KR20130139859A - Method for strengthening a nonwoven fabric - Google Patents

Method for strengthening a nonwoven fabric Download PDF

Info

Publication number
KR20130139859A
KR20130139859A KR1020137004388A KR20137004388A KR20130139859A KR 20130139859 A KR20130139859 A KR 20130139859A KR 1020137004388 A KR1020137004388 A KR 1020137004388A KR 20137004388 A KR20137004388 A KR 20137004388A KR 20130139859 A KR20130139859 A KR 20130139859A
Authority
KR
South Korea
Prior art keywords
fibers
flat
fiber
nonwoven
viscose
Prior art date
Application number
KR1020137004388A
Other languages
Korean (ko)
Other versions
KR101889112B1 (en
Inventor
인고 베른트
월터 로젠스테인
엔몬 타우텐한
Original Assignee
켈하임 피브레스 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 켈하임 피브레스 게엠베하 filed Critical 켈하임 피브레스 게엠베하
Publication of KR20130139859A publication Critical patent/KR20130139859A/en
Application granted granted Critical
Publication of KR101889112B1 publication Critical patent/KR101889112B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43912Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres fibres with noncircular cross-sections
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43914Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres hollow fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C29/00Finishing or dressing, of textile fabrics, not provided for in the preceding groups
    • D06C29/005Finishing or dressing, of textile fabrics, not provided for in the preceding groups hydroentangling

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 워터 제트 처리 수단으로 부직포를 강화하는 방법에 관한 것이다.
본 발명에 따른 방법은 상기 부직포가 폭(B) 대 두께(D)의 비가 B:D > 10:1인 붕괴된 중공 비스코스 섬유 형태의 편평 섬유를 포함하는 것을 특징으로 한다.
The present invention relates to a method of reinforcing a nonwoven with water jet treatment means.
The process according to the invention is characterized in that the nonwoven comprises flat fibers in the form of collapsed hollow viscose fibers having a ratio of width B to thickness D B: D > 10: 1.

Description

부직포를 강화시키는 방법{Method for strengthening a nonwoven fabric}Method for strengthening a nonwoven fabric

본 발명은 워터 제트 처리 수단으로 부직포를 강화시키는 방법에 관한 것이다.
The present invention relates to a method of strengthening a nonwoven with water jet treatment means.

워터 제트 수단으로 부직포를 강화시키는 것은, 또한 "하이드로엔탱글먼트(hydroentanglement)" 또는 "스펀레이싱(spunlacing)"이라고도 하며, 당해 기술분야의 전문가에게 잘 알려져 있다.
Reinforcing nonwovens with water jet means is also referred to as "hydroentanglement" or "spunlacing" and is well known to those skilled in the art.

워터 제트 공정에 따른 부직포 제조에서, 본 카디드 플리스(carded fleece)의 강화는 섬유의 레이스화 및 스월링(swirling)에 의해 얻어진다. 본 섬유는 워터 제트에 의해 에워싸지고, 움직이게 되어 스월링 모션에 의해 3차원적으로 서로 얽혀진다.
In nonwoven fabric production according to the water jet process, the reinforcement of the present carded fleece is obtained by laceration and swirling of the fibers. The fibers are surrounded by water jets and are moved and entangled in three dimensions by swirling motion.

목화는 일반적으로 하이드로엔탱글먼트에 특히 적당한 섬유 재료로 다루어지며, 예를 들어, Alfred Watzl, Messrs. Fleissner의 논문, “Aquajet Spunlace Verfahren -Technik fur Baumwollfasern"을 참고한다. 상기 목화 섬유의 낮은 습윤율뿐만 아니라 원형의 부드러운 섬유 단면이 보이지 않는다는 사실은 그러므로 이로운 것으로 취급된다.
Cotton is generally treated with fibrous materials that are particularly suitable for hydroentanglements, for example Alfred Watzl, Messrs. See Fleissner's paper, “Aquajet Spunlace Verfahren-Technik fur Baumwollfasern.” The fact that the low wetting rate of the cotton fibers as well as the circular smooth fiber cross section is not seen is therefore advantageous.

높은 탄성계수(이하 "e-계수"라 함)을 갖는 섬유는 높은 망 강도(web strength)를 얻는데 적당하다. 이들은 근본적으로 비-셀룰로오스 섬유이다.
Fibers having a high modulus of elasticity (hereinafter referred to as "e-coefficient") are suitable for obtaining high web strength. These are essentially non-cellulose fibers.

충분한 망 강도를 얻기 위하여, 하이드로엔탱글먼트 과정에서 높은 압력이 요구되며, 그 결과 본 방법은 에너지 집약적이게 된다.
In order to achieve sufficient network strength, high pressures are required in the hydroentanglement process, which results in a method that is energy intensive.

본 발명의 목적은 부직포의 하이드로엔탱글먼트의 방법을 제공하는 것이고, 이는 적은 에너지 소비로도 실현가능하다.
It is an object of the present invention to provide a method of hydroentanglement of a nonwoven fabric, which is feasible with low energy consumption.

상기 목적은 워터 제트 처리 수단으로 부직포를 강화시키는 방법으로 달성되며, 상기 부직포는 폭 B 대 두께 D의 비가 B:D> 10:1인 붕괴된 중공 비스코스 섬유 형태로 편평한 섬유를 포함하는 것을 특징으로 한다.
This object is achieved by a method of reinforcing a nonwoven with water jet treatment means, said nonwoven comprising flat fibers in the form of collapsed hollow viscose fibers having a ratio of width B to thickness D B: D > 10: 1. do.

