KR20130134914A - Complex strain for purifing water and improving barn environment and its making method - Google Patents

Complex strain for purifing water and improving barn environment and its making method Download PDF

Info

Publication number
KR20130134914A
KR20130134914A KR1020120058801A KR20120058801A KR20130134914A KR 20130134914 A KR20130134914 A KR 20130134914A KR 1020120058801 A KR1020120058801 A KR 1020120058801A KR 20120058801 A KR20120058801 A KR 20120058801A KR 20130134914 A KR20130134914 A KR 20130134914A
Authority
KR
South Korea
Prior art keywords
complex
strain
complex strain
strains
intermedius
Prior art date
Application number
KR1020120058801A
Other languages
Korean (ko)
Inventor
이승미
박성범
박영민
김철홍
Original Assignee
(주) 에코텍씨드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 에코텍씨드 filed Critical (주) 에코텍씨드
Priority to KR1020120058801A priority Critical patent/KR20130134914A/en
Publication of KR20130134914A publication Critical patent/KR20130134914A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/22Bacillus
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/20Bacteria; Substances produced thereby or obtained therefrom
    • A01N63/27Pseudomonas
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/347Use of yeasts or fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/832Bacillus
    • Y10S435/839Bacillus subtilis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/852Klebsiella
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/853Lactobacillus
    • Y10S435/854Lactobacillus acidophilus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/874Pseudomonas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/94Saccharomyces
    • Y10S435/942Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Hydrology & Water Resources (AREA)
  • Biomedical Technology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a complex strain for purifying water and improving a barn environment, and a method for manufacturing the same. The complex strain for purifying water and improving a barn environment according to the present invention comprises Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus acidophilus and Saccharomyces cerevisiae.

Description

수질정화 및 축사 환경 개선용 복합균주 및 이의 제조방법{COMPLEX STRAIN FOR PURIFING WATER AND IMPROVING BARN ENVIRONMENT AND ITS MAKING METHOD}Complex strain for improving water quality and livestock environment and its manufacturing method {COMPLEX STRAIN FOR PURIFING WATER AND IMPROVING BARN ENVIRONMENT AND ITS MAKING METHOD}

본 발명은 복합균주 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 수질정화 및 축사 환경 개선용 복합균주 및 이의 제조방법에 관한 것이다.The present invention relates to a complex strain and a method for producing the same, and more particularly, to a complex strain for improving water quality and livestock environment and a method for producing the same.

친환경 농업/축산업이 최근에 각광을 받으면서 친환경 자재 및 생물학적인 환경개선 시장이 점차 활성화되고 있다. 전 세계적으로 생물학적 자재 시장이 증가하는 추세이며, 국내에서도 1조 농약 시장 중에서 약 1천 2백억 원 이상이 생물학적 자재로 대체될 전망이다. 특히, 최근 FTA에 대비하고 축산농가의 경쟁력 강화를 위한 친환경 축산물 인증농가 지원사업 및 친환경 축산물 인증제 등의 정책사업에 있어서도 다양한 친환경 자재 개발은 필수적이다. As the eco-friendly agriculture and livestock industry has been in the spotlight recently, the market for eco-friendly materials and biological environment improvement is gradually being activated. The global market for biological materials is on the rise, and more than 12 billion won in the trillion pesticide market is expected to be replaced by biological materials. In particular, it is essential to develop various eco-friendly materials in policy projects such as eco-friendly livestock product certification farm support project and eco-friendly livestock product certification system to prepare for the FTA and strengthen the competitiveness of livestock farmers.

친환경 자재 중에서도 가장 많이 연구되어지고 있는 것이 생물학적 유용균을 이용한 미생물 제제의 개발이다. 특히, 생물학적 유용균 중에서도 식물 근권에 존재하면서 많은 유용 형질을 보유하고 있는 다양한 토양 미생물의 개발 및 제품화가 진행되고 있는데, 이러한 유용 형질을 지닌 토양 미생물은 2차 대사물질, 항균활성물질 등으로 직접적으로 타 균주의 유입을 억제하거나 간접적으로 수질정화 및 축사환경 개선을 촉진시켜 주고 있다. 최근에는 이러한 유용 미생물이 환경정화 및 가축의 품질 개선 등에 관한 연구가 활발히 진행되고 있으며, 그에 따른 새로운 소재의 친환경 자재들이 상품화되고 있다. Among the environmentally friendly materials, the most researched is the development of microbial preparations using biologically useful bacteria. In particular, the development and commercialization of various soil microorganisms that exist in the plant root zone and have many useful traits among the biologically useful bacteria are in progress. It inhibits the influx of strains or indirectly promotes water purification and the improvement of livestock environment. In recent years, studies on the environmental purification and the improvement of livestock quality of these useful microorganisms have been actively conducted, and eco-friendly materials of new materials have been commercialized accordingly.

하지만 지금까지 개발된 생물학적 유용균의 대부분은 효과적인 작용기작을 지니고 있음에도 불구하고 축산농가에서 실질적으로 꺼려하는 부분이 있는데 이는 미생물 제제의 방제가 화학약품에 비해 떨어지는 반면 비용이 화학약품에 비해 높으며, 효과가 가변적이기 때문이다.However, although most of the bioavailable bacteria developed so far have an effective mechanism of action, there is a substantial reluctance in livestock farms, which means that the control of microbial products is lower than chemicals, while the cost is higher than chemicals. Because it is variable.

한편, 종래 기술 중 특허등록번호 제10-403146호는 축산 환경에서 축산분뇨의 악취제거를 위한 복합 미생물제에 대하여 개시하고 있으나, 상기 특허등록공보는 모나스커스 퍼퓨리우스 및 로도박터 캡슐레이터스를 함유한 복합 미생물제로서 축산분뇨의 악취제거효과만을 개시하고 있을 뿐, 축사에 유해한 병원균의 생육을 억제할 수 있는 효능에 대하여는 언급이 없다. 또한, 본원의 복합균주와 그 종이 전혀 상이하다.On the other hand, Patent Registration No. 10-403146 of the prior art discloses a complex microbial agent for removing the odor of livestock manure in the livestock environment, but the patent registration publication contains Monascus perpurius and Rhodobacter encapsulators As a complex microbial agent, only the odor removal effect of livestock manure is disclosed, and there is no mention of the effect of inhibiting the growth of pathogens harmful to the livestock house. In addition, the complex strain of the present application and its species are completely different.

또한, 종래 기술 중 특허등록번호 제10-541844호는 복합공정에 의한 염색폐수 처리방법에 대하여 개시하고 있는바, 염색폐수를 처리하기 위한 복합공정에서 복합균주를 사용할 수 있음을 개시하고 있으나, 상기 복합균주는 바실러스 세리우스 케이더블유엘씨 1 및 바실러스 세리우스 케이더블유엘씨 2를 포함하는 것으로서, 본원의 복합균주와 그 종이 전혀 상이하다.In addition, Patent Registration No. 10-541844 of the prior art discloses a method for treating dyed wastewater by a complex process, but it is disclosed that a complex strain may be used in a complex process for treating dyed wastewater. The complex strain includes Bacillus cerius cabling UEL 1 and Bacillus cerius cabling UEL 2, which is completely different from the complex strain of the present application.

따라서, 농업/축산업의 환경에서 수질정화 및 축사의 환경을 개선할 수 있으며, 산업적으로 대량생산이 가능하고, 고가의 배양 배지 대신 저렴한 배양 배지를 이용하여 균주 배양이 가능하도록 하여 경제적인 효과를 누릴 수 있는 미생물제제가 요구된다. Therefore, it is possible to improve the environment of water purification and livestock raising in the environment of agriculture / livestock industry, to be industrially mass-produced, and to be able to cultivate strains by using inexpensive culture medium instead of expensive culture medium to enjoy economic effects. There is a need for microbial agents.

따라서, 본 발명의 목적은 수질정화 및 축사의 환경을 개선할 수 있는 복합균주 및 그 제조방법을 제공하고자 한다. 상기 복합균주는 축사에 존재할 수 있는 가축에 유해한 병원균의 생육을 억제할 수 있으며, 또한 축사의 악취를 개선할 수 있는 효능을 지는 복합균주 및 그 제조방법이 제공된다. Accordingly, an object of the present invention is to provide a complex strain and a method for producing the same that can improve the water purification and the environment of the livestock house. The complex strain can suppress the growth of pathogens harmful to livestock which may be present in the barn, and also provides a complex strain and a method for producing the same having the effect of improving the odor of the barn.

상기 목적은, 본 발명에 따라, 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 수질정화용 복합균주에 의해 달성된다. The object is, according to the present invention, Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus exix It is achieved by a water purification complex consisting of Lactobacillus acidophilus and Saccharomyces cerevisiae.

또한, 상기 목적은, 본 발명에 따라, 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 축사환경 개선용 복합균주에 의해 달성될 수 있다. In addition, the above object, according to the present invention, Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus It can be achieved by a complex strain for improving the barn environment composed of Lactobacillus acidophilus and Saccharomyces cerevisiae.

상기 복합균주는, 악취개선 및 동물성 병원균의 생육억제효과를 가짐으로써 축사환경을 개선할 수 있다.The complex strain can improve the odor environment by having a malodor improvement and growth inhibition effect of animal pathogens.

또한, 상기 목적은, 본 발명에 따라, 복합균주의 제조방법에 있어서, 토양으로부터 분리한 균주들을 영양배지에서 진탕배양한 후 원심분리를 통하여 수질정화 및 유해가스 발생 억제용 균주를 1차 분리하는 단계와; 상기 분리된 균주들에 악취 가스를 주입하여 상기 악취 가스를 제거시키는 균주를 선별 동정하여 재구성하는 단계를 포함하는 수질정화 및 축사환경 개선용 복합균주의 제조방법에 의해 달성될 수 있다.In addition, the above object, according to the present invention, in the production method of the complex strain, the first strain to isolate the strain for water purification and harmful gas generation through centrifugation after shaking culture in the nutrient medium of the strains isolated from the soil. Steps; It can be achieved by a method for producing a complex strain for water purification and barn environment improvement comprising the step of identifying and reconstituting the strain to remove the malodor gas by injecting malodor gas to the separated strains.

또한, 상기 목적은, 복합균주의 대량 배양을 배양 방법에 있어서, 복합균주를 당밀 1 내지 3%, 맥주박 1 내지 3% 및 식염 0.5 내지 1%를 포함하는 배지에서 24시간 내지 72시간 동안 배양하는 단계를 포함하고, 상기 복합균주는, 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 것인 복합균주의 대량 배양 방법에 의해 달성될 수 있다.In addition, the above object, in the cultivation method of mass culture of the complex strain, the complex strain is cultured for 24 to 72 hours in a medium containing 1 to 3% molasses, 1 to 3% beer foil and 0.5 to 1% salt Including the steps, the complex, Bacillus subtilis (Bacillus subtilis) CH, Pseudomonas chlororaphis, Enterobactor intermedius, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus It can be achieved by a mass culture method of a complex strain consisting of Lactobacillus acidophilus and Saccharomyces cerevisiae.

