KR20130117348A - 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지 - Google Patents

전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
KR20130117348A
KR20130117348A KR1020130042659A KR20130042659A KR20130117348A KR 20130117348 A KR20130117348 A KR 20130117348A KR 1020130042659 A KR1020130042659 A KR 1020130042659A KR 20130042659 A KR20130042659 A KR 20130042659A KR 20130117348 A KR20130117348 A KR 20130117348A
Authority
KR
South Korea
Prior art keywords
electrode assembly
separator
lithium
battery
nonwoven
Prior art date
Application number
KR1020130042659A
Other languages
English (en)
Other versions
KR101483205B1 (ko
Inventor
김지현
이재헌
박태진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130117348A publication Critical patent/KR20130117348A/ko
Application granted granted Critical
Publication of KR101483205B1 publication Critical patent/KR101483205B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 분리막으로 이루어진 전극조립체에 있어서, 상기 음극이 음극 활물질로서 특정 화학식으로 표시되는 리튬 금속 산화물을 포함하고 있고, 상기 분리막은 부직포 분리막이며, 상기 전극조립체의 두께(mm)에 대한 전극조립체의 상하를 이루는 일면의 면적(mm2)에 대한 비율이 일정 수치 이상인 것을 특징으로 하는 전극조립체 및 이를 포함하는 리튬 이차전지를 제공한다.

Description

전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지 {Electrode Assembly Having Improved Electrolyte Wetting Property and Safety Property and Lithium Secondary Battery Comprising the Same}
본 발명은 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지에 관한 것으로, 더욱 상세하게는, 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 분리막으로 이루어진 전극조립체에 있어서, 상기 음극이 음극 활물질로서 특정 화학식으로 표시되는 리튬 금속 산화물을 포함하고 있고, 상기 분리막은 부직포 분리막이며, 상기 전극조립체의 두께(mm)에 대한 전극조립체의 상하를 이루는 일면의 면적(mm2)에 대한 비율이 일정 수치 이상인 것을 특징으로 하는 전극조립체 및 이를 포함하는 리튬 이차전지에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있고, 그러한 이차전지 중에서도 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
또한, 최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차(EV), 하이브리드 전기자동차(HEV) 등에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차(EV), 하이브리드 전기자동차(HEV) 등의 동력원으로는 주로 니켈 수소금속(Ni-MH) 이차전지가 사용되고 있지만, 높은 에너지 밀도, 높은 방전 전압 및 출력 안정성의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 되어 있다.
일반적인 리튬 이차전지의 조립은 양극, 음극 및 분리막을 서로 번갈아가며 겹친 후, 일정 크기 및 모양의 캔(can) 또는 파우치(pouch)로 이루어진 전지 케이스에 삽입한 후, 최종적으로 전해액을 주입하는 방식으로 진행된다. 이때, 나중에 주입된 전해액은 모세관 힘(capillary force)에 의해 양극, 음극 및 분리막 사이로 스며들게 된다. 그러나, 재료의 특성상, 양극, 음극 및 분리막 모두 소수성(hydrophobicity)이 큰 물질인 반면, 전해액은 친수성(hydrophilicity) 물질이기 때문에, 전해액의 전극 및 분리막에 대한 젖음(wetting)은 상당한 시간 및 까다로운 공정 조건이 요구된다.
또한, 최근에는 디바이스 또는 장치가 대형화 됨에 따라 전지의 용량 및 크기 면에서 더욱 큰 전지가 지속적인 요구 사항이 되고 있으나, 이와 같이 하는 경우 전해액 주입의 문제가 수반된다. 즉, 근본적인 친수성 차이 이외에도, 전해액이 침투할 부피는 감소하고 면적은 넓어짐에 따라 전해액이 전지 내부까지 들어가지 못하고 외부에 국부적으로만 존재할 가능성이 높게 된다. 이렇게 제조된 전지는 전지 내부에서 부분적으로 전해액의 양이 충분하지 않게 되어 전지 용량 및 성능이 크게 감소하게 된다
이러한 전극의 전해액 함침성 향상을 위해 높은 온도에서 전해액을 주입하거나, 또는 가압 또는 감압 상태에서 전해액을 주입하는 등의 방법이 이용되고 있다. 그러나, 기존의 분리막은 열에 의해 수축되어 내부 단락을 일으키는 등의 문제점이 있다.
따라서, 고온에서 안정성을 가지면서 전해액 함침성이 향상된 대면적 이차전지 기술에 대한 필요성이 매우 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 음극 활물질로 특정 화학식으로 표시되는 리튬 금속 산화물을 포함하는 전극조립체에 부직포 분리막을 사용하는 경우, 전해액 함침성 및 고율 충방전 특성이 향상되므로 소망하는 효과를 달성할 수 있는 것을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명은 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 분리막으로 이루어진 전극조립체로서, 상기 음극이 음극 활물질로서 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하고 있고, 상기 분리막은 부직포 분리막인 것을 특징으로 하는 전극조립체를 제공한다.
LiaM’bO4-cAc (1)
상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고;
a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며;
c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
상세하게는, 상기 음극 활물질은, 고속 충전에 용이한 하기 화학식 2로 표시되는 리튬 티타늄 산화물(LTO)일 수 있고, 구체적으로 Li0.8Ti2.2O4, Li2.67Ti1.33O4, LiTi2O4, Li1.33Ti1.67O4, Li1.14Ti1.71O4 등 일 수 있으나, 이들만으로 한정되는 것은 아니며, 더욱 상세하게는, 충방전시 결정 구조의 변화가 적고 가역성이 우수한 스피넬 구조의 Li1.33Ti1.67O4 또는 LiTi2O4일 수 있다.
LiaTibO4 (2)
상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
상기와 같이, LTO를 음극 활물질로 사용하는 경우, 대용량, 대면적의 전지 제조가 가능한 바, 하나의 구체적인 예에서, 상기 전극조립체는 전극조립체의 두께(mm)에 대한 전극조립체의 상하를 이루는 일면의 면적(mm2)에 대한 비율이 2000 이상, 상세하게는, 3000 이상일 수 있고, 10000 이하의 비율을 가질 수 있다.