게다가, 본 발명은 폭 B 대 두께 D의 비가 B:D> 10:1인 붕괴된 중공 비스코스 섬유 형태의 편평한 섬유를 포함하는 하이드로엔탱글된 부직포에 관한 것이다.Moreover, the present invention relates to a hydroentangled nonwoven fabric comprising flat fibers in the form of collapsed hollow viscose fibers having a ratio of width B to thickness D B: D > 10: 1.

바람직한 실시예들은 종속항에서 설명된다.
Preferred embodiments are described in the dependent claims.

놀랍게도, 워터 제트에 의해 강화되는 부직포에서의 붕괴된 중공 비스코스 섬유의 사용은, 동일한 에너지 사용(즉, 동일한 높은 처리 압력의 적용)을 한 하이드로엔탱글먼트 동안에, 어떠한 편평한 섬유도 포함하고 있지 않은 유사한 부직포 재료를 사용한 것에 비하여 보다 높은 망 강도의 결과를 나타내는 효과를 갖는다. 마찬가지로, 어떠한 셀룰로오스 편평 섬유도 포함하고 있지 않은 부직포 재료에서 보다 더 적은 에너지 사용으로 원하는 망 강도를 달성할 수 있다.Surprisingly, the use of collapsed hollow viscose fibers in a non-woven reinforced by water jet is similar to not including any flat fibers during hydroentanglements with the same energy use (ie, application of the same high processing pressure). Compared with the use of the nonwoven material, it has the effect of showing higher net strength results. Likewise, the desired net strength can be achieved with less energy use than in nonwoven materials that do not contain any cellulose flat fibers.

이러한 방법으로, 에너지가 절약될 수 있고, 따라서 공정 비용이 줄어둘 수 있다. 또한, 장치와 관련한 경비가, 보다 낮은 압력으로 인하여 적게 유지될 수 있다. 또한, 보다 유연한 강화, 즉 낮은 압력에서 강화가 수행될 수 있다. 이것은 예를 들어, 셀룰로오스와의 혼합물인 경우, 높은 압력은 셀룰로오스가 씻어 내려가게 만들 수 있으므로 특히 유리하며, 또는 섬세한 섬유와의 혼합물인 경우에도 마찬가지 이다. 또한, 합성 섬유의 사용(특히 높은 강도를 얻기 위함)을 피하게 되거나 적어도 줄이게 된다.
In this way, energy can be saved and thus the process cost can be reduced. In addition, the expense associated with the device can be kept low due to the lower pressure. In addition, more flexible strengthening, ie, strengthening at low pressure, can be performed. This is particularly advantageous, for example in the case of mixtures with cellulose, as high pressures can cause the cellulose to wash off, or even in the case of mixtures with delicate fibers. In addition, the use of synthetic fibers (especially for obtaining high strength) is avoided or at least reduced.

본 발명에 따른 방법에서, 부직포 내에 포함된 편평 섬유는 바람직하게는 B:D의 비가 10:1 내지 30:1, 특히 바람직하게는 20:1이다.
In the process according to the invention, the flat fibers comprised in the nonwovens preferably have a ratio of B: D of 10: 1 to 30: 1, particularly preferably 20: 1.

바람직하게, 상기 편평 섬유는 0.9 내지 5dtex의 타이터(titre), 특히 바람직하게는 1.3 내지 1.9dtex의 타이터를 가질 수 있다.
Preferably, the flat fiber may have a titer of 0.9 to 5 dtex, particularly preferably a titer of 1.3 to 1.9 dtex.

편평 섬유 및 그들의 제조는 공지되어 있다. 공통적으로 본질적으로 둥근 섬유 단면과 대조적으로, 편평 섬유는 본질적으로 편평하거나, 또는 각각 직사각형의 단면을 갖는다.
Flat fibers and their preparation are known. In contrast to commonly inherently round fiber cross sections, flat fibers are either essentially flat, or each has a rectangular cross section.

한편, 셀룰로오스 편평 섬유는 슬롯 형상의 방사노출(slot-shaped spinneret)을 통해 셀룰로오스 또는 셀룰로오스 유도체를 포함하는 스피닝 방사 원액(spinning dope)을 스피닝하여 제조될 수 있다. 비스코스 섬유의 경우, 편평 섬유는 선택적으로 붕괴된 중공 섬유의 형태로 제조될 수 있다. 이렇게 할 때에, 기체, 예를 들어 질소, 또는 발포제, 예를 들어 소듐 카보네이트는 스피닝 비스코스에 혼합된다. 그대로 종래 기술인, 다이스(dies)를 통해 섬유 스피닝 동안에, 중공 섬유가 형성되나, 그의 벽이 얇아지도록 적당한 공정 조건이 선택되어 섬유가 붕괴되고 이후 편평 섬유 형태로 제공될 것이다.
Meanwhile, the cellulose flat fiber may be manufactured by spinning a spinning spinning dope including cellulose or a cellulose derivative through a slot-shaped spinneret. In the case of viscose fibers, the flat fibers can be made in the form of hollow fibers which are optionally collapsed. In doing so, a gas, such as nitrogen, or a blowing agent, such as sodium carbonate, is mixed in the spinning viscose. As is the prior art, during fiber spinning through dies, hollow fibers are formed, but appropriate process conditions are chosen so that their walls are thinned and the fibers will collapse and then be provided in the form of flat fibers.

