KR20130142052A - Waste heat recovery system for cooling tower of power plant by using feul cell - Google Patents

Waste heat recovery system for cooling tower of power plant by using feul cell Download PDF

Info

Publication number
KR20130142052A
KR20130142052A KR1020120140452A KR20120140452A KR20130142052A KR 20130142052 A KR20130142052 A KR 20130142052A KR 1020120140452 A KR1020120140452 A KR 1020120140452A KR 20120140452 A KR20120140452 A KR 20120140452A KR 20130142052 A KR20130142052 A KR 20130142052A
Authority
KR
South Korea
Prior art keywords
fuel cell
waste heat
power generation
cooling tower
cooling water
Prior art date
Application number
KR1020120140452A
Other languages
Korean (ko)
Other versions
KR101397622B1 (en
Inventor
황우정
Original Assignee
(주) 씨테크놀로지시스템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 씨테크놀로지시스템 filed Critical (주) 씨테크놀로지시스템
Publication of KR20130142052A publication Critical patent/KR20130142052A/en
Application granted granted Critical
Publication of KR101397622B1 publication Critical patent/KR101397622B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a waste heat recovery system for a cooling tower of a power plant, and, more specifically, to a waste heat recovery system using a fuel cell. The waste heat recovery system using a fuel cell for a cooling tower of a power plant comprises: a fuel cell power generation system in which hot coolant and cold coolant is configured to circulate; power plant cooling tower in which coolant is configured to circulate; and an absorption heat pump system in which coolant is configured to circulate through an absorber, a generator, a condenser and an evaporator thereof. The hot coolant of the fuel cell power generation system is configured to be fed into the generator of the absorption heat pump system to be cooled, and fed back into the fuel cell power generation system. The cold coolant of the fuel cell power generation system the coolant of the cooling power joins, is fed into the evaporator of the absorption heat pump to be cooled, and then divided and fed back into the fuel cell power generation system and into the cooling tower, respectively. A waste heat recovery fluid is fed into the absorber of the absorption heat pump to be heated first time, fed into the condenser to be heated second time, and discharged from the absorption heat pump system.

Description

연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템{WASTE HEAT RECOVERY SYSTEM FOR COOLING TOWER OF POWER PLANT BY USING FEUL CELL}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a waste heat recovery system for a cooling tower of a power plant using a fuel cell,

본 발명은 발전소 냉각탑의 폐열 회수 시스템에 관한 것으로, 보다 상세하게는 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템에 관한 것이다.The present invention relates to a waste heat recovery system for a power plant cooling tower, and more particularly, to a waste heat recovery system for a power plant cooling tower using a fuel cell.

화력 발전소나 열병합 발전소의 발전계통과정에서 매년 많은 양의 냉각수를 사용하고 있으며, 냉각수는 수증기로 되어 대기중으로 증발하게 된다. 최근 물 부족및 냉각수 방출에 의한 수온 상승의 영향으로 환경적인 피해가 심해지면서 발전소의 냉각수를 줄이고자 하는 노력이 있어 왔다. 또한, 발전소의 냉각탑에서 버려지는 폐열을 회수하여 발전 효율을 높이려는 시도도 있어 왔다.A large amount of cooling water is used every year in the process of power generation of power plants and co-generation plants, and the cooling water is vaporized and evaporated into the atmosphere. Recently, there has been an effort to reduce the cooling water of the power plant due to the environmental damage due to the water shortage and the rise of the water temperature due to the cooling water discharge. There has also been an attempt to improve the power generation efficiency by recovering the waste heat discarded from the cooling tower of the power plant.

한편, 기존의 화력 발전소나 열병합 발전소에서 화석연료 사용에 의한 대기오염 등과 같은 환경 문제를 해결할 수 있는 방안으로 연료전지 발전시스템에 대한 개발이 진행되고 있다. 연료전지를 이용한 발전 시스템은 메탄올, 에탄올 또는 천연 가스 등과 같은 탄화 수소 계열의 물질 내에 함유되어 있는 수소와 공기중에 포함되어 있는 산소를 이용하여 발전을 수행하는 시스템이다. 연료전지 발전시스템은 수소를 생성하기 위한 개질기(Reformer)와 전자를 생성하기 위한 연료전지 스택(Stack)을 포함한다. 연료전지를 이용한 발전 시스템에 있어서, 개질기와 연료전지 스택에서 열이 발생하는데, 이러한 열을 재활용하고자 하는 노력이 있어 왔다.On the other hand, development of fuel cell power generation system is proceeding as a way to solve environmental problems such as air pollution caused by the use of fossil fuels in existing thermal power plants or co-generation power plants. A power generation system using a fuel cell is a system that performs power generation using hydrogen contained in a hydrocarbon-based material such as methanol, ethanol, or natural gas, and oxygen contained in the air. The fuel cell power generation system includes a reformer for generating hydrogen and a fuel cell stack for generating electrons. In a fuel cell-based power generation system, heat is generated in the reformer and the fuel cell stack, and efforts have been made to recycle such heat.

