KR20130111486A - Substrate for organic electronic device - Google Patents

Substrate for organic electronic device Download PDF

Info

Publication number
KR20130111486A
KR20130111486A KR1020130035488A KR20130035488A KR20130111486A KR 20130111486 A KR20130111486 A KR 20130111486A KR 1020130035488 A KR1020130035488 A KR 1020130035488A KR 20130035488 A KR20130035488 A KR 20130035488A KR 20130111486 A KR20130111486 A KR 20130111486A
Authority
KR
South Korea
Prior art keywords
layer
substrate
organic
electrode layer
scattering
Prior art date
Application number
KR1020130035488A
Other languages
Korean (ko)
Other versions
KR101589344B1 (en
Inventor
이정형
최준례
오덕수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20130111486A publication Critical patent/KR20130111486A/en
Application granted granted Critical
Publication of KR101589344B1 publication Critical patent/KR101589344B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE: A substrate for an organic electronic device is provided to prevent interlayer delamination by effectively relieving a stress generated in a scattering layer and a high refractive layer. CONSTITUTION: A scattering layer (102) is formed on a base material layer (101). An elastic layer (103) is formed between the scattering layer and the base material layer or on the scattering layer. The average thickness of the elastic layer is 10 nm or more. The high refractive layer is formed on the scattering layer or the elastic layer. The refractive index of the high refractive layer for a beam of a wavelength of 550 nm is 1.8 to 3.5.

Description

유기전자소자용 기판{SUBSTRATE FOR ORGANIC ELECTRONIC DEVICE}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a substrate for organic electronic devices,

본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 장치 또는 기판의 제조 방법 및 조명에 관한 것이다.The present application relates to a substrate for an organic electronic device, an organic electronic device, a method of manufacturing the device or the substrate, and an illumination.

유기전자소자(OED; Organic Electronic Device)는, 전류를 전도할 수 있는 유기 재료의 층을 하나 이상 포함하는 소자이다. 유기전자소자의 종류에는 유기발광소자(OLED), 유기태양전지, 유기 감광체(OPC) 또는 유기 트랜지스터 등이 포함된다.An organic electronic device (OED) is a device including one or more layers of organic materials capable of conducting current. Examples of the organic electronic device include an organic light emitting diode (OLED), an organic solar cell, an organic photoconductor (OPC), or an organic transistor.

대표적인 유기전자소자인 유기발광소자는, 통상적으로 기판, 제 1 전극층, 유기층 및 제 2 전극층을 순차로 포함한다. 소위 하부 발광형 소자(bottom emitting device)로 호칭되는 구조에서는, 제 1 전극층이 투명 전극층으로 형성되고, 제 2 전극층이 반사 전극층으로 형성될 수 있다. 또한, 소위 상부 발광형 소자(top emitting device)로 호칭되는 구조에서는 제 1 전극층이 반사 전극층으로 형성되고, 제 2 전극층이 투명 전극층으로 형성되기도 한다. 전극층에 의해서 주입된 전자(electron)와 정공(hole)이 유기층에 존재하는 발광층에서 재결합(recombination)되어 광이 생성될 수 있다. 광은 하부 발광형 소자에서는 기판측으로 상부 발광형 소자에서는 제 2 전극층측으로 방출될 수 있다. 유기발광소자의 구조에서 투명 전극층으로 일반적으로 사용되는 ITO(Indium Tin Oxide), 유기층 및 통상적으로 유리인 기판의 굴절률은 각각 대략적으로 2.0, 1.8 및 1.5 정도이다. 이러한 굴절률의 관계에 의해서, 예를 들어, 하부 발광형의 소자의 발광층에서 생성된 광은 유기층과 제 1 전극층의 계면 또는 기판 내에서 전반사(total internal reflection) 현상 등에 의해 트랩(trap)되고, 매우 소량의 광만이 방출된다. An organic light emitting device, which is a typical organic electronic device, typically includes a substrate, a first electrode layer, an organic layer, and a second electrode layer sequentially. In a structure referred to as a so-called bottom emitting device, the first electrode layer may be formed of a transparent electrode layer, and the second electrode layer may be formed of a reflective electrode layer. In a structure referred to as a top emitting device, the first electrode layer may be formed as a reflective electrode layer, and the second electrode layer may be formed as a transparent electrode layer. Electrons and holes injected by the electrode layer can be recombined in the light emitting layer existing in the organic layer to generate light. Light can be emitted toward the substrate in the bottom emission type device and toward the second electrode layer side in the top emission type device. Refractive indices of ITO (Indium Tin Oxide), an organic layer and a glass substrate, which are generally used as a transparent electrode layer in the structure of an organic light emitting device, are approximately 2.0, 1.8 and 1.5, respectively. Due to the relationship of the refractive indexes, for example, the light generated in the light emitting layer of the bottom emission type device is trapped by the total internal reflection phenomenon or the like at the interface between the organic layer and the first electrode layer or within the substrate, Only a small amount of light is emitted.

이에 따라 광의 방출 효율을 높이기 위해서 산란층이나 산란층과 그 상부에 형성되는 평탄층을 사용하는 기술이 알려져 있다. 통상적으로 산란층 및/또는 평탄층은 높은 굴절률을 가지는 소재로 형성된다. 그런데, 고굴절률 재료의 특성상 소자의 구동 과정 등에서 높은 응력(stress)이 발생하게 되고, 이에 따라 층간에서 박리가 발생하거나, 크랙(crack)이 발생하는 등의 이유로 소자의 내구성이 떨어질 수 있다.Accordingly, in order to increase the light emission efficiency, a technique using a scattering layer, a scattering layer, and a flat layer formed thereon is known. Typically, the scattering layer and / or flat layer are formed of a material having a high refractive index. However, due to the characteristics of the high refractive index material, high stress is generated in the driving process of the device, and thus, the durability of the device may be degraded due to peeling or cracking between layers.

본 출원은, 유기전자소자용 기판, 유기전자장치, 상기 기판 또는 장치의 제조 방법 및 조명을 제공한다.The present application provides a substrate for an organic electronic device, an organic electronic device, a method of manufacturing the substrate or the device, and an illumination.

예시적인 유기전자소자용 기판은, 기재층 및 그 기재층의 상부에 형성되는 산란층을 포함할 수 있다. 상기 기판은, 또한 상기 산란층과 기재층의 사이 또는 상기 산란층상에 형성되어 있는 탄성층을 포함할 수 있다. 본 명세서에서 용어 탄성층은, 23℃의 온도에서의 탄성 계수(Modulus of Elasticity)가 50 GPa 내지 400 GPa인 물질을 포함하여 형성되는 층을 의미한다. 하나의 예시에서 상기 탄성층은, 상기 기술한 산란층이 가지는 탄성 계수와 후술하는 고굴절층이 가지는 탄성 계수의 사이의 범위에서 탄성 계수를 가지는 물질을 포함할 수 있다. 상기 탄성층을 형성하는 물질의 탄성 계수의 다른 하한은, 예를 들면, 70 GPa, 90 GPa, 110 GPa, 130 GPa, 150 GPa, 170 GPa 또는 190 GPa 정도일 수 있다. 또한, 상기 탄성층을 형성하는 물질의 탄성 계수의 다른 상한은, 예를 들면, 390 GPa, 380 GPa, 370 GPa, 360 GPa 또는 350 GPa 정도일 수 있다. 이러한 물질로 형성되는 탄성층은, 소자에서 발생하는 응력을 완화하여 내구성을 향상시킬 수 있다.An exemplary substrate for an organic electronic device may include a base layer and a scattering layer formed on the base layer. The substrate may further include an elastic layer formed between the scattering layer and the base layer or on the scattering layer. As used herein, the term elastic layer refers to a layer formed of a material having a Modulus of Elasticity of 50 GPa to 400 GPa at a temperature of 23 ° C. In one example, the elastic layer may include a material having an elastic modulus within a range between the elastic modulus of the scattering layer described above and the elastic modulus of the high refractive layer described later. Another lower limit of the modulus of elasticity of the material forming the elastic layer may be, for example, about 70 GPa, 90 GPa, 110 GPa, 130 GPa, 150 GPa, 170 GPa, or 190 GPa. In addition, another upper limit of the modulus of elasticity of the material forming the elastic layer may be, for example, about 390 GPa, 380 GPa, 370 GPa, 360 GPa, or 350 GPa. The elastic layer formed of such a material can improve the durability by relieving stress generated in the device.

도 1은, 기재층(101)상에 산란층(102)과 탄성층(103)이 순차 형성되어 있는 경우를 보여주는 예시적인 도면이다. 도 1에서는 탄성층(103)이 산란층(102)의 상부에 형성되어 있는 경우를 보여주고 있지만, 상기 탄성층(103)은 산란층(102)과 기재층(101)의 사이에 존재할 수도 있다.FIG. 1 is an exemplary view illustrating a case in which the scattering layer 102 and the elastic layer 103 are sequentially formed on the base layer 101. In FIG. 1, the elastic layer 103 is formed on the scattering layer 102, but the elastic layer 103 may be present between the scattering layer 102 and the base layer 101. .

상기 기재층으로는 특별한 제한 없이 적절한 소재가 사용될 수 있다. 예를 들어, 하부 발광(bottom emission)형 소자에 적용되는 경우에는, 투광성 기재층, 예를 들면, 가시광 영역의 광에 대한 투과율이 50% 이상인 기재층을 사용할 수 있다. 투광성 기재층으로는, 유리 기재층 또는 투명 고분자 기재층 등이 예시될 수 있다. 유리 기재층으로는, 소다석회 유리, 바륨/스트론튬 함유 유리, 납 유리, 알루미노 규산 유리, 붕규산 유리, 바륨 붕규산 유리 또는 석영 등의 기재층이 예시될 수 있고, 고분자 기재층으로는, PI(polyimide), PEN(Polyethylene naphthalate), PC(polycarbonate), 아크릴 수지, PET(poly(ethylene terephthatle)), PES(poly(ether sulfide)) 또는 PS(polysulfone) 등을 포함하는 기재층이 예시될 수 있으나, 이에 제한되는 것은 아니다. 필요에 따라서 상기 기재층은, 구동용 TFT가 존재하는 TFT 기판일 수도 있다. 기판이 상부 발광(top emission)형 소자에 적용되는 경우에는, 기재층은 반드시 투광성의 기재층일 필요는 없다. 필요한 경우 기재층의 표면 등에는 알루미늄 등을 사용한 반사층이 형성되어 있을 수도 있다. 예를 들어, 전술한 바와 같이 기재층상 전극층의 연필 경도를 높은 수준으로 유지하여야 하는 경우에는, 유리 기재층 등과 같이 강성을 가지는 기재층이 사용될 수 있다.As the base layer, an appropriate material may be used without particular limitation. For example, when applied to a bottom emission device, a light transmissive base layer, for example, a base layer having a transmittance of 50% or more for light in the visible region may be used. As a light transmissive base material layer, a glass base material layer, a transparent polymer base material layer, etc. can be illustrated. Examples of the glass base layer include base layers such as soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, or quartz, and as the polymer base layer, PI ( Substrate layers including polyimide, polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, poly (ethylene terephthatle) (PET), poly (ether sulfide) (PES) or polysulfone (PS) may be exemplified. However, the present invention is not limited thereto. As needed, the said base material layer may be a TFT substrate in which a driving TFT exists. When the substrate is applied to a top emission type device, the base layer does not necessarily need to be a light transmissive base layer. If necessary, a reflective layer made of aluminum or the like may be formed on the surface of the substrate layer or the like. For example, when the pencil hardness of the electrode layer on the base layer should be maintained at a high level as described above, a base layer having rigidity such as a glass base layer may be used.

기재상의 형성되는 산란층은, 예를 들면, 상기 층으로 입사되는 광을 산란, 굴절 또는 회절시킬 수 있는 층이고, 이러한 기능을 가지는 한 어떠한 형태의 층도 적용될 수 있다. The scattering layer formed on the substrate is, for example, a layer capable of scattering, refracting, or diffracting light incident on the layer, and any type of layer can be applied as long as it has such a function.

예를 들면, 산란층은, 매트릭스 물질 및 산란성 영역을 포함하는 층일 수 있다. 도 2는, 산란성 입자로 형성된 산란성 영역(1021) 및 매트릭스 물질(1022)을 포함하는 예시적인 산란층이 기재층(101)에 형성되어 있는 형태를 나타낸다. 본 명세서에서 용어 「산란성 영역」은, 예를 들면, 매트릭스 물질 또는 상기 탄성층 또는 후술하는 평탄층 등과 같은 주위 물질과는 다른 굴절률을 가지고, 또한 적절한 크기를 가져서 입사되는 광을 산란, 굴절 또는 회절시킬 수 있는 영역를 의미할 수 있다. 산란성 영역은, 예를 들면, 상기 굴절률 및 크기를 가지는 입자이거나, 혹은 빈 공간일 수 있다. 예를 들면, 주위 물질과는 다르면서 주위 물질에 비하여 높거나 낮은 굴절률을 가지는 입자를 사용하여 산란성 영역을 형성할 수 있다. 산란성 입자의 굴절률은, 주위 물질, 예를 들면, 상기 매트릭스 물질, 상기 탄성층 및/또는 평탄층과의 굴절률의 차이가 0.3을 초과하거나 또는 0.3 이상일 수 있다. 예를 들면, 산란성 입자는, 1.0 내지 3.5 또는 1.0 내지 3.0 정도의 굴절률을 가질 수 있다. 본 명세서에서 용어 「굴절률」은, 약 550 nm 파장의 광에 대하여 측정한 굴절률이다. 산란성 입자의 굴절률은, 예를 들면, 1.0 내지 1.6 또는 1.0 내지 1.3일 수 있다. 다른 예시에서 산란성 입자의 굴절률은, 2.0 내지 3.5 또는 2.2 내지 3.0 정도일 수 있다. 산란성 입자로는, 예를 들면, 평균 입경이 50 nm 이상, 100 nm 이상, 500 nm 이상 또는 1,000 nm 이상인 입자가 예시될 수 있다. 산란성 입자의 평균 입경은, 예를 들면, 10,000 nm 이하일 수 있다. 산란성 영역은, 또한 상기와 같은 크기를 가지는 빈 공간으로서 공기가 충전되어 있는 공간에 의해서 형성될 수도 있다.For example, the scattering layer can be a layer comprising a matrix material and scattering regions. 2 shows a form in which an exemplary scattering layer comprising a scattering region 1021 formed of scattering particles and a matrix material 1022 is formed in the base layer 101. As used herein, the term “scattering region” has a refractive index different from that of a surrounding material such as, for example, a matrix material or the elastic layer or a flat layer described later, and also has an appropriate size to scatter, refract, or diffract incident light. It can mean an area that can be made. The scattering region may be, for example, a particle having the refractive index and the size, or an empty space. For example, scattering regions can be formed using particles that are different from the surrounding material and have a higher or lower refractive index than the surrounding material. The refractive index of the scattering particles may have a difference in refractive index between the surrounding material, for example, the matrix material, the elastic layer, and / or the flat layer, greater than 0.3 or greater than 0.3. For example, the scattering particles may have a refractive index of about 1.0 to 3.5 or about 1.0 to 3.0. As used herein, the term "refractive index" is a refractive index measured for light having a wavelength of about 550 nm. The refractive index of the scattering particles may be, for example, 1.0 to 1.6 or 1.0 to 1.3. In another example, the refractive index of the scattering particles may be about 2.0 to 3.5 or about 2.2 to 3.0. As the scattering particles, for example, particles having an average particle diameter of 50 nm or more, 100 nm or more, 500 nm or more or 1,000 nm or more can be exemplified. The average particle diameter of the scattering particles may be, for example, 10,000 nm or less. The scattering region may also be formed by a space filled with air as an empty space having such a size.