셀룰로오스 편평 섬유의 제조는 예를 들어, GB 945,306 A, US 3,156,605 A, US 3,318,990, GB 1,063,217 A에 공지되어 있다. 그러한 섬유는 상기 언급된 문헌 일부에서 기술된 것처럼, 종이 제조에 사용되는 것이 특히 추천되어 왔다.The production of cellulose flat fibers is known, for example, from GB 945,306 A, US 3,156,605 A, US 3,318,990, GB 1,063,217 A. Such fibers have been particularly recommended for use in paper making, as described in some of the documents mentioned above.

C.R. Woodings, A. J. Bartholomew의 논문 "The manufacture properties and uses of inflated viscose rayon fibres"; TAPPI Nonwovens Symposium; 1985; pp. 155-165. Source: http://www.nonwoven.co.uk/publications_cat4.php은 여러 가지 타입의 중공 섬유 및 그들의 사용을 기술하고 있다.
CR Woodings, AJ Bartholomew's paper " The manufacture properties and uses of inflated viscose rayon fibers ”; TAPPI Nonwovens Symposium; 1985; pp. 155-165. Source: http://www.nonwoven.co.uk/publications_cat4.php describes various types of hollow fibers and their use.

국제공개공보 WO 2006/134132는 섬유 복합체의 물에서의 분리성(dissolubility)을 개선하기 위한 목적으로 섬유 복합체 내에서 비스코스 편평 섬유의 사용을 기술하고 있다. WO 2006/134132에 따라, 상기 사용된 편평 섬유는 총안 모양(crenelated)[피나클 타입] 표면을 가지며, 따라서 붕괴된 중공 섬유와 대조적으로, 슬롯 다이를 통해 스피닝되어 제조된다. 그러한 편평 섬유의 골이진 표면(ribbed surface)은 섬유-섬유 접착력 및 그로 인한 강도를 감소시킨다. 한편으로는, 종래 편평 섬유를 가지고, 얻을 수 있는 두께는, 상기 다이의 기하학적 구조에 의해 제한받는다. 높이 25㎛의 개구를 갖는 다이스로 최종 스피닝을 하면 약 4-6㎛의 섬유 두께를 이끌어 낸다. 붕괴된 중공 섬유를 가지고 한 것처럼 약 2-3㎛의 섬유 두께를 지속적으로 제조하기 위하여, 높이 약 12.5㎛의 다이 개구가 요구되며, 이는 다이스 제조나 종래 방법을 사용하는 비스코스 섬유 제조 어디에서도 경제적으로 용이하지 않다.
WO 2006/134132 describes the use of viscose flat fibers in a fiber composite for the purpose of improving the dissolubility of the fiber composite in water. According to WO 2006/134132, the flat fibers used have a crenelated [pinnacle type] surface and are thus produced by spinning through a slot die, in contrast to the collapsed hollow fibers. The ribbed surface of such flat fibers reduces fiber-fiber adhesion and the resulting strength. On the one hand, with conventional flat fibers, the thickness obtained is limited by the die geometry. Final spinning with a die having an opening of 25 μm in height results in a fiber thickness of about 4-6 μm. In order to continuously produce a fiber thickness of about 2-3 μm, such as with collapsed hollow fibers, a die opening of about 12.5 μm in height is required, which is economically feasible either in die making or viscose fiber making using conventional methods. Not easy

대조적으로, 본 발명에 따라 사용된 비스코스 편평 섬유는 붕괴된 중공 섬유이며, 상술한 바와 같이, 기체 또는 발포제(특히 소듐 카보네이트)를 스피닝 비스코스에 도입하여 제조될 수 있다. 상기 섬유는 완전히 붕괴되거나 약간 벌어질 수도 있다. 그러나 섬유의 수분 보유력은 바람직하게는 200% 이하(DIN 53814에 따라 측정)인 것이 바람직하다. 상기 섬유의 섬유 단면은 대부분 편평하고 바람직하게는 분지되어 있지 않아야만 한다.
In contrast, the viscose flat fibers used according to the invention are disintegrated hollow fibers and can be prepared by introducing a gas or blowing agent (especially sodium carbonate) into the spinning viscose, as described above. The fibers may collapse completely or slightly open. However, the water retention of the fibers is preferably 200% or less (measured according to DIN 53814). The fiber cross section of the fibers should be mostly flat and preferably not branched.

부직포 내 편평 섬유의 함량은 바람직하게는 5% 내지 100%, 특히 20% 이상, 보다 바람직하게는 50%이상이다. 그러므로 상기 부직포 재료는 전체적으로 편평 섬유로 제조될 수 있고 또한 편평 섬유와 다른 섬유의 혼합물을 포함할 수도 있다. 하이드로엔탱글먼트에 적당한 모든 셀룰로오스 및 비-셀룰로오스 섬유 재료는 가능한 혼합 파트너이다. 본 발명에 따른 효과(즉, 부직포 재료의 강도 증가 및 에너지 절약 각각)는 부직포 재료 내 편평 섬유의 함량이 더 높아질수록 더 나타난다는 것은 당해 기술분야의 통상의 전문가에게는 자명하다.
The content of flat fibers in the nonwoven is preferably 5% to 100%, in particular at least 20%, more preferably at least 50%. The nonwoven material may therefore be made entirely of flat fibers and may also comprise a mixture of flat fibers and other fibers. All cellulose and non-cellulose fiber materials suitable for hydroentanglement are possible mixing partners. It is apparent to one of ordinary skill in the art that the effects according to the invention (ie, increased strength and energy savings of the nonwoven material respectively) appear more as the content of flat fibers in the nonwoven material increases.