대한민국 특허 제10-0910429호에는 연료전지의 폐열을 흡수식 냉동 시스템의 구동열원으로 사용하기 위한 기술이 개시되어 있다. 상기 문헌에 개시된 시스템은 연료전지의 폐열을 전달받은 유체를 흡수식 냉동 시스템의 재생기와 냉각탑을 경유한 후 연료전지의 열교환기로 순환하도록 구성되어 있다.Korean Patent No. 10-0910429 discloses a technique for using waste heat of a fuel cell as a driving heat source of an absorption type refrigeration system. The system disclosed in this document is configured to circulate the fluid having passed through the waste heat of the fuel cell to the heat exchanger of the fuel cell after passing through the regenerator and the cooling tower of the absorption type refrigeration system.

대한민국 특허 제10-0910429호, 발명의 명칭 '연료전지 발전 시스템의 폐열을 이용한 흡수식 냉난방시스템 및 방법'Korean Patent No. 10-0910429, entitled " Absorption-type heating and cooling system and method using waste heat of a fuel cell power generation system "

본 발명은 화력 발전소나 열병합 발전소의 냉각탑에서 소비되는 냉각수의 절감과 냉각탑에서 배출되는 폐열과 연료전지 발전 시스템에서 배출되는 폐열을 회수하여 동시에 사용할 수 있는 새로운 개념의 폐열 회수 시스템을 제공하는 것을 목적으로 한다. The present invention aims to provide a new concept of a waste heat recovery system capable of recovering cooling water consumed in a cooling tower of a thermal power plant or a combined heat and power generation plant, recovering waste heat discharged from a cooling tower and waste heat discharged from a fuel cell power generation system, do.

또한, 본 발명은 회수된 폐열을 활용하여 경제성이 높은 지역난방수를 공급할 수 있는 새로운 폐열회수 시스템을 제공하는 것을 목적으로 한다.It is another object of the present invention to provide a new waste heat recovery system capable of supplying district heating water having high economic efficiency by utilizing recovered waste heat.

본 발명에 따른 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템은, 고온 냉각수와 저온 냉각수가 순환하도록 된 연료전지 발전시스템과, 발전 계통에서 냉각수가 순환하도록 구성된 발전소의 냉각탑과, 흡수기(Absorber), 재생기(Generator), 응축기(Condenser) 및 증발기(Evaporator)를 냉매가 순환하도록 구성된 흡수식 히트펌프 시스템을 포함한다. 상기 연료전지 발전시스템의 고온 냉각수는 흡수식 히트펌프 시스템의 재생기로 공급되어 냉각된 후 연료전지 발전시스템으로 환류되도록 구성되어 있다. 또한, 상기 연료전지 발전시스템의 저온 냉각수와 상기 냉각 탑의 냉각수는 합류되어 상기 흡수식 히트펌프 시스템의 증발기로 공급되어 냉각된 후 분류되어 상기 연료전지 발전시스템과 냉각탑으로 각각 환류되도록 구성되어 있다. 또한, 폐열 회수 유체는 상기 흡수식 히트펌프 시스템의 흡수기로 공급되어 1차로 가열되고, 상기 응축기로 공급되어 2차로 가열된 후 상기 흡수식 히트 펌프 시스템으로부터 배출되도록 되어 있다.A waste heat recovery system for a cooling tower of a power plant using a fuel cell according to the present invention includes a fuel cell power generation system in which high temperature cooling water and low temperature cooling water are circulated, a cooling tower of a power plant configured to circulate cooling water in a power generation system, An absorption type heat pump system configured to circulate the refrigerant through a generator, a condenser, and an evaporator. The high-temperature cooling water of the fuel cell power generation system is supplied to a regenerator of an absorption heat pump system, cooled, and then returned to the fuel cell power generation system. Also, the cooling water of the fuel cell power generation system and the cooling tower of the cooling tower are combined and supplied to the evaporator of the absorption type heat pump system, cooled, and classified to be returned to the fuel cell power generation system and the cooling tower. The waste heat recovering fluid is supplied to the absorber of the absorption type heat pump system to be heated first, then supplied to the condenser, heated secondarily, and then discharged from the absorption heat pump system.

흡수식 히트 펌프 시스템의 고온 열원으로 작용하는 연료전지 발전시스템의 고온 냉각수의 공급 열량을 증가시키기 위하여, 고온 냉각수를 가열하기 위한 가열수단을 할 수 있다. 가열수단으로는 연료를 연소하여 열량을 공급하는 버너를 사용하는 것이 바람직하나, 보일러 또는 전열 히터를 사용할 수도 있다. 또한, 폐열 회수를 통해 지역난방수를 승온 시킬 수 있으며, 상기 흡수식 히트 펌프 시스템의 냉매는 암모니아 용액을 사용할 수도 있으나, 리튬 브로마이드(Li-Br) 용액을 사용하는 것이 바람직하다.In order to increase the heat supply amount of the high temperature cooling water in the fuel cell power generation system serving as a high temperature heat source of the absorption heat pump system, heating means for heating the high temperature cooling water can be provided. As the heating means, it is preferable to use a burner that burns fuel to supply heat, but a boiler or an electrothermal heater may also be used. In addition, the district heating water can be raised by recovering the waste heat. The refrigerant of the absorption type heat pump system may be an ammonia solution, but it is preferable to use a lithium bromide (Li-Br) solution.

