KR20130128241A - Recombinant microorganism expressing carbonic anhydrase from dunaliella sp and phosphoenolpyruvate carboxylase from p.tricornutum ccmp 637, and method for producing organic acid using the same - Google Patents

Recombinant microorganism expressing carbonic anhydrase from dunaliella sp and phosphoenolpyruvate carboxylase from p.tricornutum ccmp 637, and method for producing organic acid using the same Download PDF

Info

Publication number
KR20130128241A
KR20130128241A KR1020120052137A KR20120052137A KR20130128241A KR 20130128241 A KR20130128241 A KR 20130128241A KR 1020120052137 A KR1020120052137 A KR 1020120052137A KR 20120052137 A KR20120052137 A KR 20120052137A KR 20130128241 A KR20130128241 A KR 20130128241A
Authority
KR
South Korea
Prior art keywords
recombinant microorganism
recombinant
carbonic anhydrase
ccmp
gene
Prior art date
Application number
KR1020120052137A
Other languages
Korean (ko)
Other versions
KR101426441B1 (en
Inventor
윤현식
김세경
노용호
진언선
장광석
전한철
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020120052137A priority Critical patent/KR101426441B1/en
Publication of KR20130128241A publication Critical patent/KR20130128241A/en
Application granted granted Critical
Publication of KR101426441B1 publication Critical patent/KR101426441B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Landscapes

  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to recombinant microorganisms which express carbonic anhydrase derived from Dunaliella sp. and phosphoenolpyruvate carboxylase derived from Phaeodactylum tricornutum CCMP 632 and a method for producing organic acids using the same. EscherichiacoliBL21(DE3)::DspGCPtP2 strains according to the present invention have superior productivity of organic acids such as succinic acids and lactic acids and are used in metabolic engineering using microorganisms.

Description

두날리엘라 유래의 탄산 무수화 효소 및 파이오덱틸룸 트리코뉴툼 CCMP637 유래의 포스포에놀피부르산 카르복실아제를 발현하는 재조합 미생물 및 이를 이용한 유기산의 생산방법{Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same}Technical Field [0001] The present invention relates to a recombinant microorganism expressing a phosphoenol skin acid carboxylase derived from Dna nulliella and a Pseudodylum triconitum CCMP637 and a method for producing an organic acid using the recombinant microorganism expressing carbonic anhydrase from Dunaliella sp. And phosphoenolpyruvate carboxylase from P. tricornutum CCMP 637, and method for producing organic acid using the same}

본 발명은 두날리엘라(Dunaliella sp ) 유래의 탄산 무수화 효소 및 파이오덱틸룸 트리코뉴툼(P. tricornutum CCMP 632) 유래의 포스포에놀피부르산 카르복실아제를 발현하는 재조합 미생물 및 이를 이용한 유기산의 생산방법에 관한 것이다.The present invention is directed to a method of producing < RTI ID = 0.0 & sp. ) and Pseudodecyltricornitum ( P. tricornutum CCMP 632) and a method for producing an organic acid using the recombinant microorganism.

해양에 서식하는 미세조류는 광합성을 하기 위해, 이산화탄소를 고정화(fixation)하는 탄소고정기작(CCM, carbon concentration mechanism)을 지니며, 광범위한 이산화탄소 농도에 적응할 수 있게 생리학적, 형태학적인 진화를 하였다. The microalgae living in the ocean have a carbon concentration mechanism (CCM) for fixing carbon dioxide for photosynthesis, and physiologically and morphologically evolved to adapt to a wide range of carbon dioxide concentrations.

현재까지 해양 미세조류의 CCM 기작 중에서 탄산 무수화 효소(carbonic anhydrase, CA)에 대한 연구는 많이 알려지지 않았으며, 초기 연구단계에서 높은 염도에 대한 생리적 적응에 따른 독특한 CA가 보고되었다. 2000년 이후에 밝혀진 CA의 종류는 현재까지 총 5개의 종류가 있으며, 각각 α-CA, β-CA, γ-CA, δ-CA, ζ-CA로 분류하며(Hewett-Emmett and Tashian. 1996, Trip et al., 2001), 각 그룹 간에는 단백질의 일차 구조의 유사성이 전혀 없기 때문에 서로 다른 경로를 통해서 진화한 것으로 여겨지고 있다. CA는 막에 위치하여 미생물 외부에 존재하는 이산화탄소를 생물체 내부로 도입하는 역할을 하며, 이때 생산되는 탄산(carbonic acid)은 주변 환경에 의하여 중탄산염(bicarbonate) 이온이나 탄산염 이온으로 전환된다.Until now, studies on the carbonic anhydrase (CA) in the CCM mechanism of marine microalgae have not been well known. In the early stage of research, a unique CA has been reported due to physiological adaptation to high salinity. CA, CA-CA, CA-CA, and CA-CA (Hewett-Emmett and Tashian, 1996) Trip et al., 2001), and it is believed that each group evolved through different routes because there is no similarity in the primary structure of the proteins. CA is located on the membrane and introduces the carbon dioxide present inside the microorganism into the inside of the organism. The carbonic acid produced at this time is converted into bicarbonate ion or carbonate ion by the surrounding environment.

한편, 또 다른 효소인 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase, PEP carboxylase)는 미생물의 당분해(glycolysis) 과정에서 핵심적인 역할을 하는 중간물질을 생성하는 효소이다. 상기 효소의 기질인 대장균의 PEP(phosphoeolpyruvate)는 혐기적인 조건에서 젖산염(lactate), 포름산염(formate), 아세테이트(acetate) 및 에탄올로 전환된다. 그리고 상기 반응과 함께 피부르산 카르복실라제(pyruvate carboxylase, PYC)에 의하여 옥살아세테이트(oxaloacetate)가 만들어진다. 포스포에놀피부르산 카르복실아제는 효소 반응에서 기질로서 PEP를 사용하여 물과 이산화탄소를 이용하여 4탄소 물질인 옥살레이트(oxaloaceetae)를 생산한다. 상기 옥살레이트는 대사과정을 거쳐 숙신산 염 등으로 전환된다. On the other hand, another enzyme, phosphoenolpyruvate carboxylase (PEP carboxylase), is an enzyme that produces intermediates that play a key role in the glycolysis process of microorganisms. Phosphoeolpyruvate (PEP), a substrate for the enzyme, is converted to lactate, formate, acetate and ethanol under anaerobic conditions. Oxaloacetate is formed by pyruvate carboxylase (PYC) together with the above reaction. Phosphoenolactic acid carboxylase produces oxaloacetae, a four carbon material, using water and carbon dioxide as a substrate in the enzyme reaction. The oxalate is converted to a succinic acid salt or the like via a metabolic process.

세포 내외에서 무기탄소인 중탄산염(HCO3)과 CO2의 상호 전환을 촉매하는 효소인 탄산 무수화 효소(carbonic anhydrase)는 이산화탄소 고정화에 중요 기능을 담당하고, 미생물 내 C4 물질 생산을 이끄는 포스포에놀피부르산 카르복실라제( phosphoenolpyruvate carboxylase)는 중탄산염과 물 분자를 이용하여 TCA 회로의 옥살로아세테이트(oxaloacetate)로 전환하는 반응을 이끄는 대사를 촉진하여, 결과적으로 숙신산 생산을 촉진한다.Carbonic anhydrase, an enzyme that catalyzes the conversion of inorganic carbon, bicarbonate (HCO 3 ) to CO 2 , plays an important role in carbon dioxide immobilization. The phosphoenolpyruvate carboxylase promotes the metabolism leading to the conversion of bicarbonate and water molecules to oxaloacetate in the TCA circuit, resulting in the promotion of succinic acid production.