본 발명은 또한 폭 B 대 두께 D의 비가 B:D > 10:1인 붕괴된 중공 비스코스 섬유의 형태로 편평 섬유를 포함하는 하이드로엔탱글된 부직포에 관한 것이다. 부직포 내에서 편평 섬유뿐만 아니라 그의 비에 관한 자세한 것은 종속항 및 상기 설명을 각각 참조한다.
The present invention also relates to a hydroentangled nonwoven comprising flat fibers in the form of collapsed hollow viscose fibers having a ratio of width B to thickness D B: D > 10: 1. For details regarding flat fibers as well as their ratios in nonwovens, see the dependent claims and the above description, respectively.

실시예Example ::

하이드로엔탱글된 부직포의 제조를 위해, 각각 1.7dtex의 타이터를 갖는 다음 섬유들이 사용되었다:For the production of hydroentangled nonwovens, the following fibers were used, each with a titer of 1.7 dtex:

a) 기준 비스코스 섬유(Type Danufil ®)a) reference viscose fiber (Type Danufil ®)

b) 중공 섬유 공정 유래 비스코스 편평 섬유; 섬유 두께 약 2-3?; 폭:두께 비 = 약 20: 1
b) viscose flat fibers derived from hollow fiber processes; Fiber thickness is about 2-3 ?; Width: thickness ratio = about 20: 1

상기 섬유들은 카디드 부직포로서 제출되었고 두 가지 경로로 양 측면이 강화되었다.
The fibers were submitted as carded nonwovens and reinforced on both sides in two ways.

2 가지의 단위 면적당 무게 및, 각각의 경우에, 2가지 강화 단계(최소-최고 강화)를 갖는 부직포가 각 섬유로부터 산출되었다.
A nonwoven fabric with two weights per unit area and, in each case, two reinforcement steps (minimum-maximum reinforcement) was calculated from each fiber.

단위 면적 당 무게: 각각 50g/m2및 80g/m2 Weight per unit area: 50g / m 2 and 80g / m 2, respectively

강화 단계(strengthening level): (두 가지 경로에서 모든 다이 바의 모든 압력의 합으로 나타난 각각의 경우에 있어서의 강화 압력)
Strength level: (intensification pressure in each case represented as the sum of all pressures of all the die bars in two paths)

단위 면적당 무게 50g/m2 - 최소 강화: 65barWeight per unit area 50 g / m 2 -Minimum reinforcement: 65 bar

단위 면적당 무게 50g/m2 - 최고 강화: 95bar
Weight per unit area 50 g / m 2 -Maximum reinforcement: 95 bar

단위 면적당 무게 80g/m2 - 최소 강화: 95barWeight per unit area 80 g / m 2 -Minimum reinforcement: 95 bar

단위 면적당 무게 80g/m2 - 최고 강화: 145bar
Weight per unit area 80 g / m 2 -Maximum reinforcement: 145 bar

최고 강화 압력은 그러므로, 각 경우에 있어서, 최고 강화 압력의 약 50% 이상이다.
The maximum strengthening pressure is therefore, in each case, at least about 50% of the highest strengthening pressure.

검사:inspection:

5x25cm의 표준 시험 표본을 가지고, 모든 부직포에 대하여 다음 파라미터들이 밝혀 졌다:
With a standard test specimen of 5x25 cm, the following parameters were found for all nonwovens:

- 습식 및 건식 각각의 경우에 제조방향(MD) 및 제조방향에 대해 가로방향(CD) 최대 인장 강도[N/5cm]Maximum tensile strength [N / 5cm] in the direction of manufacture (MD) and transverse (CD) for the wet and dry in each case;

- 최대 인장 강도 신장율 및 그로부터 유도된 MD+CD 뿐만 아니라 MD/CD 비는 다음으로부터 유도된다.
The maximum tensile strength elongation and the MD + CD as well as the MD / CD ratio derived therefrom are derived from

결과는 다음 표에 요약되어 있다:The results are summarized in the following table:

비스코스 편평 섬유 유래 부직포(본 발명에 따름)Non-woven from Viscose Flat Fiber (according to the invention) 단위 면적당 무게Weight per unit area 강화 단계Step 건식deflation 최대 인장강도 [N/5cm]Tensile strength [N / 5cm] 신장율 [%]Elongation [%] MD/CDMD / CD MDMD CDCD MDMD CDCD 50g/m2 50 g / m 2 최소at least 40.140.1 34.034.0 17.017.0 31.431.4 1.181.18 50g/m2 50 g / m 2 최대maximum 38.938.9 33.333.3 16.216.2 29.129.1 1.171.17 80g/m2 80 g / m 2 최소at least 62.062.0 60.960.9 18.318.3 34.534.5 1.021.02 80g/m2 80 g / m 2 최대maximum 59.859.8 59.859.8 14.714.7 30.630.6 1.001.00

비스코스 편평 섬유 유래 부직포 (본 발명에 따름)Viscose flat fiber derived nonwoven fabric (according to the present invention) 단위 면적당 무게Weight per unit area 강화 단계Step 습식Wet 최대 인장강도 [N/5cm]Tensile strength [N / 5cm] 신장율 [%]Elongation [%] MD/CDMD / CD MDMD CDCD MDMD CDCD 50g/m2 50 g / m 2 최소at least 27.427.4 22.622.6 27.827.8 34.134.1 1.211.21 50g/m2 50 g / m 2 최대maximum 29.929.9 24.624.6 27.927.9 31.031.0 1.221.22 80g/m2 80 g / m 2 최소at least 44.344.3 40.340.3 28.628.6 35.835.8 1.101.10 80g/m2 80 g / m 2 최대maximum 45.045.0 37.837.8 28.528.5 31.731.7 1.191.19