또는 두께와 상관없이, 상기 전극조립체는 전극조립체의 상하를 이루는 일면의 면적이 20000 mm2 이상, 상세하게는, 25000 mm2 이상일 수 있고, 100000 mm2 이하의 면적을 가질 수 있다.
이 때, 상기 전극조립체를 이루는 세 방향의 축에 있어서, 가장 짧은 길이를 갖는 방향의 길이가 전극조립체의 두께(mm)가 되고 이는 양극, 음극, 및 분리막을 포함하는 적층방향을 의미한다. 반면에 가장 긴 길이를 갖는 두 축 방향의 길이의 곱이 전극조립체의 상하를 이루는 일면의 면적(mm2)이 된다. 일면은 양극일 수도 있고 음극일 수도 있어 그 종류는 문제되지 않는다.
앞서 설명한 바와 같이, 상기와 같은 대용량, 대면적의 전지를 제조하는 경우에는 전해액이 침투할 부피는 감소하고 면적은 넓어짐에 따라 전해액이 전지 내부까지 들어가지 못하고 외부에 국부적으로만 존재할 가능성이 높게 되고, 전지 내부에서 부분적으로 전해액의 양이 충분하지 않게 되어 전지 용량 및 성능이 크게 감소하는 문제가 있다.
이에 본 출원의 발명자들은 부직포 분리막을 사용하는 경우, 상기 전해액 함침성 문제를 해결할 수 있음을 발견하였다.
상기 부직포 분리막은, 양극과 음극 사이에 개재되며, 바람직하게는, 평균 굵기가 0.5 내지 10 ㎛, 더욱 바람직하게는, 1 내지 7 ㎛인 극세사를 이용하여, 기공의 장경(기공의 최장 직경)이 0.1 내지 70 ㎛인 기공들을 포함하도록 형성하는 것이 바람직하다. 장경이 0.1 ㎛ 미만인 기공들을 다수 갖는 부직포는 제조하기 어렵고, 기공의 장경이 70 ㎛을 초과하면 기공 크기로 인하여 절연성 저하의 문제점이 발생할 수 있다. 또한, 부직포 분리막의 두께는 5 내지 300 ㎛인 것이 바람직하다.
상기 부직포 분리막을 이루는 물질은 한정되지 아니하나, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르, 아라미드와 같은 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리염화비닐, 폴리아크릴로나이트릴, 셀룰로오스, 나일론, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레트 및 유리로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 형성될 수 있다.
상기 부직포 분리막을 기존 활물질에 사용한다면 음극의 산화/환원 전위가 리튬금속의 산화/환원 전위와 유사한 레벨에 있으므로, 고율 충방전/저온 충방전 시 리튬 금속의 생성으로 인한 성능 퇴화, 자가방전, 저전압 등의 문제가 발생하지만, 본 발명에서와 같이 리튬 티타늄 산화물(LTO)을 음극 활물질로 사용할 경우, 리튬 금속의 산화/환원 전위 대비하여 1.55V가량의 높은 전위에서 반응을 일으키므로, 위에서 기술한 문제점를 잘 일으키지 않는 장점이 있어 부직포 분리막의 활용이 가능하다. 때문에 리튬 티타늄 산화물을 음극 활물질로 사용하고 분리막으로 부직포를 사용한 대면적의 전지는 부직포 분리막이 기존 분리막에 비하여 공극률이 크므로 전해액 함침성 및 고율 충방전 특성이 향상된다.
다만, 대용량, 대면적의 전지를 제조함에 있어, 부직포 분리막의 크기 역시 커지게 되며, 이 경우, 부직포 분리막 자체의 강성에 따라 전지의 안전성이 문제될 수 있는 바, 본 발명에 따른 부직포 분리막은 상세하게는, SRS 부직포 분리막일 수 있다.
상기 SRS 부직포 분리막은 유/무기 복합 다공성 분리막으로서 상기 부직포 분리막 기재상에 무기물 입자와 바인더 고분자를 활성층 성분으로 사용하여 제조되며, 이때 부직포 분리막 기재 자체에 포함된 기공 구조와 더불어 활성층 성분인 무기물 입자들간의 빈 공간(interstitial volume)에 의해 형성된 균일한 기공 구조를 갖는다.
이러한 SRS 부직포 분리막을 사용하는 경우 통상적인 분리막을 사용한 경우에 비하여 화성 공정(Formation)시의 스웰링(swelling)에 따른 전지 두께의 증가를 억제할 수 있다는 장점이 있고, 바인더 고분자 성분으로 액체 전해액 함침시 겔화 가능한 고분자를 사용하는 경우 전해질로도 동시에 사용될 수 있다.
또한, 상기 SRS 부직포 분리막은 활성층 및 부직포 분리막 기재 모두에 균일한 기공 구조가 다수 형성되어 있으며, 이러한 기공을 통해 리튬 이온의 원활한 이동이 이루어지고, 다량의 전해액이 채워져 높은 함침율을 나타낼 수 있으므로, 전지의 성능 향상을 함께 도모할 수 있다.
상기 무기물 입자 및 바인더 고분자로 이루어진 SRS 부직포 분리막은 무기물 입자의 내열성으로 인해 부직포 분리막을 단독으로 사용했을 때보다도 고온 열수축이 발생하지 않는다. 따라서, SRS 부직포 분리막은 부직포 분리막에서 만약 단락이 발생하더라도 단락된 영역이 크게 확대되는 것이 억제되어 전지의 안전성 향상이 도모될 수 있다.