본 발명에 따른 폐열 회수 시스템은, 연료전지 발전시스템의 폐열과 발전소의 냉각탑의 폐열을 동시에 회수할 수 있는 새로운 개념의 폐열회수 시스템을 제공한다. 상기 회수된 폐열을 지역 난방수의 승온에 이용하여 열병합 발전소 및 연료전지 발전시스템의 효율을 동시에 높일 수 있게 한다. The waste heat recovery system according to the present invention provides a new concept of a waste heat recovery system capable of simultaneously recovering the waste heat of the fuel cell power generation system and the waste heat of the cooling tower of the power plant. The recovered waste heat is used for raising the temperature of the district heating water, thereby improving the efficiency of the cogeneration power plant and the fuel cell power generation system at the same time.

상기 폐열회수 시스템은 발전소 냉각탑의 냉각수 폐열을 회수하기 위하여 흡수식 히트펌프 싸이클을 순환시킴으로써 수증기 발생의 감소 및 발전소의 냉각수량을 절감할 수 있다. 또한, 상기 폐열 회수시스템은 발전소의 냉각수를 흡수식 히트 펌프 시스템의 저온 열원으로 사용함으로써, 냉각 기능을 제공하여 냉각탑의 크기를 줄일 수 있다.The waste heat recovery system circulates the absorption type heat pump cycle in order to recover the waste heat of the cooling water of the power plant cooling tower, thereby reducing the generation of steam and cooling water of the power plant. In addition, the waste heat recovery system can reduce the size of the cooling tower by providing the cooling function by using the cooling water of the power plant as a low-temperature heat source of the absorption type heat pump system.

도 1은 본 발명에 따른 폐열 회수 대상인 발전 시스템의 개략도
도 2는 본 발명에 따른 폐열 회수 대상인 연료전지 시스템의 개략도
도 3은 본 발명에 따른 폐열 회수 시스템의 개략도
1 is a schematic diagram of a power generation system to be a waste heat recovery target according to the present invention
2 is a schematic view of a fuel cell system to be a waste heat recovery target according to the present invention
3 is a schematic diagram of a waste heat recovery system according to the present invention;

이하 첨부의 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

발전소 냉각탑 냉각수의 폐열Waste heat of cooling tower cooling tower

도 1을 참조하여, 발전소의 폐열 회수 대상인 냉각탑의 냉각수 폐열에 대하여 설명한다. 보일러(10)에서 가열된 스팀이 터빈(20)으로 공급된다. 과열된 스팀에 의하여 터빈(20)이 회전하면, 터빈(20)에 연결된 발전기(30)가 회전하여 전기를 생산한다. 터빈(20)에서 배출된 스팀은 응축기(40)에서 냉각되어 응축되고 보일러(10)로 순환된다. 응축기(40)에서 스팀을 응축하기 위한 냉각 매체가 응축기(40)와 냉각탑(50) 사이를 순환한다. 냉각탑(50)으로 공급된 냉각수(A)의 일부는 증발되어 대기로 방출(B)되고, 나머지 냉각수(C)는 순환한다. 냉각탑(50)에서 증발된 냉각수는 보충된다. 상기와 같은 기존의 발전소에서 1차 냉각 매체에 의해서 가열된 냉각수로 전달된 에너지는 대부분 회수되지 못하고 버려지고 있다.
Referring to Fig. 1, the cooling water waste heat of the cooling tower to be a waste heat recovery target of a power plant will be described. Steam heated in the boiler 10 is supplied to the turbine 20. When the turbine 20 is rotated by the superheated steam, the generator 30 connected to the turbine 20 rotates to produce electricity. The steam discharged from the turbine 20 is cooled in the condenser 40, condensed, and circulated to the boiler 10. A cooling medium for condensing the steam in the condenser (40) circulates between the condenser (40) and the cooling tower (50). A part of the cooling water A supplied to the cooling tower 50 is evaporated and discharged to the atmosphere B and the remaining cooling water C circulates. The cooling water evaporated in the cooling tower (50) is replenished. The energy transferred to the cooling water heated by the primary cooling medium in the conventional power plant as described above can not be recovered and is discarded.