이상 설명한 바와 같이, 본 발명에 따르면, 농업/축산업의 환경에서 수질정화 및 축사 환경을 개선할 수 있으며, 산업적으로 대량생산이 가능하고, 고가의 배양 배지 대신 저렴한 배양 배지를 이용하여 균주 배양이 가능하도록 하여 경제적인 효과가 좋은 수질정화 및/또는 축사 환경 개선용 복합균주 및 그 제조방법이 제공된다. 이에 따라, 본 발명에 따른 복합균주를 이용하면 경제적일 뿐만 아니라, 친환경적으로 수질정화 및 축사 환경을 개선할 수 있다.As described above, according to the present invention, it is possible to improve the water purification and the livestock environment in the environment of agriculture / livestock industry, can be industrially mass-produced, strain culture using an inexpensive culture medium instead of expensive culture medium It is to provide a complex strain for improving the water quality and / or livestock environment with good economic effect and a manufacturing method thereof. Accordingly, the use of the complex strain according to the present invention can not only be economical, but also environmentally friendly to improve the water purification and livestock environment.

도 1은 본 발명의 일 실시예에 따른 복합균주의 살모넬라 엔테리티디스(Salmonella enteritidis)의 생육곡선에 미치는 영향을 도시하고,
도 2는 본 발명의 일 실시예에 따른 복합균주의 바실러스 세레우스(Bacillus cereus)의 생육곡선에 미치는 영향을 도시하고,
도 3은 본 발명의 일 실시예에 따른 복합균주의 악취가스 제거효과를 나타낸 그래프이다.
Figure 1 shows the effect on the growth curve of Salmonella enteritidis (Salmonella enteritidis) of the complex according to an embodiment of the present invention,
Figure 2 shows the effect on the growth curve of Bacillus cereus complex strain according to an embodiment of the present invention,
Figure 3 is a graph showing the odor gas removal effect of the complex strain according to an embodiment of the present invention.

이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.

본 발명의 일 실시예에 따른 복합균주는, 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성될 수 있다. 상기 복합균주는 수질정화 및/또는 축사환경개선의 효과를 가진다. 상기 복합균주는 축사에 존재하는 병원균의 생육을 억제할 뿐만 아니라, 축사의 악취를 개선할 수 있는 효과를 가진다.Complex strain according to an embodiment of the present invention, Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus acidophilus and Saccharomyces cerevisiae. The complex strain has the effect of water purification and / or livestock environment improvement. The complex strain not only suppresses the growth of pathogens present in the barn, but also has the effect of improving the odor of the barn.

또한 본 발명의 일 실시예에 따른 상기 복합균주의 제조방법은, 토양으로부터 분리한 균주들을 영양배지에서 진탕배양한 후 원심분리를 통하여 수질정화 및 유해가스 발생 억제용 균주를 1차 분리하는 단계와; 상기 분리된 균주들에 악취 가스를 주입하여 상기 악취 가스를 제거시키는 균주를 선별 동정하여 재구성하는 단계를 포함할 수 있다.In addition, the manufacturing method of the complex strain according to an embodiment of the present invention, the first step of separating the strain for inhibiting water quality purification and harmful gas through centrifugation after shaking culture in the nutrient medium of the strains isolated from the soil and ; Injecting the malodorous gas into the separated strains may comprise the step of identifying and reconstructing the strain to remove the malodorous gas.

또한, 본 발명의 일 실시예에 따라, 상기 복합균주의 대량배양방법은, 복합균주를 당밀 1 내지 3%, 맥주박 1 내지 3% 및 식염 0.5 내지 1%를 포함하는 배지에서 24시간 내지 72시간 동안 배양하는 단계를 포함한다. 특히, 더욱 바람직하게는 상기 복합균주를 당밀 1%, 맥주박 3%, 식염 1%를 포함하는 배지에서 24시간 내지 72시간 동안 배양하는 단계를 포함한다.
In addition, according to one embodiment of the present invention, the mass culture method of the complex strain, the complex strain in a medium containing 1 to 3% molasses, 1 to 3% beer foil and 0.5 to 1% saline 24 to 72 hours Culturing during. In particular, more preferably comprises culturing the complex strain for 24 to 72 hours in a medium containing 1% molasses, 3% beer foil, 1% salt.

이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

실시예Example 1.  One. 복합균주의Complex 분리 detach

수질정화 및 악취개선에 탁월한 효과를 나타내는 균주를 분리하기 위하여 하기와 같은 단계를 수행하였다.The following steps were carried out to isolate strains that exhibited excellent effects on water purification and odor improvement.

단계 1: 토양을 채취하여 한천배지에 도말Step 1: Collect the soil and smear it on agar media

토양을 채취하여 멸균수에 현탁한 다음 LB(Luria Bertani)배지에 도말하였다.Soil was collected, suspended in sterile water and plated in LB (Luria Bertani) medium.

단계 2. 단일 콜로니의 분리Step 2. Isolation of Single Colonies

상기 LB한천배지 상에서 각각의 특징을 나타내는 균주들을 단일 콜로니 분리(single colony isolation) 하였다.Strains showing the respective characteristics on the LB agar medium were single colony isolation.

단계 3. 배양 및 회수Step 3. Cultivation and Recovery

상기 단일 콜로니 분리한 균주 각각을 약 30℃의 LB액체배지에서 약 24시간 동안 분당 200회의 회전속도로 진탕배양을 수행하였다. 그 뒤 원심분리를 수행하여 균을 회수하여 동량의 멸균수에 현탁하였다.Each of the single colony isolated strains was shaken in an LB liquid medium at about 30 ° C. for about 24 hours at 200 revolutions per minute. Thereafter, centrifugation was performed to recover the bacteria and suspended in the same amount of sterile water.

단계 4. 균주선발Step 4. Strain Selection

수질정화 및 악취에 영향을 주는 암모니아 가스를 주입하여 상기 암모니아 가스를 제거시키는 효과를 가지는 균주를 선발하였으며, 상기 균주들은 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)를 포함한다.
Strains having an effect of removing the ammonia gas were selected by injecting ammonia gas affecting water purification and odor, and the strains were Bacillus subtilis CH, Pseudomonas chlororaphis, and enterobacter. Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus acidophilus and Saccharomyces cerevisiae.

실시예Example 2.  2. 복합균주의Complex 동정 Sympathy

2-1. 2-1. 바실러스Bacillus 서브틸러스Subtilus (( BacillusBacillus subtilissubtilis ) ) CHCH

상기 실시예 1에서 분리된 균주들의 16S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 바실러스 서브틸러스(Bacillus subtilis) CH로 동정하였다.By confirming the 16S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Bacillus subtilis CH.

상기 분리된 바실러스 서브틸러스(Bacillus subtilis) CH 균주를 약 30℃의 LB액체배지에서 약 24시간 동안 분당 200회의 회전속도로 진탕배양을 수행한 후, 세포를 회수하여 genomic DNA를 분리하고, 상기 균주의 16S rRNA는 정방향 프라이머로 5'-AGAGTTTGATCCTGGCTCAG-3'를 사용하고, 역방향 프라이머로 5'-ACGGCTACCTTGTTACGACTT-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 16S rDNA의 염기서열은 서열목록의 서열번호 1과 같으며, 그 내용은 하기와 같다. The isolated Bacillus subtilis CH strain was subjected to shaking culture at 200 rotations per minute for about 24 hours in an LB liquid medium at about 30 ° C., and then cells were recovered to separate genomic DNA. The 16S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-AGAGTTTGATCCTGGCTCAG-3 'as the forward primer and 5'-ACGGCTACCTTGTTACGACTT-3' as the reverse primer. The base sequence of the analyzed 16S rDNA is the same as SEQ ID NO: 1 in the Sequence Listing, the contents of which are as follows.

Bacillus subtilis strain S64 16S ribosomal RNA gene, partial sequence Length=1454 Bacillus subtilis strain S64 16S ribosomal RNA gene, partial sequence Length = 1454

Score = 2662 bits (1441), Expect = 0.0 Score = 2662 bits (1441), Expect = 0.0

Identities = 1443/1444 (99%), Gaps = 0/1444 (0%)Identities = 1443/1444 (99%), Gaps = 0/1444 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

2-2. 슈도모나스 클로로라피스(2-2. Pseudomonas Chloro Lapis PseudomonasPseudomonas chlororaphischlororaphis ))

상기 실시예 1에서 분리된 균주들의 16S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 슈도모나스 클로로라피스(Pseudomonas chlororaphis) O6로 동정하였다.By confirming the 16S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Pseudomonas chlororaphis O6.

상기 분리된 슈도모나스 클로로라피스 균주를 약 30℃의 LB 액체배지에서 약 24시간 동안 진탕 배양한 후, 세포를 회수하여 genomic DNA를 분리하였다. 상기 균주의 16S rRNA는 정방향 프라이머로 5'-AGAGTTTGATCCTGGCTCAG-3'를 사용하고, 역방향 프라이머로 5'-ACGGCTACCTTGTTACGACTT-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 16S rDNA의 염기서열은 서열목록의 서열번호 2와 같으며, 그 내용은 하기와 같다. The isolated Pseudomonas chloro rapi strain was incubated for about 24 hours in an LB liquid medium at about 30 ° C., and then cells were recovered to separate genomic DNA. 16S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-AGAGTTTGATCCTGGCTCAG-3 'as the forward primer and 5'-ACGGCTACCTTGTTACGACTT-3' as the reverse primer. The base sequence of the analyzed 16S rDNA is the same as SEQ ID NO: 2 in the Sequence Listing, the contents of which are as follows.

Pseudomonas sp. lip35 16S ribosomal RNA gene, partial sequence Length=1530 Pseudomonas sp. lip35 16S ribosomal RNA gene, partial sequence Length = 1530

Score = 2697 bits (1460), Expect = 0.0 Score = 2697 bits (1460), Expect = 0.0

Identities = 1467/1470 (99%), Gaps = 1/1470 (0%) Identities = 1467/1470 (99%), Gaps = 1/1470 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

2-3. 엔테로박터 인터미디우스(2-3. Enterobacter intermediaus ( EnterobactorEnterobactor intermediusintermedius ))

상기 실시예 1에서 분리된 균주들의 16S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 엔테로박터 인터미디우스(Enterobactor intermedius) B1으로 동정하였다. By confirming the 16S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Enterobactor intermedius B1.

상기 분리된 엔테로박터 인터미디우스 B1 균주를 30℃의 LB 액체배지에서 24시간 동안 진탕 배양한 후, 세포를 회수하여 genomic DNA를 분리하였다. 상기 균주의 16S rRNA는 정방향 프라이머로 5'-AGAGTTTGATCCTGGCTCAG-3'를 사용하고, 역방향 프라이머로 5'-ACGGCTACCTTGTTACGACTT-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 16S rDNA의 염기서열은 서열목록의 서열번호 3과 같으며, 그 내용과 다음과 같다. The isolated Enterobacter intermediaus B1 strain was shaken for 24 hours in an LB liquid medium at 30 ° C., and then cells were recovered to separate genomic DNA. 16S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-AGAGTTTGATCCTGGCTCAG-3 'as the forward primer and 5'-ACGGCTACCTTGTTACGACTT-3' as the reverse primer. The base sequence of the analyzed 16S rDNA is the same as SEQ ID NO: 3 in Sequence Listing, and the contents are as follows.