상기 SRS 부직포 분리막은 부직포 분리막 상에 직접 코팅하여 형성된 것이므로, 부직포 분리막 기재 표면의 기공과 활성층이 상호 엉켜있는 형태(anchoring)로 존재하여 활성층과 다공성 기재가 물리적으로 견고하게 결합된다. 따라서, 부서짐(brittle) 등과 같은 기계적 물성의 문제점이 개선될 수 있을 뿐만 아니라 부직포 분리막 기재와 활성층 사이의 계면 접착력이 우수하게 되어 계면 저항이 감소하게 되는 특징이 있다. 실제로, 상기 SRS 부직포 분리막은 형성된 유/무기 복합 활성층과 다공성 기재가 서로 유기적으로 결합하여 있을 뿐만 아니라, 상기 활성층으로 인해 다공성 기재 내 존재하는 기공 구조가 영향을 받지 않고 그대로 유지됨과 동시에 활성층 자체 내에서도 무기물 입자로 인한 균일한 기공 구조가 형성되어 있음을 알 수 있다. 이러한 기공 구조는 추후 주입되는 액체 전해질로 채워지게 되는데, 이로 인해 무기물 입자들 사이 또는 무기물 입자와 바인더 고분자 사이에서 발생하는 계면 저항이 크게 감소하는 효과를 나타내게 된다.
상기 SRS 부직포 분리막은 또한, 분리막 내 활성층 성분인 무기물 입자와 바인더 고분자의 함량 조절에 의해 우수한 접착력 특성을 나타낼 수 있으므로, 전지 조립 공정이 용이하게 이루어질 수 있다는 특징이 있다.
상기 SRS 부직포 분리막에서, 부직포 분리막 기재의 표면 및/또는 기재 중 기공부 일부에 형성되는 활성층 성분 중 하나는 당 업계에서 통상적으로 사용되는 무기물 입자이다. 상기 무기물 입자는 무기물 입자들간 빈 공간의 형성을 가능하게 하여 미세 기공을 형성하는 역할과 물리적 형태를 유지할 수 있는 일종의 스페이서(spacer) 역할을 겸하게 된다. 또한, 상기 무기물 입자는 일반적으로 200℃ 이상의 고온이 되어도 물리적 특성이 변하지 않는 특성을 갖기 때문에, 형성된 SRS 부직포 분리막이 탁월한 내열성을 갖게 된다.
상기 무기물 입자는 전기화학적으로 안정하기만 하면 특별히 제한되지 않는다. 즉, 본 발명에서 사용할 수 있는 무기물 입자는 적용되는 전지의 작동 전압 범위(예컨대, Li/Li+ 기준으로 0~5V)에서 산화 및/또는 환원 반응이 일어나지 않는 것이면 특별히 제한되지 않는다. 특히, 이온 전달 능력이 있는 무기물 입자를 사용하는 경우, 전기 화학 소자 내의 이온 전도도를 높여 성능 향상을 도모할 수 있으므로, 가능한 이온 전도도가 높은 것이 바람직하다. 또한, 상기 무기물 입자가 높은 밀도를 갖는 경우, 코팅시 분산시키는데 어려움이 있을 뿐만 아니라 전지 제조시 무게 증가의 문제점도 있으므로, 가능한 밀도가 작은 것이 바람직하다. 또한, 유전율이 높은 무기물인 경우, 액체 전해질 내 전해질 염, 예컨대 리튬염의 해리도 증가에 기여하여 전해액의 이온 전도도를 향상시킬 수 있다.
전술한 이유들로 인해, 상기 무기물 입자는 유전율 상수가 5 이상, 상세하게는 10 이상인 고유전율 무기물 입자, 압전성(piezoelectricity)을 갖는 무기물 입자, 리튬 이온 전달 능력을 갖는 무기물 입자 또는 이들의 혼합체가 바람직하다.
상기 압전성(piezoelectricity) 무기물 입자는 상압에서는 부도체이나, 일정 압력이 인가되었을 경우 내부 구조 변화에 의해 전기가 통하는 물성을 갖는 물질을 의미하는 것으로서, 유전율 상수가 100 이상인 고유전율 특성을나타낼 뿐만 아니라 일정 압력을 인가하여 인장 또는 압축되는 경우 전하가 발생하여 한 면은 양으로, 반대편은 음으로 각각 대전됨으로써, 양쪽 면 간에 전위차가 발생하는 기능을 갖는 물질이다.
상기와 같은 특징을 갖는 무기물 입자를 다공성 활성층 성분으로 사용하는 경우, Local crush, Nail 등의 외부 충격에 의해 양(兩) 전극의 내부 단락이 발생하는 경우 분리막에 코팅된 무기물 입자로 인해 양극과 음극이 직접 접촉하지 않을 뿐만 아니라, 무기물 입자의 압전성으로 인해 입자 내 전위차가 발생하게 되고 이로 인해 양(兩) 전극 간의 전자 이동, 즉 미세한 전류의 흐름이 이루어짐으로써, 완만한 전지의 전압 감소 및 이로 인한 안전성 향상을 도모할 수 있다.
상기 압전성을 갖는 무기물 입자의 예로는 BaTiO3, Pb(Zr,Ti)O3 (PZT), Pb1-xLaxZr1-yTiyO3 (PLZT), PB(Mg3Nb2/3)O3-PbTiO3 (PMN-PT) hafnia (HfO2) 또는 이들의 혼합체 등이 있으나 이에 한정되는 것은 아니다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자는 리튬 원소를 함유하되 리튬을 저장하지 아니하고 리튬 이온을 이동시키는 기능을 갖는 무기물 입자를 지칭하는 것으로서, 리튬 이온 전달 능력을 갖는 무기물 입자는 입자 구조 내부에 존재하는 일종의 결함(defect)으로 인해 리튬 이온을 전달 및 이동시킬 수 있기 때문에, 전지 내 리튬 이온 전도도가 향상되고, 이로 인해 전지 성능 향상을 도모할 수 있다.