산란성 입자 또는 영역은, 구형, 타원형, 다면체 또는 무정형과 같은 형상을 가질 수 있으나, 상기 형태는 특별히 제한되는 것은 아니다. 산란성 입자로는, 예를 들면, 폴리스티렌 또는 그 유도체, 아크릴 수지 또는 그 유도체, 실리콘 수지 또는 그 유도체, 또는 노볼락 수지 또는 그 유도체 등과 같은 유기 재료, 또는 실리카, 알루미나, 산화 티탄 또는 산화 지르코늄과 같은 무기 재료를 포함하는 입자 등이 예시될 수 있다. 산란성 입자는, 상기 재료 중에 어느 하나의 재료만을 포함하거나, 상기 중 2종 이상의 재료를 포함하여 형성될 수 있다. 예를 들면, 산란성 입자로 중공 실리카(hollow silica) 등과 같은 중공 입자 또는 코어/셀 구조의 입자도 사용할 수 있다.The scattering particles or regions may have a shape such as a spherical shape, an ellipsoid, a polyhedron, or an amorphous form, but the shape is not particularly limited. As the scattering particles, for example, organic materials such as polystyrene or derivatives thereof, acrylic resins or derivatives thereof, silicone resins or derivatives thereof, or novolak resins or derivatives thereof, or silica, alumina, titanium oxide or zirconium oxide Particles containing an inorganic material and the like can be exemplified. The scattering particles may be formed of only one of the above materials or two or more of the above materials. For example, hollow particles such as hollow silica or particles having a core / cell structure may be used as the scattering particles.

산란층은 산란성 입자 등의 산란성 영역을 유지하는 매트릭스 물질을 추가로 포함할 수 있다. 매트릭스 물질로는, 예를 들면, 기재층 등과 같은 인접하는 다른 소재와 유사한 수준의 굴절률을 가지는 소재 또는 그보다 높은 굴절률을 가지는 소재를 사용하여 형성할 수 있다. 매트릭스 물질은, 예를 들면, 폴리이미드, 플루오렌 고리를 가지는 카도계 수지(caldo resin), 우레탄, 에폭시드, 폴리에스테르 또는 아크릴레이트 계열의 열 또는 광경화성의 단량체성, 올리고머성 또는 고분자성 유기 재료나 산화 규소, 질화 규소(silicon nitride), 옥시질화 규소(silicon oxynitride) 또는 폴리실록산 등의 무기 재료 또는 유무기 복합 재료 등을 사용할 수 있다.The scattering layer may further comprise a matrix material that retains the scattering region, such as scattering particles. As the matrix material, for example, a material having a refractive index similar to that of another adjacent material such as a base material layer or a material having a higher refractive index may be formed. The matrix material is, for example, a polyimide, a cardo resin having a fluorene ring, a urethane, an epoxide, a polyester or an acrylate-based thermal or photocurable monomeric, oligomeric or polymeric organic A material, an inorganic material such as silicon oxide, silicon nitride, silicon oxynitride or polysiloxane, or an organic-inorganic composite material can be used.

매트릭스 물질은, 폴리실록산, 폴리아믹산 또는 폴리이미드를 포함할 수 있다. 상기에서 폴리실록산은, 예를 들면, 축합성 실란 화합물 또는 실록산 올리고머 등을 중축합시켜서 형성할 수 있으며, 상기를 통해 규소와 산소의 결합(Si-O)에 기반한 매트릭스 물질을 형성할 수 있다. 매트릭스 물질의 형성 과정에서 축합 조건 등을 조절하여 폴리실록산이 실록산 결합(Si-O)만을 기반으로 하도록 하거나, 혹은 알킬기 등과 같은 유기기나 알콕시기 등과 같은 축합성 관능기 등이 일부 잔존하도록 하는 것도 가능하다.The matrix material may comprise polysiloxane, polyamic acid or polyimide. The polysiloxane may be formed by, for example, polycondensing a condensable silane compound or a siloxane oligomer, and may form a matrix material based on a bond between silicon and oxygen (Si-O) through the above. It is also possible to control the condensation conditions and the like in the process of forming the matrix material so that the polysiloxane is based only on the siloxane bond (Si-O), or the condensed functional group such as an organic group such as an alkyl group or an alkoxy group remains.

폴리아믹산 또는 폴리이미드로는, 예를 들면, 633 nm의 파장의 광에 대한 굴절률이 약 1.5 이상, 약 1.6 이상, 약 1.65 이상 또는 약 1.7 이상인 폴리아믹산 또는 폴리이미드를 사용할 수 있다. 이러한 고굴절의 폴리아믹산 또는 폴리이미드는, 예를 들면, 불소 이외의 할로겐 원자, 황 원자 또는 인 원자 등이 도입된 단량체를 사용하여 제조할 수 있다. 예를 들면, 카복실기 등과 같이 입자와 결합할 수 있는 부위가 존재하여 입자의 분산 안정성을 향상시킬 수 있는 폴리아믹산을 사용할 수 있다. 폴리아믹산으로는, 예를 들면, 하기 화학식 1의 반복 단위를 포함하는 화합물을 사용할 수 있다.As the polyamic acid or polyimide, for example, a polyamic acid or polyimide having a refractive index of about 1.5 or more, about 1.6 or more, about 1.65 or more, or about 1.7 or more can be used. Such high refractive polyamic acid or polyimide can be produced using, for example, a monomer into which a halogen atom, a sulfur atom or a phosphorus atom other than fluorine is introduced. For example, a polyamic acid capable of improving the dispersion stability of the particles may be used because there is a site capable of bonding with the particles such as a carboxyl group. As the polyamic acid, for example, a compound containing a repeating unit represented by the following formula (1) can be used.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

화학식 1에서 n은 양의 수이다.In formula 1 n is a positive number.

상기 반복 단위는 임의적으로 하나 이상의 치환기에 의해 치환되어 있을 수 있다. 치환기로는, 불소 외의 할로겐 원자, 페닐기, 벤질기, 나프틸기 또는 티오페닐기 등과 같은 할로겐 원자, 황 원자 또는 인 원자 등을 포함하는 관능기가 예시될 수 있다.The repeating unit may be optionally substituted by one or more substituents. Examples of the substituent include functional groups including a halogen atom other than fluorine, a halogen atom such as a phenyl group, a benzyl group, a naphthyl group or a thiophenyl group, a sulfur atom or a phosphorus atom.

폴리아믹산은, 상기 화학식 1의 반복 단위만으로 형성되는 단독 중합체이거나, 화학식 1의 반복 단위 외의 다른 단위를 함께 포함하는 블록 또는 랜덤 공중합체일 수 있다. 공중합체의 경우에 다른 반복 단위의 종류나 비율은 예를 들면, 목적하는 굴절률, 내열성이나 투광율 등을 저해하지 않는 범위에서 적절하게 선택될 수 있다. The polyamic acid may be a homopolymer formed only from the repeating unit represented by the formula (1), or may be a block or a random copolymer including units other than the repeating unit represented by the formula (1). In the case of a copolymer, the kind and ratio of other repeating units can be appropriately selected within a range that does not impair the desired refractive index, heat resistance, and light transmittance, for example.

화학식 1의 반복 단위의 구체적인 예로는, 하기 화학식 2의 반복 단위를 들 수 있다.Specific examples of the repeating unit of the formula (1) include repeating units of the following formula (2).

[화학식 2](2)

Figure pat00002
Figure pat00002

화학식 2에서 n은 양의 수이다.N in the formula (2) is a positive number.

상기 폴리아믹산은 예를 들면, GPC(Gel Permeation Chromatograph)로 측정한 표준 폴리스티렌 환산 중량평균분자량이 10,000 내지 100,000 또는 약 10,000 내지 50,000 정도일 수 있다. 화학식 1의 반복 단위를 가지는 폴리아믹산은 또한, 가시 광선 영역에서의 광 투과율이 80% 이상, 85% 이상 또는 90% 이상이며, 내열성이 우수하다.The polyamic acid may have a weight average molecular weight of about 10,000 to about 100,000 or about 10,000 to about 50,000, for example, in terms of standard polystyrene measured by GPC (Gel Permeation Chromatograph). The polyamic acid having the repeating unit represented by the formula (1) has a light transmittance of not less than 80%, not less than 85%, or not less than 90% in the visible light region and is excellent in heat resistance.

산란층은, 예를 들면, 요철 구조를 가지는 층일 수 있다. 도 3은, 기재층(101)상에 형성된 요철 구조의 산란층(102)을 예시적으로 보여주는 도면이다. 산란층의 요철 구조를 적절하게 조절할 경우에 입사 광을 산란시킬 수 있다. 요철 구조를 가지는 산란층은, 예를 들면, 열 또는 광 경화성 재료를 경화시키는 과정에서 목적하는 형상의 요철 구조를 전사할 수 있는 금형과 접촉시킨 상태로 상기 재료를 경화시키거나, 산란층을 형성할 재료의 층을 미리 형성한 후에 에칭 공정 등을 통해 요철 구조를 형성하여 제조할 수 있다. 다른 방식으로는 산란층을 형성하는 바인더 내에 적절한 크기 및 형상을 가지는 입자를 배합하는 방식으로 형성할 수도 있다. 이러한 경우에 상기 입자는 반드시 산란 기능을 가지는 입자일 필요는 없으나, 산란 기능을 가지는 입자를 사용하여도 무방하다.The scattering layer may be, for example, a layer having an uneven structure. 3 is a diagram illustrating a scattering layer 102 having an uneven structure formed on the base layer 101. Incident light can be scattered when the uneven structure of the scattering layer is appropriately adjusted. The scattering layer having a concave-convex structure, for example, hardens the material or forms a scattering layer in contact with a mold capable of transferring the concave-convex structure of a desired shape in the course of curing the heat or photocurable material. After forming a layer of the material to be formed in advance, it can be produced by forming an uneven structure through an etching process or the like. Alternatively, it may be formed by incorporating particles having a suitable size and shape into the binder forming the scattering layer. In this case, the particles need not necessarily be particles having a scattering function, but particles having a scattering function may be used.

산란층은, 예를 들면, 습식 코팅(wet coating) 방식으로 재료를 코팅하고, 열의 인가 또는 광의 조사 등의 방식이나, 졸겔 방식으로 재료를 경화시키는 방식, CVD(Chemical Vapor Deposition) 또는 PVD(Physical Vapor Deposition) 방식 등과 같은 증착 방식 또는 나노임프린팅 또는 마이크로엠보싱 방식 등을 통하여 형성할 수 있다.The scattering layer may be, for example, a material coated by a wet coating method, a method of applying heat or irradiating light, or a method of curing the material by a sol-gel method, a chemical vapor deposition (CVD) or a physical PVD (Physical method). Vapor Deposition) may be formed through a deposition method such as a method or nanoimprinting or a microembossing method.

산란층은, 필요한 경우 고굴절 입자를 추가로 포함할 수 있다. 용어 「고굴절 입자」는, 예를 들면, 굴절률이 1.5 이상, 2.0 이상 2.5 이상, 2.6 이상 또는 2.7 이상인 입자를 의미할 수 있다. 고굴절 입자의 굴절률의 상한은, 예를 들면, 목적하는 산란층의 굴절률을 만족시킬 수 있는 범위에서 선택될 수 있다. 고굴절 입자는, 예를 들면, 상기 산란성 입자보다는 작은 평균 입경을 가질 수 있다. 고굴절 입자는, 예를 들면, 1 nm 내지 100 nm, 10 nm 내지 90 nm, 10 nm 내지 80 nm, 10 nm 내지 70 nm, 10 nm 내지 60 nm, 10 nm 내지 50 nm 또는 10 nm 내지 45 nm 정도의 평균 입경을 가질 수 있다. 고굴절 입자로는, 알루미나, 알루미노 실리케이트, 산화 티탄 또는 산화 지르코늄 등이 예시될 수 있다. 고굴절 입자로는, 예를 들면, 굴절률이 2.5 이상인 입자로서, 루틸형 산화 티탄을 사용할 수 있다. 루틸형의 산화 티탄은 여타의 입자에 비하여 높은 굴절률을 가지고, 따라서 상대적으로 적은 비율로도 목적하는 굴절률로의 조절이 가능할 수 있다.The scattering layer may further comprise high refractive particles, if necessary. The term "high refractive particles" may mean, for example, particles having a refractive index of 1.5 or more, 2.0 or more, 2.5 or more, 2.6 or more, or 2.7 or more. The upper limit of the refractive index of the high refractive particles may be selected, for example, in a range capable of satisfying the refractive index of the desired scattering layer. The high refractive particles may, for example, have a smaller average particle diameter than the scattering particles. The high refractive index particles may be, for example, from 1 nm to 100 nm, from 10 nm to 90 nm, from 10 nm to 80 nm, from 10 nm to 70 nm, from 10 nm to 60 nm, from 10 nm to 50 nm, Of the average particle diameter. As the high refractive particles, alumina, aluminosilicate, titanium oxide or zirconium oxide and the like can be exemplified. As the high refractive index particles, for example, rutile titanium oxide can be used as the particles having a refractive index of 2.5 or more. The rutile-type titanium oxide has a higher refractive index than other particles, and therefore, it is possible to adjust the refractive index to a desired value at a relatively small ratio.