연료전지 발전 시스템의 폐열Waste heat of fuel cell power generation system

도 2를 참조하여, 연료전지 발전 시스템의 회수 대상 폐열에 대하여 설명한다. 연료전지 발전시스템(100)은 개질기(60)와 스택(70)을 포함한다. 개질기(60)는 연료(메탄올, 에탄올, LPG, 또는 천연가스 등) 및 물을 공급받고, 상기 연료 및 물을 수증기 개질반응(Steam Reforming), 부분 산화(Partial Oxidation), 자열 개질 반응(Auto Thermal Reforming), 직접분해법(Direct Cracking) 등에 의해서 연료를 수소가 풍부한 개질 가스로 전환한다. 일례로 수증기 개질 반응은 고온의 열원이 필요하며 상기 열원은 버너 등과 같은 가열수단에서 연소 반응으로 얻게 된다. 연소 반응으로 600 내지 700℃의 고온의 배가스가 발생한다. 또한, 연소 반응으로 발생되는 배가스는 그대로 대기에 배출할 경우 대기오염을 일으킬 수 있기 때문에 제1 열교환기(80)에서 열교환 된 후에 다시 개질기(60)로 회수되어 필터를 거쳐서 배출된다. 제1 열교환기(80)에는 배가스를 냉각하기 위한 저온 냉각수가 순환되면서 가열되고, 가열된 저온 냉각수의 열이 회수되어 재활용 되지 않는 경우 별도의 냉각 장치에서 냉각되어 순환된다. 개질기(60)에서 생성된 수소는 스택(70)으로 공급된다.The waste heat to be recovered in the fuel cell power generation system will be described with reference to Fig. The fuel cell power generation system 100 includes a reformer 60 and a stack 70. The reformer 60 is supplied with fuel (methanol, ethanol, LPG, natural gas, etc.) and water, and performs steam reforming, partial oxidation, autothermal reforming Reforming, Direct Cracking, etc. to convert the fuel into hydrogen-rich reformed gas. For example, a steam reforming reaction requires a high-temperature heat source, and the heat source is obtained by a combustion reaction in a heating means such as a burner or the like. A high temperature flue gas of 600 to 700 ° C is generated by the combustion reaction. In addition, since the exhaust gas generated by the combustion reaction may cause air pollution when it is discharged to the atmosphere, the exhaust gas is recovered to the reformer 60 after being heat-exchanged in the first heat exchanger 80 and discharged through the filter. The first heat exchanger (80) is heated while the low temperature cooling water for cooling the exhaust gas is circulated. When the heat of the heated low temperature cooling water is recovered and is not recycled, it is cooled and circulated in a separate cooling device. The hydrogen generated in the reformer 60 is supplied to the stack 70.

스택(70)은 양극(Anode)과 음극(Cathode)을 구비하며, 개질기(60)로부터 공급받은 수소가 양극으로 주입되고, 외부 공기로부터 공급받은 산소는 음극으로 주입된다. 양극에서는 수소 기체의 산화 반응이 일어나고, 음극에서는 산소의 환원 반응이 일어난다. 스택에는 기체의 산화 및 환원 반응으로 전자들이 발생하고, 전자의 이동으로 전기에너지가 생성된다. 또한, 산화 및 환원반응으로 인해 스택에는 열이 발생하고, 발생된 열로 인하여 연료전지 스택(70)의 효율이 저하된다. 따라서 스택(70)의 온도를 일정하게 유지하기 위해 열매체를 순환시켜서 제2 열교환기(90)에서 고온 냉각수로 스택(70)의 열을 전달한다. 고온 냉각수의 열이 회수되어 재활용되지 않는 경우 별도의 냉각 장치에서 냉각되어 제2 열교환기(90)를 순환하도록 구성되어 있다.The stack 70 has an anode and a cathode. Hydrogen supplied from the reformer 60 is injected into the anode, and oxygen supplied from the outside air is injected into the cathode. The oxidation reaction of hydrogen gas occurs at the anode and the reduction reaction of oxygen occurs at the cathode. In the stack, electrons are generated by the oxidation and reduction reaction of gas, and electric energy is generated by the movement of electrons. In addition, heat is generated in the stack due to the oxidation and reduction reaction, and the efficiency of the fuel cell stack 70 is lowered due to generated heat. Thus, the heat medium is circulated in order to keep the temperature of the stack 70 constant, and the heat of the stack 70 is transferred from the second heat exchanger 90 to the hot coolant. When the heat of the high-temperature cooling water is recovered and is not recycled, it is cooled in a separate cooling device and circulated through the second heat exchanger (90).

상기와 같이, 종래의 연료전지 발전시스템은 발전시에 가열되어 배출되는 저온 냉각수는 열을 회수하여 재활용하지 못하고 버리고 있고 고온 냉각수는 필요에 따라 재활용하고 있다.
As described above, in the conventional fuel cell power generation system, the low-temperature cooling water, which is heated and discharged at the time of power generation, recovers heat and can not be recycled, and the high-temperature cooling water is recycled as needed.

연료전지를 이용한 폐열 회수 시스템Waste heat recovery system using fuel cell

이하에서는 도 3을 참조하여, 발전소 냉각탑(50)의 냉각수와, 연료전지 발전 시스템(100)의 고온 및 저온 냉각수에 의해서 버려지는 폐열을 동시에 회수하기 위한 시스템에 대하여 설명한다.Hereinafter, a system for simultaneously recovering the cooling water of the power plant cooling tower 50 and the waste heat discharged by the high-temperature and low-temperature cooling water of the fuel cell power generation system 100 will be described with reference to FIG.