기준 비스코스 섬유 유래 부직포 (비교예)Viscose-derived nonwoven fabric (comparative example) 단위 면적당 무게Weight per unit area 강화 단계Step 건식deflation 최대 인장강도 [N/5cm]Tensile strength [N / 5cm] 신장율 [%]Elongation [%] MD/CDMD / CD MDMD CDCD MDMD CDCD 50g/m2 50 g / m 2 최소at least 21.021.0 33.533.5 26.126.1 41.641.6 0.620.62 50g/m2 50 g / m 2 최대maximum 38.838.8 42.542.5 30.630.6 37.837.8 0.910.91 80g/m2 80 g / m 2 최소at least 10.810.8 51.351.3 13.613.6 42.442.4 0.210.21 80g/m2 80 g / m 2 최대maximum 29.729.7 69.269.2 19.519.5 36.136.1 0.430.43

기준 비스코스 섬유 유래 부직포 (비교예)Viscose fiber-derived nonwoven fabric (comparative example) 면적당 무게Weight per area 강화 단계Step 습식Wet 최대 인장 강도 [N/5cm]Tensile strength [N / 5cm] 신장율 [%]Elongation [%] MD/CDMD / CD MDMD CDCD MDMD CDCD 50g/m2 50 g / m 2 최소at least 18.018.0 19.819.8 16.816.8 29.929.9 0.910.91 50g/m2 50 g / m 2 최대maximum 21.321.3 24.724.7 25.125.1 30.530.5 0.860.86 80g/m2 80 g / m 2 최소at least 5.95.9 21.521.5 16.816.8 29.929.9 0.270.27 80g/m2 80 g / m 2 최대maximum 18.518.5 41.241.2 25.125.1 30.530.5 0.450.45

상기 나타난 데이터로부터, 다음 결론이 도출될 수 있다:
From the data presented above, the following conclusions can be drawn:

신장율Elongation rate ::

건식 부직포에서, 최대 인장 강도 신장율(동일한 단위 면적당 무게 및 동일한 강화 조건)은, 기준 비스코스 섬유 유래 부직포와 대조적으로, 편평 섬유 유래 부직포에서 분명하게 낮다. 아마도, 이것은 더 높은 함량의 섬유-섬유 결합에서 기인한 것이다.
In dry nonwovens, the maximum tensile strength elongation (same weight per unit area and the same reinforcement conditions) is clearly low in flat fiber derived nonwovens, in contrast to the reference viscose fiber derived nonwovens. Perhaps this is due to the higher content of fiber-fiber bonds.

MDMD /Of CDCD 비: ratio:

동일한 실험 셋팅하에서, 편평 섬유를 포함하는 부직포는 기준 비스코스 섬유로 제조된 부직포보다 실질적으로 더 높은 MD/CD비를 나타낸다.
Under the same experimental settings, nonwovens comprising flat fibers exhibit a substantially higher MD / CD ratio than nonwovens made from reference viscose fibers.

최소 강화인 낮은 MD/CD 비로 출발하여, 강화 공정에서 섬유의 재배치 결과로서 상기 MD/CD 비가 증가한다. 상기 부직포의 MD/CD 비는 편평 섬유로 제조되고, 상기 비는 동일한 압력하에서, 기준 비스코스 섬유로 제조된 부직포보다 실질적으로 더 높고, 이는 편평 섬유의 상당히 높은 유연성을 나타내며, 강화 공정을 매우 용이하게 한다.
Starting with a low MD / CD ratio, which is the minimum reinforcement, the MD / CD ratio increases as a result of the relocation of the fibers in the reinforcement process. The MD / CD ratio of the nonwoven is made of flat fibers, which ratio is substantially higher than the nonwoven made of reference viscose fibers under the same pressure, which represents a significantly higher flexibility of the flat fibers, which makes the reinforcing process very easy do.

강도:burglar:

비스코스 편평 섬유 유래 부직포 (본 발명에 따름)Viscose flat fiber derived nonwoven fabric (according to the present invention) 단위 면적당 무게Weight per unit area 강화 단계Step 건식deflation 습식Wet 최대 인장 강도[N/5cm]Max Tensile Strength [N / 5cm] 최대 인장 강도[N/5cm]Max Tensile Strength [N / 5cm] MD + CDMD + CD MD + CDMD + CD 50g/m2 50 g / m 2 최소at least 74.174.1 50.150.1 50g/m2 50 g / m 2 최고Best 72.372.3 54.554.5 80g/m2 80 g / m 2 최소at least 122.9122.9 84.784.7 80g/m2 80 g / m 2 최고Best 119.6119.6 82.882.8

기준 비스코스 섬유 유래 부직포(비교예)Non-woven fabric (comparative example) derived from standard viscose fiber 단위 면적당 무게Weight per unit area 강화 단계Step 건식deflation 습식Wet 최대 인장 강도[N/5cm]Max Tensile Strength [N / 5cm] 최대 인장 강도[N/5cm]Max Tensile Strength [N / 5cm] MD + CDMD + CD MD + CDMD + CD 50g/m2 50 g / m 2 최소at least 54.554.5 37.837.8 50g/m2 50 g / m 2 최대maximum 81.381.3 46.046.0 80g/m2 80 g / m 2 최소at least 62.162.1 27.427.4 80g/m2 80 g / m 2 최대maximum 98.898.8 59.859.8