상기 산란층의 상부 또는 상기 산란층과 기재층의 사이에는 상기 탄성층이 형성된다. 탄성층은, 예를 들면, 상기 기술한 범위의 탄성 계수를 가지는 물질의 층을 상기 산란층의 상부 또는 산란층이 형성되기 전의 기재층의 상부에 형성하여 형성할 수 있다. 상기 탄성 계수를 가지는 물질로는, 예를 들면, TiO2, Si3N4, MgO, Al2O3, ZnO 또는 ZrO2 등이 사용될 수 있지만, 이에 제한되는 것은 아니다. 상기와 같은 물질의 층은, 예를 들면, 상기 물질을 통상의 증착 방식으로 증착시켜 형성할 수 있다. 상기와 같이 형성된 탄성층의 두께는 특별히 제한되지 않고, 예를 들면, 응력 완화 효율 등을 고려하여 변경될 수 있다. 예를 들면, 탄성층의 평균 두께는 10 nm 이상의 범위 내에서 조절될 수 있지만, 이에 제한되는 것은 아니다. 상기 평균 두께의 상한은 특별히 제한되지 않고, 목적하는 투명성이나 탄성 특성 등을 고려하여 조절될 수 있다.The elastic layer is formed on the scattering layer or between the scattering layer and the base layer. The elastic layer can be formed, for example, by forming a layer of a material having an elastic modulus in the above-described range on top of the scattering layer or on the base layer before the scattering layer is formed. As the material having the elastic modulus, for example, TiO 2 , Si 3 N 4 , MgO, Al 2 O 3 , ZnO, or ZrO 2 may be used, but is not limited thereto. The layer of such material may be formed, for example, by depositing the material in a conventional deposition manner. The thickness of the elastic layer formed as described above is not particularly limited, and may be changed in consideration of, for example, stress relaxation efficiency. For example, the average thickness of the elastic layer can be adjusted within the range of 10 nm or more, but is not limited thereto. The upper limit of the average thickness is not particularly limited and may be adjusted in consideration of desired transparency or elastic properties.

한편, 광추출 효율을 고려하여 상기 탄성층을 형성하는 물질로는, 인접하는 전극층 또는 후술하는 고굴절층과 유사한 범위의 굴절률을 가지는 물질을 사용할 수 있다. Meanwhile, as the material for forming the elastic layer in consideration of light extraction efficiency, a material having a refractive index in a range similar to that of an adjacent electrode layer or a high refractive layer described later may be used.

예를 들면, 상기 탄성층은, 상기 언급한 탄성 계수를 가지는 소재 중에서 굴절률이 1.7 이상, 1.8 내지 3.5 또는 2.2 내지 3.0 정도인 물질을 사용하여 형성할 수 있다. 물질의 굴절률을 상기와 같이 조절하여 보다 우수한 광추출 효율을 가지는 소자를 제공할 수 있다.For example, the elastic layer may be formed using a material having a refractive index of 1.7 or more, 1.8 to 3.5, or 2.2 to 3.0 among the materials having the above-described elastic modulus. By adjusting the refractive index of the material as described above can provide a device having a better light extraction efficiency.

필요한 경우 상기 산란층 또는 탄성층의 상부에는 고굴절층이 형성될 수 있다. 본 명세서에서 용어 고굴절층은 550 nm의 파장에 대한 굴절률이 1.7 이상, 1.8 내지 3.5 또는 2.2 내지 3.0 정도인 층을 의미할 수 있다. 상기 고굴절층은, 예를 들면, 후술하는 전극층 등 다른 요소가 형성될 수 있는 평탄한 표면을 제공하는 평탄층일 수 있다. If necessary, a high refractive layer may be formed on the scattering layer or the elastic layer. As used herein, the term high refractive index layer may mean a layer having a refractive index of 1.7 or more, 1.8 to 3.5, or 2.2 to 3.0 for a wavelength of 550 nm. The high refractive layer may be, for example, a flat layer providing a flat surface on which other elements such as an electrode layer to be described later may be formed.

고굴절층은, 예를 들면, 상기 산란층 항목에서 기술한 매트릭스 물질과 고굴절 입자를 혼합한 소재를 사용하여 형성할 수 있다.The high refractive layer can be formed using, for example, a material in which the matrix material and the high refractive particles described in the scattering layer section are mixed.

다른 예시에서 고굴절층은, 지르코늄, 티탄 또는 세륨 등의 금속의 알콕시드 또는 아실레이트(acylate) 등의 화합물을 카복실기 또는 히드록시기 등의 극성기를 가지는 바인더와 배합한 소재를 사용하여 형성할 수도 있다. 상기 알콕시드 또는 아실레이트 등의 화합물은 바인더에 있는 극성기와 축합 반응하고, 바인더의 골격 내에 상기 금속을 포함시켜 고굴절률을 구현할 수 있다. 상기 알콕시드 또는 아실레이트 화합물의 예로는, 테트라-n-부톡시 티탄, 테트라이소프로폭시 티탄, 테트라-n-프로폭시 티탄 또는 테트라에톡시 티탄 등의 티탄 알콕시드, 티탄 스테아레이트(stearate) 등의 티탄 아실레이트, 티탄 킬레이트류, 테트라-n-부톡시지르코늄, 테트라-n-프로폭시 지르코늄, 테트라이소프로폭시 지르코늄 또는 테트라에톡시 지르코늄 등의 지르코늄 알콕시드, 지르코늄 트리부톡시스테아레이트 등의 지르코늄 아실레이트, 지르코늄 킬레이트류 등이 예시될 수 있다. 고굴절층은, 또한 티탄 알콕시드 또는 지르코늄 알콕시드 등의 금속 알콕시드 및 알코올 또는 물 등의 용매를 배합하여 코팅액을 제조하고, 이를 도포한 후에 적정한 온도에서 소성하는 졸겔 코팅 방식으로 형성할 수도 있다.In another example, the high refractive layer may be formed using a material in which a compound such as alkoxide or acylate of a metal such as zirconium, titanium or cerium is combined with a binder having a polar group such as a carboxyl group or a hydroxy group. Compounds such as alkoxides or acylates may be condensed with the polar groups in the binder, and the high refractive index may be realized by including the metal in the binder. Examples of the alkoxide or acylate compound include titanium alkoxides such as tetra-n-butoxy titanium, tetraisopropoxy titanium, tetra-n-propoxy titanium or tetraethoxy titanium, titanium stearate and the like. Zirconium such as zirconium alkoxide, zirconium tributoxy stearate such as titanium acylate, titanium chelates, tetra-n-butoxy zirconium, tetra-n-propoxy zirconium, tetraisopropoxy zirconium or tetraethoxy zirconium Acylate, zirconium chelates, etc. can be illustrated. The high refractive index layer may also be formed by a sol-gel coating method in which a metal alkoxide such as titanium alkoxide or zirconium alkoxide and a solvent such as alcohol or water are prepared to prepare a coating liquid, and then applied and fired at an appropriate temperature.

유기전자소자용 기판은, 상기 산란층, 탄성층 및/또는 고굴절층(이하, 이러한 층들을 간략하게 기능성층이라 호칭한다.)의 상부에 형성되는 전극층을 또한 포함할 수 있다. The substrate for an organic electronic device may further include an electrode layer formed on the scattering layer, the elastic layer and / or the high refractive layer (hereinafter, these layers will be referred to simply as the functional layer).

도 4 및 5는, 기재층(101)상에 상기 기능성층(301)과 전극층(302)이 순차로 형성되어 있는 구조를 포함하는 예시적인 기판을 나타낸다. 도면에서와 같이 기능성층(301)은, 상기 기재층(101)에 비하여 작은 투영 면적을 가지고, 전극층(302)은 상기 기능성층(301)에 비하여 넓은 투영 면적을 가질 수 있다. 본 명세서에서 용어 「투영 면적」은, 기판을 상기 기판 표면의 법선 방향의 상부에서 관찰하였을 때에 인지되는 대상물의 투영의 면적, 예를 들면, 상기 기재층, 기능성층 또는 전극층 등의 면적을 의미한다. 따라서, 예를 들어, 기능성층의 표면이 요철 형상으로 형성되어 있는 등의 이유로 실질적인 표면적은 전극층에 비하여 넓은 경우에도 기능성층을 상부에서 관찰하였을 경우에 인지되는 면적이 상기 전극층을 상부에서 관찰하였을 경우에 인지되는 면적에 비하여 작다면 기능성층은 전극층에 비하여 작은 투영 면적을 가지는 것으로 해석된다. 4 and 5 show an exemplary substrate including a structure in which the functional layer 301 and the electrode layer 302 are sequentially formed on the substrate layer 101. As shown in the drawing, the functional layer 301 may have a smaller projected area than the base layer 101, and the electrode layer 302 may have a larger projected area than the functional layer 301. As used herein, the term "projection area" refers to the area of the projection of the object recognized when the substrate is observed from the top of the substrate surface in the normal direction, for example, the area of the base layer, the functional layer, or the electrode layer. . Therefore, for example, when the surface of the functional layer is formed in an uneven shape, the actual surface area is larger than that of the electrode layer, but the area recognized when the functional layer is observed from above is observed from the top. The functional layer is interpreted to have a smaller projected area than the electrode layer if it is smaller than the area perceived as.

기능성층은 기재층에 비하여 투영 면적이 작고, 또한 전극층에 비하여 투영 면적이 작게 된다면 다양한 형태로 존재할 수 있다. 예를 들면, 기능성층(301)은 도 4와 같이 기재층(101)의 테두리를 제외한 부분에만 형성되어 있거나, 도 5와 같이 기재층(101)의 테두리에 기능성층(302)이 일부 잔존할 수도 있다. The functional layer may exist in various forms as long as the projected area is smaller than that of the base layer and the projected area is smaller than that of the electrode layer. For example, the functional layer 301 may be formed only at a portion excluding the edge of the base layer 101 as shown in FIG. 4, or part of the functional layer 302 may remain at the edge of the base layer 101 as shown in FIG. 5. It may be.

도 6은, 도 4의 기판을 상부에서 관찰한 경우를 예시적으로 보여주는 도면이다. 도 6에 나타난 바와 같이 기판을 상부에서 관찰할 때에 인지되는 전극층(302)의 면적(A), 즉 전극층(302)의 투영 면적(A)은 그 하부에 있는 기능성층(301)의 투영 면적(B)에 비하여 넓다. 전극층의 투영 면적(A) 및 상기 기능성층의 투영 면적(B)의 비율(A/B)은, 예를 들면, 1.04 이상, 1.06 이상, 1.08 이상, 1.1 이상 또는 1.15 이상일 수 있다. 기능성층의 투영 면적이 전극층의 투영 면적에 비하여 작다면, 후술하는 기능성층이 외부로 노출되지 않는 구조의 구현이 가능하기 때문에 상기 투영 면적의 비율(A/B)의 상한은 특별히 제한되지 않는다. 일반적인 기판의 제작 환경을 고려하면 상기 비율(A/B)의 상한은, 예를 들면, 약 2.0, 약 1.5, 약 1.4, 약 1.3 또는 약 1.25일 수 있다. 기판에서 전극층은 기능성층이 형성되어 있지 않은 상기 기재층의 상부에도 형성되어 있을 수 있다. 상기 전극층은 상기 기재층과 접하여 형성되어 있거나, 혹은 추가적인 요소를 포함하여 형성되어 있을 수 있다. 이러한 구조에 의하여 유기전자소자의 구현 시에 기능성층이 외부로 노출되지 않은 구조를 구현할 수 있다. 6 is a diagram illustrating a case where the substrate of FIG. 4 is observed from the top. As shown in FIG. 6, the area A of the electrode layer 302 perceived when the substrate is viewed from above, that is, the projected area A of the electrode layer 302, is the projected area of the functional layer 301 below it. Wider than B) The ratio A / B of the projected area A of the electrode layer and the projected area B of the functional layer may be, for example, 1.04 or more, 1.06 or more, 1.08 or more, 1.1 or more, or 1.15 or more. If the projected area of the functional layer is smaller than the projected area of the electrode layer, the upper limit of the ratio A / B of the projected area is not particularly limited because a structure in which the functional layer described later is not exposed to the outside can be implemented. In consideration of a general substrate manufacturing environment, the upper limit of the ratio A / B may be, for example, about 2.0, about 1.5, about 1.4, about 1.3, or about 1.25. In the substrate, the electrode layer may be formed on an upper portion of the base layer on which the functional layer is not formed. The electrode layer may be formed in contact with the base layer, or may include an additional element. By such a structure, it is possible to implement a structure in which the functional layer is not exposed to the outside when the organic electronic device is implemented.

예를 들어, 도 6과 같이 전극층(302)은, 상부에서 관찰한 때에 기능성층(301)의 모든 주변부를 벗어난 영역을 포함하는 영역까지 형성되어 있을 수 있다. 이 경우, 예를 들어, 도 5와 같이 기재층상에 복수의 기능성층이 존재할 경우에는 상기 기능성층 중에서 적어도 하나의 기능성층, 예를 들면, 후술하는 바와 같이 적어도 그 상부에 유기층이 형성될 기능성층의 모든 주변부를 벗어난 영역을 포함하는 영역까지 전극층이 형성될 수 있다. 예를 들어, 도 5의 구조에서 우측과 좌측의 테두리에 존재하는 기능성층의 상부에도 유기층이 형성된다면, 도 5의 구조는 좌측과 우측으로 연장되어 상기 우측과 좌측의 테두리에 존재하는 기능성층의 모든 주변주를 벗어난 영역까지 전극층이 형성되도록 구조가 변경될 수 있다. 상기와 같은 구조에서 하부에 기능성층이 형성되어 있지 않은 전극층에 후술하는 봉지 구조를 부착하면, 기능성층이 외부로 노출되지 않는 구조를 형성할 수 있다.For example, as shown in FIG. 6, the electrode layer 302 may be formed up to an area including an area deviating from all peripheral portions of the functional layer 301 when viewed from above. In this case, for example, when there are a plurality of functional layers on the substrate layer as shown in FIG. 5, at least one functional layer among the functional layers, for example, a functional layer in which an organic layer is formed at least thereon as described below. The electrode layer may be formed up to an area including an area beyond all periphery of the. For example, in the structure of FIG. 5, if the organic layer is formed on the top of the functional layer existing on the right and left edges, the structure of FIG. 5 extends to the left and right sides of the functional layer existing on the right and left edges. The structure can be changed so that the electrode layer is formed up to an area beyond all peripheral circumferences. In the above structure, when the encapsulation structure described below is attached to the electrode layer on which the functional layer is not formed, the functional layer may not be exposed to the outside.