본 실시예의 폐열 회수 시스템(200)은, 고온 냉각수와 저온 냉각수가 순환하도록 된 연료전지 발전시스템(100)과, 냉각수가 순환하도록 구성된 발전소의 냉각 탑(50)과, 흡수식 히트 펌프 시스템(270)을 포함한다. 또한 본 실시예의 폐열 회수 시스템(200)은 연료전지 발전시스템(100)의 고온 냉각수를 가열하여 재생기(210)로 공급하기 위한 버너(260)를 포함한다. 본 실시 예에서는 버너(260)에서 연료를 연소하여 고온 냉각수를 가열하도록 되어 있고, 이렇게 함으로써 저온 냉각수의 폐열 회수량을 증가 시킬 수 있다. 본 실시 예에 있어서, 연료전지 발전시스템(100)에서 배출되는 고온 냉각수의 온도는 대략 100 - 120 ℃ 범위이고, 버너(260)에서 가열되어 배출되는 고온 냉각수의 온도는 대략 180 - 200 ℃ 범위이나 이에 한정되는 것은 아니고 이 범위 밖의 온도일 수 있다. 또한 본 실시예에 있어서, 연료전지 발전시스템(100)에서 배출되는 저온 냉각수의 온도는 대략 55- 65 ℃ 범위이나 이 범위 밖의 온도일 수도 있다.The waste heat recovery system 200 of this embodiment includes a fuel cell power generation system 100 in which high temperature cooling water and low temperature cooling water circulate, a cooling tower 50 of a power plant configured to circulate cooling water, an absorption type heat pump system 270, . The waste heat recovery system 200 of the present embodiment also includes a burner 260 for heating the high temperature cooling water of the fuel cell power generation system 100 and supplying it to the regenerator 210. In this embodiment, the fuel is burned in the burner 260 to heat the high-temperature cooling water, so that the amount of waste heat recovery of the low-temperature cooling water can be increased. In this embodiment, the temperature of the high-temperature cooling water discharged from the fuel cell power generation system 100 is in the range of about 100-120 ° C., and the temperature of the high-temperature cooling water discharged from the burner 260 is in the range of about 180-200 ° C. But is not limited thereto and may be a temperature outside this range. Further, in this embodiment, the temperature of the low-temperature cooling water discharged from the fuel cell power generation system 100 may be in the range of about 55-65 ° C, but outside this range.

또한, 공급단(310)으로부터 공급되는 저온의 폐열 회수 유체는 배관(e1)에 의하여 흡수기(230)로 공급되어 1차로 가열되고, 배관(e2)를 통하여 응축기(220)로 공급되어 2차로 가열된 후, 배관(e3)에 의하여 배출단(320)으로 배출된다. 폐열 회수 유체가 지역 난방수인 경우 공급단(310)은 지역 난방수 회수라인에 연결되고, 배출단은 지역 난방수 공급라인에 연결될 수 있다.The low temperature waste heat recovering fluid supplied from the supply end 310 is supplied to the absorber 230 by the pipe e1 and is heated to the first stage and supplied to the condenser 220 through the pipe e2 to be heated And then discharged to the discharge end 320 by the pipe e3. If the waste heat recovery fluid is district heating water, the supply end 310 may be connected to the district heating water recovery line, and the discharge end may be connected to the district heating water supply line.

흡수식 히트 펌프 시스템(270)은 재생기(210), 응축기(220), 증발기(240) 및 흡수기(230)를 포함한다. 또한, 흡수기(230)와 재생기(210) 사이에는 용액 열교환기(250)가 설치되어 있다. 흡수식 히트 펌프 시스템(270)이 동작할 때, 냉매인 리튬브로마이드 용액이 재생기(210), 응축기(220), 증발기(240) 및 흡수기(230)를 순환하고, 순환하는 냉매가 연료 전지 시스템으로 부터 공급되는 고온 냉각수와 저온 냉각수의 폐열과 및 냉각탑으로부터 공급되는 냉각수의 폐열을 회수하여 폐열 회수 유체를 가열하도록 구성되어 있다.The absorption heat pump system 270 includes a regenerator 210, a condenser 220, an evaporator 240 and an absorber 230. Further, a solution heat exchanger 250 is provided between the absorber 230 and the regenerator 210. When the absorption type heat pump system 270 operates, a lithium bromide solution as a refrigerant circulates through the regenerator 210, the condenser 220, the evaporator 240 and the absorber 230, and the circulating refrigerant is discharged from the fuel cell system The waste heat of the high temperature cooling water and the low temperature cooling water to be supplied and the waste heat of the cooling water supplied from the cooling tower are collected to heat the waste heat recovering fluid.