이에 본 발명자는 미세조류인 두날리엘라(Dunaliella sp.)의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 및 파이오덱틸룸 트리코뉴툼 CCMP 632(Phaeodactylum tricornutum CCMP 632) 유래의 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 를 포함하는 재조합 플라스미드를 제조하고, 이를 대장균에 형질전환함으로써, 유기산 생산능이 우수한 재조합 미생물을 제조하여 본 발명을 완성하게 되었다. The present inventors are microalgae of the two analytic Ella (Dunaliella sp.) Carbonic anhydrase (carbonic anhydrase) coding ca and payioh deck tilrum tricot nyutum CCMP 632 (Phaeodactylum tricornutum CCMP 632) play the skin acid on phospholipase derived from that of the A recombinant plasmid containing ppc encoding a phosphoenolpyruvate carboxylase was prepared and transformed into Escherichia coli to produce a recombinant microorganism having excellent ability to produce an organic acid, thereby completing the present invention.

본 발명의 목적은 두날리엘라 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자를 포함하는 플라스미드 및 파이오덱틸룸 트리코뉴툼 CCMP 632의 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 포함하는 플라스미드가 형질전환된 재조합 미생물을 제공하는 것이다.It is an object of the present invention to provide a method for the production of a < RTI ID = 0.0 > Ca < / RTI > Plasmid containing the gene and the phosphoenolpyruvate carboxylase of Pseudodylium triconatum CCMP 632, which encodes a phosphoenolpyruvate carboxylase The present invention provides a recombinant microorganism transformed with a plasmid containing the < RTI ID = 0.0 > ppc < / RTI >

본 발명의 또 다른 목적은 상기 재조합 미생물을 이용하여 유기산을 생산하는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing an organic acid using the recombinant microorganism.

상기 목적을 해결하기 위하여, 본 발명은 두날리엘라 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자를 포함하는 플라스미드 및 파이오덱틸룸 트리코뉴툼 CCMP 632 유래의 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 포함하는 플라스미드가 형질전환된 재조합 미생물을 제공한다.In order to solve the above-mentioned object, the present invention relates to a method for screening a gene encoding a Ca (II) -containing carbonic anhydrase Gene encoding a phosphoenolpyruvate carboxylase derived from a plasmid and a Pseudodylium triconitum CCMP 632 ppc A recombinant microorganism transformed with a plasmid containing the gene is provided.

또한, 본 발명은 상기 재조합 미생물을 이용하여 유기산을 생산하는 방법을 제공한다. The present invention also provides a method for producing an organic acid using the recombinant microorganism.

본 발명의 재조합 미생물은 숙신산, 젖산 등의 유기산 생산능이 우수하여, 미생물을 이용한 대사공학 등에 유용하게 사용될 수 있다.The recombinant microorganism of the present invention is excellent in the ability to produce organic acids such as succinic acid, lactic acid and the like, and can be usefully used for metabolism using microorganisms.

도 1은 ppc 유전자가 코딩하는 포스포에놀피부르산 카르복실라제의 당분해 과정을 나타낸 도이다.
도 2은 ca 유전자를 포함하는 플라스미드의 구조를 나타낸 도이다.
도 3는 ppc 유전자를 포함하는 플라스미드의 구조를 나타낸 도이다.
도 4은 ca 유전자의 염기서열을 분석한 도이다.
도 5는 ppc 유전자의 염기서열을 분석한 도이다.
도 6는 Escherichia coli BL21(DE3)::DspGCPtP2 균주에서 탄산 무수화 효소 및 포스포에놀피부르산 카르복실라제의 발현을 확인한 도이다.
1 is a ppc Fig. 2 is a diagram showing the sugar-coding process of the gene encoding the phosphoenol skin cancer carboxylase.
Figure 2 is ca Fig. 2 shows the structure of a plasmid containing a gene.
Figure 3 is a ppc Fig. 2 shows the structure of a plasmid containing a gene.
Figure 4 is a ca The nucleotide sequence of the gene is analyzed.
Figure 5 ppc The nucleotide sequence of the gene is analyzed.
FIG. 6 is a cross- This shows the expression of carbonic anhydrase and phosphoenol skin cancer carboxylase in E. coli BL21 (DE3) :: DspGCPtP2 strain.

본 발명은 두날리엘라(Dunaliella sp.) 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자를 포함하는 플라스미드, 및 파이오덱틸룸 트리코뉴툼 CCMP 632 (P. tricornutum CCMP 632) 유래의 포스포에놀피부르산 카르복실라제 (phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 포함하는 플라스미드가 형질전환된 재조합 미생물을 제공한다. The present invention is directed to a method of producing < RTI ID = 0.0 & ca ) encoding a carbonic anhydrase derived from E. sp . Plasmid containing the gene, and Pseudodylum triconitum CCMP 632 ( P. tricornutum CCMP 632) encoding a phosphoenolpyruvate carboxylase. ppc A recombinant microorganism transformed with a plasmid containing the gene is provided.

본 발명의 재조합 미생물은 탄산 무수화 효소를 발현하고, 상기 효소는 이산화탄소를 생물체 내부로 도입하는 역할을 하며, 이때 생산되는 탄산(carbonic acid)은 주변 환경에 의하여 중탄산염(bicarbonate) 이온이나 탄산염 이온으로 전환 시킬 수 있다. The recombinant microorganism of the present invention expresses a carbonic anhydrase, and the enzyme plays a role of introducing carbon dioxide into an organism. The carbonic acid produced in this case is converted into bicarbonate ion or carbonate ion Can be switched.

또한, 본 발명의 재조합 미생물은 포스포에놀피부르산 카르복실라제를 발현하고, 상기 효소는 PEP를 사용하여 물과 이산화탄소를 이용하여 4탄소 물질인 옥살로아세테이트(oxaloacetae)를 생산한다. 상기 효소들은 이산화탄소를 고정하여 옥살레이트를 생산하며, 옥살로아세테이트의 생산은 숙신산 생산을 이끈다.In addition, the recombinant microorganism of the present invention expresses a phosphoenol skin acid carboxylase, and the enzyme uses PEP to produce oxaloacetate (4 carbon material) using water and carbon dioxide. The enzymes produce oxalate by fixing carbon dioxide, and the production of oxaloacetate leads to the production of succinic acid.

본 발명의 재조합 미생물을 제조하기 위하여, 두날리엘라(Dunaliella sp.) 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자 및 파이오덱틸룸 트리코뉴툼 CCMP 632(P. tricornutum CCMP 632) 유래의 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 PCR을 통하여 특정 프라이머를 통하여 증폭하였다. 이 후, 두날리엘라 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자를 pCDF-1b 플라스미드에 제한효소(SacI, KpnI)를 이용하여 재조합 플라스미드를 제작하였으며, 이를 pCDF::DspC라고 명명하였다.To prepare the recombinant microorganism of the present invention, Dunaliella < RTI ID = 0.0 > ca ) encoding a carbonic anhydrase derived from E. sp . Genes and Pseudodecyltrimonucleotides CCMP 632 ( P. tricornutum CCMP 632) encoding a phosphoenolpyruvate carboxylase. ppc Gene was amplified through specific primers through PCR. Thereafter, a ca of a carbonic anhydrase derived from dunalella A recombinant plasmid was constructed by using the restriction enzyme ( Sac I, Kpn I) to the pCDF-1b plasmid and named pCDF :: DspC.