전극층은, 유기전자소자의 제작에 사용되는 통상적인 정공 주입성 또는 전자 주입성 전극층일 수 있다.The electrode layer may be a conventional hole injecting or electron injecting electrode layer used for manufacturing an organic electronic device.

정공 주입성인 전극층은, 예를 들면, 상대적으로 높은 일 함수(work function)를 가지는 재료를 사용하여 형성할 수 있고, 필요한 경우에 투명 재료를 사용하여 형성할 수 있다. 예를 들면, 정공 주입성 전극층은, 일 함수가 약 4.0 eV 이상인 금속, 합금, 전기 전도성 화합물 또는 상기 중 2종 이상의 혼합물을 포함할 수 있다. 이러한 재료로는, 금 등의 금속, CuI, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZTO(Zinc Tin Oxide), 알루미늄 또는 인듐이 도핑된 아연 옥사이드, 마그네슘 인듐 옥사이드, 니켈 텅스텐 옥사이드, ZnO, SnO2 또는 In2O3 등의 산화물 재료나, 갈륨 니트라이드와 같은 금속 니트라이드, 아연 세레나이드 등과 같은 금속 세레나이드, 아연 설파이드와 같은 금속 설파이드 등이 예시될 수 있다. 투명한 정공 주입성 전극층은, 또한, Au, Ag 또는 Cu 등의 금속 박막과 ZnS, TiO2 또는 ITO 등과 같은 고굴절의 투명 물질의 적층체 등을 사용하여서도 형성할 수 있다.The electrode layer capable of injecting holes can be formed using, for example, a material having a relatively high work function, and can be formed using a transparent material when necessary. For example, the hole-injecting electrode layer may comprise a metal, an alloy, an electrically conductive compound or a mixture of two or more thereof having a work function of about 4.0 eV or more. As such a material, metal such as gold, CuI, indium tin oxide (ITO), indium zinc oxide (IZO), zinc tin oxide (ZTO), zinc oxide doped with aluminum or indium, magnesium indium oxide, nickel tungsten oxide, Metal oxides such as ZnO, SnO 2 or In 2 O 3 , metal serrides such as gallium nitride and zinc selenide, and metal sulfides such as zinc sulfide. The transparent positive hole injecting electrode layer can also be formed using a metal thin film of Au, Ag or Cu and a laminate of a transparent material of high refractive index such as ZnS, TiO 2 or ITO.

정공 주입성 전극층은, 증착, 스퍼터링, 화학 증착 또는 전기화학적 수단 등의 임의의 수단으로 형성될 수 있다. 또한, 필요에 따라서 형성된 전극층은 공지된 포토리소그래피나 새도우 마스크 등을 사용한 공정을 통하여 패턴화될 수도 있다. The hole injecting electrode layer may be formed by any means such as vapor deposition, sputtering, chemical vapor deposition or electrochemical means. In addition, the electrode layer formed according to need may be patterned through a process using known photolithography, shadow mask, or the like.

전자 주입성 투명 전극층은, 예를 들면, 상대적으로 작은 일 함수를 가지는 투명 재료를 사용하여 형성할 수 있으며, 예를 들면, 상기 정공 주입성 전극층의 형성을 위해 사용되는 소재 중에서 적절한 소재를 사용하여 형성할 수 있으나, 이에 제한되는 것은 아니다. 전자 주입성 전극층도, 예를 들면, 증착법 또는 스퍼터링법 등을 사용하여 형성할 수 있으며, 필요한 경우에 적절히 패터닝될 수 있다. The electron injecting transparent electrode layer can be formed using, for example, a transparent material having a relatively small work function. For example, a material suitable for forming the hole injecting electrode layer can be formed using a suitable material But is not limited thereto. The electron injecting electrode layer can also be formed using, for example, a vapor deposition method or a sputtering method, and can be appropriately patterned when necessary.

전극층의 두께는 특별히 제한되는 것은 아니지만, 상기 언급한 전극층간의 저항 등을 고려하여, 예를 들면, 약 90 nm 내지 200 nm, 90 nm 내지 180 nm 또는 약 90 nm 내지 150 nm 정도의 두께를 가지도록 형성될 수 있다.The thickness of the electrode layer is not particularly limited, but in consideration of the above-mentioned resistance between the electrode layers, for example, to have a thickness of about 90 nm to 200 nm, 90 nm to 180 nm or about 90 nm to 150 nm. Can be formed.

본 출원은 또한 유기전자장치에 관한 것이다. 본 출원의 예시적인 유기전자장치는, 상기 기술한 유기전자소자용 기판; 및 상기 기판상, 예를 들면, 상기 산란층, 탄성층, 고굴절층 또는 전극층상에 형성되어 있는 유기층; 및 상기 유기층상에 형성되어 있는 전극층을 포함할 수 있다. 이하에서는 구별을 위하여 기판상에 형성되는 전극층을 제 1 전극층으로 호칭하고, 상기 유기층상에 형성되어 있는 전극층을 제 2 전극층이라고 호칭할 수 있다. 상기 기판을 포함하는 유기전자장치에서 제 1 전극층의 투영 면적은 상기 기판의 기능성층의 투영 면적보다 넓으며, 상기 전극층은 상기 기능성층이 형성되어 있지 않은 상기 기재층의 면상에도 형성되어 있을 수 있다. The present application also relates to an organic electronic device. Exemplary organic electronic devices of the present application, the substrate for an organic electronic device described above; And an organic layer formed on the substrate, for example, on the scattering layer, elastic layer, high refractive layer, or electrode layer; And an electrode layer formed on the organic layer. In the following description, an electrode layer formed on a substrate may be referred to as a first electrode layer, and an electrode layer formed on the organic layer may be referred to as a second electrode layer. In the organic electronic device including the substrate, the projected area of the first electrode layer may be larger than the projected area of the functional layer of the substrate, and the electrode layer may be formed on the surface of the base layer on which the functional layer is not formed. .

유기층은 적어도 발광층을 포함할 수 있다. 예를 들어, 제 1 전극층을 투명하게 구현하고, 제 2 전극층을 반사성 전극층으로 하면 유기층의 발광층에서 발생한 광이 기능성층을 거쳐서 기재층측으로 방사되는 하부 발광형 소자를 구현할 수 있다. The organic layer may include at least a light emitting layer. For example, when the first electrode layer is transparently formed and the second electrode layer is a reflective electrode layer, a lower light emitting device in which light generated in the light emitting layer of the organic layer is radiated to the base layer side through the functional layer may be implemented.

유기전자장치에서 기능성층은, 예를 들면, 발광층의 발광 영역에 대응되거나 발광 영역보다 큰 투영 면적을 가질 수 있다. 예를 들어, 기능성층의 형성 영역의 길이(B)와 발광층의 발광 영역의 길이(C)의 차이(B-C)는 약 10 ㎛ 내지 약 2 mm 정도일 수 있다. 상기에서 기능성층의 형성 영역의 길이(B)는 기능성층을 상부에서 관찰할 때에 인지되는 영역에서 임의의 방향에서의 길이이고, 이 경우 발광 영역의 길이(C)는 역시 발광 영역을 상부에서 관찰할 때에 인지되는 영역을 기준으로 상기 기능성층의 형성 영역의 길이(B)를 측정할 때에 동일한 방향에서 측정한 길이를 의미할 수 있다. 기능성층은 또한 상기 발광 영역에 대응되는 위치에 형성될 수 있다. 발광 영역에 대응되는 위치에 기능성층이 형성되어 있다는 것은, 예를 들면, 유기전자장치를 상부 또는 하부에서 관찰하는 경우에 발광 영역과 기능성층이 실질적으로 서로 겹쳐지는 경우를 의미할 수 있다. In the organic electronic device, the functional layer may have, for example, a projection area corresponding to or larger than the emission area of the emission layer. For example, the difference B-C between the length B of the formation region of the functional layer and the length C of the emission region of the light emitting layer may be about 10 μm to about 2 mm. In the above, the length B of the formation region of the functional layer is a length in an arbitrary direction in the region recognized when the functional layer is observed from the top, in which case the length C of the light emitting region is also observed from the top. The length measured in the same direction when measuring the length (B) of the formation region of the functional layer on the basis of the region recognized when the. The functional layer may also be formed at a position corresponding to the light emitting region. The formation of the functional layer at a position corresponding to the emission area may mean, for example, that the emission area and the functional layer substantially overlap each other when the organic electronic device is observed from above or below.

하나의 예시에서 유기전자소자는 유기발광소자(OLED)일 수 있다. 유기발광소자인 경우, 상기 유기전자소자는, 예를 들면, 발광층을 적어도 포함하는 유기층이 정공 주입 전극층과 전자 주입 전극층의 사이에 개재된 구조를 가질 수 있다. 예를 들어, 기판에 포함되는 전극층이 정공 주입 전극층이면, 제 2 전극층은 전자 주입 전극층이고, 반대로 기판에 포함되는 전극층이 전자 주입 전극층이면, 제 2 전극층은 정공 주입성 전극층일 수 있다.In one example, the organic electronic device may be an organic light emitting diode (OLED). In the case of an organic light emitting device, for example, the organic electronic device may have a structure in which an organic layer including at least a light emitting layer is interposed between the hole injection electrode layer and the electron injection electrode layer. For example, if the electrode layer included in the substrate is a hole injection electrode layer, the second electrode layer may be an electron injection electrode layer. On the contrary, if the electrode layer included in the substrate is an electron injection electrode layer, the second electrode layer may be a hole injection electrode layer.

전자 및 정공 주입성 전극층의 사이에 존재하는 유기층은, 적어도 1층 이상의 발광층을 포함할 수 있다. 유기층은 2층 이상의 복수의 발광층을 포함할 수도 있다. 2층 이상의 발광층을 포함되는 경우에는, 발광층들은 전하 발생 특성을 가지는 중간 전극층이나 전하 발생층(CGL; Charge Generating Layer) 등에 의해 분할되어 있는 구조를 가질 수도 있다.The organic layer present between the electron and hole injecting electrode layers may include at least one luminescent layer. The organic layer may include a plurality of light emitting layers of two or more layers. When two or more light emitting layers are included, the light emitting layers may have a structure in which the light emitting layers are divided by an intermediate electrode layer having charge generating characteristics, a charge generating layer (CGL) or the like.

발광층은, 예를 들면, 이 분야에 공지된 다양한 형광 또는 인광 유기 재료를 사용하여 형성할 수 있다. 발광층에 사용될 수 있는 재료로는, 트리스(4-메틸-8-퀴놀리놀레이트)알루미늄(III)(tris(4-methyl-8-quinolinolate)aluminum(III))(Alg3), 4-MAlq3 또는 Gaq3 등의 Alq 계열의 재료, C-545T(C26H26N2O2S), DSA-아민, TBSA, BTP, PAP-NPA, 스피로-FPA, Ph3Si(PhTDAOXD), PPCP(1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene) 등과 같은 시클로페나디엔(cyclopenadiene) 유도체, DPVBi(4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl), 디스티릴 벤젠 또는 그 유도체 또는 DCJTB(4-(Dicyanomethylene)-2-tert-butyl-6-(1,1,7,7,-tetramethyljulolidyl-9-enyl)-4H-pyran), DDP, AAAP, NPAMLI; 또는 Firpic, m-Firpic, N-Firpic, bon2Ir(acac), (C6)2Ir(acac), bt2Ir(acac), dp2Ir(acac), bzq2Ir(acac), bo2Ir(acac), F2Ir(bpy), F2Ir(acac), op2Ir(acac), ppy2Ir(acac), tpy2Ir(acac), FIrppy(fac-tris[2-(4,5'-difluorophenyl)pyridine-C'2,N] iridium(III)) 또는 Btp2Ir(acac)(bis(2-(2'-benzo[4,5-a]thienyl)pyridinato-N,C3'-)iridium(acetylactonate)) 등과 같은 인광 재료 등이 예시될 수 있지만, 이에 제한되는 것은 아니다. 발광층은, 상기 재료를 호스트(host)로 포함하고, 또한 페릴렌(perylene), 디스티릴비페닐(distyrylbiphenyl), DPT, 퀴나크리돈(quinacridone), 루브렌(rubrene), BTX, ABTX 또는 DCJTB 등을 도펀트로 포함하는 호스트-도펀트 시스템(Host-Dopant system)을 가질 수도 있다.The light-emitting layer can be formed, for example, by using various fluorescent or phosphorescent organic materials known in the art. Materials that can be used for the light emitting layer include tris (4-methyl-8-quinolinolate) aluminum (III) (tris (4-methyl-8-quinolinolate) aluminum (III)) (Alg3), 4-MAlq3 or Alq-based materials such as Gaq3, C-545T (C 26 H 26 N 2 O 2 S), DSA-amine, TBSA, BTP, PAP-NPA, Spiro-FPA, Ph 3 Si (PhTDAOXD), PPCP (1, Cyclopenadiene derivatives such as 2,3,4,5-pentaphenyl-1,3-cyclopentadiene), DPVBi (4,4'-bis (2,2'-diphenylyinyl) -1,1'-biphenyl) , Distyryl benzene or its derivatives or DCJTB (4- (Dicyanomethylene) -2-tert-butyl-6- (1,1,7,7, -tetramethyljulolidyl-9-enyl) -4H-pyran), DDP, AAAP, NPAMLI; Or Firpic, m-Firpic, N-Firpic, bon 2 Ir (acac), (C 6 ) 2 Ir (acac), bt 2 Ir (acac), dp 2 Ir (acac), bzq 2 Ir (acac), bo Ir 2 (acac), Ir F 2 (bpy), F Ir 2 (acac), op 2 Ir (acac), ppy 2 Ir (acac), Ir 2 tpy (acac), FIrppy (fac-tris [2- ( 4,5'-difluorophenyl) pyridine-C'2, N] iridium (III)) or Btp 2 Ir (acac) (bis (2- (2'-benzo [4,5-a] thienyl) pyridinato-N, Phosphorescent materials such as C3 '-) iridium (acetylactonate)) and the like can be exemplified, but is not limited thereto. The light emitting layer may contain the above material as a host and may also include perylene, distyrylbiphenyl, DPT, quinacridone, rubrene, BTX, ABTX or DCJTB. And may have a host-dopant system including a dopant.