상기 리튬 이온 전달 능력을 갖는 무기물 입자의 예로는 리튬포스페이트(Li3PO4), 리튬티타늄포스페이트(LixTiy(PO4)3, 0<x<2, 0<y<3), 리튬알루미늄티타늄포스페이트(LixAlyTiz(PO4)3, 0<x<2, 0<y<1, 0<z<3), 14Li2O-9Al2O3-38TiO2-39P2O5 등과 같은 (LiAlTiP)xOy 계열 glass (0<x<4, 0<y<13), 리튬란탄티타네이트(LixLayTiO3, 0<x<2, 0<y<3), Li3.25Ge0.25P0.75S4 등과 같은 리튬게르마니움티오포스페이트(LixGeyPzSw, 0<x<4, 0<y<1, 0<z<1, 0<w<5), Li3N 등과 같은 리튬나이트라이드(LixNy, 0<x<4, 0<y<2), Li3PO4-Li2S-SiS2 등과 같은 SiS2 계열 glass(LixSiySz, 0<x<3, 0<y<2, 0<z<4), LiI-Li2S-P2S5 등과 같은 P2S5 계열 glass (LixPySz, 0<x<3, 0<y<3, 0<z<7), 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다.
또한, 유전율 상수 5 이상인 무기물 입자의 예로는 SrTiO3, SnO2, CeO2, MgO, NiO, CaO, ZnO, ZrO2, Y2O3, Al2O3, TiO2, SiC 또는 이들의 혼합물 등이 있으나, 이에 한정되는 것은 아니다. 전술한 고유전율 무기물 입자, 압전성을 갖는 무기물 입자와 리튬 이온 전달 능력을 갖는 무기물 입자들을 혼용할 경우, 이들의 상승 효과는 배가 될 수 있다.
본 발명의 SRS 부직포 분리막은 분리막 기재의 활성층 구성 성분인 무기물 입자의 크기, 무기물 입자의 함량 및 무기물 입자와 바인더 고분자의 조성을 조절함으로써, 부직포 분리막 기재에 포함된 기공과 더불어 활성층의 기공 구조를 형성할 수 있으며, 또한 상기 기공 크기 및 공극률을 함께 조절할 수 있다.
상기 무기물 입자의 크기는 제한이 없으나, 균일한 두께의 필름 형성 및 적절한 공극률을 위하여 가능한 한 0.001 내지 10 ㎛ 범위인 것이 바람직하다. 0.001 ㎛ 미만인 경우 분산성이 저하되어 SRS 부직포 분리막의 물성을 조절하기가 어려우며, 10 ㎛를 초과하는 경우 동일한 고형분 함량으로 제조되는 SRS 부직포 분리막의 두께가 증가하여 기계적 물성이 저하되며, 또한 지나치게 큰 기공 크기로 인해 전지 충방전시 내부 단락이 일어날 확률이 높아진다.
상기 무기물 입자의 함량은 특별한 제한이 없으나, SRS 부직포 분리막을 구성하는 무기물 입자와 바인더 고분자의 혼합물 100 중량% 당 50 내지 99 중량% 범위가 바람직하며, 특히 60 내지 95 중량%가 더욱 바람직하다. 50 중량% 미만일 경우, 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성되는 빈 공간의 감소로 인한 기공 크기 및 공극률이 감소되어 최종 전지 성능 저하가 야기될 수 있다. 반대로, 99 중량%를 초과할 경우, 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 SRS 부직포 분리막의 기계적 물성이 저하된다.
본 발명에 따른 SRS 부직포 분리막에서, 부직포 분리막 기재의 표면 및/또는 상기 기재 중 기공부 일부에 형성되는 활성층 성분 중 다른 하나는 당업계에서 통상적으로 사용되는 고분자이다. 특히, 유리 전이 온도(glass transition temperature, Tg)가 가능한 낮은 것을 사용할 수 있으며, 바람직하게는 -200 내지 200℃ 범위이다. 이는 최종필름의 유연성 및 탄성 등과 같은 기계적 물성을 향상시킬 수 있기 때문이다. 상기 고분자는 무기물 입자와 입자 사이, 무기물 입자들과 분리막 기재의 표면 및 분리막 중 기공부 일부를 연결 및 안정하게 고정시켜주는 바인더 역할을 충실히 수행함으로써, 최종 제조되는 SRS 부직포 분리막의 기계적 물성 저하를 방지한다.
또한, 상기 바인더 고분자는 이온 전도 능력을 반드시 가질 필요는 없으나, 이온 전도 능력을 갖는 고분자를 사용할 경우 전기 화학 소자의 성능을 더욱 향상시킬 수 있다. 따라서, 바인더 고분자는 가능한 유전율 상수가 높은 것이 바람직하다.
실제로 전해액에서 염의 해리도는 전해액 용매의 유전율 상수에 의존하기 때문에, 상기 고분자의 유전율 상수가 높을수록 본 발명의 전해질에서의 염 해리도를 향상시킬 수 있다. 상기 고분자의 유전율 상수는 1.0 내지 100(측정 주파수 = 1 kHz) 범위가 사용 가능하며, 특히 10 이상인 것이 바람직하다.
전술한 기능 이외에, 상기 바인더 고분자는 액체 전해액 함침시 겔화되어 높은 전해액 함침율(degree of swelling)을 나타낼 수 있는 특징을 가질 수 있다. 실제로, 상기 바인더 고분자가 전해액 함침율이 우수한 고분자인 경우, 전지 조립 후 주입되는 전해액은 상기 고분자로 스며들게 되고, 흡수된 전해액을 보유하는 고분자는 전해질 이온 전도 능력을 갖게 된다. 따라서, 종래 유/무기 복합 전해질에 비하여 전기 화학 소자의 성능을 향상시킬 수 있다. 또한, 종래 소수성 폴리올레핀 계열 분리막에 비해 전지용 전해액에 대한 젖음성(wetting)이 개선될 뿐만 아니라 종래에 사용되기 어려웠던 전지용 극성 전해액의 적용도 가능하다는 장점이 있다. 추가적으로, 상기 고분자가 전해액 함침시 겔화 가능한 고분자인 경우, 이후 주입된 전해액과 고분자가 반응하여 겔화됨으로써 겔형 유/무기 복합 전해질을 형성할 수 있다. 이와 같이 형성된 전해질은 종래 겔형 전해질에 비해 제조 공정이 용이할 뿐만 아니라 높은 이온 전도도 및 전해액 함침율을 나타내어 전지의 성능 향상을 도모할 수 있다. 따라서, 가능하면 용해도 지수가 15 내지 45 MPa1/2인 고분자가 바람직하며, 15 내지 25 MPa1/2 및 30 내지 45 MPa1/2 범위가 더욱 바람직하다. 용해도 지수가 15 MPa1/2 미만 및 45 MPa1/2를 초과하는 경우, 통상적인 전지용 액체 전해액에 의해 함침(swelling)되기 어렵게 된다.