또한, 파이오덱틸룸 트리코뉴툼 CCMP 632 유래의 포스포에놀피부르산 카르복실아제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 pET-21a(+) 플라스미드에 제한효소(XhoI, EagI)를 이용하여 재조합 플라스미드를 제작하였으며, 이를 pET::PtP2라고 명명하였다.It is also possible to use a phosphoenolpyruvate carboxylase encoding Pseudodylum triconitum CCMP 632 derived phosphoenolpyruvate carboxylase ppc Recombinant plasmids were constructed by pET-21a (+) plasmid with restriction enzymes ( Xho I, Eag I) and named pET :: PtP2.

상기 재조합된 플라스미드들을 E. coli BL 21 균주에 형질전환하여, 재조합 미생물을 제작하였다. 상기 재조합 미생물의 염기서열을 분석한 결과, 상기 두날리엘라 유래의 ca 유전자는 ν-탄산 무수화 효소(cabonic anhydrase)를 코딩하는 ν-ca 유전자임을 확인하였고, 상기 염기서열을 서열번호 1에 나타내었다.The recombinant plasmids were transformed into E. coli BL21 strain to prepare recombinant microorganisms. The analysis of the nucleotide sequence of the recombinant microorganism is of the two analytic Ella derived ca The gene was confirmed to be a ν-ca gene encoding ν-carbonic anhydrase, and the nucleotide sequence is shown in SEQ ID NO: 1.

또한, 파이오덱틸룸 트리코뉴툼 CCMP 632 유래의 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자는 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 유전자임을 확인하였고, 상기 염기서열을 서열번호 2에 나타내었다. It is also possible to use a phosphoenolpyruvate carboxylase encoding Pseudodylum triconitum CCMP 632 derived phosphoenolpyruvate carboxylase The ppc gene was confirmed to be a gene encoding phosphoenolpyruvate carboxylase, and the nucleotide sequence is shown in SEQ ID NO: 2.

본 발명에서 미생물은 대장균이 바람직하나, 이에 한정되지 않는다.The microorganism in the present invention is preferably Escherichia coli, but is not limited thereto.

본 발명의 재조합된 미생물을 Escherichia coli BL21(DE3)::DspGCPtP2 라고 명명하여, 2012년 04월 27일자로 한국생명공학연구원 생물자원센터 유전자은행(KCTC)에 기탁하였으며, KCTC 12198BP의 수탁번호를 부여받았다. The recombinant microorganism of the present invention was transformed into Escherichia It was named coli BL21 (DE3) :: DspGCPtP2 and deposited with the KCTC of the Korea Research Institute of Bioscience and Biotechnology (KCTC) on April 27, 2012, and was given the accession number of KCTC 12198BP.

본 발명의 Escherichia coli BL21(DE3)::DspGCPtP2 균주는 유기산 생산능이 우수하여, 미생물을 이용한 대사공학 등에 유용하게 사용될 수 있다.The Escherichia The E. coli BL21 (DE3) :: DspGCPtP2 strain is excellent in the ability to produce organic acids, and thus can be usefully used for metabolic engineering using microorganisms.

본 발명은 상기 재조합 미생물(수탁번호:KCTC 12198BP)을 이용한 유기산 생산 방법을 제공한다. The present invention provides a method for producing an organic acid using the recombinant microorganism (Accession No. KCTC 12198BP).

상기 유기산 생산 방법은, The method for producing organic acid comprises:

1) Escherichia coli BL21(DE3)::DspGCPtP2 균주를 성장 정체기까지 호기 배양하는 단계; 1) Escherichia culturing Escherichia coli BL21 (DE3) :: DspGCPtP2 strain to the growth stasis;

2)상기 1)단계의 배양 균주를 혐기성 조건에서 이소프로필 티오-β-D 갈락토사이드(ITPG) 및 글루코오스를 처리하는 단계; 및2) treating isopropyl thio-beta-D galactoside (ITPG) and glucose under anaerobic conditions with the culture of step 1); And

3)상기 2)단계의 균주에 이산화탄소를 처리하여 혐기 발효시키는 단계를 포함한다. 3) treating the strain of step 2) with carbon dioxide to anaerobically ferment.

상기 ITPG는 형질전환된 유전자의 발현을 유도하기 위한 물질로서, 당업계에서 통상 사용하는 투여량을 처리할 수 있다. 또한, 상기 글루코오스는 이에 제한되지 않으나, 5~60g/l를 처리할 수 있고, 바람직하게는 10g/l를 처리할 수 있다.The ITPG is a substance for inducing the expression of the transfected gene, and it is possible to treat doses commonly used in the art. The glucose is not limited thereto, but it can treat 5 to 60 g / l, preferably 10 g / l.

본 발명의 재조합 미생물이 생산하는 유기산은 숙신산, 젖산, 개미산 등이 있으며, 바람직하게는 숙신산 및 젖산이고, 더욱 바람직하게는 숙신산이다.
The organic acid produced by the recombinant microorganism of the present invention includes succinic acid, lactic acid, formic acid and the like, preferably succinic acid and lactic acid, and more preferably succinic acid.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기 실시예는 본 발명을 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easy understanding of the present invention, and the present invention is not limited by the examples.

실시예Example 1:  One: caca 유전자 및Gene and ppcppc 유전자의 뉴클레오티드 서열을 포함하는 재조합 플라스미드 제조 Production of recombinant plasmids containing the nucleotide sequence of the gene

1. 중합효소 연쇄반응(1. Polymerase chain reaction PCRPCR )을 이용한 유전자 서열 증폭) Gene sequence amplification

본 발명에 사용된 유전자 증폭은 하기 표 1의 프라이머를 이용하여 중합효소 연쇄반응(PCR, polymerase chain reaction)을 수행하였고, ca 유전자 서열 및 ppc 유전자서열을 확보하였다. 상기 유전자 서열의 증폭반응을 위하여, 변성온도(denaturing temperature) 94oC, 결합온도(annealing temperature) 68oC, 신장온도(extension temperature) 72oC에서 진행되었으며, 총 35회 반응을 수행하였다. 반응에 사용한 중합효소는 NEB(New England Biolabs Inc.) 사의 제품을 사용하였다.
The gene amplification used in the present invention was carried out by polymerase chain reaction (PCR) using the primers shown in Table 1 below, ca Gene sequence and the ppc gene sequence were obtained. For the amplification of the gene sequence, denaturation temperature was 94 ° C, annealing temperature was 68 ° C, extension temperature was 72 ° C, and total 35 reactions were performed. The polymerase used in the reaction was NEB (New England Biolabs Inc.).

유전자gene 발현 효소Expression enzyme 유전자출처Gene source 이용 플라스미드Use plasmid 프라이머 primer 제한효소Restriction enzyme caca carbonic anhydrasekarbonic anhydrase Dunaliella sp Dunaliella sp pCDF-1bpCDF-1b (F)
5'-GTGGGTACC ATGTTACAGTCGTCATTT CGCCATGC-3'
(R)
5'-TGGGACCTCTTACTTCTTAGGCCTTGTTGCAAGC-3'
(F)
5'-GTGGGTACC ATGTTACAGTCGTCATTT CGCCATGC-3 '
(R)
5'-TGGGACCTCTTACTTCTTAGGCCTTGTTGCAAGC-3 '
SacI, KpnI Sheet I, Kpn I
ppcppc phosphoenolpyruvate carboxylase포소노 로pyruvate carboxylase P. tricornutum CCMP 632 P. tricornutum CCMP 632 pET-21a(+)pET-21a (+) (F)
5'-CGGCCGATGATTGACGCCGCCAGCAAGC-3'
(R)
5'-CCGCTCGAGCGGTTATCCACTGTTTCGCATTCCCT-3'
(F)
5'-CGGCCGATGATTGACGCCGCCAGCAAGC-3 '
(R)
5'-CCGCTCGAGCGGTTATCCACTGTTTCGCATTCCCT-3 '
XhoI, EagI Xho I, Eag I