발광층은 또한 후술하는 전자 수용성 유기 화합물 또는 전자 공여성 유기 화합물 중에서 발광 특성을 나타내는 종류를 적절히 채용하여 형성할 수 있다.The light-emitting layer can be formed by suitably employing a kind that exhibits luminescence characteristics among electron-accepting organic compounds or electron-donating organic compounds described below.

유기층은, 발광층을 포함하는 한, 이 분야에 공지된 다른 다양한 기능성층을 추가로 포함하는 다양한 구조로 형성될 수 있다. 유기층에 포함될 수 있는 층으로는, 전자 주입층, 정공 저지층, 전자 수송층, 정공 수송층 및 정공 주입층 등이 예시될 수 있다.The organic layer may be formed with various structures, including various other functional layers known in the art, as long as the layer includes a light emitting layer. Examples of the layer that can be included in the organic layer include an electron injecting layer, a hole blocking layer, an electron transporting layer, a hole transporting layer, and a hole injecting layer.

전자 주입층 또는 전자 수송층은, 예를 들면, 전자 수용성 유기 화합물(electron accepting organic compound)을 사용하여 형성할 수 있다. 상기에서 전자 수용성 유기 화합물로는, 특별한 제한 없이 공지된 임의의 화합물이 사용될 수 있다. 이러한 유기 화합물로는, p-테르페닐(p-terphenyl) 또는 쿠아테르페닐(quaterphenyl) 등과 같은 다환 화합물 또는 그 유도체, 나프탈렌(naphthalene), 테트라센(tetracene), 피렌(pyrene), 코로넨(coronene), 크리센(chrysene), 안트라센(anthracene), 디페닐안트라센(diphenylanthracene), 나프타센(naphthacene) 또는 페난트렌(phenanthrene) 등과 같은 다환 탄화수소 화합물 또는 그 유도체, 페난트롤린(phenanthroline), 바소페난트롤린(bathophenanthroline), 페난트리딘(phenanthridine), 아크리딘(acridine), 퀴놀린(quinoline), 키노사린(quinoxaline) 또는 페나진(phenazine) 등의 복소환화합물 또는 그 유도체 등이 예시될 수 있다. 또한, 플루오르세인(fluoroceine), 페리렌(perylene), 프타로페리렌(phthaloperylene), 나프타로페리렌(naphthaloperylene), 페리논(perynone), 프타로페리논, 나프타로페리논, 디페닐부타디엔(diphenylbutadiene), 테트라페닐부타디엔(tetraphenylbutadiene), 옥사디아졸(oxadiazole), 아르다진(aldazine), 비스벤조옥사조린(bisbenzoxazoline), 비스스티릴(bisstyryl), 피라진(pyrazine), 사이크로펜타디엔(cyclopentadiene), 옥신(oxine), 아미노퀴놀린(aminoquinoline), 이민(imine), 디페닐에틸렌, 비닐안트라센, 디아미노카르바졸(diaminocarbazole), 피란(pyrane), 티오피란(thiopyrane), 폴리메틴(polymethine), 메로시아닌(merocyanine), 퀴나크리돈(quinacridone) 또는 루부렌(rubrene) 등이나 그 유도체, 일본특허공개 제1988-295695호, 일본특허공개 제1996-22557호, 일본특허공개 제1996-81472호, 일본특허공개 제1993-009470호 또는 일본특허공개 제1993-017764호 등의 공보에서 개시하는 금속 킬레이트 착체 화합물, 예를 들면, 금속 킬레이트화 옥사노이드화합물인 트리스(8-퀴놀리노라토)알루미늄[tris(8-quinolinolato)aluminium], 비스(8-퀴놀리노라토)마그네슘, 비스[벤조(에프)-8-퀴놀뤼노라토]아연{bis[benzo(f)-8-quinolinolato]zinc}, 비스(2-메틸-8-퀴놀리노라토)알루미늄, 트리스(8-퀴놀리노라토)인디엄[tris(8-quinolinolato)indium], 트리스(5-메틸-8-퀴놀리노라토)알루미늄, 8-퀴놀리노라토리튬, 트리스(5-클로로-8-퀴놀리노라토)갈륨, 비스(5-클로로-8-퀴놀리노라토)칼슘 등의 8-퀴놀리노라토 또는 그 유도체를 배립자로 하나 이상 가지는 금속 착체, 일본특허공개 제1993-202011호, 일본특허공개 제1995-179394호, 일본특허공개 제1995-278124호 또는 일본특허공개 제1995-228579호 등의 공보에 개시된 옥사디아졸(oxadiazole) 화합물, 일본특허공개 제1995-157473호 공보 등에 개시된 트리아진(triazine) 화합물, 일본특허공개 제1994-203963호 공보 등에 개시된 스틸벤(stilbene) 유도체나, 디스티릴아릴렌(distyrylarylene) 유도체, 일본특허공개 제1994-132080호 또는 일본특허공개 제1994-88072호 공보 등에 개시된 스티릴 유도체, 일본특허공개 제1994-100857호나 일본특허공개 제1994-207170호 공보 등에 개시된 디올레핀 유도체; 벤조옥사졸(benzooxazole) 화합물, 벤조티아졸(benzothiazole) 화합물 또는 벤조이미다졸(benzoimidazole) 화합물 등의 형광 증백제; 1,4-비스(2-메틸스티릴)벤젠, 1,4-비스(3-메틸스티릴)벤젠, 1,4-비스(4-메틸스티릴)벤젠, 디스티릴벤젠, 1,4-비스(2-에틸스티릴)벤질, 1,4-비스(3-에틸스티릴)벤젠, 1,4-비스(2-메틸스티릴)-2-메틸벤젠 또는 1,4-비스(2-메틸스티릴)-2-에틸벤젠 등과 같은 디스티릴벤젠(distyrylbenzene) 화합물; 2,5-비스(4-메틸스티릴)피라진, 2,5-비스(4-에틸스티릴)피라진, 2,5-비스[2-(1-나프틸)비닐]피라진, 2,5-비스(4-메톡시스티릴)피라진, 2,5-비스[2-(4-비페닐)비닐]피라진 또는 2,5-비스[2-(1-피레닐)비닐]피라진 등의 디스티릴피라진(distyrylpyrazine) 화합물, 1,4-페닐렌디메틸리딘, 4,4'-페닐렌디메틸리딘, 2,5-크실렌디메틸리딘, 2,6-나프틸렌디메틸리딘, 1,4-비페닐렌디메틸리딘, 1,4-파라-테레페닐렌디메텔리딘, 9,10-안트라센디일디메틸리딘(9,10-anthracenediyldimethylidine) 또는 4,4'-(2,2-디-티-부틸페닐비닐)비페닐, 4,4'-(2,2-디페닐비닐)비페닐 등과 같은 디메틸리딘(dimethylidine) 화합물 또는 그 유도체, 일본특허공개 제1994-49079호 또는 일본특허공개 제1994-293778호 공보 등에 개시된 실라나민(silanamine) 유도체, 일본특허공개 제1994-279322호 또는 일본특허공개 제1994-279323호 공보 등에 개시된 다관능 스티릴 화합물, 일본특허공개 제1994-107648호 또는 일본특허공개 제1994-092947호 공보 등에 개시되어 있는 옥사디아졸 유도체, 일본특허공개 제1994-206865호 공보 등에 개시된 안트라센 화합물, 일본특허공개 제1994-145146호 공보 등에 개시된 옥시네이트(oxynate) 유도체, 일본특허공개 제1992-96990호 공보 등에 개시된 테트라페닐부타디엔 화합물, 일본특허공개 제1991-296595호 공보 등에 개시된 유기 삼관능 화합물, 일본특허공개 제1990-191694호 공보 등에 개시된 쿠마린(coumarin)유도체, 일본특허공개 제1990-196885호 공보 등에 개시된 페리렌(perylene) 유도체, 일본특허공개 제1990-255789호 공보 등에 개시된 나프탈렌 유도체, 일본특허공개 제1990-289676호나 일본특허공개 제1990-88689호 공보 등에 개시된 프탈로페리논(phthaloperynone) 유도체 또는 일본특허공개 제1990-250292호 공보 등에 개시된 스티릴아민 유도체 등도 저굴절층에 포함되는 전자 수용성 유기 화합물로서 사용될 수 있다. 또한, 상기에서 전자 주입층은, 예를 들면, LiF 또는 CsF 등과 같은 재료를 사용하여 형성할 수도 있다. The electron injection layer or the electron transport layer can be formed using, for example, an electron accepting organic compound. As the electron-accepting organic compound in the above, any known compound can be used without any particular limitation. Examples of such organic compounds include polycyclic compounds or derivatives thereof such as p-terphenyl or quaterphenyl, naphthalene, tetracene, pyrene, coronene, ), Polycyclic hydrocarbon compounds or derivatives thereof such as chrysene, anthracene, diphenylanthracene, naphthacene or phenanthrene, phenanthroline, Heterocyclic compounds or derivatives thereof such as bathophenanthroline, phenanthridine, acridine, quinoline, quinoxaline, or phenazine may be exemplified. It is also possible to use at least one of fluoroceine, perylene, phthaloperylene, naphthaloperylene, perynone, phthaloferrinone, naphthoferrinone, diphenylbutadiene ( diphenylbutadiene, tetraphenylbutadiene, oxadiazole, aldazine, bisbenzoxazoline, bisstyryl, pyrazine, cyclopentadiene, and the like. Oxine, aminoquinoline, imine, diphenylethylene, vinyl anthracene, diaminocarbazole, pyrane, thiopyrane, polymethine, Quinacridone or rubrene or derivatives thereof, Japanese Patent Application Laid-Open No. 1988-295695, Japanese Patent Application Laid-Open No. 1996-22557, Japanese Patent Application Laid-Open No. 1996-81472, Japanese Patent Application Laid-Open No. 1993-009470 or Japanese Patent Application Laid- For example, tris (8-quinolinolato) aluminum, a metal chelated oxanoid compound, bis (8-quinolinolato) aluminum, Bis (benzo (f) -8-quinolinolato] zinc}, bis (2-methyl-8-quinolinolato) aluminum, Tris (8-quinolinolato) indium], tris (5-methyl-8-quinolinolato) aluminum, 8- quinolinolato lithium, tris (5- Quinolinolato) gallium, bis (5-chloro-8-quinolinolato) calcium and the like, metal complexes having at least one of 8-quinolinolato or a derivative thereof as an arbiter, Japanese Patent Laid- Oxadiazole compounds disclosed in Japanese Patent Application Laid-Open Nos. 1995-179394, 1995-278124, and 1995-228579, Stilbene derivatives, distyrylarylene derivatives, and the like disclosed in Japanese Patent Application Laid-Open (kokai) No. 1994-132080 Styryl derivatives disclosed in JP-A-1994-88072 and the like, diolefin derivatives disclosed in JP-A-1994-100857 and JP-A-1994-207170, and the like; Fluorescent brightening agents such as benzooxazole compounds, benzothiazole compounds or benzoimidazole compounds; Bis (4-methylstyryl) benzene, distyrylbenzene, 1,4-bis (2-methylstyryl) benzene, Bis (2-methylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, Methylstyryl) -2-ethylbenzene, and the like; Bis (4-methylstyryl) pyrazine, 2,5-bis (4-methylstyryl) pyrazine, 2,5- Bis [2- (4-biphenyl) vinyl] pyrazine such as bis (4-methoxystyryl) pyrazine, 2,5-bis [2- Distyrylpyrazine compounds, 1,4-phenylenedimethylidene, 4,4'-phenylenedimethylidyne, 2,5-xylenedimethylidyne, 2,6-naphthylenedimethylidyne, 1,4-biphenylene dimethyl (9,10-anthracenediyldimethylidine) or 4,4 '- (2,2-di-t-butylphenylvinyl) biphenyl , Dimethylidine compounds such as 4,4 '- (2,2-diphenylvinyl) biphenyl and derivatives thereof, silane disclosed in Japanese Patent Application Laid-Open No. 1994-49079 or Japanese Patent Application Laid-Open No. 1994-293778 Silanamine derivatives, Japanese Patent Application Laid-Open No. 1994-279322 or Japanese Patent Laid-Open Publication No. 1994-279323 Oxadiazole derivatives disclosed in Japanese Patent Laid-Open Publication No. 1994-109264, Japanese Patent Laid-Open Publication No. 1994-206865 and the like, an anthracene compound disclosed in Japanese Patent Oxynate derivatives disclosed in JP-A-1994-145146 and the like, tetraphenylbutadiene compounds disclosed in JP-A-1992-96990 and the like, organic trifunctional compounds disclosed in JP-A-1991-296595, Coumarin derivatives disclosed in JP-A-1990-191694 and the like, perylene derivatives disclosed in JP-A-1990-196885 and the like, naphthalene derivatives disclosed in JP-A-1990-255789, Phthaloperynone derivatives disclosed in JP-A No. 1990-289676 or JP-A No. 1990-88689 or a derivative of phthaloperynone derivatives disclosed in JP-A No. 1990-25029 Styrylamine derivatives disclosed in, for example, Japanese Patent Laid-open Publication No. 2 (1990) can also be used as electron-accepting organic compounds contained in the low refractive layer. In addition, the electron injection layer may be formed using a material such as LiF or CsF.