사용 가능한 바인더 고분자의 예로는 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 (polyvinylidene fluoride-co-hexafluoropropylene), 폴리비닐리덴 플루오라이드-트리클로로에틸렌 (polyvinylidene fluoride-cotrichloroethylene), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈(polyvinylpyrrolidone), 폴리비닐아세테이트(polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체(polyethylene-co-vinyl acetate), 폴리에틸렌옥사이드(polyethylene oxide), 셀룰로오스 아세테이트(celluloseacetate), 셀룰로오스 아세테이트 부틸레이트(cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트(cellulose acetate propionate), 시아노에틸풀루란(cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스(cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란(pullulan), 카르복실 메틸 셀룰로오스(carboxyl methyl cellulose), 아크리로니트릴스티렌부타디엔 공중합체(acrylonitrile-styrene-butadiene copolymer), 폴리이미드(polyimide) 또는 이들의 혼합체 등을 들 수 있으나, 이에 한정되는 것은 아니며, 상술한 특성을 포함하는 물질이라면 어느 재료라도 단독 또는 혼합하여 사용할 수 있다.
상기 활성층 성분인 무기물 입자 및 바인더 고분자의 조성비는 크게 제약은 없으나, 10:90 내지 99:1 중량% 비범위 내에서 조절 가능하며, 80:20 내지 99:1 중량% 비 범위가 바람직하다. 10:90 중량% 비 미만인 경우, 고분자의 함량이 지나치게 많게 되어 무기물 입자들 사이에 형성된 빈 공간의 감소로 인한 기공 크기 및 공극률이 감소되어 최종 전지 성능 저하가 야기되며, 반대로 99:1 중량% 비를 초과하는 경우, 고분자 함량이 너무 적기 때문에 무기물 사이의 접착력 약화로 인해 최종 SRS 부직포 분리막의 기계적 물성이 저하될 수 있다.
상기 SRS 부직포 분리막 중 활성층은 전술한 무기물 입자 및 고분자 이외에, 통상적으로 알려진 기타 첨가제를 더 포함할 수 있다.
부직포 분리막 기재상에 무기물 입자와 바인더 고분자의 혼합물을 코팅하여 형성된 본 발명의 SRS 부직포 분리막은, 전술한 바와 같이 분리막 기재 자체 내에 기공부가 포함되어 있을 뿐만 아니라, 기재 상에 형성된 무기물 입자들간의 빈 공간으로 인해 기재와 활성층 모두 기공 구조를 형성하게 된다. 상기 SRS 부직포 분리막의 기공 크기 및 공극률은 주로 무기물 입자의 크기에 의존하는데, 예컨대 입경이 1 ㎛ 이하인 무기물 입자를 사용하는 경우 형성되는 기공 역시 1 ㎛ 이하를 나타내게 된다. 이와 같은 기공 구조는 추후 주액되는 전해액으로 채워지게 되고, 이와 같이 채워진 전해액은 이온 전달 역할을 하게 된다. 따라서, 상기 기공의 크기 및 공극률은 SRS 부직포 분리막의 이온 전도도 조절에 중요한 영향 인자이다.
부직포 분리막 기재상에 상기 혼합물로 코팅하여 기공 구조가 형성된 활성층의 두께는 특별한 제한이 없으나, 0.01 내지 100 ㎛ 범위가 바람직하다. 또한, 상기 활성층의 기공 크기 및 공극률(porosity)는 각각 0.001 내지 10 ㎛ 및 5 내지 95% 범위인 것이 바람직하나, 이에 제한되는 것은 아니다.
상기와 같이 제조된 SRS 부직포 분리막의 기공 크기 및 공극률(porosity)는 각각 0.001 내지 10 ㎛, 45 내지 90% 범위일 수 있고, 더욱 상세하게는, 0.1 내지 7 ㎛, 50 내지 70% 범위일 수 있다. 기공의 크기 및 공극률이 그 이하인 경우에는, 상기 설명한 바와 같이 젖음성이나 충방전 특성이 저하되고, 그 이상인 경우에는 분리막의 기능을 할 수 없다.
또한, 상기 SRS 부직포 분리막의 두께는 특별한 제한은 없으며, 전지 성능을 고려하여 조절될 수 있다. 상세하게는, 1 내지 300 ㎛ 범위일 수 있고, 더욱 상세하게는 5 내지 200 ㎛ 범위일 수 있다.
이하에서는, 전극조립체의 기타 구성성분에 대해서 설명한다.
상기 양극은 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조 및 프레싱하여 제조되며, 필요에 따라서는 상기 혼합물에 충진제를 더 첨가하기도 한다.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테리인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
상기 양극 활물질은 리튬 니켈 망간 복합 산화물(LNMO)이 아닌 경우, 예를 들어, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
하나의 구체적인 예에서, 상기 양극 활물질은 상기 리튬 티타늄 산화물의 높은 전위에 대응하여 하기 화학식 3으로 표시되는 고전위 산화물인 스피넬 구조의 리튬 망간 복합 산화물일 수 있다.
LixMyMn2-yO4-zAz (3)
상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고,
M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
A는 -1 또는 -2가의 하나 이상의 음이온이다.
상세하게는, 상기 리튬 망간 복합 산화물은 하기 화학식 4로 표시되는 리튬 니켈 망간 복합 산화물일 수 있으며, 더욱 상세하게는 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4일 수 있다.
LixNiyMn2-yO4 (4)
상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 50 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
반면에, 상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조 및 프레싱하여 제조되며, 필요에 따라 상기에서와 같은 도전재, 바인더, 충진제 등이 선택적으로 더 포함될 수 있다.
상기 음극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 발명은 상기 전극조립체를 포함하는 이차전지를 제공하며, 상기 이차전지는, 전극조립체에 리튬염 함유 전해액이 함침되어 있는 구조로 이루어진 리튬 이차전지일 수 있다.