Enterobacter intermedius 16S ribosomal RNA gene, partial sequence Length=1453 Enterobacter intermedius 16S ribosomal RNA gene, partial sequence Length = 1453

Score = 2663 bits (1442), Expect = 0.0 Score = 2663 bits (1442), Expect = 0.0

Identities = 1444/1445 (99%), Gaps = 0/1445 (0%) Identities = 1444/1445 (99%), Gaps = 0/1445 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

2-4. 2-4. 크렙시엘라Krebscheiler 옥시토카( Oxytoca KlebsiellaKlebsiella oxytocaoxytoca ))

상기 실시예 1에서 분리된 균주들의 16S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 크렙시엘라 옥시토카(Klebsiella oxytoca) Cl036으로 동정하였다.By confirming the 16S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Klebsiella oxytoca Cl036.

상기 분리된 바실러스 크렙시엘라 옥시토카 Cl036 균주를 30℃의 LB 액체배지에서 24시간 동안 진탕 배양한 후, 세포를 회수하여 genomic DNA를 분리하였다. 상기 균주의 16S rRNA는 정방향 프라이머로 5'-AGAGTTTGATCCTGGCTCAG-3'를 사용하고, 역방향 프라이머로 5'-ACGGCTACCTTGTTACGACTT-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 16S rDNA의 염기서열은 서열목록의 서열번호 4와 같으며, 그 내용은 하기와 같다. The isolated Bacillus Krebsiella oxytoca Cl036 strain was shaken for 24 hours in an LB liquid medium at 30 ° C., and then cells were recovered to separate genomic DNA. 16S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-AGAGTTTGATCCTGGCTCAG-3 'as the forward primer and 5'-ACGGCTACCTTGTTACGACTT-3' as the reverse primer. The base sequence of the analyzed 16S rDNA is the same as SEQ ID NO: 4 in the Sequence Listing, the contents of which are as follows.

Klebsiella oxytoca 16S ribosomal RNA gene, partial sequence Length=1502 Klebsiella oxytoca 16S ribosomal RNA gene, partial sequence Length = 1502

Score = 2641 bits (1430), Expect = 0.0 Score = 2641 bits (1430), Expect = 0.0

Identities = 1441/1446 (99%), Gaps = 1/1446 (0%) Identities = 1441/1446 (99%), Gaps = 1/1446 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

2-5. 2-5. 락토바실러스Lactobacillus 엑시도필러스( Excidophilus ( LactobacillusLactobacillus acidophilusacidophilus ))

상기 실시예 1에서 분리된 균주들의 16S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 락토바실러스 엑시도필러스(Lactobacillus acidophilus) AP로 동정하였다.By confirming the 16S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Lactobacillus acidophilus AP.

상기 분리된 락토바실러스 엑시도필러스 AP 균주를 30℃의 LB 액체배지에서 24시간 동안 진탕 배양한 후, 세포를 회수하여 genomic DNA를 분리하였다. 상기 균주의 16S rRNA는 정방향 프라이머로 5'-AGAGTTTGATCCTGGCTCAG-3'를 사용하고, 역방향 프라이머로 5'-ACGGCTACCTTGTTACGACTT-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 16S rDNA의 염기서열은 서열목록의 서열번호 5와 같으며, 그 내용은 다음과 같다. The isolated Lactobacillus exidophilus AP strain was shaken for 24 hours in an LB liquid medium at 30 ° C., and then cells were recovered to separate genomic DNA. 16S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-AGAGTTTGATCCTGGCTCAG-3 'as the forward primer and 5'-ACGGCTACCTTGTTACGACTT-3' as the reverse primer. The base sequence of the analyzed 16S rDNA is the same as SEQ ID NO: 5 in the Sequence Listing, the contents of which are as follows.

Lactobacillus acidophilus 16S ribosomal RNA gene, partial sequence Length=1449 Lactobacillus acidophilus 16S ribosomal RNA gene, partial sequence Length = 1449

Score = 2235 bits (1210), Expect = 0.0 Score = 2235 bits (1210), Expect = 0.0

Identities = 1212/1213 (99%), Gaps = 0/1213 (0%) Identities = 1212/1213 (99%), Gaps = 0/1213 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

2-6. 2-6. 사카로마이세스Sakaromayses 세레비제( Cereje ( SaccharomycesSaccharomyces cerevisiaecerevisiae ))

상기 실시예 1에서 분리된 균주들의 18S rRNA염기서열을 확인함으로써, 상기 균주들 중 하나를 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 동정하였다.By confirming the 18S rRNA base sequence of the strains isolated in Example 1, one of the strains was identified as Saccharomyces cerevisiae.

상기 분리된 사카로마이세스 세레비제 균주를 30℃의 LB 액체배지에서 24시간 동안 진탕 배양한 후, 세포를 회수하여 genomic DNA를 분리하였다. 상기 균주의 18S rRNA는 정방향 프라이머로 5'-GTAACCCGTTGAACCCCATT-3'를 사용하고, 역방향 프라이머로 5'-CCATCCAATCGGTAGTAGCG-3'를 사용하여 중합효소 연쇄반응 (Polymerase Chain Reaction)에 의해 클로닝하였다. 분석된 18S rDNA의 염기서열은 서열목록의 서열번호 6과 같으며, 그 내용은 하기와 같다. The isolated Saccharomyces cerevise strain was shaken for 24 hours in an LB liquid medium at 30 ° C., and then cells were recovered to separate genomic DNA. The 18S rRNA of the strain was cloned by Polymerase Chain Reaction using 5'-GTAACCCGTTGAACCCCATT-3 'as the forward primer and 5'-CCATCCAATCGGTAGTAGCG-3' as the reverse primer. The base sequence of the analyzed 18S rDNA is the same as SEQ ID NO: 6 in the Sequence Listing, the contents of which are as follows.

Saccharomyces cerevisiae gene for 18S rRNA, partial sequence Length=1714 Saccharomyces cerevisiae gene for 18S rRNA, partial sequence Length = 1714

Score = 2130 bits (1153), Expect = 0.0Score = 2130 bits (1153), Expect = 0.0

Identities = 1153/1153 (100%), Gaps = 0/1153 (0%) Identities = 1153/1153 (100%), Gaps = 0/1153 (0%)

Strand=Plus/Plus
Strand = Plus / Plus

실험예Experimental Example 1.  One. 복합균주의Complex 복합배양 Complex culture

상기 실시예 1 및 실시예 2를 통하여 분리한 각각의 균주들을 약 30℃의 LB액체배지에서 24시간동안 진탕 배양한 후, 대치배양하여 서로의 생육을 억제하지 않는 균주를 복합배양하였다. 복합배양하여 각각의 미생물의 생균수를 측정한 결과는 하기 표 1과 같다.Each of the strains isolated through Example 1 and Example 2 were shaken for 24 hours in an LB liquid medium at about 30 ° C., followed by replacement culture to culture the strains that do not inhibit the growth of each other. The result of measuring the viable cell count of each microorganism by complex culture is shown in Table 1 below.

균주명Strain name 생균수Viable cell count 사용배지Used badge Pseudomonas chlororaphisPseudomonas chlororaphis 2.4 × 108 cfu/g2.4 × 10 8 cfu / g LBLB Bacillus subtilisBacillus subtilis 3.7 × 108 cfu/g3.7 × 10 8 cfu / g LBLB Enterobactor intermediusEnterobactor intermedius 1.4 × 108 cfu/g1.4 × 10 8 cfu / g LBLB Klebsiella oxytocaKlebsiella oxytoca 4.8 × 108 cfu/g4.8 × 10 8 cfu / g LBLB Lactobacillus acidophilusLactobacillus acidophilus 6.3 × 108 cfu/g6.3 × 10 8 cfu / g LBLB Saccharomyces cerevisiaeSaccharomyces cerevisiae 1.8 × 107 cfu/g1.8 × 10 7 cfu / g YPDYPD

실험예Experimental Example 2.  2. 복합균주의Complex 동물 병원성 세균에 대한 생육저지효과  Growth Inhibitory Effects on Animal Pathogenic Bacteria

동물 병원균으로써 동물의 식중독을 일으키는 살모넬라 엔테리티디스(Salmonella enteritidis), 바실러스 세레우스(Bacillus cereus) 2종을 사용하여, 본 발명에 따른 복합균주의 동물 병원성 세균에 대한 생육저지효과를 실험하였다.As an animal pathogen, Salmonella enteritidis and Bacillus cereus, which cause food poisoning in animals, were used to test the growth inhibitory effect on the animal pathogenic bacteria of the complex strain according to the present invention.

병원균의 생육을 위해 LB(Luria Bertani) 액체 배지에 각종 미생물이 잘 생육하는 적정온도인 30℃에서 24시간 동안 진탕배양하였다. For the growth of pathogens, shaking culture was performed for 24 hours at 30 ° C., which is a temperature at which various microorganisms grow well in LB (Luria Bertani) liquid medium.

또한 상기 실험예 1에과 같이 배양한 복합균주를 50㎖의 코니컬 튜브에 담아 원심분리한 후, 상층액을 이용하여 동물의 식중독 유발 균주인 살모넬라 엔테리티디스(Salmonella enteritidis) 및 바실러스 세레우스(Bacillus cereus) 2종을 각각 대치배양하였다. In addition, after centrifuging the mixed strain cultured as in Experimental Example 1 in a 50ml conical tube, using the supernatant Salmonella enteritidis and Bacillus cereus (Salmonella enteritidis), which is an animal food poisoning strain cereus) were replaced in two cultures.

상기 대치배양의 결과, 실험예 1의 복합균주의 살모넬라 엔테리티디스(Salmonella enteritidis) 및 바실러스 세레우스(Bacillus cereus)의 생육에 미치는 영향은 도 1 및 도 2에서 보는 바와 같다.As a result of the replacement culture, the effect on the growth of Salmonella enteritidis and Bacillus cereus of the complex strain of Experimental Example 1 is as shown in Figs.

대조군(control)은 각각 병원균만의 생육곡선이고, 비교예로서 Saccharomyces cerevisiae을 첨가한 경우의 병원균의 생육곡선이고, EM-Complex는 실험예 1의 복합균주을 첨가한 경우의 병원균의 생육곡선을 도시하고 있다.The control (control) is the growth curve of each pathogen alone, the growth curve of the pathogen when Saccharomyces cerevisiae is added as a comparative example, EM-Complex shows the growth curve of the pathogen when the complex strain of Example 1 is added have.