정공 저지층은, 주입된 정공이 발광층을 지나 전자 주입성 전극층으로 진입하는 것을 방지하여 소자의 수명과 효율을 향상시킬 수 있는 층이고, 필요한 경우에 공지의 재료를 사용하여 발광층과 전자 주입성 전극층의 사이에 적절한 부분에 형성될 수 있다.The hole blocking layer prevents the injected holes from entering the electron injecting electrode layer through the light emitting layer to improve the lifetime and efficiency of the device. If necessary, the hole blocking layer can be formed using a known material, As shown in FIG.

정공 주입층 또는 정공 수송층은, 예를 들면, 전자 공여성 유기 화합물(electron donating organic compound)을 포함할 수 있다. 전자 공여성 유기 화합물로는, N,N',N'-테트라페닐-4,4'-디아미노페닐, N,N'-디페닐-N,N'-디(3-메틸페닐)-4,4'-디아미노비페닐, 2,2-비스(4-디-p-톨릴아미노페닐)프로판, N,N,N',N'-테트라-p-톨릴-4,4'-디아미노비페닐, 비스(4-디-p-톨릴아미노페닐)페닐메탄, N,N'-디페닐-N,N'-디(4-메톡시페닐)-4,4'-디아미노비페닐, N,N,N',N'-테트라페닐-4,4'-디아미노디페닐에테르, 4,4'-비스(디페닐아미노)쿠아드리페닐[4,4'-bis(diphenylamino)quadriphenyl], 4-N,N-디페닐아미노-(2-디페닐비닐)벤젠, 3-메톡시-4'-N,N-디페닐아미노스틸벤젠, N-페닐카르바졸, 1,1-비스(4-디-p-트리아미노페닐)시크로헥산, 1,1-비스(4-디-p-트리아미노페닐)-4-페닐시크로헥산, 비스(4-디메틸아미노-2-메틸페닐)페닐메탄, N,N,N-트리(p-톨릴)아민, 4-(디-p-톨릴아미노)-4'-[4-(디-p-톨릴아미노)스티릴]스틸벤, N,N,N',N'-테트라페닐-4,4'-디아미노비페닐 N-페닐카르바졸, 4,4'-비스[N-(1-나프틸)-N-페닐-아미노]비페닐, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]p-테르페닐, 4,4'-비스[N-(2-나프틸)-N-페닐아미노]비페닐, 4,4'-비스[N-(3-아세나프테닐)-N-페닐아미노]비페닐, 1,5-비스[N-(1-나프틸)-N-페닐아미노]나프탈렌, 4,4'-비스[N-(9-안트릴)-N-페닐아미노]비페닐페닐아미노]비페닐, 4,4'-비스[N-(1-안트릴)-N-페닐아미노]-p-테르페닐, 4,4'-비스[N-(2-페난트릴)-N-페닐아미노]비페닐, 4,4'-비스[N-(8-플루오란테닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-피레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(2-페릴레닐)-N-페닐아미노]비페닐, 4,4'-비스[N-(1-코로네닐)-N-페닐아미노]비페닐(4,4'-bis[N-(1-coronenyl)-N-phenylamino]biphenyl), 2,6-비스(디-p-톨릴아미노)나프탈렌, 2,6-비스[디-(1-나프틸)아미노]나프탈렌, 2,6-비스[N-(1-나프틸)-N-(2-나프틸)아미노]나프탈렌, 4,4'-비스[N,N-디(2-나프틸)아미노]테르페닐, 4,4'-비스{N-페닐-N-[4-(1-나프틸)페닐]아미노}비페닐, 4,4'-비스[N-페닐-N-(2-피레닐)아미노]비페닐, 2,6-비스[N,N-디-(2-나프틸)아미노]플루오렌 또는 4,4'-비스(N,N-디-p-톨릴아미노)테르페닐, 및 비스(N-1-나프틸)(N-2-나프틸)아민 등과 같은 아릴 아민 화합물이 대표적으로 예시될 수 있으나, 이에 제한되는 것은 아니다.The hole injecting layer or the hole transporting layer may include, for example, an electron donating organic compound. Examples of the electron donating organic compound include N, N ', N'-tetraphenyl-4,4'-diaminophenyl, N, N'- N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, Phenyl, N, N'-di (4-methoxyphenyl) -4,4'-diaminobiphenyl, N, N'- (N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether, 4,4'-bis (diphenylamino) quadriphenyl] 4-N, N-diphenylaminostilbene, N-phenylcarbazole, 1,1-bis (4-methoxy- Bis (4-dimethylamino-2-methylphenyl) phenylmethanesulfonate, 1,1-bis (4-di- N, N, N-tri (p-tolyl) amine, 4- (di-p- tolylamino) -4 ' N ', N'-tetraphenyl-4,4'-diaminobis N-phenylcarbazole, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, Phenylamino] biphenyl, 4,4'-bis [N- (3-acenaphthenyl) -N (2-naphthyl) Phenylamino] biphenyl, 1,5-bis [N- (1-naphthyl) -N-phenylamino] naphthalene, 4,4'- Bis [N- (2-phenanthryl) -biphenylphenylamino] biphenyl, 4,4'-bis [N- N-phenylamino] biphenyl, 4,4'-bis [N- (2-pyrenyl) - N-phenylamino] biphenyl, 4,4'-bis [N- (1-choronenyl) - N-phenylamino] biphenyl), 2,6-bis (di-p-tolylamino) naphthalene, 2,6-bis (1-naphthyl) amino] naphthalene, 2,6-bis [N- (1-naphthyl) Bis [N, N-di (2-naphthyl) amino] terphenyl, 4,4'-bis { Bis [N, N-di- (2-naphthyl) amino] fluorene or 4,4'-bis (N, N-di-p-tolylamino) terphenyl and bis (N-1-naphthyl) (N-2-naphthyl) amine and the like are exemplified. It is not.

정공 주입층이나 정공 수송층은, 상기 유기화합물을 고분자 중에 분산시키거나, 상기 유기 화합물로부터 유래한 고분자를 사용하여 형성할 수도 있다. 또한, 폴리파라페닐렌비닐렌 및 그 유도체 등과 같이 소위 π-공역 고분자(π-conjugated polymers), 폴리(N-비닐카르바졸) 등의 정공 수송성 비공역 고분자 또는 폴리실란의 σ 공역 고분자 등도 사용될 수 있다.The hole injection layer or the hole transport layer may be formed by dispersing the organic compound in a polymer or using a polymer derived from the organic compound. Also, such as polyparaphenylenevinylene and derivatives thereof, so-called hole transporting nonconjugated polymers such as π-conjugated polymers, poly (N-vinylcarbazole), or σ conjugated polymers of polysilane may be used. have.

정공 주입층은, 구리프탈로시아닌과 같은 금속 프탈로시아닌이나 비금속 프탈로시아닌, 카본막 및 폴리아닐린 등의 전기적으로 전도성인 고분자 들을 사용하여 형성하거나, 상기 아릴 아민 화합물을 산화제로 하여 루이스산(Lewis acid)과 반응시켜서 형성할 수도 있다. The hole injection layer may be formed by using a metal phthalocyanine such as copper phthalocyanine, a nonmetal phthalocyanine, a carbon film and an electrically conductive polymer such as polyaniline, or by reacting the arylamine compound with an Lewis acid using the arylamine compound as an oxidizing agent You may.

예시적으로 유기발광소자는, 순차적으로 형성된 (1) 정공 주입 전극층/유기 발광층/전자 주입 전극층의 형태; (2) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입 전극층의 형태; (3) 정공 주입 전극층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (4) 정공 주입 전극층/정공 주입층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (5) 정공 주입 전극층/유기 반도체층/유기 발광층/전자 주입 전극층의 형태; (6) 정공 주입 전극층/유기 반도체층/전자장벽층/유기 발광층/전자 주입 전극층의 형태; (7) 정공 주입 전극층/유기 반도체층/유기 발광층/부착개선층/전자 주입 전극층의 형태; (8) 정공 주입 전극층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태; (9) 정공 주입 전극층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (10) 정공 주입 전극층/무기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (11) 정공 주입 전극층/유기 반도체층/절연층/유기 발광층/절연층/전자 주입 전극층의 형태; (12) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/절연층/전자 주입 전극층의 형태 또는 (13) 정공 주입 전극층/절연층/정공 주입층/정공 수송층/유기 발광층/전자 주입층/전자 주입 전극층의 형태를 가질 수 있으며, 경우에 따라서는 정공 주입 전극층과 전자 주입 전극층의 사이에 적어도 2개의 발광층이 전하 발생 특성을 가지는 중간 전극층 또는 전하 발생층(CGL: Charge Generating Layer)에 의해 분할되어 있는 구조의 유기층을 포함하는 형태를 가질 수도 있으나, 이에 제한되는 것은 아니다.Illustratively, the organic light emitting device includes (1) a form of a hole injection electrode layer / an organic light emitting layer / electron injecting electrode layer formed sequentially; (2) a form of a hole injection electrode layer / a hole injection layer / an organic light emitting layer / an electron injection electrode layer; (3) a form of a hole injection electrode layer / an organic light emitting layer / an electron injection layer / an electron injection electrode layer; (4) a form of a hole injection electrode layer / a hole injection layer / an organic light emitting layer / an electron injection layer / an electron injection electrode layer; (5) a form of a hole injection electrode layer / an organic semiconductor layer / an organic light emitting layer / an electron injecting electrode layer; (6) the form of the hole injection electrode layer / organic semiconductor layer / electron barrier layer / organic light emitting layer / electron injection electrode layer; (7) Forms of hole injecting electrode layer / organic semiconductor layer / organic light emitting layer / adhesion improving layer / electron injecting electrode layer; (8) Forms of hole injecting electrode layer / hole injecting layer / hole transporting layer / organic light emitting layer / electron injecting layer / electron injecting electrode layer; (9) Forms of hole injecting electrode layer / insulating layer / organic light emitting layer / insulating layer / electron injecting electrode layer; (10) Forms of hole injecting electrode layer / inorganic semiconductor layer / insulating layer / organic light emitting layer / insulating layer / electron injecting electrode layer; (11) Forms of hole injecting electrode layer / organic semiconductor layer / insulating layer / organic light emitting layer / insulating layer / electron injecting electrode layer; (12) Hole injection electrode layer / Insulation layer / Hole injection layer / Hole transport layer / Organic light emitting layer / Insulation layer / Electron injection electrode layer or (13) Hole injection electrode layer / Insulating layer / Hole injection layer / Hole transport layer / The light emitting layer may have a shape of an injection layer / electron injecting electrode layer, and in some cases, at least two light emitting layers may be disposed between the hole injecting electrode layer and the electron injecting electrode layer as an intermediate electrode layer or a charge generating layer (CGL) But the present invention is not limited thereto.

이 분야에서는 정공 또는 전자 주입 전극층과 유기층, 예를 들면, 발광층, 전자 주입 또는 수송층, 정공 주입 또는 수송층을 형성하기 위한 다양한 소재 및 그 형성 방법이 공지되어 있으며, 상기 유기전자장치의 제조에는 상기와 같은 방식이 모두 적용될 수 있다.In this field, various materials for forming a hole or electron injection electrode layer and an organic layer such as a light emitting layer, an electron injection or transport layer, a hole injection or transport layer, and a forming method thereof are known. All of the same methods can be applied.

유기전자장치는, 봉지 구조를 추가로 포함할 수 있다. 상기 봉지 구조는, 유기전자장치의 유기층으로 수분이나 산소 등과 같은 외래 물질이 유입되지 않도록 하는 보호 구조일 수 있다. 봉지 구조는, 예를 들면, 글라스캔 또는 금속캔 등과 같은 캔이거나, 상기 유기층의 전면을 덮고 있는 필름일 수 있다.The organic electronic device may further include an encapsulation structure. The encapsulation structure may be a protective structure that prevents foreign substances such as moisture, oxygen and the like from being introduced into the organic layer of the organic electronic device. The sealing structure may be a can, such as a glass can or a metal can, or may be a film covering the entire surface of the organic layer.

도 7은, 순차 형성된 기재층(101), 기능성층(301) 및 제 1 전극층(302)을 포함하는 기판 상에 형성된 유기층(701) 및 제 2 전극층(702)이 글라스캔 또는 금속캔 등과 같은 캔 구조의 봉지 구조(703)에 의해 보호되어 있는 형태를 예시적으로 보여준다. 도 7의 봉지 구조(703)는, 예를 들면, 접착제에 의해서 부착되어 있을 수 있다. 봉지 구조(703)는, 예를 들면, 기판에서 하부에 기능성층이 존재하지 않는 전극층에 접착되어 있을 수 있다. 예를 들면, 도 7과 같이 봉지 구조(703)는, 기판의 끝단에 접착제에 의해 부착되어 있을 수 있다. 이러한 방식으로 봉지 구조를 통한 보호 효과를 극대화할 수 있다.FIG. 7 illustrates that the organic layer 701 and the second electrode layer 702 formed on a substrate including the sequentially formed base layer 101, the functional layer 301, and the first electrode layer 302 may be formed of a glass can, a metal can, or the like. The shape protected by the encapsulation structure 703 of the can structure is exemplarily shown. The encapsulation structure 703 of FIG. 7 may be attached by an adhesive, for example. The encapsulation structure 703 may be adhered to, for example, an electrode layer in which a functional layer does not exist below the substrate. For example, as shown in FIG. 7, the sealing structure 703 may be attached to the end of the substrate by an adhesive. In this way it is possible to maximize the protective effect through the encapsulation structure.