이하에서는 본 실시예의 시스템(200)에서 폐열이 회수되는 메카니즘에 대하여 설명한다. 연료전지 발전 시스템(100)에서 배출되어 버너(260)에서 가열된 고온 냉각수가 재생기(210)로 공급된다. 재생기(210)의 묽은 냉매 용액은 고온 냉각수에 의하여 가열되어 고온의 진한 냉매 용액과 냉매 증기로 분리된다. 고온의 진한 냉매 용액은 배관(d3)을 통하여 용액 열교환기(250)에서 저온의 묽은 냉매 용액과 열교환되어 다시 흡수기(230)로 공급되고 고온의 냉매 증기는 배관(d5)을 통하여 응축기(220)로 보내진다. 또한, 연료전지 발전 시스템(100)에서 배출되는 저온 냉각수는 냉각탑(50)의 냉각수와 배관(b1)에서 합류되어 증발기(240)로 공급된다. 저온 냉각수의 온도는 대략 55 - 65 ℃ 범위이고, 냉각탑으로 부터 공급되는 냉각수의 온도는 25 - 40 ℃ 범위이고, 공급되는 유량에 따라서 다르겠으나, 합류되어 증발기(240)로 공급되는 저온 냉각수의 온도는 대략 40 - 45 ℃ 범위이다. 증발기(240)로 공급된 합류 냉각수는 증발기(240) 내부의 냉매를 가열하고 대략 25 - 30 ℃ 범위의 온도 냉각되어 증발기(240)로부터 배출되고, 배관(b2)에서 분류되어 각각 연료전지 발전시스템(100)과 냉각탑(50)으로 순환된다. 즉, 고온 열원의 폐열은 재생기(210)에서 냉매로 회수되고, 저온 열원의 폐열은 증발기(240)에서 회수된다. Hereinafter, the mechanism by which waste heat is recovered in the system 200 of the present embodiment will be described. The high temperature cooling water discharged from the fuel cell power generation system 100 and heated by the burner 260 is supplied to the regenerator 210. The dilute refrigerant solution of the regenerator 210 is heated by the high temperature cooling water and separated into a high-temperature rich refrigerant solution and a refrigerant vapor. The high-temperature rich refrigerant solution is heat-exchanged with the low-temperature diluted refrigerant solution in the solution heat exchanger 250 through the pipe d3 and then supplied to the absorber 230. The high-temperature refrigerant vapor is supplied to the condenser 220 through the pipe d5, Lt; / RTI > The low temperature cooling water discharged from the fuel cell power generation system 100 is joined to the cooling water of the cooling tower 50 at the pipe b1 and supplied to the evaporator 240. [ The temperature of the low temperature cooling water is in the range of about 55 to 65 ° C and the temperature of the cooling water supplied from the cooling tower is in the range of 25 to 40 ° C and the temperature of the low temperature cooling water to be supplied to the evaporator 240 Lt; / RTI > is in the approximate 40-45 < The condensed cooling water supplied to the evaporator 240 heats the refrigerant in the evaporator 240 and is cooled at a temperature in the range of about 25-30 ° C to be discharged from the evaporator 240 and classified in the pipe b2, (100) and the cooling tower (50). That is, the waste heat of the high-temperature heat source is recovered as refrigerant in the regenerator 210, and the waste heat of the low-temperature heat source is recovered in the evaporator 240.

증발기(240)의 냉매는 가열되어 증기 냉매로 형태로 배관(d1)을 통하여 흡수기(230)로 공급된다. 배관(e1)에 의해서 흡수기(230)에 공급된 폐열 회수 유체는 흡수기(230)에서 1차로 가열되어 응축기(220)로 공급된다. 흡수기(230)로 공급된 냉매 증기는 폐열 회수 유체를 가열하여 응축되고, 재생기(210)에서 배관(d3)를 통하여 공급되는 진한 냉매 용액을 희석하여 묽은 냉매용액이 된다. 흡수기(140)의 묽은 냉매용액은 용액열교환기(250)에서 진한 냉매 용액과 열교환 되어 재생기(210)로 보내진다. 응축기(220)에서 가열된 냉매 증기는 배관(e2)을 통하여 공급된 폐열 회수 유체를 2차로 가열하고 응축되어 증발기로 보내진다. 응축기(220)에서 2차로 가열된 폐열 회수 유체는 배관(e3)을 통하여 흡수식 히트 펌프 시스템(270)으로부터 배출된다. 폐열회수 유체가 지역 난방수인 경우 흡수기로 공급되는 지역 난방수의 온도가 대략 45 - 55 ℃ 범위인 경우, 응축기(220)에서 배출되는 온도가 90 - 95 ℃ 가 되도록 리튬브로마이드의 농도와 압력을 조정하고 버너에서 공급되는 열량을 조절하여 흡수식 히트 펌프 시스템(270)을 구성할 수 있다. The refrigerant of the evaporator 240 is heated and supplied to the absorber 230 through the pipe d1 in the form of vapor refrigerant. The waste heat recovering fluid supplied to the absorber 230 by the pipe e1 is firstly heated by the absorber 230 and supplied to the condenser 220. [ The refrigerant vapor supplied to the absorber 230 is condensed by heating the waste heat recovering fluid, and the diluted refrigerant solution supplied from the regenerator 210 through the pipe d3 is diluted to become a dilute refrigerant solution. The dilute refrigerant solution of the absorber 140 is heat exchanged with the rich refrigerant solution in the solution heat exchanger 250 and sent to the regenerator 210. The refrigerant vapor heated in the condenser 220 heats the waste heat recovering fluid supplied through the pipe e2 and is condensed and sent to the evaporator. The waste heat recovery fluid, which is secondarily heated in the condenser 220, is discharged from the absorption heat pump system 270 through the pipe e3. When the waste heat recovery fluid is the district heating water, when the temperature of the district heating water supplied to the absorber is in the range of approximately 45-55 ° C, the concentration and pressure of lithium bromide are adjusted so that the temperature discharged from the condenser (220) And adjust the amount of heat supplied from the burner to configure the absorption heat pump system 270.

앞에서 설명한 것과 같이, 본 발명에 따른 폐열 회수 시스템은 흡수식 히트 펌프 시스템을 사용하여 연료전지 발전시스템의 폐열과 발전소의 냉각탑의 폐열을 동시에 회수할 수 있다. 따라서, 발전소와 연료전지 발전 시스템의 발전 효율을 동시에 높일 수 있다. 특히, 본 발명에 따른 폐열회수 시스템을 이용하여 회수된 폐열을 지역 난방수의 가열에 이용할 경우 열병합 발전소와 연료전지 발전시스템의 효율을 동시에 높일 수 있게 한다.As described above, the waste heat recovery system according to the present invention can simultaneously recover the waste heat of the fuel cell power generation system and the waste heat of the cooling tower of the power generation plant by using the absorption heat pump system. Therefore, the power generation efficiency of the power generation plant and the fuel cell power generation system can be increased at the same time. In particular, when the waste heat recovered using the waste heat recovery system according to the present invention is used for heating the district heating water, the efficiency of the cogeneration power plant and the fuel cell power generation system can be increased at the same time.