도 1은 실험예 1의 복합균주의 병원균 살모넬라 엔테리티디스(Salmonella enteritidis)의 생육곡선에 미치는 영향을 나타내고 있다. 도 1을 참조하면, 살모넬라 엔테리티디스(Salmonella enteritidis)의 생육곡선은 12시간 만에 90%이상 저해되는 것을 확인하였으며, 이는 본 발명에 따른 복합균주의 2차 대사산물에 의하여 살모넬라 엔테리티디스의 생육이 억제되는 것으로 확인할 수 있다.Figure 1 shows the effect on the growth curve of the pathogen Salmonella enteritidis of the complex strain of Experimental Example 1. 1, it was confirmed that the growth curve of Salmonella enteritidis (Salmonella enteritidis) is inhibited by more than 90% in 12 hours, which is the secondary metabolite of the complex strain according to the present invention of Salmonella enteritidis It can be confirmed that growth is suppressed.

도 2는 실험예 1의 복합균주의 병원균 바실러스 세레우스(Bacillus cereus)의 생육곡선에 미치는 영향을 나타내고 있다. 도 2를 참조하면, 바실러스 세레우스(Bacillus cereus)의 생육곡선은 24시간만에 80%이상 저해되는 것을 확인하였으며, 이는 본 발명에 따른 복합균주의 2차 대사산물에 의하여 바실러스 세레우스의 생육이 억제되는 것으로 확인할 수 있다.
Figure 2 shows the effect on the growth curve of the pathogen Bacillus cereus of the complex strain of Experimental Example 1. Referring to Figure 2, the growth curve of Bacillus cereus (Bacillus cereus) was confirmed that the inhibition of more than 80% in 24 hours, which is the growth of Bacillus cereus by the secondary metabolite of the complex according to the present invention It can be confirmed that it is suppressed.

실험예Experimental Example 3.  3. 복합균주의Complex 유해가스 억제효과 Hazardous Gas Suppression Effect

상기 실험예 1에 따라 제조된 복합미생물 발효액의 악취가스 제거효과를 실험하였다. 상기 악취가스 제거효과를 확인하기 위한 시험방법으로는 KS M 0001의 변형방법 및 KS M 0062 가스검지관법을 이용하였고, 시험조건으로는 시험 챔버 20ℓ 테들러백, 적용시료량 4㎖를 사용하였다. 제거율(%)는 아래 식에 의해 계산하였다. Odor gas removal effect of the composite microorganism fermentation broth prepared according to Experimental Example 1 was tested. As a test method for confirming the odor gas removal effect was used a modification method of KS M 0001 and KS M 0062 gas detection tube method, the test conditions were used in the test chamber 20ℓ Tedlar bag, the applied sample amount 4ml. % Removal was calculated by the following equation.

제거율Removal rate

(%) = (공시험 - 시료) / 공시험 × 100
(%) = (Blank Test-Sample) / Blank Test × 100

축사내 악취를 나타내는 대부분의 성분은 암모니아 및 트리메틸아민이므로 상기 두 가지 가스의 제거능을 확인하였으며, 그 결과는 하기 표 2에서 보는 바와 같다.
Most of the components exhibiting odor in the barn were ammonia and trimethylamine, and thus the removal ability of the two gases was confirmed, and the results are shown in Table 2 below.

시험대상가스Test gas 시험시간(hr)Test time (hr) 공시험(ppm)Blank test (ppm) 시료(ppm)Sample (ppm) 제거율(%)Removal rate (%) 암모니Ammonia 00 6060 6060 -- 1One 6060 4.54.5 92.592.5 33 6060 22 96.696.6 55 6060 N.DN.D. 99.0<99.0 < 트리메틸아민Trimethylamine 00 6060 6060 -- 1One 6060 1111 81.681.6 33 6060 3.53.5 94.294.2 55 6060 N.DN.D. 99.0<99.0 <

상기 표 2에서 보는 바와 같이, 암모니아 가스는 본 발명에 따른 복합균주의 발효액 적용 1시간 후에 90%이상의 제거율을 보였으며, 5시간 후에 암모니아 가스가 검출되지 않음을 확인할 수 있었다. 또한, 트리메틸아민의 경우에는 본 발명에 따른 복합균주의 발효액 적용 후 3시간 만에 90%이상의 제거율을 보였으며, 5시간 만에 트리메틸아민이 검출되지 않음을 확인할 수 있었다.
As shown in Table 2, the ammonia gas showed a removal rate of 90% or more after 1 hour of application of the fermentation broth of the complex strain according to the present invention, it was confirmed that no ammonia gas was detected after 5 hours. In addition, trimethylamine showed a removal rate of 90% or more in 3 hours after application of the fermentation broth of the complex according to the present invention, and it was confirmed that trimethylamine was not detected in 5 hours.

실험예Experimental Example 4.  4. 복합균주의Complex 계분 내 유해가스 억제효과 Hazardous Gas Inhibition Effect

상기 실험예 1에 따라 제조된 복합미생물 발효액의 계분 내 악취가스 제거효과를 실험하였다. 요산은 인체의 유해한 독소로써 조류의 분변에서 발생되기 때문에 일반적으로 축사나 돈사의 악취보다 더 심하다. 따라서, 조류의 유해가스 억제효과를 확인하기 위하여 양계장에서 계분을 채취하여 본 발명의 복합미생물의 발효액의 계분 내 악취제거효과를 실험하였다.The odor gas removal effect in the system of the mixed microbial fermentation broth prepared according to Experimental Example 1 was tested. Uric acid is a harmful toxin in the body and is generally caused by algae feces, which is more severe than barns or pig odors. Therefore, in order to confirm the harmful gas inhibitory effect of algae, the poultry was taken from the poultry farm and the odor removal effect in the poultry of the fermentation broth of the complex microorganism of the present invention was tested.

상기 계분 내 악취가스 제거효과를 확인하기 위한 시험방법으로, 생체중의 평균 범위에 해당하는 개체를 처리구별 5수씩 선발하여 1일 동안 배설된 분을 채취하였다. 깃털과 이물질 등을 제거한 후 500㎖의 유리 용기에 넣고, 30℃ 배양기에 보관하였다. 36시간 경과 후 12시간 간격으로 H2S 및 NH3 가스 검지관(Gastec, Kanagawa, Japan)을 이용하여 유해 가스 발생량을 측정하였다. As a test method for confirming the odor gas removal effect in the system, 5 individuals of each treatment group were selected for the average range of the living body, and the excreted minute was collected for 1 day. After removing the feathers and foreign matter, and put in a glass container of 500ml, it was stored in a 30 ℃ incubator. Hazardous gas emissions were measured using H2S and NH3 gas detector tubes (Gastec, Kanagawa, Japan) at intervals of 12 hours after 36 hours.

상기 실험 수행의 결과는 도 3에서 보는 바와 같다. 도 3의 대조군(control)으로서 어떠한 처리도 수행하지 않은 경우이고, 비교예로서 Saccharomyces cerevisiae을 처리한 경우의 계분 내 악취제거 효과를 나타내고, EM-Complex는 실험예 1의 복합균주의 발효액의 계분 내 악취제거 효과를 나태고 있다.The results of performing the experiment are as shown in FIG. 3. As a control of FIG. 3, no treatment was performed, and as a comparative example, the odor removal effect in the flour when Saccharomyces cerevisiae was treated, and EM-Complex in the fermentation solution of the fermentation broth of the complex of Experimental Example 1 Odor removal effect is shown.

도 3을 참조하면, 계분 내의 암모니아 수치는 본 발명에 따른 복합균주의 발효액 적용 24시간 후에 약 30%의 차이를 보이기 시작하여 48시간 후에 50%이상의 차이를 보였다. 이를 통하여 본 발명에 따른 복합균주의 발효액의 계분 내 악취가스 억제효과를 확인 할 수 있었다.
Referring to FIG. 3, the ammonia level in the system powder began to show a difference of about 30% after 24 hours of application of the fermentation broth of the complex strain according to the present invention and showed a difference of 50% or more after 48 hours. Through this, it was possible to confirm the odor gas suppression effect in the system of the fermentation broth of the complex according to the present invention.

실험예Experimental Example 5.  5. 복합균주의Complex 수질개선효과 Water Quality Improvement Effect

상기 실험예 1에 따라 제조된 복합미생물의 수질개선효과를 확인하기 위하여 농업과학기술연구원에 의뢰하여 시험하였다. 전남 곡성군 입면 창정리에 위치한 농업관수용 저수지에서 오염된 정체수 500ℓ를 샘플링하여 상기 실험예 1에 따라 배양된 복합미생물을 일주일 간격으로 4회 투여한 후 수질종합시험값(SS(부유물질농도), BOD(생물학적 산소요구량), COD(화학적 산소요구량), T-N(총 질소), T-P(총 인))을 조사하여 그 차이를 분석하였다.In order to confirm the water quality improvement effect of the composite microorganism prepared according to Experimental Example 1 was tested by the Institute of Agricultural Science and Technology. Sample 500 L of contaminated stagnant water in agricultural irrigation reservoir located in Changjeong-ri, Eokseong-gun, Gokseong-gun, Jeonnam, and administer the composite microorganisms cultured according to Experimental Example 4 at weekly intervals. , BOD (biological oxygen demand), COD (chemical oxygen demand), TN (total nitrogen), TP (total phosphorus)) were investigated and analyzed for the difference.

수질오염공정시험방법(환경부고시)에 나와있는 것과 같이 부유물질(SS: Suspended Solid), 생물화학적 산소요구량(BOD: Biochemical oxygen demand), 화학적 산소요구량(COD: Chemical Oxygen Demand), TN(전체 암모니아 함량)-연속자동측정방법, TP(전체 인 함량)-연속자동측정방법을 이용하여 측정하였으며, 그 결과는 표 3에서 보는 바와 같다.
Suspended Solid (SS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), TN (Total Ammonia), as described in the Water Pollution Process Test Method. Content) -continuous automatic measurement method, TP (total phosphorus content) -continuous automatic measurement method, and the results are shown in Table 3.

처리process SSSS BODBOD CODCOD T-NT-N T-PT-P 처리 전Before processing 53.453.4 34.534.5 14.514.5 13.2113.21 0.320.32 처리 후After processing 39.139.1 26.826.8 9.39.3 9.649.64 0.160.16

상기 표 3의 “처리전”은 본원의 복합균주를 처리하기 전에 측정된 수질종합시험값을 나타내고, “처리후”는 본원의 복합균주를 처리한 후에 측정된 수질종합시험값을 나타낸다. 상기 표 3에서 보는 바와 같이, SS, BOD, COD, T-N은 전체적으로 약 30% 감소율을 보였으며, T-P값은 50%의 감소율을 보여 본원의 복합균주가 수질개선에 효과를 나타냄을 확인할 수 있었다.
"Before treatment" in Table 3 indicates the water quality test value measured before the complex strain of the present application, "after treatment" represents the water quality test value measured after the treatment of the complex strain of the present application. As shown in Table 3, SS, BOD, COD, TN showed a total reduction of about 30%, TP value of 50% showed a reduction rate of the composite strain of the present application was found to show an effect on water quality improvement.