상기 리튬염 함유 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.
하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수계 전해질을 제조할 수 있다.
본 발명은 또한, 상기 이차전지를 단위전지로 포함하는 전지모듈을 제공하고, 상기 전지모듈을 포함하는 전지팩을 제공한다.
상기 전지팩은 고온 안정성 및 긴 사이클 특성과 높은 레이트 특성 등이 요구되는 디바이스의 전원으로 사용될 수 있다.
상기 디바이스의 구체적인 예로는 전지적 모터에 의해 동력을 받아 움직이는 파워 툴(power tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차; 전기 자전거(E-bike), 전기 스쿠터(E-scooter)를 포함하는 전기 이륜차; 전기 골프 카트(electric golf cart); 전력저장용 시스템 등을 들 수 있으나, 이에 한정되는 것은 아니다.
상기에서 설명한 바와 같이, 본 발명에 따른 부직포 분리막을 사용한 전극조립체 및 이차전지는 기존 분리막에 비해 공극률이 높아 전해액의 전해액 함침성 및 고율 충방전 특성이 우수하고, 고온 안정성이 우수하여 리튬 금속 산화물을 음극 활물질로 사용하는 대면적 전지의 자가방전, 저전압을 방지하고 전해액 함침성, 및 안전성을 향상시키는 효과가 있다.
특히, SRS 부직포 분리막을 사용하는 경우, 전지의 안전성이 더욱 향상되는 효과가 있다.
이하, 본 발명의 실시예를 참조하여 설명하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
<실시예 1>
분리막의 제조
폴리비닐리덴플로라이드-헥사플루오르 프로필렌 공중합체 (PVdF-HFP) 고분자를 아세톤에 약 8.5 중량% 첨가한 후, 50℃의 온도에서 약 12시간 이상 용해시켜 고분자 용액을 제조하였다. 이 고분자 용액에 Al2O3 분말을 Al2O3/PVdF-HFP = 90/10 (중량% 비)가 되도록 첨가하여 12 시간 이상 볼밀(ball mill)법을 이용하여 슬러리를 제조하였다. 이와 같이 제조된 슬러리를 딥(dip) 코팅법을 이용하여 두께 7 ~ 9 ㎛ 정도의 셀룰로오스(Cellulose)계 부직포 분리막(공극률 45%)에 코팅하였으며, 코팅 두께는 약 4 ~ 5 ㎛ 정도로 조절하여 공극률 측정 장치(porosimeter)로 측정하였을 때, 부직포 분리막에 코팅된 활성층 내의 기공 크기 및 기공도가 각각 0.5 ㎛ 및 58%인 SRS 부직포 분리막을 제조하였다. 걸리투기도시험기(Gurley densometer) 4110 모델을 사용하여 공기 100 mL의 투과 시간을 측정하였을 때, 상기 SRS 부직포 분리막의 걸리 수(Gurley number)는 1210 s/100mL 이다.
폴리머 전지의 제조
LiNi0.5Mn1.5O4를 양극 활물질로 사용하고 도전재(Denka black), 바인더(PVdF)를 각각 90: 6.5: 3.5 의 중량비로 NMP에 넣고 믹싱하여 양극 합제를 제조한 후 20 ㎛ 두께의 알루미늄 호일에 코팅하고, 압연 및 건조하여 양극을 제조하였다.
Li4/3Ti5/3O4를 음극 활물질로 사용하고, 도전재(Denka black), 바인더(PVdF)를 각각 90: 5: 5의 중량비로 NMP(N-methyl-2-pyrrolidone)에 넣고 믹싱하여 음극 합제를 제조한 후 20 ㎛ 두께의 구리 호일에 코팅한 후 압연 및 건조하여 음극을 제조하였다.
상기 양극과 음극 사이에 상기에서 제조된 분리막을 개재하여 전극조립체를 제조하고, 이를 전지케이스에 내장하였다.
여기에 에틸 카보네이트와 에틸메틸 카보네이트가 부피비를 기준으로 1: 2으로 혼합되어 있고, 리튬염으로 1 M의 LiPF6를 포함하고 있는 리튬 비수계 전해액을 주입한 다음, 밀봉하여 40Ah 소형 폴리머 전지를 제조하였다.
<실시예 2>
상기 실시예 1에서, 분리막으로, 활성층의 코팅이 없는 셀룰로오스(Cellulose)계 부직포 분리막(공극률 45%)을 사용하였다는 것을 제외하고 실시예 1과 동일하게 소형 폴리머 전지를 제조하였다. 이 때, 상기 SRS 부직포 분리막의 걸리 수(Gurley number)는 790 s/100mL 이다.
<실험예 1>
무기물 입자와 바인더 고분자를 포함하는 활성층의 코팅시 전지 안전성의 향상 정도를 평가하기 위해, 직경 2.5 mm 못(nail)을 이용하여 실시예 1 및 실시예 2의 전지의 중앙을 8 cm/sec의 속도로 관통시킨 후, 전지 표면의 최고 온도와 발화 여부를 관찰하여, 그 결과를 표 1에 나타내었다.
최대 온도 발화 여부
실시예 1 70℃ 발화 없음
실시예 2 140℃ 발화 없음
상기 표 1을 참조하면, 실시예 1 및 실시예 2 모두 부직포 분리막을 사용하여, 발화가 일어나지 않았지만, 무기물 입자와 바인더 고분자를 포함하는 활성층을 코팅한 SRS 부직포 분리막을 사용한 실시예 1의 전지의 경우, 상기 활성층의 코팅 없이 셀룰로오스계 부직포 분리막을 사용한 실시예 2의 전지에 비해 최대 온도가 50% 정도로 감소하여 전지 안전성이 매우 향상되었음을 알 수 있다.
즉, 부직포 분리막을 사용하는 경우에는 기존의 폴리올레핀계 분리막을 사용하는 경우에 발생하는 열에 의해 수축 현상이 적어 고온에서도 발화 현상이 일어나지 않으므로 어느 정도의 안전성을 확보할 수 있다. 다만, 상기 활성층을 코팅하는 경우에는 그 최대 온도 또한 낮추는 바, 전지 안전성을 확보하기에 더욱 유리하다.