본 발명에 따른 폐열회수 시스템은 발전소 냉각탑의 냉각수 폐열을 회수하기 위하여 흡수식 히트펌프 싸이클을 순환하도록 하여 냉각탑의 수증기 발생량 및 냉각수 사용량을 절감할 수 있다. 또한, 본 발명에 따른 폐열 회수시스템은 발전소 냉각탑의 냉각수를 흡수식 히트 펌프 시스템의 저온 열원으로 사용하여, 온도를 낮추어서 냉각탑에 공급하기 때문에 냉각탑의 크기를 줄임으로써 냉각탑을 공냉식으로 구성할 수도 있다.The waste heat recovery system according to the present invention can circulate the absorption type heat pump cycle in order to recover the waste heat of the cooling water of the power plant cooling tower, thereby reducing the amount of steam generated and the amount of cooling water used in the cooling tower. In the waste heat recovery system according to the present invention, the cooling water of the power plant cooling tower is used as a low-temperature heat source of the absorption type heat pump system and the temperature is lowered to supply the cooling tower to the cooling tower, so that the cooling tower can be air-cooled by reducing the size of the cooling tower.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해서 특허청구범위에 기재된 발명의 균등한 범위 내에서 다양한 수정 및 변형이 가능함은 자명하다.As mentioned above, although this invention was demonstrated by the limited Example and drawing, this invention is not limited by this and the equality of invention described in the claim by those of ordinary skill in the art to which this invention belongs. Obviously, various modifications and variations are possible within a range.

50 냉각탑
100 연료전지 발전시스템
210 재생기
220 응축기
230 흡수기
240 증발기
250 용액 열교환기
260 버너
270 흡수식 히트 펌프 시스템
50 cooling tower
100 fuel cell power generation system
210 player
220 condenser
230 absorber
240 Evaporator
250 solution heat exchanger
260 Burners
270 Absorption Heat Pump System

Claims (4)

고온 냉각수와 저온 냉각수가 순환하도록 된 연료전지 발전시스템과,
냉각수가 순환하도록 구성된 발전소의 냉각탑과,
흡수기와, 재생기와, 응축기와 증발기를 냉매가 순환하도록 구성된 흡수식 히트펌프 시스템을 포함하고,
상기 연료전지 발전시스템의 고온 냉각수는 흡수식 히트펌프의 재생기로 공급되어 냉각된 후 연료전지 발전시스템으로 환류되도록 구성되어 있고,
상기 연료전지 발전시스템의 저온 냉각수와 상기 냉각탑의 냉각수는 합류되어 상기 흡수식 히트펌프의 증발기로 공급되어 냉각된 후 분류되어 상기 연료전지 발전시스템과 냉각탑으로 각각 환류되고,
폐열 회수 유체는 상기 흡수식 히트펌프의 흡수기로 공급되어 1차로 가열되고, 상기 응축기로 공급되어 2차로 가열된 후 흡수식 히트펌프 시스템으로부터 배출되도록 된 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템.
A fuel cell power generation system in which high temperature cooling water and low temperature cooling water circulate,
A cooling tower of a power plant configured to circulate cooling water,
An absorber, a regenerator, and an absorption heat pump system configured to circulate the refrigerant through the condenser and the evaporator,
The high temperature cooling water of the fuel cell power generation system is supplied to a regenerator of an absorption type heat pump, cooled and then returned to the fuel cell power generation system,
Cooling water of the fuel cell power generation system and the cooling tower of the cooling tower are combined and supplied to an evaporator of the absorption type heat pump to be cooled and classified to be refluxed respectively to the fuel cell power generation system and the cooling tower,
The waste heat recovering fluid is supplied to the absorber of the absorption type heat pump and heated first, then supplied to the condenser, heated secondarily, and then discharged from the absorption type heat pump system.
제1항에 있어서,
상기 연료전지 발전시스템이 고온 냉각수를 가열하여 상기 흡수식 히트펌프시스템의 재생기로 공급하기 위한 가열수단을 더 포함하는 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템.
The method of claim 1,
Wherein the fuel cell power generation system further comprises heating means for heating the high temperature cooling water to supply it to the regenerator of the absorption type heat pump system.
제1항 또는 제2항에 있어서,
상기 폐열 회수 유체는 지역 난방수인 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템.
3. The method according to claim 1 or 2,
The waste heat recovering fluid is a waste heat recovering system of a cooling tower of a power plant using a fuel cell which is a district heating water.
제1항 또는 제2항에 있어서,
상기 흡수식 히트 펌프 시스템의 냉매는 리튬브로마이드 용액인 연료전지를 이용한 발전소 냉각탑의 폐열 회수 시스템.
3. The method according to claim 1 or 2,
The refrigerant of the absorption type heat pump system is a waste heat recovery system of a power plant cooling tower using a fuel cell, which is a lithium bromide solution.
KR1020120140452A 2012-06-18 2012-12-05 Waste heat recovery system for cooling tower of power plant by using feul cell KR101397622B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120064806 2012-06-18
KR20120064806 2012-06-18