실험예Experimental Example 6.  6. 복합균주의Complex 약해조사Investigation

LB 액체배지(Bacto Tryptone 20g, NaCl 5g, Bacto Yeast Extract 15g, pH7.5) 100㎖을 조제하여 실험예 1의 복합균주를 약 30℃에서 약 24시간 동안, 회전속도 200rpm으로 진탕 배양하였다. 축사, 돈사, 양계장에 상기 진탕배양된 복합균주를 접종하여, 상기 복합균주의 상기 가축에 대하여 병원성을 나타내는지 여부를 확인하였다. 상기 접종을 위해 배양한 균을 원심분리기로 회수하여 멸균수에 적정 접종농도(1.6×109CFU/㎖)로 희석한 다음, 각 2,000㎖씩 축사, 돈사, 양계장에 처리하였다. 25℃~30℃의 배양기에서 일주일간 약해 여부를 조사하였다.100 ml of LB medium (Bacto Tryptone 20g, NaCl 5g, Bacto Yeast Extract 15g, pH7.5) was prepared, and the mixed strain of Experimental Example 1 was incubated at about 30 ° C. for about 24 hours at a rotational speed of 200 rpm. The shaken, pig, and poultry farms were inoculated with the shake-cultured complex strain to determine whether the complex strain exhibited pathogenicity to the livestock. The bacteria cultured for the inoculation were recovered by centrifugation, diluted in sterile water to an appropriate inoculation concentration (1.6 × 10 9 CFU / mL), and then treated in a barn, pig house, and poultry farm for 2,000 ml each. Were examined for a week in a 25 ~ 30 ℃ incubator.

그 결과는 하기 표 4와 같다.The results are shown in Table 4 below.

축사Barn 돈사Donsa 양계장poultry farm 약해유무Weakness -- -- --

(-: 약해없음; +: 약해있음)(-: Weak; +: weak)

상기 실험 수행의 결과, 본 발명에 따른 복합균주는 축사, 돈사, 양계장에 그 어떠한 약해를 나타내지 않음을 확인할 수 있었으며, 이로 인하여 본원의 복합균주는 축사, 돈사, 양계장에 안전하게 이용할 수 있음을 확인할 수 있었다.
As a result of the experiment, the complex strain according to the present invention was confirmed that it does not show any damage to the barn, pigs, poultry farm, and this can be confirmed that the complex strain of the present application can be safely used in the barn, pigs, poultry farm there was.

실험예Experimental Example 7.  7. 복합균주의Complex 대량배양을 위한  For mass culture 배양배지의Culture medium 조성 Furtherance

실험예 1의 복합균주를 대량으로 배양할 수 있는 배양배지의 조성에 대하여 실험을 수행하였다. 이를 위하여, 다양한 산업 부산물을 이용한 대량 배양용 배지를 구성하였다. 대량 배양용 배지의 주성분으로서는 설탕을 제조하면서 나오는 당밀과 맥주를 발효하고 나오는 맥주박을 주 원료로 이용하여 본원의 복합균주가 가장 빠른 시간에 최고의 배양 효과를 나타내는 구성비를 도출하였다.
Experiments were carried out for the composition of the culture medium which can culture the complex strain of Experimental Example 1. To this end, a medium for mass cultivation using various industrial by-products was constructed. As the main components of the medium for mass culture, the molasses and fermented beer gourd produced during the production of sugar were used as the main raw material, and the composition ratio of the present invention showed the best culture effect at the fastest time.

배지구성조건Medium composition condition 24시간 배양24 hour culture 48시간 배양48 hours incubation 72시간 배양72 hours culture ① LB(control)① LB (control) 1.4 ×107 1.4 × 10 7 8.7 ×107 8.7 × 10 7 3.2 ×108 3.2 × 10 8 ② 당밀 1% + 맥주박(건조분말) 1%② molasses 1% + beer foil (dry powder) 1% 1.5 ×108 1.5 × 10 8 2.1 ×108 2.1 × 10 8 3.4 ×108 3.4 × 10 8 ③당밀 3% + 맥주박(건조분말) 3%③ 3% molasses + 3% beer foil (dry powder) 2.3 ×106 2.3 × 10 6 1.9 ×106 1.9 × 10 6 1.4 ×108 1.4 × 10 8 ④당밀 1% + 맥주박(건조분말) 1% + 식염(NaCl) 1%④ molasses 1% + beer foil (dry powder) 1% + salt (NaCl) 1% 1.7 ×108 1.7 × 10 8 5.1 ×108 5.1 × 10 8 5.7 ×108 5.7 × 10 8 ⑤당밀 3% + 맥주박(건조분말) 3% + 식염(NaCl) 1%⑤ 3% molasses + 3% beer foil (dry powder) + 1% salt (NaCl) 1.2 ×106 1.2 × 10 6 1.2 ×107 1.2 × 10 7 3.7 ×108 3.7 × 10 8 ⑥당밀 1% + 맥주박(열수추출) 1%(6) Molasses 1% + Beer foil (hot water extraction) 1% 7.8 ×106 7.8 × 10 6 1.8 ×107 1.8 × 10 7 4.2 ×107 4.2 × 10 7 ⑦당밀 3% + 맥주박(열수추출) 3%⑦ 3% molasses + 3% beer foil (hot water extraction) 7.4 ×105 7.4 × 10 5 1.6 ×107 1.6 × 10 7 2.8 ×108 2.8 × 10 8 ⑧당밀 1% + 맥주박(열수추출) 1% + 식염(NaCl) 1%(8) Molasses 1% + Beer foil (hot water extraction) 1% + Salt (NaCl) 1% 2.4 ×107 2.4 × 10 7 1.1 ×108 1.1 × 10 8 3.9 ×108 3.9 × 10 8 ⑨당밀 3% + 맥주박(열수추출) 3% + 식염(NaCl) 1%⑨ 3% molasses + 3% beer foil (hot water extraction) + 1% salt (NaCl) 4.8 ×106 4.8 × 10 6 7.0 ×106 7.0 × 10 6 2.4 ×108 2.4 × 10 8

(단위: cfu/ml)(Unit: cfu / ml)

상기 표 5에서 보는 바와 같이, 본원의 복합균주를 빠른 시간 내에 대량 배양하기 위한 배양배지로는 당밀 1%, 맥주박 건조분말 1% 및 식염(NaCl) 1%를 함유하는 배지가 가장 효율적인 것으로 나타났다.As shown in Table 5, the medium containing 1% molasses, 1% dried beet meal and 1% salt (NaCl) as a culture medium for mass culturing the complex strain of the present application was found to be the most efficient.

비록 본 발명의 몇몇 실시예들이 도시되고 설명되었지만, 본 발명이 속하는 기술분야의 통상의 지식을 가진 당업자라면 본 발명의 원칙이나 정신에서 벗어나지 않으면서 본 실시예를 변형할 수 있음을 알 수 있을 것이다. 발명의 범위는 첨부된 청구항과 그 균등물에 의해 정해질 것이다.
Although several embodiments of the present invention have been shown and described, those skilled in the art will appreciate that various modifications may be made without departing from the principles and spirit of the invention . The scope of the invention will be determined by the appended claims and their equivalents.