2. 재조합 플라스미드 제조(2. Preparation of recombinant plasmids ( pCDFpCDF :::: DspCDspC  And pETpET :::: PtP2PtP2 ))

상기 실시예 1-1에서 확보한 유전자 뉴클레오티드 단편과 단백질 발현 벡터를 말단부위를 선택적으로 절단하는 제한효소를 사용하여 절단하고, 전기영동으로 크기를 확인하였다. 상기 뉴클레오티드가 확인된 아가로오스겔(agarose gel)을 절단하여 50oC에서 녹인 후, 정제하여, 4oC에서 라이게이션(ligation) 과정을 수행하였다. 사용한 리가아제(ligase)는 NEB 사의 제품을 사용하였다. 라이게이션 반응을 통하여, 2 종의 원형 플라스미드 pCDF::DspC(pCDF-1b와 ca 유전자 서열을 포함하는 플라스미드) 및 pET::PtP2(pET-21a(+)와 ppc 유전자 서열을 포함하는 플라스미드)를 제조하였다. 이의 구조를 도 2 및 도 3에 나타내었다.
The gene nucleotide fragment and the protein expression vector obtained in Example 1-1 were cut using a restriction enzyme that selectively cleaves the terminal region, and the size was confirmed by electrophoresis. The nucleotides were digested with agarose gel at 50 ° C, purified, and ligation was performed at 4 ° C. The ligase used was the NEB product. Through the ligation reaction, two circular plasmids pCDF :: DspC (pCDF-1b and ca Plasmid containing the gene sequence) and pET :: PtP2 (pET-21a (+) and RTI ID = 0.0 > ppc < / RTI > gene sequence). Its structure is shown in Fig. 2 and Fig.

실시예Example 2: 재조합 플라스미드에 의해 형질전환된 재조합 대장균의 제조 2: Preparation of recombinant E. coli transformed with recombinant plasmid

상기 실시예 1에서 제조된 2종의 재조합 플라스미드 pCDF::DspC, pET::PtP2를 이종 미생물인 대장균 BL21(DE3)에 삽입하기 전, 벡터의 안정성과 숙주 균주로의 형질전환시 효율 향상을 위해 대장균을 이용하여 컴피턴트 세포(competent cell)로 제조하였다.Before the two recombinant plasmids pCDF :: DspC and pET :: PtP2 prepared in Example 1 were inserted into Escherichia coli BL21 (DE3), which is a heterologous microorganism, the stability of the vector and the efficiency of transformation into a host strain were improved E. coli was used as a competent cell.

컴피턴스 세포는 하기와 같은 과정으로 제조하였다. 37℃ 액체 LB에서 배양한 대장균 BL21(DE3)을 지수기에 회수하여, 0oC에서 충분히 차게한 후 원심분리를 통해 상등액을 제거하였다. 세포벽을 플라스미드 이동이 용아하게 처리하기 위하여 MgCl2 용액을 넣어 1시간 동안 0oC에서 보관하였다. 다시 원심분리를 하여 상등액을 제거하고 CaCl2 용액을 이용해 뭉친 세포를 풀어서 0oC에서 1시간 동안 보관하였다.Competition cells were prepared by the following procedure. Escherichia coli BL21 (DE3) cultured in liquid LB at 37 ° C was collected at exponential phase, sufficiently cooled at 0 ° C, and then the supernatant was removed by centrifugation. The cell wall was treated with MgCl 2 Solution was added and stored at 0 ° C for 1 hour. The supernatant was removed by centrifugation again and CaCl 2 The cells were untied using a solution and stored at 0 ° C for 1 hour.

상기와 같이 준비된 컴피턴트 세포 100 ㎕를 분주하여 상기 실시예 1에서 제조된 플라스미드를 넣어 0oC에서 30분동안 반응시키고, 42oC의 온수조에서 1분 동안 열처리하고, 0oC에서 5분 동안 얼음조에서 처리하는 열충격 형질전환 방법을 수행하여 플라스미드를 컴피턴트 세포에 형질전환 하였다.Divides the competent cell 100 ㎕ prepared as described above was reacted in the above Example 1 into the plasmid prepared in 0 o C for 30 min, 42 o heat treatment for 1 minute in the hot water tank of the C, and at 0 o C 5 The plasmids were transformed into competent cells by performing heat shock transformation in an ice bath for one minute.

상기 열충격 형질전환방법을 실시한 샘플을 37℃에서 1시간 동안 배양하여 형질전환 과정을 거친 세포들의 정상 생장을 유도하였다. 이 세포들을 항생제인 암피실린과 스트렙토마이신이 포함된 고체 LB 배지(LB 아가 플레이트, 트립톤 10g/l, NaCl 5g/l, 효모 추출액 5g/l, 아가 15g/l)에 일정량 도말(spreading)하였다. 이 고체 배지에서 작은 원형 콜로니 형태로 자라는 것을 확인하고, 콜로니를 선별하여 암피실린과 스트렙토마이신이 포함된 5 ml의 LB 배지에서 배양을 하였다. 일반적인 플라스미드 추출 방법을 이용하여 추출한 상기 플라스미드는 Dunaliella sp.의 caP. tricornutum CCMP 632의 ppc의 염기서열 분석을 의뢰하였고, Dunaliella sp.의 ca서열을 서열번호 1 및 P. tricornutum CCMP 632의 ppc 서열번호 2에 나타내으며, 이의 결과를 도 4 및 도 5에 나타내었다. 또한, 상기 제조한 재조합 균주(Escherichia coli BL21(DE3)::DspGCPtP2)를 2012년 04월 27일자로 한국생명공학연구원 생물자원센터 유전자은행(KCTC)에 기탁하였으며, KCTC 12198BP의 수탁번호를 부여받았다. The sample subjected to the thermal shock transformation method was incubated at 37 ° C for 1 hour to induce normal growth of the transformed cells. These cells were spread by a predetermined amount on solid LB medium (LB agar plate, tryptone 10 g / l, NaCl 5 g / l, yeast extract 5 g / l, agar 15 g / l) containing antibiotics ampicillin and streptomycin. The colonies were selected and cultured in 5 ml of LB medium containing ampicillin and streptomycin. The plasmid extracted using general plasmid extraction method was subjected to sequencing of ppc of Dunaliella sp. Ca and P. tricornutum CCMP 632. The Ca sequence of Dunaliella sp. Was assigned to SEQ ID NO: 1 and ppc of P. tricornutum CCMP 632 To SEQ ID NO: 2, and the results are shown in FIGS. 4 and 5. FIG. In addition, the recombinant strain Escherichia coli BL21 (DE3) :: DspGCPtP2) in the April 27, 2012, was deposited with the Korea Research Institute of Bioscience and Biotechnology Biological Resource Center, gene banks (KCTC), was given an accession number of KCTC 12198BP.

도 4 및 도 5에 나타난 바와 같이, 서열번호 1의 ca 유전자는 ν-탄산 무수화 효소(cabonic anhydrase)를 코딩하는 ν-ca 유전자임을 확인하였고, 서열번호 2의 ppc 유전자는 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)를 코딩하는 유전자임을 확인하였다.As shown in Fig. 4 and Fig. 5, it was confirmed that the ca gene of SEQ ID NO: 1 was a ν-ca gene encoding ν-carbonic anhydrase, and ppc The gene was confirmed to be a gene encoding phosphoenolpyruvate carboxylase.