봉지 구조는, 예를 들면, 유기층과 제 2 전극층의 전면을 피복하고 있는 필름일 수 있다. 도 8은, 유기층(701)과 제 2 전극층(702)의 전면을 덮고 있는 필름 형태의 봉지 구조(703)를 예시적으로 나타내고 있다. 예를 들면, 필름 형태의 봉지 구조(703)는, 도 8과 같이 유기층(701)과 제 2 전극층(702)의 전면을 피복하면서, 상기 기재층(101), 기능성층(301) 및 전극층(302)을 포함하는 기판과 상부의 제 2 기판(801)을 서로 접착시키고 있는 구조를 가질 수 있다. 제 2 기판(801)으로는, 예를 들면, 유리 기판, 금속 기판, 고분자 필름 또는 배리어층 등이 예시될 수 있다. 필름 형태의 봉지 구조는, 예를 들면, 에폭시 수지 등과 같이 열 또는 자외선(UV)의 조사 등에 의해 경화되는 액상의 재료를 도포하고, 경화시켜서 형성하고나, 혹은 상기 에폭시 수지 등을 사용하여 미리 필름 형태로 제조된 접착 시트 등을 사용하여 기판과 상부 기판을 라미네이트하는 방식으로 형성할 수 있다.The encapsulation structure may be, for example, a film covering the entire surface of the organic layer and the second electrode layer. 8 exemplarily shows a film-like encapsulation structure 703 covering the entire surface of the organic layer 701 and the second electrode layer 702. For example, the encapsulation structure 703 in the form of a film covers the entire surface of the organic layer 701 and the second electrode layer 702 as shown in FIG. 8, while the base layer 101, the functional layer 301, and the electrode layer ( The substrate including the 302 and the upper second substrate 801 may be bonded to each other. As the second substrate 801, for example, a glass substrate, a metal substrate, a polymer film or a barrier layer may be exemplified. The encapsulation structure in the form of a film is formed by applying, curing, and curing a liquid material that is cured by heat or ultraviolet (UV) irradiation or the like, for example, an epoxy resin, or by using the epoxy resin or the like beforehand It can be formed by laminating the substrate and the upper substrate using an adhesive sheet prepared in the form.

봉지 구조는, 필요한 경우, 산화 칼슘, 산화 베릴륨 등의 금속 산화물, 염화 칼슘 등과 같은 금속 할로겐화물 또는 오산화 인 등과 같은 수분 흡착제 또는 게터재 등을 포함할 수 있다. 수분 흡착제 또는 게터재는, 예를 들면, 필름 형태의 봉지 구조의 내부에 포함되어 있거나, 혹은 캔 구조의 봉지 구조의 소정 위치에 존재할 수 있다. 봉지 구조는 또한 배리어 필름이나 전도성 필름 등을 추가로 포함할 수 있다. The encapsulation structure may include, if necessary, a metal oxide such as calcium oxide or beryllium oxide, a moisture absorbent such as a metal halide such as calcium chloride or phosphorous pentoxide, or a getter material. The moisture adsorbent or getter material may be contained in, for example, a film-type sealing structure or may exist at a predetermined position of the sealing structure of the can structure. The encapsulation structure may further include a barrier film, a conductive film, or the like.

상기 봉지 구조는, 예를 들면, 도 7 또는 8에 나타난 바와 같이, 하부에 기능성층(301)이 형성되어 있지 않은 제 1 전극층(302)의 상부에 부착되어 있을 수 있다. 이에 따라서 기능성층이 외부로 노출되지 않는 밀봉 구조를 구현할 수 있다. 상기 밀봉 구조는, 예를 들면, 기능성층의 전면이 상기 기재층, 전극층 및/또는 봉지 구조에 의해 둘러싸이거나, 또는 상기 기재층, 전극층 및/또는 봉지 구조를 포함하여 형성되는 밀봉 구조에 의해서 둘러싸여서 외부로 노출되지 않는 상태를 의미할 수 있다. 밀봉 구조는, 기재층, 전극층 및/또는 봉지 구조만으로 형성되거나, 기능성층이 외부로 노출되지 않도록 형성되는 한, 상기 기재층, 전극층 및 봉지 구조를 포함하고, 또한 다른 요소 등도 포함하여 형성될 수 있다. 예를 들면, 도 7 또는 8에서 기재층(101)과 전극층(302)이 접하는 부분 또는 전극층(302)과 봉지 구조(703)가 접하는 부분 또는 그 외의 위치에 다른 요소가 존재할 수 있다. 상기 다른 요소로는 저투습성의 유기 물질, 무기 물질 또는 유무기 복합 물질이나, 절연층 또는 보조 전극 등이 예시될 수 있다. For example, as shown in FIG. 7 or 8, the encapsulation structure may be attached to an upper portion of the first electrode layer 302 in which the functional layer 301 is not formed. Accordingly, it is possible to implement a sealing structure in which the functional layer is not exposed to the outside. The sealing structure is, for example, the entire surface of the functional layer is surrounded by the base layer, the electrode layer and / or the sealing structure, or surrounded by a sealing structure formed including the base layer, the electrode layer and / or the sealing structure. This may mean a state that is not exposed to the outside. The sealing structure may be formed of only the base layer, the electrode layer and / or the encapsulation structure, or as long as the functional layer is formed so as not to be exposed to the outside, the base layer, the electrode layer and the encapsulation structure, and may also be formed including other elements. have. For example, other elements may be present in a portion where the base layer 101 and the electrode layer 302 contact each other, or a portion where the electrode layer 302 and the encapsulation structure 703 contact each other or other positions in FIG. 7 or 8. The other element may be a low moisture-permeable organic material, an inorganic material or an organic-inorganic composite material, an insulating layer or an auxiliary electrode.

본 출원은 또한 유기전자소자용 기판 또는 유기전자소자의 제조 방법에 대한 것이다. 예시적인 상기 방법은, 기재층상에 산란층을 형성하는 것을 포함할 수 있다. 상기 방법은, 상기 산란층을 형성하기 전 또는 후에 23℃의 온도에서의 탄성 계수가 50 GPa 내지 400 GPa인 물질을 포함하는 상기 탄성층을 형성하는 것을 포함할 수 있다. 필요한 경우에 탄성층을 형성한 후에 또는 산란층을 형성한 후에 그 상부에 상기 언급한 고굴절층을 형성하는 단계가 또한 수행될 수 있다. The present application also relates to a substrate for an organic electronic device or a method for manufacturing the organic electronic device. An exemplary method may include forming a scattering layer on the substrate layer. The method may include forming the elastic layer comprising a material having a modulus of elasticity of 50 GPa to 400 GPa at a temperature of 23 ° C. before or after forming the scattering layer. If necessary, the step of forming the above-mentioned high refractive layer on top of the elastic layer or after the scattering layer is formed may also be performed.

상기에서 산란층, 탄성층 및/또는 고굴절층을 형성하는 방법은 특별히 제한되지 않으며, 이미 기술된 각 방법을 적용하거나, 혹은 그 외에도 공지된 형성 방법이 적용될 수 있다.The method of forming the scattering layer, the elastic layer and / or the high refractive layer in the above is not particularly limited, and each of the methods described above may be applied, or other known forming methods may be applied.

필요한 경우에 상기 방법은 형성된 기능성층, 즉 상기 산란층, 탄성층 및/또는 고굴절층이 상기 기재층에 비하여 작은 투명 면적을 가지도록 가공하는 것을 포함할 수 있다. 이러한 공정은, 예를 들면, 기재층상에 형성되어 있는 기능성층의 적어도 일부를 제거하여 수행할 수 있다. 기능성층은, 상기 가공을 통하여, 예를 들면, 전술한 바와 같이 발광 영역에 대응되는 위치에만 존재하도록 패터닝(patterning)될 수 있다. 예를 들면, 기재층의 전면에 기능성층을 형성한 후에 형성된 기능성층의 일부를 제거할 수 있다. 기능성층의 일부를 제거하는 방식도 특별히 제한되지 않으며, 기능성층의 종류를 고려하여 적절한 방식이 적용될 수 있다. If necessary, the method may include processing the formed functional layer, ie, the scattering layer, the elastic layer and / or the high refractive layer, to have a smaller transparent area than the base layer. This process can be performed, for example, by removing at least a portion of the functional layer formed on the substrate layer. Through the above processing, the functional layer may be patterned to exist only at a position corresponding to the emission region, for example. For example, a part of the functional layer formed after the functional layer is formed on the entire surface of the substrate layer can be removed. The method of removing a part of the functional layer is not particularly limited, and an appropriate method may be applied in consideration of the type of the functional layer.

예를 들면, 기능성층을 용해시킬 수 있는 에칭액 등으로 상기 기능성층을 처리하는 습식 또는 건식 에칭 등에 적용하여 상기 층을 제거하거나, 레이저 가공 또는 워터젯 분사 등의 방식도 적용될 수 있다.For example, the method may be applied to a wet or dry etching treatment of the functional layer with an etchant capable of dissolving the functional layer, or the like to remove the layer, or a method such as laser processing or waterjet injection may also be applied.

다른 방식으로는 포토리소그래피 방식으로 기능성층의 일부를 제거하거나, 오프셋 인쇄(off-set printing), 기타 패턴 인쇄 방식 등으로 처음부터 기재층에 비하여 투영 면적이 작은 기능성층을 형성하는 방식도 고려될 수 있다.Alternatively, a method of removing a part of the functional layer by photolithography or forming a functional layer having a smaller projected area than the base layer by using offset printing or other pattern printing may be considered. Can be.

기능성층의 가공 형태는 특별히 제한되지 않고, 목적에 따라 변경될 수 있다. 예를 들면, 상기 가공은, 투영 면적이 기재층에 비하여 작은 기능성층의 위치가 후속하여 형성될 발광층의 발광 영역에 대응되며, 그 투영 면적은 발광층 또는 발광층에 의해 형성되는 발광 영역에 대응되거나 또는 그보다 크게 되도록 수행될 수 있다. 이 외에도 필요한 경우 다양한 패턴으로 기능성층은 가공될 수 있다. 또한, 상기한 봉지 구조와의 접합을 위하여 접착제가 도포되는 영역이나 소자의 단자 영역에 해당하는 부위에 존재하는 기능성층이 제거될 수도 있다.The processing form of the functional layer is not particularly limited and may be changed according to the purpose. For example, the processing corresponds to the light emitting area of the light emitting layer in which the position of the functional layer whose projection area is smaller than that of the base layer is subsequently formed, and the projected area corresponds to the light emitting layer or the light emitting area formed by the light emitting layer, or It may be performed to be larger than that. In addition, the functional layer may be processed in various patterns as necessary. In addition, the functional layer present in the region corresponding to the region where the adhesive is applied or the terminal region of the device may be removed for bonding to the encapsulation structure.

상기 제조 방법은, 기능성층의 형성 후 또는 형성된 기능성층의 가공 후에 전극층을 형성하는 것을 추가로 포함할 수 있다. 전극층을 형성하는 방식은 특별히 제한되지 않고, 공지의 증착, 스퍼터링, 화학 증착 또는 전기화학적 방식 등의 임의의 방식으로 형성할 수 있다.The manufacturing method may further include forming an electrode layer after formation of the functional layer or after processing of the formed functional layer. The method of forming the electrode layer is not particularly limited, and may be formed by any method such as known deposition, sputtering, chemical vapor deposition, or electrochemical method.

유기전자소자의 제조 방법은 상기와 같이 전극층을 형성한 후에 발광층을 포함하는 유기층과 제 2 전극층을 형성하고, 추가로 봉지 구조를 형성하는 것을 포함할 수 있다. 이 경우, 유기층, 제 2 전극층 및 봉지 구조는 공지된 방식으로 형성할 수 있다.The method of manufacturing an organic electronic device may include forming an organic layer and a second electrode layer including a light emitting layer after forming the electrode layer as described above, and further forming an encapsulation structure. In this case, the organic layer, the second electrode layer and the encapsulation structure can be formed in a known manner.

본 출원은 또한 상기 기술한 유기전자장치, 예를 들면, 유기발광장치의 용도에 관한 것이다. 상기 유기발광장치는, 예를 들면, 액정표시장치(LCD; Liquid Crystal Display)의 백라이트, 조명, 각종 센서, 프린터, 복사기 등의 광원, 차량용 계기 광원, 신호등, 표시등, 표시장치, 면상발광체의 광원, 디스플레이, 장식 또는 각종 라이트 등에 효과적으로 적용될 수 있다. 하나의 예시에서 본 출원은, 상기 유기발광소자를 포함하는 조명 장치에 관한 것이다. 상기 조명 장치 또는 기타 다른 용도에 상기 유기발광소자가 적용될 경우에, 상기 장치 등을 구성하는 다른 부품이나 그 장치의 구성 방법은 특별히 제한되지 않고, 상기 유기발광소자가 사용되는 한, 해당 분야에 공지되어 있는 임의의 재료나 방식이 모두 채용될 수 있다.The present application also relates to the use of the above-described organic electronic devices, for example, organic light emitting devices. The organic light emitting device may be a backlight of a liquid crystal display (LCD), an illumination device, a light source such as various sensors, a printer, a copying machine, a vehicle instrument light source, a traffic light, a display, A light source, a display, a decoration, or various lights. In one example, the present application relates to a lighting device comprising the organic light-emitting device. In the case where the organic light emitting device is applied to the illumination device or other use, the other components constituting the device or the like and the constitution method of the device are not particularly limited. As long as the organic light emitting device is used, Any of the materials or methods may be employed.

본 출원에서는, 우수한 광추출 효율을 나타내면서 상기 광추출 효율을 개선하는 구조인 산란층 및/또는 고굴절층 등에서 발생하는 응력이 효과적으로 완화되어 층간 박리 및 크랙 등의 발생이 없이 안정적인 구동이 가능한 소자를 제공할 수 있다.In the present application, while exhibiting excellent light extraction efficiency, the stress generated in the scattering layer and / or high refractive layer which is a structure that improves the light extraction efficiency is effectively alleviated to provide a device capable of stable driving without the occurrence of interlayer peeling and cracks, etc. can do.

도 1은, 예시적인 유기전자소자용 기판을 나타내는 도면이다.
도 2 및 3은, 예시적인 산란층의 형태를 보여주는 도면이다.
도 4 내지 6은 기능성층과 전극층간의 투영 면적의 관계를 보여주는 도면이다.
도 7 및 8은, 예시적인 유기전자장치를 나타내는 도면이다.
1 is a view showing an exemplary substrate for an organic electronic device.
2 and 3 show the shape of an exemplary scattering layer.
4 to 6 are diagrams showing the relationship between the projected area between the functional layer and the electrode layer.
7 and 8 illustrate exemplary organic electronic devices.

이하 실시예 및 비교예를 통하여 상기 유기전자소자용 기판 등을 구체적으로 설명하지만, 상기 기판 등의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the organic electronic device substrate and the like will be described in detail with reference to Examples and Comparative Examples, but the scope of the substrate and the like is not limited to the following examples.