검사를 용이하게 하기 위하여, 강도 평가를 위해 각각의 경우에 파단력의 합 MD+CD이 사용된다:To facilitate inspection, the sum of the breaking forces MD + CD in each case is used for strength evaluation:

편평 섬유로 제조된 본 발명에 따른 부직포를 참조하면, 더 높은 강도는 “최소” 내지 “최고”로 강화 압력을 증가시키는 것으로 얻어지지 않는다는 것이 분명하다. 이것은 명백하게 부직포 재료가 낮은 강화 단계에서 항상 최대 정도로 이미 강화되어 있다는 것을 의미한다.
Referring to the nonwoven fabric according to the invention made of flat fibers, it is clear that higher strength is not obtained by increasing the reinforcement pressure from "minimum" to "highest". This obviously means that the nonwoven material is already already reinforced to the maximum extent at low reinforcement stages.

동일하게 강화시키면, 부직포 강도는 보통 단위 면적당 무게와 연관성이 있다.
Equally strengthened, nonwoven strength is usually associated with weight per unit area.

이 경우에, 단위 면적당 무게의 비는 80g/m2 내지 50g/m2= 1.6이다.
In this case, the ratio of weight per unit area is 80 g / m 2 to 50 g / m 2 = 1.6.

예를 들어, 50g/m2 의 단위 면적당 무게를 갖는 높게 강화된 부직포의 약 72 N/5cm의 측정된 강도를 기초로 하면, 단위 면적당 무게 80g/m2를 갖는 부직포에 대한 것으로서 72 * 1.6 = 115 N/5cm 의 강도가 예측될 수 있으며, 이는 실질적으로 측정된 값 약 120과 잘 맞는다.
For example, approximately 72 N / based on the measured intensity of 5cm of highly reinforced non-woven fabric having a weight per unit area of 50g / m 2, 72 * 1.6 = as for the non-woven fabric having a weight per unit area 80g / m 2 An intensity of 115 N / 5 cm can be predicted, which fits well with the substantially measured value of about 120.

이것은 모든 네 가지 구성으로, 상기 부직 재료가 이미 최대로 강화된 것을 의미한다.
This means that in all four configurations, the nonwoven material has already been fully reinforced.

기준 비스코스 섬유로 제조된 부직포를 가지고는 다른 그림이 나타난다:햅틱 평가에서, 최소 강화 단계의 2개의 부직포 재료는 다만 불충분하게 강화되었다.Another picture appears with a nonwoven fabric made of reference viscose fibers: In the haptic evaluation, the two nonwoven materials of the minimum reinforcement step were just insufficiently reinforced.

"최소" 에서 "최고"로 강화 압력을 증가시킬 때(항상 약 50% 증가), 각 경우에 있어서, 망 강도가 분명히 증가될 수 있다. 그러므로, 추가 압력은 이 경우에 명백하게 추가 강화를 일으키며, 이는 최대 강화를 위해서 보다 더 높은 압력이 요구될 것이다.
When increasing the strengthening pressure from "minimum" to "highest" (always increase by about 50%), in each case, the network strength can obviously be increased. Therefore, additional pressure obviously leads to further strengthening in this case, which will require a higher pressure for maximum strengthening.

50g/m2 부직포의 더 높은 강화단계에서, 건식 부직포의 강도는 편평 섬유로 제조된 부직포의 강도보다 약간 높다. 이는 아마도 실험에서 사용된 섬유(기준 비스코스 섬유: 22cN/tex; 비스코스 편평 섬유: 16cN/tex )의 더 높은 단일-섬유 강도에 의해 야기된 것일 수 있다. 그러나 이것은 부직포 재료가 그러므로 매우 강화되어진 것으로 가정될 수도 있다.
In the higher reinforcing step of the 50 g / m 2 nonwovens, the strength of the dry nonwovens is slightly higher than that of nonwovens made of flat fibers. This may be caused by the higher single-fiber strength of the fibers used in the experiment (reference viscose fiber: 22 cN / tex; viscose flat fiber: 16 cN / tex). However, it may be assumed that the nonwoven material is therefore very hardened.

그러므로, 상기 계산에 따라, 80g/m2 의 단위 면적당 무게를 갖는 완전하게 강화된 부직포 재료에 대해 적어도 81.3 x 1.6 = 130 N/5cm의 강도가 예상된다. 그러나 단지 약 99N/5cm 만이 측정되었다. 그러므로, 더 높은 강화 압력을 적용한다 하여도, 80g/m2 부직포는 여전히 완전히 강화된 것과는 거리가 멀다.
Therefore, according to the above calculations, a strength of at least 81.3 x 1.6 = 130 N / 5 cm is expected for a fully reinforced nonwoven material having a weight per unit area of 80 g / m 2 . But only about 99N / 5cm was measured. Therefore, even with higher reinforcement pressures, 80 g / m 2 nonwovens are still far from being fully reinforced.

상기 강화 단계에서, 상기 부직포 재료는 강화 잠재력의 단지 약 75%만을 달성하였다.
In the strengthening step, the nonwoven material achieved only about 75% of the strengthening potential.

비교예Comparative Example ::

80g/m2 부직포의 예는 명백하게 하이드로엔탱글먼트에서 편평 섬유의 본 발명에 따른 사용의 장점을 보여준다.
Examples of 80 g / m 2 nonwovens clearly show the advantages of the use of the flat fibers according to the invention in hydroentanglements.