실험예Experimental Example 1. 재조합 대장균의 단백질 확인 1. Identification of recombinant E. coli protein

실시예 2에서 제조된 재조합 미생물인 Escherichia coli BL21(DE3)::DspGCPtP2 균주의 단백질 발현을 확인하기 위하여, 상기 균주를 항생제가 포함된 50 ml의 액체 LB 배지에 넣고 37oC의 진탕배양기에서 200rpm의 속도로 지수기까지 배양하였다. 지수기가 되었을 때, 삽입된 유전자 서열이 발현되도록 이소프로필 티오-β-D 갈락토사이드(IPTG)를 첨가하고, 단백질을 관찰에 용이한 입체구조를 이루도록 26oC에서 6시간 동안 배양하였다. 배양한 대장균에서 단백질을 확보하기 위하여 원심분리한 후, PBS 완충액으로 현탁하였다. 이 후, 30% 농도의 AMP와 함께 2분 동안 초음파처리 하고, 1분 동안 초음파처리를 정지하는 사이클을 10회 반복하였다. 이 후, 원심분리하여 용해성의 상청액을 분리하고, 나머지 잔여물(debris)을 PBS 완충액으로 현탁하였고, 2분동안 초음파처리하고, 1분 동안 초음파처리를 정지하는 사이클을 5회 반복하였다. 이 후, 상기 상청액과 잔여물을 SDS-PAGE에서 전기영동하였다. SDS-PAGE에서 사용된 겔(gel)은 6%의 분리(resolving) 부분과 5%의 적층(stacking) 부분으로 이루어졌다. 상기 SDS-PAGE 전기영동 결과를 도 6에 나타내었다.The recombinant microorganism Escherichia < RTI ID = 0.0 > To confirm protein expression of E. coli BL21 (DE3) :: DspGCPtP2 strain, the strain was added to 50 ml of liquid LB medium containing antibiotics and incubated at 37 ° C in a shaking incubator at a rate of 200 rpm until the exponential phase. At the exponential phase, isopropyl thio-β-D galactoside (IPTG) was added to express the inserted gene sequence and the protein was incubated at 26 ° C. for 6 hours to form an easily stereoscopic structure for observation. After centrifugation to obtain proteins from the cultured Escherichia coli, the cells were suspended in PBS buffer. Thereafter, ultrasonic treatment was performed for 2 minutes with AMP at a concentration of 30%, and the cycle of stopping the ultrasonic treatment for 1 minute was repeated 10 times. Thereafter, the soluble supernatant was separated by centrifugation, the remaining debris was suspended in PBS buffer, sonicated for 2 minutes, and sonicated for 1 minute, and the cycle was repeated 5 times. The supernatant and the residue were then electrophoresed on SDS-PAGE. The gel used in SDS-PAGE consisted of 6% resolving and 5% stacking. The SDS-PAGE electrophoresis results are shown in FIG.

도 5에 나타난 바와 같이, Escherichia coli BL21(DE3)::DspGCPtP2 균주에서 발현된 단백질이 탄산 무수화 효소(carbonic anhydrase)와 포스포에놀피부르산 카르복실라제(phospoenolpyruvate carboxylase의 단백질 크기와 일치하는 것을 확인하였다. 또한, CA(carbonic anhydrase)는 비수용성 형태로, 포스포에놀피부르산 카르복실라제(phosphoenolpyruvate carboxylase)는 수용성 형태로 발현되는 것을 확인하였다.
As shown in Figure 5, Escherichia It was confirmed that the protein expressed in the E. coli BL21 (DE3) :: DspGCPtP2 strain coincided with the protein size of the carbonic anhydrase and the phosphoenolpyruvate carboxylase, and CA (carbonic anhydrase) was expressed in a water - insoluble form and phosphoenolpyruvate carboxylase was expressed in a water - soluble form.

실험예Experimental Example 2.  2. EscherichiaEscherichia colicoli BL21BL21 (( DE3DE3 )::) :: DspGCPtP2DspGCPtP2 (수탁번호: (Access number: KCTCKCTC 12198 12198 BPBP )) 를 이용한 유기산의 생산 Production of Organic Acids Using

실시예 2에서 제조한 재조합 미생물인 Escherichia coli BL21(DE3)::DspGCPtP2 균주의 유기산 생산을 확인하기 위하여 상이동발효(phase transition fermentation) 방법을 수행하였다. 500 ml 크기의 발효기 내 200 ml의 액체 LB 배지에서 본 발명의 Escherichia coli BL21(DE3)::DspGCPtP2 균주를 배양하였고, 항생제 암피실린과 스트렙토마이신을 첨가하였다. 37oC, 150 rpm에서 진탕 배양하였고, pH 적정을 위하여 MgCO3를 첨가하였다. 대장균을 호기 배양하여 균의 성장이 정체기에 이르렀을 때, 유전자 발현을 위한 IPTG 및 유기산 생산을 위한 10 g/l 농도의 글루코오스(glucose) 용액을 첨가하였다. 두 가지 용액을 첨가하고 배양기에 이산화탄소 가스를 충분히 넣어서 혐기 발효하였다. 배양액의 탄소원이 모두 소비된 후, 상기 시료 1 ml를 채취하여 원심분리 및 필터 처리를 하였다. 이 후 고속(능)액체크로마토그래피를 수행하였다. 고속(능)액체크로마토그래피 분석 조건으로, 5mM의 황산용액을 이동상으로 사용하였다. RI 검출기로 시료를 분석하였으며, 사용한 컬럼은 Aminex HPX-87H (Biorad, U.S.A.)이고 50oC 오븐에 위치시켰다. 분석 결과는 하기의 표 2에 나타내었다. The recombinant microorganism Escherichia < RTI ID = 0.0 > To confirm the production of the organic acid of E. coli BL21 (DE3) :: DspGCPtP2 strain, a phase transition fermentation method was performed. In 200 ml of liquid LB medium in a 500 ml size fermenter, Escherichia < RTI ID = 0.0 > E. coli BL21 (DE3) :: DspGCPtP2 strain was cultured and antibiotic ampicillin and streptomycin were added. Incubation at 37 o C, 150 rpm, and MgCO 3 were added for pH titration. Escherichia coli was aerobically cultured. When the growth of bacteria reached a congested state, a solution of glucose at 10 g / l for IPTG and organic acid production for gene expression was added. Two solutions were added and the incubator was fully anaerobically fermented with carbon dioxide gas. After the carbon source of the culture broth was consumed, 1 ml of the sample was collected and centrifuged and filtered. Thereafter, high performance liquid chromatography was carried out. For high performance liquid chromatographic analysis, 5 mM sulfuric acid solution was used as the mobile phase. Samples were analyzed with a RI detector and the column used was Aminex HPX-87H (Biorad, USA) and placed in a 50 o C oven. The results of the analysis are shown in Table 2 below.

유기산(g/l)Organic acid (g / l) E. coli BL21 E. coli BL21 E. coli BL21::CPtP2 E. coli BL21 :: CPtP2 숙신산(succinic acid)Succinic acid 0.970.97 3.843.84 젖산(latic acid)Lactic acid 4.274.27 5.515.51

표 2에 나타난 바와 같이, 보통의 대장균에 비하여 본 발명의 Escherichia coli BL21(DE3)::DspGCPtP2 균주에서 유기산인 숙신산 및 젖산 생산량이 현저히 증가함을 확인하였다. 보다 구체적으로 숙신산은 약 3.96배, 젖산은 1.07배 증가함을 확인하였고, 전체 생산된 유기산의 양은 약 2배 정도 증가됨을 확인하였다. As shown in Table 2, it was confirmed that the production of succinic acid and lactic acid, which are organic acids, in the Escherichia coli BL21 (DE3) :: DspGCPtP2 strain of the present invention was significantly increased as compared with that of ordinary E. coli . More specifically, it was confirmed that succinic acid was increased by about 3.96 times and lactic acid was increased by 1.07 times, and the amount of total organic acid was increased by about 2 times.