실시예Example 1. One.

유기전자소자용 기판의 제조Fabrication of Substrate for Organic Electronic Device

테트라메톡시 실란 10 g에 굴절률이 약 1.52인 고분자 비드(XX75BO, 평균 직경: 약 3 ㎛, Sekisui제) 1g을 충분히 분산시켜서 졸겔 코팅액을 제조하였다. 이어서 제조된 코팅액을 유리 기판에 코팅하고, 졸겔 반응을 진행시켜서 산란층을 형성하였다. 이어서, 증착 방식으로 탄성 계수가 약 270 내지 320 GPa이고, 굴절률이 약 1.726 정도인 Al2O3를 상기 산란층상에 약 30 nm 정도의 두께로 증착시켜서 탄성층을 형성하였다. 그 후, 상기 코팅액과 동일하게 테트라메톡시 실란을 포함하는 졸겔 코팅액에 평균 입경이 약 10 nm이고, 굴절률이 약 2.5 정도인 고굴절 산화 티탄 입자를 배합한 고굴절 코팅액을 산란층의 상부에 코팅한 후에 동일하게 졸겔 반응을 진행하여 굴절률이 약 1.8 정도인 고굴절층을 형성하였다. 그 후 형성된 층에 레이저를 조사하여 잔존하는 고굴절층 등의 위치가 이어서 형성되는 유기층의 발광 영역에 대응될 수 있도록 상기 고굴절층 등의 일부를 제거하였다. 제거 후에 공지의 스퍼터링 방식으로 ITO(Indium Tin Oxide)를 포함하는 정공 주입성 전극층을 상기 유리 기판의 전면에 형성하여 기판을 제조하였다.
A sol-gel coating solution was prepared by sufficiently dispersing 1 g of polymer beads (XX75BO, average diameter: about 3 μm, manufactured by Sekisui) having a refractive index of about 1.52 in 10 g of tetramethoxy silane. Subsequently, the prepared coating solution was coated on a glass substrate, and a sol-gel reaction was performed to form a scattering layer. Subsequently, Al 2 O 3 having a modulus of elasticity of about 270 to 320 GPa and a refractive index of about 1.726 was deposited on the scattering layer to a thickness of about 30 nm to form an elastic layer. Thereafter, a high refractive coating solution containing high refractive index titanium oxide particles having an average particle diameter of about 10 nm and a refractive index of about 2.5 in a sol-gel coating solution containing tetramethoxy silane was coated on the top of the scattering layer in the same manner as the coating solution. In the same manner, the sol-gel reaction was performed to form a high refractive index layer having a refractive index of about 1.8. Subsequently, a portion of the high refractive layer and the like was removed by irradiating a laser to the formed layer so that the remaining positions of the high refractive layer and the like correspond to the light emitting regions of the organic layer. After removal, a hole injection electrode layer including ITO (Indium Tin Oxide) was formed on the entire surface of the glass substrate by a known sputtering method to prepare a substrate.

유기발광소자의 제조Manufacture of organic light emitting device

제조된 기판의 전극층상에 증착 방식을 통해 알파-NPD(N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine)를 포함하는 정공 주입층 및 발광층(4,4',4"-tris(N-carbazolyl)-triphenylamine (TCTA):Firpic, TCTA:Fir6)을 순차 형성하였다. 이어서, 상기 발광층의 상부에 전자 수송성 화합물인 TCTA(4,4',4"-tris(N-carbazolyl)-triphenylamine)를 증착하여 전자수송층을 약 70 nm의 두께로 형성하였다. 이어서, 전자 주입성 반사 전극으로서 알루미늄(Al) 전극을 진공 증착 방식으로 상기 전자 수송층의 상부에 형성하여 소자를 제조하였다. 이어서 Ar 가스 분위기의 글로브 박스에서 상기 소자에 봉지 구조를 부착하여 장치를 제조하였다.
Alpha-NPD (N, N'-Di-[(1-naphthyl) -N, N'-diphenyl] -1,1'-biphenyl) -4,4'- through the deposition method on the electrode layer of the prepared substrate A hole injection layer and a light emitting layer (4,4 ', 4 "-tris (N-carbazolyl) -triphenylamine (TCTA): Firpic, TCTA: Fir6) containing diamine) were sequentially formed. TCTA (4,4 ', 4 "-tris (N-carbazolyl) -triphenylamine), a transporting compound, was deposited to form an electron transport layer having a thickness of about 70 nm. Subsequently, an aluminum (Al) electrode as an electron injecting reflective electrode was formed on the electron transport layer by a vacuum deposition method to manufacture a device. Subsequently, the device was manufactured by attaching a sealing structure to the device in a glove box in an Ar gas atmosphere.

비교예Comparative Example 1. One.

탄성층을 형성하지 않은 것을 제외하고는 실시예 1과 동일하게 유기발광소자를 제조하였다.
An organic light emitting diode was manufactured in the same manner as in Example 1, except that the elastic layer was not formed.

시험예Test Example 1. One.

실시예 1 및 비교예 1에서 제조된 유기발광소자를 동일 조건에서 구동시킨 후에 산란층과 고굴절층의 계면에서의 박리 및/또는 크랙의 발생을 관찰하였다. 관찰 결과 비교예 1의 소자에서는 산란층과 고굴절층간의 미세한 박리 및 크랙이 관찰되었으나, 실시예 1의 소자의 경우 이러한 흠결이 관찰되지 않았다.After driving the organic light emitting diodes manufactured in Example 1 and Comparative Example 1 under the same conditions, peeling and / or cracking were observed at the interface between the scattering layer and the high refractive layer. As a result, in the device of Comparative Example 1, fine peeling and cracking were observed between the scattering layer and the high refractive layer, but such defects were not observed in the device of Example 1.

101: 기재층 102: 산란층
103: 탄성층 1022: 매트릭스 물질
1021: 산란 영역 301: 기능성층
302: 전극층, 제 1 전극층 701: 유기층
702: 제 2 전극층 703: 봉지 구조
801: 제 2 기판
101: base material layer 102: scattering layer
103: elastic layer 1022: matrix material
1021: scattering region 301: functional layer
302: electrode layer, first electrode layer 701: organic layer
702: second electrode layer 703: sealing structure
801: second substrate

Claims (15)

기재층; 상기 기재층상에 형성되어 있는 산란층; 및 상기 산란층과 기재층의 사이 또는 상기 산란층상에 형성되어 있고, 23℃의 온도에서의 탄성 계수가 50 GPa 내지 400 GPa인 물질을 포함하여 형성된 탄성층을 포함하는 유기전자소자용 기판.A base layer; A scattering layer formed on the substrate layer; And an elastic layer formed between the scattering layer and the substrate layer or on the scattering layer, the elastic layer including a material having a modulus of elasticity of 50 GPa to 400 GPa at a temperature of 23 ° C. 제 1 항에 있어서, 23℃의 온도에서의 탄성 계수가 50 GPa 내지 400 GPa인 물질은 TiO2, Si3N4, MgO, Al2O3, ZnO 또는 ZrO2인 유기전자소자용 기판.The substrate of claim 1, wherein the material having a modulus of elasticity of 50 GPa to 400 GPa at a temperature of 23 ° C. is TiO 2 , Si 3 N 4 , MgO, Al 2 O 3 , ZnO, or ZrO 2 . 제 1 항에 있어서, 탄성층의 평균 두께가 10 nm 이상인 유기전자소자용 기판.The substrate for an organic electronic device according to claim 1, wherein the average thickness of the elastic layer is 10 nm or more. 제 1 항에 있어서, 23℃의 온도에서의 탄성 계수가 50 GPa 내지 400 GPa인 물질은 550 nm의 파장에 대한 굴절률이 1.8 내지 3.5인 유기전자소자용 기판.The substrate of claim 1, wherein the material having an elastic modulus of 50 GPa to 400 GPa at a temperature of 23 ° C. has a refractive index of 1.8 to 3.5 for a wavelength of 550 nm. 제 1 항에 있어서, 산란층 또는 탄성층상에 존재하는 고굴절층을 추가로 포함하는 유기전자소자용 기판.The organic electronic device substrate of claim 1, further comprising a high refractive layer present on the scattering layer or the elastic layer. 제 5 항에 있어서, 고굴절층의 550 nm 파장의 광에 대한 굴절률은, 1.8 내지 3.5인 유기전자소자용 기판.The substrate of claim 5, wherein the refractive index of the high refractive index layer is about 1.8 to 3.5. 제 1 항의 유기전자소자용 기판; 상기 기판상에 형성되어 있는 제 1 전극층; 상기 제 1 전극층상에 형성되어 있는 유기층; 및 제 2 전극층을 포함하는 유기전자소자.A substrate for an organic electronic device according to claim 1; A first electrode layer formed on the substrate; An organic layer formed on the first electrode layer; And a second electrode layer. 제 7 항에 있어서, 유기층은 발광층을 포함하는 유기전자소자.The organic electronic device of claim 7, wherein the organic layer comprises a light emitting layer. 제 7 항에 있어서, 유기전자소자의 산란층 및 탄성층의 투영 면적은 제 1 전극층의 투영 면적에 비하여 작으며, 제 1 전극층은 상기 산란층 및 탄성층이 형성되어 있지 않은 기재층의 상부에도 형성되어 있는 유기전자소자.The method of claim 7, wherein the projected area of the scattering layer and the elastic layer of the organic electronic device is smaller than the projected area of the first electrode layer, and the first electrode layer is formed on the top of the base layer on which the scattering layer and the elastic layer are not formed. Organic electronic device formed. 제 9 항에 있어서, 유기층과 제 2 전극층을 보호하는 봉지 구조를 추가로 포함하고, 상기 봉지 구조는 하부에 산란층 및 탄성층이 형성되어 있지 않은 제 1 전극층의 상부에 부착되어 있는 유기전자소자.10. The organic electronic device of claim 9, further comprising an encapsulation structure protecting the organic layer and the second electrode layer, wherein the encapsulation structure is attached to an upper portion of the first electrode layer on which the scattering layer and the elastic layer are not formed. . 제 10 항에 있어서, 봉지 구조는 글라스캔 또는 금속캔인 유기전자소자.The organic electronic device of claim 10, wherein the encapsulation structure is a glass can or a metal can. 제 10 항에 있어서, 봉지 구조는 유기층과 제 2 전극층의 전면을 덮고 있는 필름인 유기전자소자.The organic electronic device of claim 10, wherein the encapsulation structure is a film covering entire surfaces of the organic layer and the second electrode layer. 기재층상에 산란층을 형성하는 것을 포함하고, 상기 산란층을 형성하기 전 또는 후에 23℃의 온도에서의 탄성 계수가 50 GPa 내지 400 GPa인 물질을 포함하는 탄성층을 형성하는 것을 포함하는 유기전자소자용 기판의 제조 방법.Organic electrons comprising forming a scattering layer on a substrate layer, and forming an elastic layer comprising a material having a modulus of elasticity of 50 GPa to 400 GPa at a temperature of 23 ° C. before or after forming the scattering layer. The manufacturing method of the board | substrate for elements. 제 13 항에 있어서, 산란층 또는 탄성층상에 고굴절층을 형성하는 것을 추가로 수행하는 유기발광소자의 제조 방법.The method of claim 13, further comprising forming a high refractive layer on the scattering layer or the elastic layer. 제 7 항의 유기전자소자를 포함하는 조명 장치.A lighting device comprising the organic electronic device of claim 7.
KR1020130035488A 2012-03-30 2013-04-01 Substrate for organic electronic device KR101589344B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120033510 2012-03-30
KR20120033510 2012-03-30

Publications (2)

Publication Number Publication Date
KR20130111486A true KR20130111486A (en) 2013-10-10
KR101589344B1 KR101589344B1 (en) 2016-01-28

Family

ID=49632892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130035488A KR101589344B1 (en) 2012-03-30 2013-04-01 Substrate for organic electronic device

Country Status (1)

Country Link
KR (1) KR101589344B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040047949A (en) * 2001-10-25 2004-06-05 마츠시다 덴코 가부시키가이샤 Composite thin film holding substrate, transparent conductive film holding substrate, and surface light emitting body
JP2005298634A (en) * 2004-04-09 2005-10-27 Sumitomo Bakelite Co Ltd Method for producing transparent composite substrate
KR20050121940A (en) * 2004-06-23 2005-12-28 엘지전자 주식회사 Sealing method and organic electroluminescence device
JP2012156324A (en) * 2011-01-26 2012-08-16 Sekisui Chem Co Ltd Composite body, manufacturing method of the same, and manufacturing method of a multilayer buildup wiring board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040047949A (en) * 2001-10-25 2004-06-05 마츠시다 덴코 가부시키가이샤 Composite thin film holding substrate, transparent conductive film holding substrate, and surface light emitting body
JP2005298634A (en) * 2004-04-09 2005-10-27 Sumitomo Bakelite Co Ltd Method for producing transparent composite substrate
KR20050121940A (en) * 2004-06-23 2005-12-28 엘지전자 주식회사 Sealing method and organic electroluminescence device
JP2012156324A (en) * 2011-01-26 2012-08-16 Sekisui Chem Co Ltd Composite body, manufacturing method of the same, and manufacturing method of a multilayer buildup wiring board

Also Published As

Publication number Publication date
KR101589344B1 (en) 2016-01-28

Similar Documents

Publication Publication Date Title
KR101388295B1 (en) Substrate for organic electronic device
KR101427536B1 (en) Substrate for organic electronic device
KR101589343B1 (en) Substrate for organic electronic device
KR101645774B1 (en) Substrate for organic electronic device
KR101589342B1 (en) Substrate for organic electronic device
KR20140018807A (en) Substrate for organic electronic device
KR101589341B1 (en) Substrate for organic electronic device
KR101678261B1 (en) Substrate for organic electronic device
KR101612588B1 (en) Substrate for organic electronic device
KR20130135142A (en) Organic electronic device
KR101589344B1 (en) Substrate for organic electronic device
KR20160081388A (en) Organic electronic device
KR20130108214A (en) Organic light emitting device
KR20160081387A (en) Organic electronic device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190116

Year of fee payment: 4