Publications (2)

Publication Number Publication Date
KR20130142052A true KR20130142052A (en) 2013-12-27
KR101397622B1 KR101397622B1 (en) 2014-05-23

Family

ID=49985815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120140452A KR101397622B1 (en) 2012-06-18 2012-12-05 Waste heat recovery system for cooling tower of power plant by using feul cell

Country Status (1)

Country Link
KR (1) KR101397622B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839501A (en) * 2017-02-22 2017-06-13 查都(上海)科技有限公司 One kind utilizes second-kind absorption-type heat pump recovery waste heat system
CN107631641A (en) * 2017-09-01 2018-01-26 中清源环保节能有限公司 A kind of coal-burning power plant's heat supply initial station low temperature reclaims subsidiary engine cooling water heat system
CN108361679A (en) * 2018-04-03 2018-08-03 浙江工业大学 The system and method energized using Proton Exchange Membrane Fuel Cells and gas turbine waste heat
CN110542331A (en) * 2019-09-10 2019-12-06 广东石湾酒厂集团有限公司 Multistage waste heat recovery water saving system
CN114440248A (en) * 2022-01-24 2022-05-06 天津国能津能热电有限公司 Flue gas waste heat recycling system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211979A (en) 2003-01-06 2004-07-29 Ebara Corp Absorption refrigerating system
JP2006105452A (en) 2004-10-04 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> Cogeneration system and its control method
KR100915267B1 (en) 2007-11-07 2009-09-03 엘에스전선 주식회사 Absorptive type cooler system using fuel cell generation system and method thereof
KR100910429B1 (en) 2007-11-07 2009-08-04 엘에스전선 주식회사 Absorptive type airconditioner system using waste heat of fuel cell generation system and method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839501A (en) * 2017-02-22 2017-06-13 查都(上海)科技有限公司 One kind utilizes second-kind absorption-type heat pump recovery waste heat system
CN107631641A (en) * 2017-09-01 2018-01-26 中清源环保节能有限公司 A kind of coal-burning power plant's heat supply initial station low temperature reclaims subsidiary engine cooling water heat system
CN108361679A (en) * 2018-04-03 2018-08-03 浙江工业大学 The system and method energized using Proton Exchange Membrane Fuel Cells and gas turbine waste heat
CN108361679B (en) * 2018-04-03 2024-03-22 浙江工业大学 System and method for supplying energy by utilizing waste heat of proton exchange membrane fuel cell and gas turbine
CN110542331A (en) * 2019-09-10 2019-12-06 广东石湾酒厂集团有限公司 Multistage waste heat recovery water saving system
CN114440248A (en) * 2022-01-24 2022-05-06 天津国能津能热电有限公司 Flue gas waste heat recycling system

Also Published As

Publication number Publication date
KR101397622B1 (en) 2014-05-23

Similar Documents

Publication Publication Date Title
Mehrpooya et al. Technical performance analysis of a combined cooling heating and power (CCHP) system based on solid oxide fuel cell (SOFC) technology–A building application
Chen et al. Thermodynamic and economic assessment of a PEMFC-based micro-CCHP system integrated with geothermal-assisted methanol reforming
Wang et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell
CN108005742B (en) Solid oxide fuel cell driven combined cooling, heating and power system capable of being partially recycled
Duan et al. Study on a novel pressurized MCFC hybrid system with CO2 capture
KR101397622B1 (en) Waste heat recovery system for cooling tower of power plant by using feul cell
US20220348489A1 (en) Method for operating a fired furnace and arrangement comprising such a furnace
CN105576269A (en) Thermal control system of fixed mini-type fuel cell cogeneration device
CN102456897B (en) Fuel cell electric heating cold supply system
EP2074290A1 (en) Power plant having pure oxygen combustor
JP2008234994A (en) Fuel cell system
KR20130137786A (en) Heating/cooling system by waste heat of fuel cell : trigeneration
KR101897500B1 (en) Fuel cell system with heat exchager using reformed gas or anode off gas
KR20130139007A (en) Fuel cell driving system by using absorption heat pump
KR20140038007A (en) Fuel cell system with structure for enlarging combustion limitation of combustor
KR101140126B1 (en) Hybrid of solar thermal power plant and fossil fuel boiler
CN207348906U (en) A kind of hydrogen of coupled solar-oxygen combustion association circulating power generation system
KR101897486B1 (en) Fuel cell system with heat exchager using burner off gas
WO2024037027A1 (en) Solar-coal hybrid steam turbine system based on cascade utilization of energy, and power generation system
KR101067509B1 (en) A fuel cell-linked power generation plant using pure oxygen combustion and a control method thereof
JPH11173109A (en) Power generation and hot water supply system
Alghamdi et al. Exergy-economic analysis of a hybrid combined supercritical Brayton cycle-organic Rankine cycle using biogas and solar PTC system as energy sources
Liu et al. Thermodynamic performance evaluation of a novel solar-assisted multi-generation system driven by ammonia-fueled SOFC with anode outlet gas recirculation
US20150104725A1 (en) Combined fuel cell and boiler system
KR100817898B1 (en) Fuel cell-linked power generation plant using pure oxygen combustion

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190108

Year of fee payment: 5

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20190416

Year of fee payment: 6