따라서, 본 발명의 재조합 미생물(Escherichia coli BL21(DE3)::DspGCPtP2 균주)을 이용하여 숙신산, 젖산등의 유용한 유기산을 대량 생산할 수 있음을 확인하였다.
Therefore, the recombinant microorganism of the present invention ( Escherichia coli BL21 (DE3) :: DspGCPtP2 strain), it was confirmed that a useful organic acid such as succinic acid, lactic acid and the like can be mass produced.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12198BPKCTC12198BP 2012042720120427

<110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.trcornutum CCMP 632, and method for producing organic acid using the same <130> P1-74 <160> 2 <170> KopatentIn 2.0 <210> 1 <211> 930 <212> DNA <213> Artificial Sequence <220> <223> it is DNA sequence coding carbonic anhydrase of Dunaliella sp <400> 1 atgttacagt cgtcatttcg ccatgcgggg tggagtttcc ctttccgcca cccccctgca 60 tccggagccc ttgagaagac cctggctggt gtaggctcct tgttccgtgt gctgggctct 120 gctattgatg gctttggagc cacgctgcaa gggcctggag cgttgagaga acaagttcag 180 cccaatctgg cctgggcccc caccaagctg gatgagcgct gcccgccctc gcgcggccag 240 gtggtgaacc tgccatccat ggccgcgatg ccgtctttga agcatgttgt gttgccgctc 300 aagggcgaca acgtctttat cgctcccaat gccaatgtga tgggtgacgt gaagattggc 360 gccaactcct ccatctggta tggagccgta ttgagaggtg acgtgaacag cattgaagta 420 ggcagcaaca ccaacattca ggacaacgcc atcatccacg tggccaagca cagcatcagt 480 ggcgatgcca agcccacaat cattggcaac aacgtgacaa ttgggcatgg agccactgtg 540 catgccgcca ccattgaaga caacgtgctc attgggatgg gggcgacagt gcttgatgga 600 tgcgtggtgg aggctggagc gattgtagca gcaggatcaa tggtaactcc agggaagaga 660 gtgcctgcag ggcaggtctg ggcaggcaac cccgcgcgct acctgaggga tgtggagcca 720 gaggagcacg gctttgtgga gtcaagtgcc tctaattatg ccgagctggc agacttgcat 780 aaattcgaga actcaaagac ctttgaggag ttgagcgcgg agcgagctat tgaggtcgac 840 cgctacgttg ccagtgactc caccaatagc gtgcaccaaa tgtggatctt tgataagcag 900 accttgcttg caacaaggcc taagaagtaa 930 <210> 2 <211> 2634 <212> DNA <213> Artificial Sequence <220> <223> it is DNA sequence coding phosphoenolpyruvate carboxylase of P.tricornutum CCMP 632 <400> 2 atgattgacg ccgccagcaa gctcaccgcg acggaagccc tgggcgtgac gcgcgtcttt 60 tccatcatgc tcaatctcgt caacgccgcc gaagtccagc accgcaaccg acagattcgg 120 gcacacgagt ccaccaagga cccctccggt ggccctctcc ccaaaacgga agattccatt 180 cgcggaacca tggagacgct gttggaatcg aaacaggcga caccggaaga aatatttgcc 240 cagctgcaga agcaaaaagt ggaaatcgtc ctgacggctc atccgactca agtccagcgc 300 aaatcgcttc tgcgcaagta ccgtcgcgtt tcggagatgc tcgcttattt ggagcgaccc 360 gatttggatg gttttgaaaa gtcgtccgcc caaacgagct tgcaaacaat cttgagcagc 420 atttggggag ctgacgaaat tcgaagacaa aaaccgacac cacaacaaga ggccgcaggg 480 ggtaacgcaa tattggagtc ggttttgtgg gacgcggtgc cagcctatct gcgcaaattg 540 gatcaacagt gccgacttac cctggggcag tcgctgcccg tggacgtatg ccccatcaag 600 tttgcttcct ggatcggtgg ggatcgcgat ggtaacccca acgtgacgcc cgaagttacc 660 cgcgaggttg ttctgcaaca acgattgcgg gctgctcgtt tgcttctcaa ggacatgtac 720 gatttgatct ccgaattggc aatttctagc cgcttttcgc ccgccatgga tgccttggca 780 gattccgtca aggactcgca gcataagcgt gaaaagtacc gtcgtgtgat tggacacttg 840 atcaaacgtc tcgtcaaaac ggcccgtgaa tgtgaattag aattgtcgaa actcaacacc 900 tcagctagta tggtcagtca gactctcgtt gaggaagcag tggatggttg gcaagacgtc 960 gatgctcttg acgatgcgac tgatttgatc aagcctttgc gcataatgta cgattcgttg 1020 gttgaaacgg gcttcggttt ggtggccgac ggtttattgg tcgatatcat tcgtcgattg 1080 tatgtgtttg gtatgtccct cgtgcccttg gatattcgcg aggagagtac caagcacacg 1140 gaagcgttag atgccattac gcgttggttg ggaattggct cctatagtga atggaccgaa 1200 gaggctcgtc tcagctggtt gacttctgag ctttccaaca aacgtccctt gtaccgaatt 1260 cgcgaattgc ccaagctggg tttcaatgac agtgtcttga agacgctcaa cgtattcggc 1320 accatagcta ccctacgacc atcttgtttg ggagcctacg tcattagtca ggcgcagacc 1380 gcaagtgatg tcttggccgt catgcttttg caaaagcagt acggtatgac ggacaagaac 1440 agaaacatga tgcgtgtggt tccgttgttt gagaccttga atgacttgac caacgcgccc 1500 gacaaactcg aacagctctt cagtattccg ctttacgtcg gcgccgtcaa agggaaacag 1560 gaagtaatgg tcgggtatag tgacagtgcc aaggatgccg gacgtctggc tgcctgctgg 1620 gcgcagtaca actcgcaaga acgaatggtg aaggtagcgg cgaagcacaa cattgaattg 1680 actttcttcc acggcaaagg gggtaccgta ggacgtggcg gtaacccatc cgtctatcgt 1740 gccattatga gccatccgcc caataccatt aatggccgtt tccgggtgac ggaacagggt 1800 gaaatgataa cgcaaaactt tggagctccg tccattgctg aacgaacttt ggacatttac 1860 acggctggcg tatgtcgcga agctttttct gagcgcgtgg aaccgtcgca agcatggcgc 1920 gaccagatgc aacggatctc cgatgtgagt tgtgccgagt accgccactt agtccgtgag 1980 gaaccgcggt ttgttcccta ctttcgccag gcgacaccgg agttggaact cggaagtttg 2040 aacataggca gtcgtccggc caaacgtaac ccgaaaggcg gtattgaaag tctccgcgcg 2100 attccgtgga cctttgcttg gacgcagacg cgcacacact tatcggcgtg gctgggagtt 2160 ggcgctggtc tcacaacgac agatcaaagc gaattgaaga cgcttcgagc aatgtacatt 2220 gaatggcctt ggtttcgtga aactattgat ctaattgcca tgattgtatc caagacagac 2280 ttttccatat ccaaaaatta tgacgatcaa ctggtggaaa agaaagaagg tttgttgaag 2340 ctgggagacg aggtcaggga gaaaatggtg caaactcgtc aagctgttct tgatgtgacc 2400 gagtctacgg atgttgctgg ggctcacgtc gcccttatgc gagggtcgtc gaccattcgt 2460 catccatacg tcgatccggt caacgttatt caagccgaat tgctcaagcg attgcgagtc 2520 