비스코스 편평 섬유 유래 부직포-95bar의 강화압력:Strength of Viscose Flat Fiber-Based Nonwovens-95bar:

강도 건식 (MD+CD) = 120N/5cm;Intensity dry (MD + CD) = 120N / 5cm;

강도 습식 (MD+CD) = 83N/5cm
Strength Wet (MD + CD) = 83 N / 5 cm

기준 비스코스 섬유 유래 부직포-145 bar의 강화 압력:Reinforcement pressure of non-woven-145 bar derived from reference viscose fiber:

강도 건식 (MD+CD) = 99N/5cm; Intensity dry (MD + CD) = 99N / 5cm;

강도 습식 (MD+CD) = 60N/5cm
Intensity Wet (MD + CD) = 60N / 5cm

그러므로, 부직포 재료에서 비스코스 편평 섬유를 사용하는 것에 의해, 기준 비스코스 섬유를 사용하는 것에 비하여 각각 20%(건식) 및 40%(습식) 더 높은 강도가 50% 낮은 압력에서 얻어질 수 있다.Therefore, by using viscose flat fibers in a nonwoven material, 20% (dry) and 40% (wet) higher strengths, respectively, can be obtained at 50% lower pressures than using reference viscose fibers.

Claims (8)

워터 제트 처리 수단으로 부직포를 강화하는 방법이고,
상기 부직포는 폭(B) 대 두께(D)의 비가 B:D > 10:1인 붕괴된 중공 비스코스 섬유 형태의 편평 섬유를 포함하는 것을 특징으로 하는 부직포를 강화하는 방법.
It is a method of reinforcing the nonwoven with water jet treatment means,
Wherein said nonwoven comprises flat fibers in the form of collapsed hollow viscose fibers having a ratio of width (B) to thickness (D) of B: D > 10: 1.
제1항에 있어서,
상기 편평 섬유는 10:1 내지 30:1, 바람직하게는 20:1의 B:D의 비를 갖는 것을 것을 특징으로 하는 부직포를 강화하는 방법.
The method of claim 1,
Wherein said flat fibers have a B: D ratio of 10: 1 to 30: 1, preferably 20: 1.
제1항 또는 제2항에 있어서,
상기 편평 섬유가 0.9 내지 5dtex, 바람직하게는 1.3 내지 1.9dtex의 타이터(titre)를 갖는 특징으로 하는 부직포를 강화하는 방법.
3. The method according to claim 1 or 2,
And wherein said flat fibers have a titer of 0.9 to 5 dtex, preferably 1.3 to 1.9 dtex.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 부직포 재료의 섬유 함량이 5% 내지 100%, 바람직하게는 20% 이상, 특히 바람직하게는 50% 이상인 것을 특징으로 하는 부직포를 강화하는 방법.
4. The method according to any one of claims 1 to 3,
Method for reinforcing a nonwoven fabric, characterized in that the fiber content of the nonwoven material is from 5% to 100%, preferably at least 20%, particularly preferably at least 50%.
폭(B) 대 두께(D)의 비가 B:D > 10:1인 붕괴된 중공 비스코스 섬유 형태의 편평 섬유를 포함하는, 하이드로엔탱글된 부직포.A hydroentangled nonwoven fabric comprising flat fibers in the form of collapsed hollow viscose fibers having a ratio of width B to thickness D B: D > 10: 1. 제5항에 있어서,
상기 편평 섬유가 10:1 내지 30:1, 바람직하게는 20:1의 B:D의 비를 갖는 것을 특징으로 하는, 부직포.
The method of claim 5,
Nonwoven fabric, characterized in that the flat fibers have a ratio of B: D of 10: 1 to 30: 1, preferably 20: 1.
제5항 또는 제6항에 있어서,
상기 편평 섬유는 0.9 내지 5dtex, 바람직하게는 1.3 내지 1.9dtex의 타이터를 갖는 것을 특징으로 하는 부직포.
The method according to claim 5 or 6,
Wherein said flat fiber has a titer of 0.9 to 5 dtex, preferably 1.3 to 1.9 dtex.
제5항 내지 제7항 중 어느 한 항에 있어서,
상기 부직포에서 편평 섬유의 함량이 5% 내지 100%, 바람직하게는 20% 이상, 더욱 바람직하게는 50% 이상인 것을 특징으로 하는 부직포.
8. The method according to any one of claims 5 to 7,
Nonwoven fabric, characterized in that the content of the flat fiber in the nonwoven fabric is 5% to 100%, preferably 20% or more, more preferably 50% or more.
KR1020137004388A 2010-09-14 2011-09-09 Method for strengthening a nonwoven fabric KR101889112B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10009534A EP2428603A1 (en) 2010-09-14 2010-09-14 Method for fastening a non-woven fabric
EP10009534.8 2010-09-14
PCT/EP2011/065621 WO2012034934A1 (en) 2010-09-14 2011-09-09 Method for strengthening a nonwoven fabric

Publications (2)

Publication Number Publication Date
KR20130139859A true KR20130139859A (en) 2013-12-23
KR101889112B1 KR101889112B1 (en) 2018-08-16

Family

ID=43587658

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137004388A KR101889112B1 (en) 2010-09-14 2011-09-09 Method for strengthening a nonwoven fabric

Country Status (8)