<비교예 1>
상기 실시예 1에서, 분리막으로 기존의 폴리올레핀계 분리막(셀가드TM, 두께: 20 ㎛)을 사용하였다는 것을 제외하고 실시예 1과 동일하게 소형 폴리머 전지를 제조하였다. 이 때, 이 때, 상기 분리막의 걸리 수(Gurley number)는 1130 s/100mL 이다.
<비교예 2>
상기 실시예 1에서, 분리막으로 기존의 폴리올레핀계 다공성 기재(셀가드TM, 두께: 20 ㎛)에 활성층을 코팅한 분리막을 사용하였다는 것을 제외하고 실시예 1과 동일하게 소형 폴리머 전지를 제조하였다. 이 때, 이 때, 상기 분리막의 걸리 수(Gurley number)는 1650 s/100mL 이다.
<실험예 2>
전해액 함침성 향상 정도를 판단하기 위해 상기 실시예 1 및 비교예 2에서 제조된 전지를 각각 10개씩 준비하고, 상기 이차전지들의 전해액 습윤도가 약 90%에 이를 때까지의 시간을 측정하여 평균값을 계산하고, 그 결과를 하기 표 2에 나타내었다.
습윤도 측정(Dropping test)
(time/평균)
실시예 1 95 min
비교예 2 200 min
상기 표 2에서 보는 바와 같이, SRS 부직포 분리막을 사용한 실시예 1의 전지의 전해액 함침성이, 기존의 폴리올레핀계 다공성 기재에 활성층을 코팅한 분리막을 사용한 비교예 2의 전지의 전해액 함침성보다 우수함을 알 수 있다. 즉, 부직포 분리막이 폴리올레핀계 분리막에 비해 전해액 함침성이 우수함을 나타낸다. 따라서, 이는 실시예 2 및 비교예 1의 비교시에도 적용될 수 있다.
<실험예 3>
상기 실시예 1 및 비교예 2에서 제조된 전지를 3.35 V 에서 포메이션 한 뒤, 10 C-rate 10 sec 출력으로 SOC 50에서의 저항 값을 측정하고, 그 결과를 하기 표 3에 나타내었다.
방전 저항(mΩ)
실시예 1 1.4
비교예 2 1.67
표 3을 참조하면, SRS 부직포 분리막을 사용한 실시예 1의 전지의 방전 저항이, 기존의 폴리올레핀계 다공성 기재에 활성층을 코팅한 분리막을 사용한 비교예 2의 전지의 방전 저항보다 낮음을 수 있다. 이는, 비교예 2의 전지의 전해액 함침성이 저하됨에 따라 방전 저항이 증가하기 때문이다. 이는 실시예 2 및 비교예 1의 비교시에도 적용될 수 있다.
본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.

Claims (21)

  1. 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 분리막으로 이루어진 전극조립체에 있어서,
    상기 음극이 음극 활물질로서 하기 화학식 1로 표시되는 리튬 금속 산화물을 포함하고 있고, 상기 분리막은 부직포 분리막인 것을 특징으로 하는 전극조립체:
    LiaM’bO4-cAc (1)
    상기 식에서, M’은 Ti, Sn, Cu, Pb, Sb, Zn, Fe, In, Al 및 Zr로 이루어진 군에서 선택되는 하나 이상의 원소이고;
    a 및 b는 0.1≤a≤4; 0.2≤b≤4의 범위에서 M’의 산화수(oxidation number)에 따라 결정되며;
    c는 0≤c<0.2의 범위에서 산화수에 따라 결정되고;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  2. 제 1 항에 있어서, 상기 전극조립체는 전극조립체의 두께(mm)에 대한 전극조립체의 상하를 이루는 일면의 면적(mm2)에 대한 비율이 2000 이상인 것을 특징으로 하는 전극조립체.
  3. 제 2 항에 있어서, 상기 전극조립체는 전극조립체의 두께(mm)에 대한 전극조립체의 상하를 이루는 일면의 면적(mm2)에 대한 비율이 3000 이상인 것을 특징으로 하는 전극조립체.
  4. 제 1 항에 있어서, 상기 전극조립체는 전극조립체의 상하를 이루는 일면의 면적이 20000 mm2 이상인 것을 특징으로 하는 전극조립체.
  5. 제 4 항에 있어서, 상기 전극조립체는 전극조립체의 상하를 이루는 일면의 면적이 25000 mm2 이상인 것을 특징으로 하는 전극조립체.
  6. 제 2 항에 있어서, 전극조립체의 상하를 이루는 일면의 면적은 전극조립체를 이루는 세 축의 길이 중 가장 긴 두 길이의 곱인 것을 특징으로 하는 전극조립체.
  7. 제 1 항에 있어서, 상기 부직포 분리막은 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 등의 폴리에스테르, 아라미드와 같은 폴리아미드, 폴리아세탈, 폴리카보네이트, 폴리이미드, 폴리에테르케톤, 폴리에테르설폰, 폴리페닐렌옥사이드, 폴리페닐렌설파이드, 폴리에틸렌나프탈렌, 폴리테트라 플루오로에틸렌, 폴리플루오린화비닐리덴, 폴리염화비닐, 폴리아크릴로나이트릴, 셀룰로오스, 나일론, 폴리파라페닐렌벤조비스옥사졸, 폴리아릴레트 및 유리로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물로 형성된 것을 특징으로 하는 전극조립체.
  8. 제 1 항에 있어서, 상기 부직포 분리막은 SRS 부직포 분리막인 것을 특징으로 하는 전극조립체.
  9. 제 8 항에 있어서, 상기 SRS 부직포 분리막의 공극률은 45 ~ 90%인 것을 특징으로 하는 전극조립체
  10. 제 9 항에 있어서, 상기 SRS 부직포 분리막의 공극률은 50 ~ 70%인 것을 특징으로 하는 전극조립체.