<110> ECOTECHSEED CO., LTD <120> COMPLEX STRAIN FOR PURIFING WATER AND IMPROVING BARN ENVIRONMENT AND ITS MAKING METHOD <130> DPP-2012-5086-KR <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 1444 <212> RNA <213> Bacillus subtilis <400> 1 ggtgctatac atgcagtcga gcggacagat gggagcttgc tccctgatgt tagcggcgga 60 cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg gaaaccgggg 120 ctaataccgg atggttgttt gaaccgcatg gttcagacat aaaaggtggc ttcggctacc 180 acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc accaaggcga 240 cgatgcgtag ccgacctgag agggtgatcg gccacactgg gactgagaca cggcccagac 300 tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga cggagcaacg 360 ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa gaacaagtgc 420 cgttcaaata gggcggcacc ttgacggtac ctaaccagaa agccacggct aactacgtgc 480 cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg cgtaaagggc 540 tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg agggtcattg 600 gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgtgtag cggtgaaatg 660 cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta actgacgctg 720 aggagcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac gccgtaaacg 780 atgagtgcta agtgttaggg ggtttccgcc ccttagtgct gcagctaacg cattaagcac 840 tccgcctggg gagtacggtc gcaagactga aactcaaagg aattgacggg ggcccgcaca 900 agcggtggag catgtggttt aattcgaagc aacgcgaaga accttaccag gtcttgacat 960 cctctgacaa tcctagagat aggacgtccc cttcgggggc agagtgacag ggggtgcatg 1020 gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc gcaacccttg 1080 atcttagttg ccagcattca gttgggcact ctaaggtgac tgccggtgac aaaccggagg 1140 aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac acgtgctaca 1200 atggacagaa caaagggcag cgaaaccgcg aggttaagcc aatcccacaa atctgttctc 1260 agttcggatc gcagtctgca actcgactgc gtgaagctgg aatcgctagt aatcgcggat 1320 cagcatgccg cggtgaatac gttcccgggc cttgtacaca ccgcccgtca caccacgaga 1380 gtttgtaaca cccgaagtcg gtgaggtaac ctttaggagc cagccgccga aggtgacaga 1440 aagg 1444 <210> 2 <211> 1472 <212> RNA <213> Pseudomonas sp. <400> 2 tcctgggtca attgaacgct ggcggcaggc ctaacacatg caagtcgagc ggtagagagg 60 tgcttgcacc tcttgagagc ggcggacggg tgagtaatgc ctaggaatct gcctggtagt 120 gggggataac gttcggaaac ggacgctaat accgcatacg tcctacggga gaaagcaggg 180 gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga ttagctagtt ggtgaggtaa 240 tggctcacca aggcgacgat ccgtaactgg tctgagagga tgatcagtca cactggaact 300 gagacacggt ccagactcct acgggaggca gcagtgggga atattggaca atgggcgaaa 360 gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg gattgtaaag cactttaagt 420 tgggaggaag ggtacttacc taatacgtga gtattttgac gttaccgaca gaataagcac 480 cggctaactc tgtgccagca gccgcggtaa tacagagggt gcaagcgtta atcggaatta 540 ctgggcgtaa agcgcgcgta ggtggttcgt taagttgaat gtgaaatccc cgggctcaac 600 ctgggaactg catccaaaac tggcgagcta gagtatggta gagggtggtg gaatttcctg 660 tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg accacctgga 720 ctgatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 780 tccacgccgt aaacgatgtc aactagccgt tgggagcctt gagctcttag tggcgcagct 840 aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca aatgaattga 900 cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg aagaacctta 960 ccaggccttg acatccaatg aactttccag agatggattg gtgccttcgg gaacattgag 1020 acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgtaac 1080 gagcgcaacc cttgtcctta gttaccagca cgtaatggtg ggcactctaa ggagactgcc 1140 ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggcctggg 1200 ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt ggagctaatc 1260 ccataaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga agtcggaatc 1320 gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg tacacaccgc 1380 ccgtcacacc atgggagtgg gttgcaccag aagaagctag tctaaccttc gggaggacgg 1440 ttaccacggt gtgattcatg actggggtgc ca 1472 <210> 3 <211> 1455 <212> RNA <213> Enterobacter intermedius <400> 3 aattacggac cggcaggcct aacacatgca agtcgaacgg tagcacagag agcttgctct 60 tgggtgacga gtggcggacg ggtgagtaat gtctgggaaa ctgcccgatg gagggggata 120 actactggaa acggtagcta ataccgcata acgtcgcaag accaaagtgg gggaccttcg 180 ggcctcacac catcggatgt gcccagatgg gattagctag taggtggggt aatggctcac 240 ctaggcgacg atccctagct ggtctgagag gatgaccagc cacactggaa ctgagacacg 300 gtccagactc ctacgggagg cagcagtggg gaatattgca caatgggcgc aagcctgatg 360 cagccatgcc gcgtgtatga agaaggcctt cgggttgtaa agtactttca gcgaggagga 420 aggcattgtg gttaataacc gcagtgattg acgttactcg cagaagaagc accggctaac 480 tccgtgccag cagccgcggt aatacggagg gtgcaagcgt taatcggaat tactgggcgt 540 aaagcgcacg caggcggtct gtcaagtcgg atgtgaaatc cccgggctca acctgggaac 600 tgcattcgaa actggcaggc tagagtcttg tagagggggg tagaattcca ggtgtagcgg 660 tgaaatgcgt agagatctgg aggaataccg gtggcgaagg cggccccctg gacaaagact 720 gacgctcagg tgcgaaagcg tggggagcaa acaggattag ataccctggt agtccacgcc 780 gtaaacgatg tcgacttgga ggttgtgccc ttgaggcgtg gcttccggag ctaacgcgtt 840 aagtcgaccg cctggggagt acggccgcaa ggttaaaact caaatgaatt gacgggggcc 900 cgcacaagcg gtggagcatg tggtttaatt cgatgcaccg cgaagaacct tacctactct 960 tgacatccag agaacttagc agagatgctt tggtgccttc gggaactctg agacaggtgc 1020 tgcatggctg tcgtcagctc gtgttgtgaa atgttgggtt aagtcccgca acgagcgcaa 1080 cccttatcct ttgttgccag cggttcggcc gggaactcaa aggagactgc cagtgataaa 1140 ctggaggaag gtggggatga cgtcaagtca tcatggccct tacgagtagg gctacacacg 1200 tgctacaatg gcatatacaa agagaagcga cctcgcgaga gcaagcggac ctcataaagt 1260 atgtcgtagt ccggatcgga gtctgcaact cgactccgtg aagtcggaat cgctagtaat 1320 cgtagatcag aatgctacgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac 1380 catgggagtg ggttgcaaaa gaagtaggta gcttaacctt cgggagggcg cttaccactt 1440 tgaaattcat gactg 1455 <210> 4 <211> 1452 <212> RNA <213> Klebsiella oxytoca <400> 4 ttagacgctg gcggcaggcc taacacatgc aagtcgaacg gtagcacaga gagcttgctc 60 tcgggtgacg agtggcggac gggtgagtaa tgtctgggaa actgcccgat ggagggggat 120 aactactgga aacggtagct aataccgcat aacgtcgcaa gaccaaagag ggggaccttc 180 gggcctcttg ccatcggatg tgcccagatg ggattagctt gtaggtgagg taacggctca 240 cctaggcgac gatccctagc tggtctgaga ggatgaccag ccacactgga actgagacac 300 ggtccagact cctacgggag gcagcagtgg ggaatattgc acaatgggcg caagcctgat 360 gcagccatgc cgcgtgtatg aagaaggcct tcgggttgta aagtactttc agcggggagg 420 aagggagtga ggttaatacc tcattcattg acgttacccg cagaagaagc accggctaac 480 tccgtgccag cagccgcggt aatacggagg gtgcaagcgt taatcggaat tactgggcgt 540 aaagcgcacg caggcggtct gtcaagtcgg atgtgaaatc cccgggctca acctgggaac 600 tgcattcgaa actggcaggc tggagtcttg tagagggggg tagaattcca ggtgtagcgg 660 tgaaatgcgt agagatctgg aggaataccg gtggcgaagg cggccccctg gacaaagact 720 gacgctcagg tgcgaaagcg tggggagcaa acaggattag ataccctggt agtccacgct 780 gtaaacgatg tcgacttgga ggttgttccc ttgaggagtg gcttccggag ctaacgcgtt 840 aagtcgaccg cctggggagt acggccgcaa ggttaaaact caaatgaatt gacgggggcc 900 cgcacaagcg gtggagcatg tggtttaatt cgatgcaacg cgaagaacct tacctactct 960 tgacatccac agaacttagc agagatgctt tggtgccttc gggaactgtg agacaggtgc 1020 tgcatggctg tcgtcagctc gtgttgtgaa atgttgggtt aagtcccgca acgagcgcaa 1080 cccttatcct ttgttgccag cgattaggtc gggaactcaa aggagactgc cagtgataaa 1140 ctggaggaag gtggggatga cgtcaagtca tcatggccct tacgagtagg gctacacacg 1200 tgctacaatg gcatatacaa agagaagcga cctcgcgaga gcaagcggac ctcataaagt 1260 atgtcgtagt ccggattgga gtctgcaact cgactccatg aagtcggaat cgctagtaat 1320 cgtggatcag aatgccacgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac 1380 catgggagtg ggttgcaaaa gaagtaggta gcttaacctt cgggagggcg cttaccactt 1440 tgtgattcag ta 1452 <210> 5 <211> 1213 <212> RNA <213> Lactobacillus acidophilus <400> 5 atcatgcaag tcgaacgaac tctggtattg attggtgctt gcatcatgat ttacatttga 60 gtgagtggcg aactggtgag taacacgtgg gaaacctgcc cagaagcggg ggataacacc 120 tggaaacaga tgctaatacc gcataacaac ttggaccgca tggtccgagt ttgaaagatg 180 gcttcggcta tcacttttgg atggtcccgc ggcgtattag ctagatggtg gggtaacggc 240 tcaccatggc aatgatacgt agccgacctg agagggtaat cggccacatt gggactgaga 300 cacggcccaa actcctacgg gaggcagcag tagggaatct tccacaatgg acgaaagtct 360 gatggagcaa cgccgcgtga gtgaagaagg gtttcggctc gtaaaactct gttgttaaag 420 aagaacatat ctgagagtaa ctgttcaggt attgacggta tttaaccaga aagccacggc 480 taactacgtg ccagcagccg cggtaatacg taggtggcaa gcgttgtccg gatttattgg 540 gcgtaaagcg agcgcaggcg gttttttaag tctgatgtga aagccttcgg ctcaaccgaa 600 gaagtgcatc ggaaactggg aaacttgagt gcagaagagg acagtggaac tccatgtgta 660 gcggtgaaat gcgtagatat atggaagaac accagtggcg aaggcggctg tctggtctgt 720 aactgacgct gaggctcgaa agtatgggta gcaaacagga ttagataccc tggtagtcca 780 taccgtaaac gatgaatgct aagtgttgga gggtttccgc ccttcagtgc tgcagctaac 840 gcattaagca ttccgcctgg ggagtacggc cgcaaggctg aaactcaaag gaattgacgg 900 gggcccgcac aagcggtgga gcatgtggtt taattcgaag ctacgcgaag aaccttacca 960 ggtcttgaca tactatgcaa atctaagaga ttagacgttc ccttcgggga catggataca 1020 ggtggtgcat ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 1080 cgcaaccctt attatcagtt gccagcatta agttgggcac tctggtgaga ctgccggtga 1140 caaaccggag gaaggtgggg atgacgtcaa atcatcatgc cgcttatgac ctgggctaca 1200 cacgtgctac aat 1213 <210> 6 <211> 1153 <212> RNA <213> Saccharomyces cerevisiae <400> 6 agctcgtagt tgaactttgg gcccggttgg ccggtccgat tttttcgtgt actggatttc 60 caacggggcc tttccttctg gctaaccttg agtccttgtg gctcttggcg aaccaggact 120 tttactttga aaaaattaga gtgttcaaag caggcgtatt gctcgaatat attagcatgg 180 aataatagaa taggacgttt ggttctattt tgttggtttc taggaccatc gtaatgatta 240 atagggacgg tcgggggcat cagtattcaa ttgtcagagg tgaaattctt ggatttattg 300 aagactaact actgcgaaag catttgccaa ggacgttttc attaatcaag aacgaaagtt 360 aggggatcga agatgatcag ataccgtcgt agtcttaacc ataaactatg ccgactaggg 420 atcgggtggt gtttttttaa tgacccactc ggcaccttac gagaaatcaa agtctttggg 480 ttctgggggg agtatggtcg caaggctgaa acttaaagga attgacggaa gggcaccacc 540 aggagtggag cctgcggctt aatttgactc aacacgggga aactcaccag gtccagacac 600 aataaggatt gacagattga gagctctttc ttgattttgt gggtggtggt gcatggccgt 660 tcttagttgg tggagtgatt tgtctgctta attgcgataa cgaacgagac cttaacctac 720 taaatagtgg tgctagcatt tgctggttat ccacttctta gagggactat cggtttcaag 780 ccgatggaag tttgaggcaa taacaggtct gtgatgccct tagacgttct gggccgcacg 840 cgcgctacac tgacggagcc agcgagtcta accttggccg agaggtcttg gtaatcttgt 900 gaaactccgt cgtgctgggg atagagcatt gtaattattg ctcttcaacg aggaattcct 960 agtaagcgca agtcatcagc ttgcgttgat tacgtccctg ccctttgtac acaccgcccg 1020 tcgctagtac cgattgaatg gcttagtgag gcctcaggat ctgcttagag aagggggcaa 1080 ctccatctca gagcggagaa tttggacaaa cttggtcatt tagaggaact aaaagtcgta 