Country Link
US (1) US20190194846A1 (en)
EP (2) EP2428603A1 (en)
JP (1) JP2013537263A (en)
KR (1) KR101889112B1 (en)
CN (1) CN103080397B (en)
BR (1) BR112013005857B1 (en)
IL (1) IL225101A (en)
WO (1) WO2012034934A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172520A (en) * 1997-12-08 1999-06-29 Daiwabo Rayonne Kk Production of hollow viscose rayon
JP2008546917A (en) * 2005-06-15 2008-12-25 ケルハイム ファイバーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fiber composite material which can be dissolved or decomposed in water and its product

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173830A (en) 1959-06-16 1965-03-16 Courtaulds Ltd Paper comprising collapsed regenerated cellulose fibers
US3156605A (en) 1960-03-25 1964-11-10 Fmc Corp Regenerated cellulose fiber
US3318990A (en) 1962-08-18 1967-05-09 Kurashiki Rayon Co Method of manufacturing flat viscose fibers
GB1063217A (en) 1962-08-25 1967-03-30 Kurashiki Rayon Kk Papers and non-woven fabrics containing mixed spun fibres
GB1064476A (en) * 1962-09-12 1967-04-05 Kurashiki Rayon Kk Transparent paper
GB1260839A (en) * 1968-05-06 1972-01-19 Courtaulds Ltd Regenerated cellulose strips
JPS4820165B1 (en) * 1969-10-06 1973-06-19
JPS4914423B1 (en) * 1970-12-29 1974-04-08
JPS5013245B2 (en) * 1972-06-10 1975-05-19
US4755421A (en) * 1987-08-07 1988-07-05 James River Corporation Of Virginia Hydroentangled disintegratable fabric
JPH0820165B2 (en) * 1989-04-21 1996-03-04 ホシザキ電機株式会社 Ice storage type cold water supply device
JPH08141064A (en) * 1994-11-18 1996-06-04 Toho Rayon Co Ltd High water retaining material and its production
GB2309466B (en) * 1996-01-29 1999-09-08 Courtaulds Fibres A nonwoven fabric
JP4721585B2 (en) * 2001-09-25 2011-07-13 ライオン株式会社 Wipe sheet
FR2899245B1 (en) * 2006-03-28 2009-07-03 Rieter Perfojet Sa NON-WOVEN RESISTANT AND LEAVING.
JP2008025048A (en) * 2006-07-20 2008-02-07 Japan Vilene Co Ltd Base material for printing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172520A (en) * 1997-12-08 1999-06-29 Daiwabo Rayonne Kk Production of hollow viscose rayon
JP2008546917A (en) * 2005-06-15 2008-12-25 ケルハイム ファイバーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Fiber composite material which can be dissolved or decomposed in water and its product

Also Published As

Publication number Publication date
BR112013005857A2 (en) 2016-05-17
WO2012034934A1 (en) 2012-03-22
CN103080397A (en) 2013-05-01
EP2428603A1 (en) 2012-03-14
IL225101A (en) 2017-05-29
EP2616578A1 (en) 2013-07-24
CN103080397B (en) 2017-04-26
KR101889112B1 (en) 2018-08-16
BR112013005857B1 (en) 2020-07-28
EP2616578B1 (en) 2014-11-12
US20190194846A1 (en) 2019-06-27
JP2013537263A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
EP1766121B1 (en) A hydroentangled split-fibre nonwoven material
RU2596099C2 (en) Method for production of hydraulically bound non-woven material
PT1272701E (en) PRODUCTION OF CLEANED FIBER CLEANER
CN104884696B (en) The compound nonwoven cloth of spun lacing shaping
CN1133914A (en) Nonwoven material containing mixture of pulp fibres and long hydrophillic plant fibres and method of producing nonwoven material
TWI626342B (en) Regenerated cellulose fibre and fibre bundle containing the same, and their production method and use for the production of nonwoven fabrics and paper
CN110536981B (en) Cellulosic fiber nonwoven fabric with uniformly fused fibers
CN100425755C (en) Production process of hydro-entangled composite non-woven fabric
JPH11501085A (en) Method for producing spunlace material with increased wet strength and spunlace material according to the method
US20090305593A1 (en) Method for manufacturing a non-woven fabric based on natural wool, plant for applying such method, and product obtained by such method
CN114318671B (en) Preparation method of moisture-absorbing and antibacterial spunlaced non-woven fabric
KR101050831B1 (en) Cleaning nonwoven fabric and manufacturing method thereof
KR101889112B1 (en) Method for strengthening a nonwoven fabric
EP1261767B1 (en) Composite nonwoven fabric and process for its manufacture
CN109576908B (en) Composite cloth of superfine denier viscose fiber and elastic mesh cloth and preparation process thereof
CN110804803A (en) Spunlace composite non-woven fabric and preparation method thereof
JP2002220740A (en) Splittable conjugated fiber, method for producing the same and nonwoven fabric using ultrafine fiber obtained from the same
CN113718548A (en) Preparation method of dispersible non-woven fabric and dispersible non-woven fabric
CN109763260B (en) Composite cloth of superfine denier viscose fiber and lyocell fiber and preparation process thereof
JP2001032157A (en) Staple fiber nonwoven fabric and its production
JP2006207069A (en) Silk nonwoven fabric
JP2002088583A (en) Dividable polyolefin conjugated fiber and fabric using the same
CN216404702U (en) Non-woven fabric capable of being rapidly dispersed
JPH02216295A (en) Production of highly strong polyester fiber paper
JPH05214649A (en) Flexible nonwoven fabric and its production

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant