300)이 형성될 수 있다.
이후, 도 5를 참조하면, 황화 카드뮴이 스퍼터링 공정 또는 용액성장법(chemical bath depositon;CBD) 등에 의해서 증착되고, 상기 버퍼층(400)이 형성된다.
이어서, 도 6을 참조하면, 상기 광 흡수층(300) 및 상기 버퍼층(400)의 일부가 제거되어 제 2 관통홈들(TH2)이 형성된다.
상기 제 2 관통홈들(TH2)은 팁 등의 기계적인 장치 또는 레이저 장치 등에 의해서 형성될 수 있다.
예를 들어, 약 40㎛ 내지 약 180㎛의 폭을 가지는 팁에 의해서, 상기 광 흡수층(300) 및 상기 버퍼층(400)은 패터닝될 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 약 200 내지 600㎚의 파장을 가지는 레이저에 의해서 형성될 수 있다.
이때, 상기 제 2 관통홈들(TH2)의 폭은 약 100㎛ 내지 약 200㎛ 일 수 있다. 또한, 상기 제 2 관통홈들(TH2)은 상기 후면전극층(200)의 상면의 일부를 노출하도록 형성된다.
도 7을 참조하면, 상기 버퍼층(400) 상에 징크 옥사이드가 증착 공정 등에 의해서 증착되고, 상기 고저항 버퍼층(500)이 형성된다. 상기 고저항 버퍼층(500)은 디에틸아연(diethylzinc, DEZ) 및 H2O 를 증착함으로써 형성될 수 있다.
상기 고저항 버퍼층(500)은 화학 증착(chemical vapor deposition, CVD), 유기금속 화학 증착(metal organic chemical vapor deposition, MOCVD) 또는 원자층 증착(atomic layer deposition, ALD)에 의해 형성될 수 있다. 바람직하게는, 상기 고저항 버퍼층(500)은 유기금속 화학 증착을 통해 형성될 수 있다. 상기 증착 공정들을 통해 상기 고저항 버퍼층(500)이 상기 제 2 관통홈들(TH2)들 내에도 형성될 수 있다.
기존에는 고저항 버퍼층(500)을 형성한 후, 제 2 관통홈들(TH2)을 형성함으로써, 상기 제 2 관통홈들(TH2)의 내측면에는 션트(shunt)를 방지하기 위한 방지층이 없다는 문제가 있었다. 또한, 제 2 관통홈들(TH2)을 먼저 형성한 후, 고저항 버퍼층(500)을 형성한다 해도 기존의 스퍼터링 공정을 통해서는 공정의 특성상 상기 제 2 관통홈들(TH2)의 내측면에 고저항 버퍼층(500)이 잘 증착되지 않았다. 이는 스퍼터링 공정의 특성 상, 타겟 소스에 맞고 튀어나오는 소스들이 직진성을 가지며 증착되기 때문이다. 따라서, 광 흡수층(300) 및 버퍼층(400)의 측면에서의 누설전류 발생 가능성이 매우 컸다.
상기 고저항 버퍼층(500)은 제1 고저항 버퍼층(510), 제2 고저항 버퍼층(520) 및 제3 고저항 버퍼층(530)을 포함한다. 상기 제1 고저항 버퍼층(510)은 상기 버퍼층(400)의 상면과 접촉한다. 상기 제2 고저항 버퍼층(520)은 상기 광 흡수층(300) 및 상기 버퍼층(400)의 측면과 접촉한다. 상기 제3 고저항 버퍼층(530)은 상기 후면전극층(200)의 상면과 접촉한다.
도 8을 참조하면, 상기 제3 고저항 버퍼층(530)이 제거된다. 즉, 상기 후면전극층(200)의 상면과 접촉하는 고저항 버퍼층(500)이 제거될 수 있다. 그러나 실시예가 이에 한정되는 것은 아니고, 상기 제3 고저항 버퍼층(530)을 제거하는 단계를 생략할 수 있다. 상기 제3 고저항 버퍼층(530)을 제거하지 않더라도, 터널링 효과를 통해 전면전극층(600) 및 후면전극층(200)이 서로 접속될 수 있기 때문이다.
도 9를 참조하면, 상기 광 흡수층(300) 상 및 상기 제 2 관통홈들(TH2) 내측에 전면전극층(600)이 형성된다. 즉, 상기 전면전극층(600)은 상기 고저항 버퍼층(500) 상 및 상기 제 2 관통홈들(TH2) 내측에 투명한 도전물질이 증착되어 형성된다.
이때, 상기 제 2 관통홈들(TH2) 내측에 상기 투명한 도전물질이 채워지고, 상기 전면전극층(600)은 상기 후면전극층(200)에 직접 접촉하게 된다.
도 10을 참조하면, 상기 광 흡수층(300), 상기 버퍼층(400), 상기 고저항 버퍼층(500) 및 상기 전면전극층(600)의 일부가 제거되어 제 3 관통홈들(TH3)이 형성된다. 이에 따라서, 상기 전면전극층(600)은 패터닝되어, 다수 개의 전면전극들 및 제 1 셀(C1), 제 2 셀(C2) 및 제 3 셀들(C3)이 정의된다. 상기 제 3 관통홈들(TH3)의 폭은 약 80㎛ 내지 약 200㎛ 일 수 있다.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (13)