atggacaaga aaaagtctct gtcggcggat gaaatggaag aacaagaaat tttaaaggat 2580 gccctgatta tcagtatcaa tggcatcgct cagggaatgc gaaacagtgg ataa 2634 <110> INHA-INDUSTRY PARTNERSHIP INSTITUTE <120> Recombinant microorganism expressing carbonic anhydrase from          Dunaliella sp and phosphoenolpyruvate carboxylase from          P.trcornutum CCMP 632, and method for producing organic acid          using the same <130> P1-74 <160> 2 <170> Kopatentin 2.0 <210> 1 <211> 930 <212> DNA <213> Artificial Sequence <220> <223> it is DNA sequence coding carbonic anhydrase of Dunaliella sp <400> 1 atgttacagt cgtcatttcg ccatgcgggg tggagtttcc ctttccgcca cccccctgca 60 tccggagccc ttgagaagac cctggctggt gtaggctcct tgttccgtgt gctgggctct 120 gctattgatg gctttggagc cacgctgcaa gggcctggag cgttgagaga acaagttcag 180 cccaatctgg cctgggcccc caccaagctg gatgagcgct gcccgccctc gcgcggccag 240 gtggtgaacc tgccatccat ggccgcgatg ccgtctttga agcatgttgt gttgccgctc 300 aagggcgaca acgtctttat cgctcccaat gccaatgtga tgggtgacgt gaagattggc 360 gccaactcct ccatctggta tggagccgta ttgagaggtg acgtgaacag cattgaagta 420 ggcagcaaca ccaacattca ggacaacgcc atcatccacg tggccaagca cagcatcagt 480 ggcgatgcca agcccacaat cattggcaac aacgtgacaa ttgggcatgg agccactgtg 540 catgccgcca ccattgaaga caacgtgctc attgggatgg gggcgacagt gcttgatgga 600 tgcgtggtgg aggctggagc gattgtagca gcaggatcaa tggtaactcc agggaagaga 660 gtgcctgcag ggcaggtctg ggcaggcaac cccgcgcgct acctgaggga tgtggagcca 720 gaggagcacg gctttgtgga gtcaagtgcc tctaattatg ccgagctggc agacttgcat 780 aaattcgaga actcaaagac ctttgaggag ttgagcgcgg agcgagctat tgaggtcgac 840 cgctacgttg ccagtgactc caccaatagc gtgcaccaaa tgtggatctt tgataagcag 900 accttgcttg caacaaggcc taagaagtaa 930 <210> 2 <211> 2634 <212> DNA <213> Artificial Sequence <220> <223> it is DNA sequence coding phosphoenolpyruvate carboxylase of          P.tricornutum CCMP 632 <400> 2 atgattgacg ccgccagcaa gctcaccgcg acggaagccc tgggcgtgac gcgcgtcttt 60 tccatcatgc tcaatctcgt caacgccgcc gaagtccagc accgcaaccg acagattcgg 120 gcacacgagt ccaccaagga cccctccggt ggccctctcc ccaaaacgga agattccatt 180 cgcggaacca tggagacgct gttggaatcg aaacaggcga caccggaaga aatatttgcc 240 cagctgcaga agcaaaaagt ggaaatcgtc ctgacggctc atccgactca agtccagcgc 300 aaatcgcttc tgcgcaagta ccgtcgcgtt tcggagatgc tcgcttattt ggagcgaccc 360 gatttggatg gttttgaaaa gtcgtccgcc caaacgagct tgcaaacaat cttgagcagc 420 atttggggag ctgacgaaat tcgaagacaa aaaccgacac cacaacaaga ggccgcaggg 480 ggtaacgcaa tattggagtc ggttttgtgg gacgcggtgc cagcctatct gcgcaaattg 540 gatcaacagt gccgacttac cctggggcag tcgctgcccg tggacgtatg ccccatcaag 600 tttgcttcct ggatcggtgg ggatcgcgat ggtaacccca acgtgacgcc cgaagttacc 660 cgcgaggttg ttctgcaaca acgattgcgg gctgctcgtt tgcttctcaa ggacatgtac 720 gatttgatct ccgaattggc aatttctagc cgcttttcgc ccgccatgga tgccttggca 780 gattccgtca aggactcgca gcataagcgt gaaaagtacc gtcgtgtgat tggacacttg 840 atcaaacgtc tcgtcaaaac ggcccgtgaa tgtgaattag aattgtcgaa actcaacacc 900 tcagctagta tggtcagtca gactctcgtt gaggaagcag tggatggttg gcaagacgtc 960 gatgctcttg acgatgcgac tgatttgatc aagcctttgc gcataatgta cgattcgttg 1020 gttgaaacgg gcttcggttt ggtggccgac ggtttattgg tcgatatcat tcgtcgattg 1080 tatgtgtttg gtatgtccct cgtgcccttg gatattcgcg aggagagtac caagcacacg 1140 gaagcgttag atgccattac gcgttggttg ggaattggct cctatagtga atggaccgaa 1200 gaggctcgtc tcagctggtt gacttctgag ctttccaaca aacgtccctt gtaccgaatt 1260 cgcgaattgc ccaagctggg tttcaatgac agtgtcttga agacgctcaa cgtattcggc 1320 accatagcta ccctacgacc atcttgtttg ggagcctacg tcattagtca ggcgcagacc 1380 gcaagtgatg tcttggccgt catgcttttg caaaagcagt acggtatgac ggacaagaac 1440 agaaacatga tgcgtgtggt tccgttgttt gagaccttga atgacttgac caacgcgccc 1500 gacaaactcg aacagctctt cagtattccg ctttacgtcg gcgccgtcaa agggaaacag 1560 gaagtaatgg tcgggtatag tgacagtgcc aaggatgccg gacgtctggc tgcctgctgg 1620 gcgcagtaca actcgcaaga acgaatggtg aaggtagcgg cgaagcacaa cattgaattg 1680 actttcttcc acggcaaagg gggtaccgta ggacgtggcg gtaacccatc cgtctatcgt 1740 gccattatga gccatccgcc caataccatt aatggccgtt tccgggtgac ggaacagggt 1800 gaaatgataa cgcaaaactt tggagctccg tccattgctg aacgaacttt ggacatttac 1860 acggctggcg tatgtcgcga agctttttct gagcgcgtgg aaccgtcgca agcatggcgc 1920 gaccagatgc aacggatctc cgatgtgagt tgtgccgagt accgccactt agtccgtgag 1980 gaaccgcggt ttgttcccta ctttcgccag gcgacaccgg agttggaact cggaagtttg 2040 aacataggca gtcgtccggc caaacgtaac ccgaaaggcg gtattgaaag tctccgcgcg 2100 attccgtgga cctttgcttg gacgcagacg cgcacacact tatcggcgtg gctgggagtt 2160 ggcgctggtc tcacaacgac agatcaaagc gaattgaaga cgcttcgagc aatgtacatt 2220 gaatggcctt ggtttcgtga aactattgat ctaattgcca tgattgtatc caagacagac 2280 ttttccatat ccaaaaatta tgacgatcaa ctggtggaaa agaaagaagg tttgttgaag 2340 ctgggagacg aggtcaggga gaaaatggtg caaactcgtc aagctgttct tgatgtgacc 2400 gagtctacgg atgttgctgg ggctcacgtc gcccttatgc gagggtcgtc gaccattcgt 2460 catccatacg tcgatccggt caacgttatt caagccgaat tgctcaagcg attgcgagtc 2520 atggacaaga aaaagtctct gtcggcggat gaaatggaag aacaagaaat tttaaaggat 2580 gccctgatta tcagtatcaa tggcatcgct cagggaatgc gaaacagtgg ataa 2634

Claims (8)