1140 acaaggtttc cgt 1153 <110> ECOTECHSEED CO., LTD <120> COMPLEX STRAIN FOR PURIFING WATER AND IMPROVING BARN ENVIRONMENT          AND ITS MAKING METHOD <130> DPP-2012-5086-KR <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 1444 <212> RNA <213> Bacillus subtilis <400> 1 ggtgctatac atgcagtcga gcggacagat gggagcttgc tccctgatgt tagcggcgga 60 cgggtgagta acacgtgggt aacctgcctg taagactggg ataactccgg gaaaccgggg 120 ctaataccgg atggttgttt gaaccgcatg gttcagacat aaaaggtggc ttcggctacc 180 acttacagat ggacccgcgg cgcattagct agttggtgag gtaacggctc accaaggcga 240 cgatgcgtag ccgacctgag agggtgatcg gccacactgg gactgagaca cggcccagac 300 tcctacggga ggcagcagta gggaatcttc cgcaatggac gaaagtctga cggagcaacg 360 ccgcgtgagt gatgaaggtt ttcggatcgt aaagctctgt tgttagggaa gaacaagtgc 420 cgttcaaata gggcggcacc ttgacggtac ctaaccagaa agccacggct aactacgtgc 480 cagcagccgc ggtaatacgt aggtggcaag cgttgtccgg aattattggg cgtaaagggc 540 tcgcaggcgg tttcttaagt ctgatgtgaa agcccccggc tcaaccgggg agggtcattg 600 gaaactgggg aacttgagtg cagaagagga gagtggaatt ccacgtgtag cggtgaaatg 660 cgtagagatg tggaggaaca ccagtggcga aggcgactct ctggtctgta actgacgctg 720 aggagcgaaa gcgtggggag cgaacaggat tagataccct ggtagtccac gccgtaaacg 780 atgagtgcta agtgttaggg ggtttccgcc ccttagtgct gcagctaacg cattaagcac 840 tccgcctggg gagtacggtc gcaagactga aactcaaagg aattgacggg ggcccgcaca 900 agcggtggag catgtggttt aattcgaagc aacgcgaaga accttaccag gtcttgacat 960 cctctgacaa tcctagagat aggacgtccc cttcgggggc agagtgacag ggggtgcatg 1020 gttgtcgtca gctcgtgtcg tgagatgttg ggttaagtcc cgcaacgagc gcaacccttg 1080 atcttagttg ccagcattca gttgggcact ctaaggtgac tgccggtgac aaaccggagg 1140 aaggtgggga tgacgtcaaa tcatcatgcc ccttatgacc tgggctacac acgtgctaca 1200 atggacagaa caaagggcag cgaaaccgcg aggttaagcc aatcccacaa atctgttctc 1260 agttcggatc gcagtctgca actcgactgc gtgaagctgg aatcgctagt aatcgcggat 1320 cagcatgccg cggtgaatac gttcccgggc cttgtacaca ccgcccgtca caccacgaga 1380 gtttgtaaca cccgaagtcg gtgaggtaac ctttaggagc cagccgccga aggtgacaga 1440 aagg 1444 <210> 2 <211> 1472 <212> RNA Pseudomonas sp. <400> 2 tcctgggtca attgaacgct ggcggcaggc ctaacacatg caagtcgagc ggtagagagg 60 tgcttgcacc tcttgagagc ggcggacggg tgagtaatgc ctaggaatct gcctggtagt 120 gggggataac gttcggaaac ggacgctaat accgcatacg tcctacggga gaaagcaggg 180 gaccttcggg ccttgcgcta tcagatgagc ctaggtcgga ttagctagtt ggtgaggtaa 240 tggctcacca aggcgacgat ccgtaactgg tctgagagga tgatcagtca cactggaact 300 gagacacggt ccagactcct acgggaggca gcagtgggga atattggaca atgggcgaaa 360 gcctgatcca gccatgccgc gtgtgtgaag aaggtcttcg gattgtaaag cactttaagt 420 tgggaggaag ggtacttacc taatacgtga gtattttgac gttaccgaca gaataagcac 480 cggctaactc tgtgccagca gccgcggtaa tacagagggt gcaagcgtta atcggaatta 540 ctgggcgtaa agcgcgcgta ggtggttcgt taagttgaat gtgaaatccc cgggctcaac 600 ctgggaactg catccaaaac tggcgagcta gagtatggta gagggtggtg gaatttcctg 660 tgtagcggtg aaatgcgtag atataggaag gaacaccagt ggcgaaggcg accacctgga 720 ctgatactga cactgaggtg cgaaagcgtg gggagcaaac aggattagat accctggtag 780 tccacgccgt aaacgatgtc aactagccgt tgggagcctt gagctcttag tggcgcagct 840 aacgcattaa gttgaccgcc tggggagtac ggccgcaagg ttaaaactca aatgaattga 900 cgggggcccg cacaagcggt ggagcatgtg gtttaattcg aagcaacgcg aagaacctta 960 ccaggccttg acatccaatg aactttccag agatggattg gtgccttcgg gaacattgag 1020 acaggtgctg catggctgtc gtcagctcgt gtcgtgagat gttgggttaa gtcccgtaac 1080 gagcgcaacc cttgtcctta gttaccagca cgtaatggtg ggcactctaa ggagactgcc 1140 ggtgacaaac cggaggaagg tggggatgac gtcaagtcat catggccctt acggcctggg 1200 ctacacacgt gctacaatgg tcggtacaga gggttgccaa gccgcgaggt ggagctaatc 1260 ccataaaacc gatcgtagtc cggatcgcag tctgcaactc gactgcgtga agtcggaatc 1320 gctagtaatc gcgaatcaga atgtcgcggt gaatacgttc ccgggccttg tacacaccgc 1380 ccgtcacacc atgggagtgg gttgcaccag aagaagctag tctaaccttc gggaggacgg 1440 ttaccacggt gtgattcatg actggggtgc ca 1472 <210> 3 <211> 1455 <212> RNA <213> Enterobacter intermedius <400> 3 aattacggac cggcaggcct aacacatgca agtcgaacgg tagcacagag agcttgctct 60 tgggtgacga gtggcggacg ggtgagtaat gtctgggaaa ctgcccgatg gagggggata 120 actactggaa acggtagcta ataccgcata acgtcgcaag accaaagtgg gggaccttcg 180 ggcctcacac catcggatgt gcccagatgg gattagctag taggtggggt aatggctcac 240 ctaggcgacg atccctagct ggtctgagag gatgaccagc cacactggaa ctgagacacg 300 gtccagactc ctacgggagg cagcagtggg gaatattgca caatgggcgc aagcctgatg 360 cagccatgcc gcgtgtatga agaaggcctt cgggttgtaa agtactttca gcgaggagga 420 aggcattgtg gttaataacc gcagtgattg acgttactcg cagaagaagc accggctaac 480 tccgtgccag cagccgcggt aatacggagg gtgcaagcgt taatcggaat tactgggcgt 540 aaagcgcacg caggcggtct gtcaagtcgg atgtgaaatc cccgggctca acctgggaac 600 tgcattcgaa actggcaggc tagagtcttg tagagggggg tagaattcca ggtgtagcgg 660 tgaaatgcgt agagatctgg aggaataccg gtggcgaagg cggccccctg gacaaagact 720 gacgctcagg tgcgaaagcg tggggagcaa acaggattag ataccctggt agtccacgcc 780 gtaaacgatg tcgacttgga ggttgtgccc ttgaggcgtg gcttccggag ctaacgcgtt 840 aagtcgaccg cctggggagt acggccgcaa ggttaaaact caaatgaatt gacgggggcc 900 cgcacaagcg gtggagcatg tggtttaatt cgatgcaccg cgaagaacct tacctactct 960 tgacatccag agaacttagc agagatgctt tggtgccttc gggaactctg agacaggtgc 1020 tgcatggctg tcgtcagctc gtgttgtgaa atgttgggtt aagtcccgca acgagcgcaa 1080 cccttatcct ttgttgccag cggttcggcc gggaactcaa aggagactgc cagtgataaa 1140 ctggaggaag gtggggatga cgtcaagtca tcatggccct tacgagtagg gctacacacg 1200 tgctacaatg gcatatacaa agagaagcga cctcgcgaga gcaagcggac ctcataaagt 1260 atgtcgtagt ccggatcgga gtctgcaact cgactccgtg aagtcggaat cgctagtaat 1320 cgtagatcag aatgctacgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac 1380 catgggagtg ggttgcaaaa gaagtaggta gcttaacctt cgggagggcg cttaccactt 1440 tgaaattcat gactg 1455 <210> 4 <211> 1452 <212> RNA <213> Klebsiella oxytoca <400> 4 ttagacgctg gcggcaggcc taacacatgc aagtcgaacg gtagcacaga gagcttgctc 60 tcgggtgacg agtggcggac gggtgagtaa tgtctgggaa actgcccgat ggagggggat 120 aactactgga aacggtagct aataccgcat aacgtcgcaa gaccaaagag ggggaccttc 180 gggcctcttg ccatcggatg tgcccagatg ggattagctt gtaggtgagg taacggctca 240 cctaggcgac gatccctagc tggtctgaga ggatgaccag ccacactgga actgagacac 300 ggtccagact cctacgggag gcagcagtgg ggaatattgc acaatgggcg caagcctgat 360 gcagccatgc cgcgtgtatg aagaaggcct tcgggttgta aagtactttc agcggggagg 420 aagggagtga ggttaatacc tcattcattg acgttacccg cagaagaagc accggctaac 480 tccgtgccag cagccgcggt aatacggagg gtgcaagcgt taatcggaat tactgggcgt 540 aaagcgcacg caggcggtct gtcaagtcgg atgtgaaatc cccgggctca acctgggaac 600 tgcattcgaa actggcaggc tggagtcttg tagagggggg tagaattcca ggtgtagcgg 660 tgaaatgcgt agagatctgg aggaataccg gtggcgaagg cggccccctg gacaaagact 720 gacgctcagg tgcgaaagcg tggggagcaa acaggattag ataccctggt agtccacgct 780 gtaaacgatg tcgacttgga ggttgttccc ttgaggagtg gcttccggag ctaacgcgtt 840 aagtcgaccg cctggggagt acggccgcaa ggttaaaact caaatgaatt gacgggggcc 900 cgcacaagcg gtggagcatg tggtttaatt cgatgcaacg cgaagaacct tacctactct 960 tgacatccac agaacttagc agagatgctt tggtgccttc gggaactgtg agacaggtgc 1020 tgcatggctg tcgtcagctc gtgttgtgaa atgttgggtt aagtcccgca acgagcgcaa 1080 cccttatcct ttgttgccag cgattaggtc gggaactcaa aggagactgc cagtgataaa 1140 ctggaggaag gtggggatga cgtcaagtca tcatggccct tacgagtagg gctacacacg 1200 tgctacaatg gcatatacaa agagaagcga cctcgcgaga gcaagcggac ctcataaagt 1260 atgtcgtagt ccggattgga gtctgcaact cgactccatg aagtcggaat cgctagtaat 1320 cgtggatcag aatgccacgg tgaatacgtt cccgggcctt gtacacaccg cccgtcacac 1380 catgggagtg ggttgcaaaa gaagtaggta gcttaacctt cgggagggcg cttaccactt 1440 tgtgattcag ta 1452 <210> 5 <211> 1213 <212> RNA <213> Lactobacillus acidophilus <400> 5 atcatgcaag tcgaacgaac tctggtattg attggtgctt gcatcatgat ttacatttga 60 gtgagtggcg aactggtgag taacacgtgg gaaacctgcc cagaagcggg ggataacacc 120 tggaaacaga tgctaatacc gcataacaac ttggaccgca tggtccgagt ttgaaagatg 180 gcttcggcta tcacttttgg atggtcccgc ggcgtattag ctagatggtg gggtaacggc 240 tcaccatggc aatgatacgt agccgacctg agagggtaat cggccacatt gggactgaga 300 cacggcccaa actcctacgg gaggcagcag tagggaatct tccacaatgg acgaaagtct 360 gatggagcaa cgccgcgtga gtgaagaagg gtttcggctc gtaaaactct gttgttaaag 420 aagaacatat ctgagagtaa ctgttcaggt attgacggta tttaaccaga aagccacggc 480 taactacgtg ccagcagccg cggtaatacg taggtggcaa gcgttgtccg gatttattgg 540 gcgtaaagcg agcgcaggcg gttttttaag tctgatgtga aagccttcgg ctcaaccgaa 600 gaagtgcatc ggaaactggg aaacttgagt gcagaagagg acagtggaac tccatgtgta 660 gcggtgaaat gcgtagatat atggaagaac accagtggcg aaggcggctg tctggtctgt 720 aactgacgct gaggctcgaa agtatgggta gcaaacagga ttagataccc tggtagtcca 780 taccgtaaac gatgaatgct aagtgttgga gggtttccgc ccttcagtgc tgcagctaac 840 gcattaagca ttccgcctgg ggagtacggc cgcaaggctg aaactcaaag gaattgacgg 900 gggcccgcac aagcggtgga gcatgtggtt taattcgaag ctacgcgaag aaccttacca 960 ggtcttgaca tactatgcaa atctaagaga ttagacgttc ccttcgggga catggataca 1020 ggtggtgcat ggttgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 1080 cgcaaccctt attatcagtt gccagcatta agttgggcac tctggtgaga ctgccggtga 1140 caaaccggag gaaggtgggg atgacgtcaa atcatcatgc cgcttatgac ctgggctaca 1200 cacgtgctac aat 1213 <210> 6 <211> 1153 <212> RNA <213> Saccharomyces cerevisiae <400> 6 agctcgtagt tgaactttgg gcccggttgg ccggtccgat tttttcgtgt actggatttc 60 caacggggcc tttccttctg gctaaccttg agtccttgtg gctcttggcg aaccaggact 120 tttactttga aaaaattaga gtgttcaaag caggcgtatt gctcgaatat attagcatgg 180 aataatagaa taggacgttt ggttctattt tgttggtttc taggaccatc gtaatgatta 240 atagggacgg tcgggggcat cagtattcaa ttgtcagagg tgaaattctt ggatttattg 300 aagactaact actgcgaaag catttgccaa ggacgttttc attaatcaag aacgaaagtt 360 aggggatcga agatgatcag ataccgtcgt agtcttaacc ataaactatg ccgactaggg 420 atcgggtggt gtttttttaa tgacccactc ggcaccttac gagaaatcaa agtctttggg 480 ttctgggggg agtatggtcg caaggctgaa acttaaagga attgacggaa gggcaccacc 540 aggagtggag cctgcggctt aatttgactc aacacgggga aactcaccag gtccagacac 600 aataaggatt gacagattga gagctctttc ttgattttgt gggtggtggt gcatggccgt 660 tcttagttgg tggagtgatt tgtctgctta attgcgataa cgaacgagac cttaacctac 720 taaatagtgg tgctagcatt tgctggttat ccacttctta gagggactat cggtttcaag 780 ccgatggaag tttgaggcaa taacaggtct gtgatgccct tagacgttct gggccgcacg 840 cgcgctacac tgacggagcc agcgagtcta accttggccg agaggtcttg gtaatcttgt 900 gaaactccgt cgtgctgggg atagagcatt gtaattattg ctcttcaacg aggaattcct 960 agtaagcgca agtcatcagc ttgcgttgat tacgtccctg ccctttgtac acaccgcccg 1020 tcgctagtac cgattgaatg gcttagtgag gcctcaggat ctgcttagag aagggggcaa 1080 ctccatctca gagcggagaa tttggacaaa cttggtcatt tagaggaact aaaagtcgta 1140 acaaggtttc cgt 1153