  1. 후면전극층;
    상기 후면전극층 상에 배치되는 광 흡수층;
    상기 광 흡수층 상에 배치되는 버퍼층;
    상기 버퍼층 상에 배치되는 고저항 버퍼층; 및
    상기 광 흡수층 및 상기 버퍼층을 관통하는 관통홈을 포함하고,
    상기 고저항 버퍼층은 상기 버퍼층 상에 위치하는 제1 고저항 버퍼층 및 상기 관통홈의 내부에 배치되는 제2 고저항 버퍼층을 포함하는 태양전지.
  2. 제1항에 있어서,
    상기 제2 고저항 버퍼층은 상기 광 흡수층 및 상기 버퍼층의 측면과 접촉하는 태양전지.
  3. 제1항에 있어서,
    상기 제2 고저항 버퍼층은 상기 관통홈의 내측면에 배치되는 태양전지.
  4. 제1항에 있어서,
    상기 제2 고저항 버퍼층은 상기 관통홈의 내측면을 둘러싸는 태양전지.
  5. 제1항에 있어서,
    상기 제2 고저항 버퍼층의 두께는 300 nm 내지 1.0 ㎛ 인 태양전지
  6. 제1항에 있어서,
    상기 고저항 버퍼층은 징크옥사이드(ZnO)를 포함하는 태양전지.
  7. 기판 상에 후면전극층을 형성하는 단계;
    상기 후면전극층을 관통하는 제1 관통홈들을 형성하는 단계;
    상기 후면전극층 상에 광 흡수층을 형성하는 단계;
    상기 광 흡수층 상에 버퍼층을 형성하는 단계;
    상기 광 흡수층 및 상기 버퍼층을 관통하는 제2 관통홈들을 형성하는 단계; 및
    상기 제2 관통홈들을 형성하는 단계 이후에, 상기 버퍼층 상에 고저항 버퍼층을 형성하는 단계를 포함하는 태양전지의 제조방법.
  8. 제7항에 있어서,
    상기 고저항 버퍼층을 형성하는 단계에서는 상기 제2 관통홈 내에 고저항 버퍼층이 형성되는 태양전지의 제조방법.
  9. 제7항에 있어서,
    상기 고저항 버퍼층을 형성하는 단계는 증착 공정을 포함하는 태양전지의 제조방법.
  10. 제7항에 있어서,
    상기 고저항 버퍼층을 형성하는 단계는 화학 증착(chemical vapor deposition, CVD), 유기금속 화학 증착(metal organic chemical vapor deposition, MOCVD) 및 원자층 증착(atomic layer deposition, ALD)으로 이루어진 군에서 선택된 방법을 포함하는 태양전지의 제조방법.
  11. 제7항에 있어서,
    상기 고저항 버퍼층을 형성하는 단계는 디에틸아연(diethylzinc, DEZ) 및 H2O 를 증착하는 태양전지의 제조방법.
  12. 제7항에 있어서,
    상기 고저항 버퍼층의 일부는 상기 제2 관통홈의 내측면을 둘러싸는 태양전지의 제조방법.
  13. 제7항에 있어서,
    상기 고저항 버퍼층을 형성하는 단계 이후에, 상기 후면전극층의 상면과 접촉하는 고저항 버퍼층을 제거하는 단계를 더 포함하는 태양전지의 제조방법.
KR1020120066342A 2012-06-20 2012-06-20 태양전지 및 이의 제조방법 KR20130142808A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120066342A KR20130142808A (ko) 2012-06-20 2012-06-20 태양전지 및 이의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120066342A KR20130142808A (ko) 2012-06-20 2012-06-20 태양전지 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20130142808A true KR20130142808A (ko) 2013-12-30

Family

ID=49986340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120066342A KR20130142808A (ko) 2012-06-20 2012-06-20 태양전지 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR20130142808A (ko)

Similar Documents

Publication Publication Date Title
KR20130042206A (ko) 태양광 발전장치 및 이의 제조방법
KR20120012325A (ko) 태양광 발전장치 및 이의 제조방법
KR101114079B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101173419B1 (ko) 태양전지 및 이의 제조방법
KR101338610B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101251841B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101241467B1 (ko) 태양전지 및 이의 제조방법
KR20130136739A (ko) 태양전지 및 이의 제조방법
KR101349429B1 (ko) 태양광 발전장치
KR101405639B1 (ko) 태양전지 및 이의 제조 방법
KR101210034B1 (ko) 태양전지 및 이의 제조방법
KR101272997B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101393859B1 (ko) 태양전지 및 이의 제조 방법
KR20150039536A (ko) 태양전지
KR20130059976A (ko) 태양전지 및 이의 제조방법
KR101806545B1 (ko) 태양전지 및 이의 제조방법
KR101382884B1 (ko) 태양전지 및 이의 제조 방법
KR101210104B1 (ko) 태양광 발전장치
KR101210162B1 (ko) 태양광 발전장치 및 이의 제조방법
KR20130142808A (ko) 태양전지 및 이의 제조방법
KR101393743B1 (ko) 태양전지 및 이의 제조 방법
KR101349432B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101306436B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101262583B1 (ko) 태양광 발전장치 및 이의 제조방법
KR101306527B1 (ko) 태양광 발전장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
E801 Decision on dismissal of amendment
AMND Amendment
AMND Amendment