두날리엘라(Dunaliella sp.) 유래의 탄산 무수화 효소(carbonic anhydrase)를 코딩하는 ca 유전자를 포함하는 플라스미드 및 파이오덱틸룸 트리코뉴툼 CCMP 632(P.tricornutum CCMP 632) 유래의 포스포에놀피부르산 카르복실아제(phosphoenolpyruvate carboxylase)를 코딩하는 ppc 유전자를 포함하는 재조합 플라스미드로 형질전환된 재조합 미생물(수탁번호:KCTC 12198BP). Dunaliella ca ) encoding a carbonic anhydrase derived from E. sp . Recombinant transformed with recombinant plasmid comprising plasmid containing gene and ppc gene encoding phosphoenolpyruvate carboxylase from P. tricornutum CCMP 632 Microorganism (Accession Number: KCTC 12198BP). 제 1항에 있어서, 상기 탄산 무수화 효소를 코딩하는 ca 유전자는 서열번호 1의 염기서열을 갖는 것을 특징으로 하는, 재조합 미생물.The method of claim 1, wherein ca encoding the carbonic anhydrase Recombinant microorganism, characterized in that the gene has a nucleotide sequence of SEQ ID NO: 1. 제 1항에 있어서, 상기 포스포에놀피부르산 카르복실라제를 코딩하는 ppc 유전자는 서열번호 2의 염기서열을 갖는 것을 특징으로 하는, 재조합 미생물.The recombinant microorganism according to claim 1, wherein the ppc gene encoding the phosphoenolpiburic acid carboxylase has a nucleotide sequence of SEQ ID NO: 2. 제 1항에 있어서, 상기 재조합 미생물은 숙신산 및 젖산의 생성능을 갖는 것을 특징으로 하는, 재조합 미생물.The recombinant microorganism of claim 1, wherein the recombinant microorganism has a production capacity of succinic acid and lactic acid. 제 1항에 있어서, 상기 미생물은 대장균인 것을 특징으로 하는, 재조합 미생물.The recombinant microorganism of claim 1, wherein the microorganism is Escherichia coli. 1)제 1항의 재조합 미생물(수탁번호:KCTC 12198BP)을 성장 정체기까지 호기 배양하는 단계;
2)상기 1)단계의 배양균주를 혐기성 조건에서 이소프로필 티오-β-D 갈락토사이드 및 글루코오스를 처리하는 단계; 및
3)상기 2)단계의 균주에 이산화탄소를 처리하여 혐기 발효시키는 단계;를 포함하는 것을 특징으로하는, 유기산의 생산 방법.
1) aerobic culture of the recombinant microorganism (Accession No .: KCTC 12198BP) of claim 1 until the growth plateau;
2) treating the culture of step 1) with isopropyl thio-β-D galactoside and glucose under anaerobic conditions; And
3) anaerobic fermentation by treating carbon dioxide to the strain of step 2); characterized in that it comprises a.
제 6항에 있어서, 상기 유기산은 숙신산, 젖산 및 개미산으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 유기산의 생산 방법.The method of claim 6, wherein the organic acid is at least one selected from the group consisting of succinic acid, lactic acid, and formic acid. 제 6항에 있어서, 상기 미생물은 대장균인 것을 특징으로 하는, 유기산의 생산방법.



The method of claim 6, wherein the microorganism is Escherichia coli.



KR1020120052137A 2012-05-16 2012-05-16 Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same KR101426441B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120052137A KR101426441B1 (en) 2012-05-16 2012-05-16 Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120052137A KR101426441B1 (en) 2012-05-16 2012-05-16 Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same

Publications (2)

Publication Number Publication Date
KR20130128241A true KR20130128241A (en) 2013-11-26
KR101426441B1 KR101426441B1 (en) 2014-08-05

Family

ID=49855483

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120052137A KR101426441B1 (en) 2012-05-16 2012-05-16 Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same

Country Status (1)

Country Link
KR (1) KR101426441B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142057A (en) * 2015-06-02 2016-12-12 인하대학교 산학협력단 Novel Recombinant Microorganism Producing Organic Acid, And Method for Producing Organic Acid Using the Same
WO2018199546A1 (en) * 2017-04-25 2018-11-01 한양대학교 산학협력단 Novel pyruvate transferase

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101762110B1 (en) * 2015-08-06 2017-07-28 코스맥스 주식회사 Method for preparing Bio Carbonation Jeju Magma Seawater and Cosmetic composition using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010111344A2 (en) 2009-03-24 2010-09-30 Microbia, Inc. Methods and microorganisms for production of c4-dicarboxylic acids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142057A (en) * 2015-06-02 2016-12-12 인하대학교 산학협력단 Novel Recombinant Microorganism Producing Organic Acid, And Method for Producing Organic Acid Using the Same
WO2018199546A1 (en) * 2017-04-25 2018-11-01 한양대학교 산학협력단 Novel pyruvate transferase
US10995123B2 (en) 2017-04-25 2021-05-04 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Pyruvate transporter

Also Published As

Publication number Publication date
KR101426441B1 (en) 2014-08-05

Similar Documents

Publication Publication Date Title
CN109055327A (en) Aldehyde Ketoreductase mutant and its application
CN106995817B (en) Construction of high concentration CO resistance by using gene of coding chloroplast carbonic anhydrase2Application of industrial engineering microalgae capable of rapidly growing
KR101426441B1 (en) Recombinant microorganism expressing carbonic anhydrase from Dunaliella sp and phosphoenolpyruvate carboxylase from P.tricornutum CCMP 637, and method for producing organic acid using the same
Gicana et al. Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model
CN107227284A (en) A kind of restructuring streptococcus zooepidemicus for the micromolecule hyaluronic acid that ferments
CN110283797B (en) Tyrosinase, gene, engineering bacterium and preparation method thereof
Eneva et al. Biochemical studies on the production of neuraminidase by environmental isolates of Vibrio cholerae non-O1 from Bulgaria
CN107299074B (en) Construction method and application of formate dehydrogenase engineering strain
CN105132394B (en) A kind of lipase LIPASE6 and its encoding gene and application
CN110551702B (en) Recombinant aspergillus tubingensis tannase and expression and application thereof
CN112980754B (en) Method for preparing inositol by catalyzing starch with bacillus subtilis whole cells
CN110857444B (en) Preparation method of scyllo-inositol
KR101707627B1 (en) Novel Recombinant Microorganism Producing Organic Acid, And Method for Producing Organic Acid Using the Same
CN115851511B (en) Escherichia coli producing succinic acid and construction method and application thereof
KR20210003007A (en) Novel promoter HASP1 of Phaeodactylum tricornutum and signal peptide thereof and uses thereof
CN104726471A (en) L-glutamate oxidase gene from streptomyces diastatochromogenes as well as preparation method and application thereof
CN115927332B (en) Promoter for over-expressing protease, streptomycete recombinant bacterium, construction method and application thereof
CN115074303B (en) Genetically engineered bacterium capable of degrading feathers, construction method and application thereof
CN110791509B (en) Pediococcus acidilactici optimized expression sequence, expression vector, preparation method and strain thereof
KR102036498B1 (en) Method for detecting and determining quantity of fucosyllactose
JP5296166B2 (en) Method for producing highly efficient organic compound by coryneform bacterium transformant
KR20230106041A (en) Novel Enterobacter cloacae sp. producing lactobionic acid and method for production of lactobionic acid using the Same
CN117946984A (en) Pantothenate synthetase mutant and preparation method thereof, construction method thereof, pantothenate production strain and application thereof, and pantothenate preparation method
KR20150125631A (en) Thermococcus mutant having improved hydrogen production from formate and methods of hydrogen production by using thereof
CN105112390B (en) A kind of keratinase and its encoding gene and application

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 4