  11. 제 1 항에 있어서, 상기 화학식 1의 리튬 금속 산화물은 하기 화학식 2로 표시되는 리튬 티타늄 산화물(Lithium Titanium Oxide: LTO)인 것을 특징으로 하는 전극조립체:
    LiaTibO4 (2)
    상기 식에서, 0.5≤a≤3, 1≤b≤2.5 이다.
  12. 제 11 항에 있어서, 상기 리튬 티타늄 산화물은 Li1.33Ti1.67O4 또는 LiTi2O4인 것을 특징으로 하는 전극조립체.
  13. 제 1 항에 있어서, 상기 양극은 양극 활물질로서 하기 화학식 3으로 표시되는 스피넬 구조의 리튬 망간 복합 산화물을 포함하는 고전압 양극인 것을 특징으로 하는 전극조립체:
    LixMyMn2-yO4-zAz (3)
    상기 식에서, 0.9≤x≤1.2, 0<y<2, 0≤z<0.2이고,
    M은 Al, Mg, Ni, Co, Fe, Cr, V, Ti, Cu, B, Ca, Zn, Zr, Nb, Mo, Sr, Sb, W, Ti 및 Bi로 이루어진 군에서 선택되는 하나 이상의 원소이며;
    A는 -1 또는 -2가의 하나 이상의 음이온이다.
  14. 제 13 항에 있어서, 상기 화학식 3의 리튬 망간 복합 산화물은 하기 화학식 4로 표시되는 리튬 니켈 망간 복합 산화물(Lithium Nickel Manganese complex Oxide: LNMO)인 것을 특징으로 하는 전극조립체:
    LixNiyMn2-yO4 (4)
    상기 식에서, 0.9≤x≤1.2, 0.4≤y≤0.5이다.
  15. 제 14 항에 있어서, 상기 화학식 4의 리튬 니켈 망간 복합 산화물은 LiNi0.5Mn1.5O4 또는 LiNi0.4Mn1.6O4인 것을 특징으로 하는 전극조립체.
  16. 제 1 항 내지 제 15 항 중 어느 하나에 따른 전극조립체를 포함하는 것을 특징으로 하는 이차전지.
  17. 제 16 항에 있어서, 상기 이차전지는 리튬 이차전지인 것을 특징으로 하는 이차전지.
  18. 제 16 항에 따른 이차전지를 단위전지로 포함하는 것을 특징으로 하는 전지모듈.
  19. 제 18 항에 따른 전지모듈을 포함하는 것을 특징으로 하는 전지팩.
  20. 제 19 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.
  21. 제 20 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 또는 전력저장용 시스템인 것을 특징으로 하는 디바이스.
KR20130042659A 2012-04-18 2013-04-18 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지 KR101483205B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120040094 2012-04-18
KR1020120040094 2012-04-18

Publications (2)

Publication Number Publication Date
KR20130117348A true KR20130117348A (ko) 2013-10-25
KR101483205B1 KR101483205B1 (ko) 2015-01-16

Family

ID=49636132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130042659A KR101483205B1 (ko) 2012-04-18 2013-04-18 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
KR (1) KR101483205B1 (ko)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238941B4 (de) * 2002-08-24 2013-03-28 Evonik Degussa Gmbh Elektrischer Separator, Verfahren zu dessen Herstellung und Verwendung in Lithium-Hochleistungsbatterien sowie eine den Separator aufweisende Batterie
KR101088268B1 (ko) * 2009-01-30 2011-11-30 한양대학교 산학협력단 나노 튜브 형태의 리튬 티탄 산화물
JP2012033279A (ja) * 2010-07-28 2012-02-16 Nec Energy Devices Ltd リチウムイオン二次電池

Also Published As

Publication number Publication date
KR101483205B1 (ko) 2015-01-16

Similar Documents

Publication Publication Date Title
KR101511935B1 (ko) 이차전지용 전극조립체 및 이를 포함하는 리튬 이차전지
KR101147602B1 (ko) 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지
KR102390657B1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR102600124B1 (ko) 절연필름을 포함하는 전극 조립체, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
KR101502832B1 (ko) 성능이 우수한 리튬 이차전지
KR101603082B1 (ko) 리튬 이차전지용 전극의 제조 방법 및 이를 사용하여 제조되는 전극
KR20190067124A (ko) 리튬 이온 이차 전지용 분리막 및 이를 포함하는 리튬 금속 전지
KR101510078B1 (ko) 전극조립체 및 이를 포함하는 리튬 이차전지
KR101495302B1 (ko) 다층구조 전극 및 그 제조방법
KR20170045173A (ko) 희생 염을 포함하는 리튬 이차전지
KR101506451B1 (ko) 이차전지용 음극
EP3996196A1 (en) Electrode assembly with insulation film formed on tab, manufacturing method thereof, and lithium secondary battery comprising same
KR101684339B1 (ko) 기계적 강도가 향상된 분리막을 포함하는 전극조립체 및 이를 포함하는 리튬 이차전지
KR102322714B1 (ko) 절연층이 형성되어 있는 전극을 포함하는 스택형 전극조립체 및 이를 포함하는 리튬 이차전지
KR101517885B1 (ko) 이차전지의 제조방법 및 이를 사용하여 제조되는 이차전지
KR20160015708A (ko) 희생 염을 포함하는 리튬 이차전지
KR20210029552A (ko) 음극 전극의 전리튬-전소듐화 방법, 전리튬-전소듐화 음극, 및 이를 포함하는 리튬 이차전지
KR101506452B1 (ko) 이차전지용 양극
KR20130116027A (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101493255B1 (ko) 전극의 제조방법 및 이를 사용하여 제조되는 전극
KR101483205B1 (ko) 전해액 함침성 및 안전성이 향상된 전극조립체 및 이를 포함하는 리튬 이차전지
KR20130118243A (ko) 이차전지용 전극
KR101658575B1 (ko) 무기물 코팅층을 포함하는 전극조립체 및 이를 포함하는 이차전지
KR20100071778A (ko) Gtl 촉매를 이용한 전기화학소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 6