Claims (6)

바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 수질정화용 복합균주.Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus exocphilus and Lactobacillus acidophilus Water purification complex consisting of Saccharomyces cerevisiae. 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 축사환경 개선용 복합균주.Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus exocphilus and Lactobacillus acidophilus Complex strain for improving barn environment composed of Saccharomyces cerevisiae. 제2항에 있어서,
상기 복합균주는, 악취개선 및 동물성 병원균의 생육억제효과를 가짐으로써 축사환경을 개선할 수 있는 것인 복합균주.
3. The method of claim 2,
The complex strain is a complex strain that can improve the barn environment by having the odor improvement and growth inhibition effect of animal pathogens.
복합균주의 제조방법에 있어서,
토양으로부터 분리한 균주들을 영양배지에서 진탕배양한 후 원심분리를 통하여 수질정화 및 유해가스 발생 억제용 균주를 1차 분리하는 단계와;
상기 분리된 균주들에 악취 가스를 주입하여 상기 악취 가스를 제거시키는 균주를 선별 동정하여 재구성하는 단계를 포함하는 수질정화 및 축사환경 개선용 복합균주의 제조방법.
In the manufacturing method of the complex strain,
Firstly separating the strains for purifying water and generating noxious gases through centrifugation after culturing the strains separated from the soil in a nutrient medium;
Injecting the malodorous gas into the separated strains to identify and reconstruct the strains to remove the malodorous gas refining method of producing a complex strain for improving water quality and livestock environment.
제4항에 있어서,
상기 복합균주는,
바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 것인 복합균주의 제조방법.
5. The method of claim 4,
The complex strain,
Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus exocphilus and Lactobacillus acidophilus Method for producing a complex strain consisting of Romeis serejese (Saccharomyces cerevisiae).
복합균주의 대량 배양을 배양 방법에 있어서,
복합균주를 당밀 1 내지 3%, 맥주박 1 내지 3% 및 식염 0.5 내지 1%를 포함하는 배지에서 24시간 내지 72시간 동안 배양하는 단계를 포함하고,
상기 복합균주는, 바실러스 서브틸러스(Bacillus subtilis) CH, 슈도모나스 클로로라피스(Pseudomonas chlororaphis), 엔테로박터 인터미디우스(Enterobactor intermedius), 크렙시엘라 옥시토카(Klebsiella oxytoca), 락토바실러스 엑시도필러스(Lactobacillus acidophilus) 및 사카로마이세스 세레비제(Saccharomyces cerevisiae)로 구성된 것인 복합균주의 대량 배양 방법.
In the culture method of mass culture of complex strains,
Culturing the complex strain for 24 to 72 hours in a medium containing 1 to 3% molasses, 1 to 3% beer foil, and 0.5 to 1% saline,
The complex strain, Bacillus subtilis CH, Pseudomonas chlororaphis, Enterobactor intermedius, Enterobactor intermedius, Klebsiella oxytoca, Lactobacillus exidophilus Lactobacillus acidophilus) and Saccharomyces cerevisiae is a mass culture method of a complex strain consisting of.
KR1020120058801A 2012-05-31 2012-05-31 Complex strain for purifing water and improving barn environment and its making method KR20130134914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120058801A KR20130134914A (en) 2012-05-31 2012-05-31 Complex strain for purifing water and improving barn environment and its making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120058801A KR20130134914A (en) 2012-05-31 2012-05-31 Complex strain for purifing water and improving barn environment and its making method

Publications (1)

Publication Number Publication Date
KR20130134914A true KR20130134914A (en) 2013-12-10

Family

ID=49982464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120058801A KR20130134914A (en) 2012-05-31 2012-05-31 Complex strain for purifing water and improving barn environment and its making method

Country Status (1)

Country Link
KR (1) KR20130134914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909866A (en) * 2020-07-21 2020-11-10 昆山理清生物科技有限公司 Ferment for VOC gas decomposition and preparation method and application thereof
CN114839102A (en) * 2022-04-25 2022-08-02 昆明理工大学 Method for measuring water retention of garden herbaceous plants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111909866A (en) * 2020-07-21 2020-11-10 昆山理清生物科技有限公司 Ferment for VOC gas decomposition and preparation method and application thereof
CN111909866B (en) * 2020-07-21 2022-07-29 昆山理清生物科技有限公司 Ferment for VOC gas decomposition and preparation method and application thereof
CN114839102A (en) * 2022-04-25 2022-08-02 昆明理工大学 Method for measuring water retention of garden herbaceous plants

Similar Documents

Publication Publication Date Title
CN104603260B (en) For improving crop production rate and reducing the azotobacteria Inoculant of nitrous oxide emission
CN101643716B (en) Pseudomonas nitroreducens and application thereof
CN104845920B (en) One plant of ocean Zhuo Beier Salmonella and its application
RU2710059C2 (en) New bacteria and microorganisms associations for reduction of ammonia and/or methane emission in organic fertilizers or soils
CN110699300B (en) Preparation method and application of composite microorganism substrate modifier with aquatic pathogenic bacteria antagonistic property
CN107384817B (en) Bacillus subtilis strain with enzyme activity and effects of reducing ammonia and hydrogen sulfide and application thereof
CN107090418A (en) One strain denitrogen paracoccus and its application in livestock and poultry farm wastewater treatment
CN109576187A (en) One plant of cyanide degradation bacterial strain and the method for utilizing the strains for degrading cyanide
CN107435031B (en) Household garbage degrading composite bacterium and application thereof
CN109486726A (en) The bacterial strain of one plant of degradable petroleum hydrocarbon and its application
CN112251382A (en) Pseudomonas putida DB-1 and culture method and application thereof
CN110791450B (en) Strain Am101 capable of degrading multiple beta-lactam antibiotics and application thereof
CN104403965B (en) A kind of roost rose of Sharon pseudomonad of water body tetracycline pollutant of degrading and its application
CN102851237B (en) Ensiferadhaerens and application thereof
Zhang et al. Isolation and characterization of a new carbendazim-degrading Ralstonia sp. strain
CN113215033A (en) Sulfonamide antibiotic degrading bacteria and application thereof
Shen et al. Combination of heterotrophic nitrifying bacterium and duckweed (Lemna gibba L.) enhances ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion
CN109112086B (en) Bacillus siamensis and application thereof
CN102676431B (en) Denitrifying bacteria and aquatic plant-microbe combined rehabilitation method using same
CN113151035B (en) Bacillus amyloliquefaciens, screening method, identification method and application
CN104560806B (en) The carboxylic acid of 1 amino-cyclopropane 1 as bacterium chemotactic substance application
KR20130134914A (en) Complex strain for purifing water and improving barn environment and its making method
CN106591181B (en) A kind of Mysore arthrobacterium and its application in purifying sea water cultivation nitrogenous effluent
CN115125178A (en) Paenibacillus with tetracycline antibiotic degradation function, method and application
KR100939634B1 (en) A purifying material for contamination of water quality and manufacturing method for the same

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid