KR20130111214A - Method of producing an austenitic steel - Google Patents

Method of producing an austenitic steel Download PDF

Info

Publication number
KR20130111214A
KR20130111214A KR1020127032074A KR20127032074A KR20130111214A KR 20130111214 A KR20130111214 A KR 20130111214A KR 1020127032074 A KR1020127032074 A KR 1020127032074A KR 20127032074 A KR20127032074 A KR 20127032074A KR 20130111214 A KR20130111214 A KR 20130111214A
Authority
KR
South Korea
Prior art keywords
strip
producing
steel sheet
metal coating
temperature
Prior art date
Application number
KR1020127032074A
Other languages
Korean (ko)
Other versions
KR101900963B1 (en
Inventor
바스잔 베르크하우트
마르쿠스 코르넬리스 마리아 코르넬리센
자예쉬 람지브하이 파텔
Original Assignee
타타 스틸 이즈무이덴 베.뷔.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타타 스틸 이즈무이덴 베.뷔. filed Critical 타타 스틸 이즈무이덴 베.뷔.
Publication of KR20130111214A publication Critical patent/KR20130111214A/en
Application granted granted Critical
Publication of KR101900963B1 publication Critical patent/KR101900963B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0442Flattening; Dressing; Flexing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/34Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tyres; for rims
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching

Abstract

본 발명은 지연 균열에 대한 우수한 저항성을 갖는 오스테나이트강 시트의 제조방법 및 그에 의해 제조된 강에 관한 것이다.The present invention relates to a method for producing an austenitic steel sheet having excellent resistance to delayed cracking and to steel produced thereby.

Description

오스테나이트강의 제조 방법{METHOD OF PRODUCING AN AUSTENITIC STEEL}Manufacturing method of austenitic steel {METHOD OF PRODUCING AN AUSTENITIC STEEL}

본 발명은 지연균열에 우수한 저항성을 갖는 오스테나이트강 시트의 제조방법에 관한 것이다.The present invention relates to a method for producing an austenitic steel sheet having excellent resistance to delayed cracking.

충돌될 경우의 연료 경제 및 안정성에 대한 관점에서, 고강도강(high strength steel)을 자동차 산업에서 점점 더 많이 사용하고 있다. 이는 고연성(high ducility)에 고 인장 강도(high tensile strenth)를 결합한 구조재의 사용을 요구한다. 오스테나이트 합금은 주원소로서 철, 탄소 및 높은 수준의 망간을 포함하며, 이는 열간 압연 또는 냉간 압연이 가능하고 1000 MPa를 초과할 수 있는 강도를 갖는다. 이러한 강의 변형 모드는 적층 결함 에너지(stacking fault energy)에 따라 달라진다: 충분히 높은 적층 결함 에너지를 위하여, 기계적 변형의 관측 모드는 쌍정(twinning)이며, 이는 높은 가공 경화능(work hardening)을 얻게 한다. 전위(dislocation)의 전파에 대한 장애물로 작용함으로서, 상기 쌍정(twin)은 유동 응력(flow stress)을 증가시킨다. 그러나, 적층 결함 에너지가 특정 제한점을 넘어가는 경우, 완벽한 전위의 슬립(slip)이 주요 변형 메커니즘이 되며, 가공 경화가 감소한다. 변형 후에도 높은 잔류 인장 응력(residual tensile stress)이 남아 있는 경향이 있으므로 지연 균열(delayed cracking)에 대한 민감도는 특히 특정 냉간성형(cold-forming) 작업 후에 기계적 강도와 함께 증가된다. 상기 금속에 존재할지도 모르는 수소 원자와 결합됨으로써, 이들 응력은 지연 균열, 즉 변형 그 자체 후의 특정 시점에서 발생하는 균열을 야기하는 경향이 있다. 수소는 확산에 의하여 점차적으로 집결하여 결정격자 결함, 예를 들어 메트릭스/개재물(matrix/inclusion) 계면, 쌍정경계(twin boundary) 및 결정입계(grain boundary)를 생성한다. 수소가 특정 시간 이후 임계 농도에 도달할 때 유해하게 되는 경우는 후자의(latter) 영역이다. 일정한 결정(grain) 크기에서, 임계 수준을 달성하는데 요구되는 시간은 모바일 수소의 초기 농도, 잔류 응력 농도 필드(residual stress concentration field)의 강도 및 수소 확산의 키네틱스에 따라 달라진다. In terms of fuel economy and stability in the event of a crash, high strength steel is increasingly used in the automotive industry. This requires the use of structural materials that combine high ductility with high tensile strength. Austenitic alloys include iron, carbon and high levels of manganese as main elements, which can be hot rolled or cold rolled and have strengths that can exceed 1000 MPa. The deformation mode of such steels depends on the stacking fault energy: For sufficiently high stacking fault energy, the mode of observation of mechanical deformation is twinning, which results in high work hardening. By acting as an obstacle to the propagation of dislocations, the twin increases the flow stress. However, if the lamination defect energy exceeds certain limits, the slip of perfect dislocation is the main deformation mechanism, and work hardening is reduced. Since there is a tendency for high residual tensile stress to remain after deformation, the sensitivity to delayed cracking increases with mechanical strength, especially after certain cold-forming operations. By being associated with hydrogen atoms that may be present in the metal, these stresses tend to cause delayed cracking, ie cracking that occurs at a certain point after the deformation itself. Hydrogen collects gradually by diffusion to produce crystal lattice defects such as matrix / inclusion interfaces, twin boundaries, and grain boundaries. The latter becomes harmful when hydrogen reaches a critical concentration after a certain time. At constant grain size, the time required to achieve the critical level depends on the initial concentration of mobile hydrogen, the strength of the residual stress concentration field, and the kinetics of hydrogen diffusion.

특정 환경에서는, 화학적 또는 전기화학적 산세(pickling), 특별한 분위기 하의 어닐링(annealing), 전기 도금 또는 용융 침지 아연도금(galvanizing)과 같은 강 제조(fabrication)의 몇몇 단계에서 소량의 수소가 도입될 수도 있다. 윤활유 및 그리스(grease)를 사용하는 후속 가공 작업이 또한 고온에서 이러한 물질의 분해 후 수소 생성을 유발할 수도 있다. In certain circumstances, small amounts of hydrogen may be introduced at some stages of steel fabrication, such as chemical or electrochemical pickling, annealing under a special atmosphere, electroplating or galvanizing. . Subsequent processing operations with lubricating oils and greases may also cause hydrogen production after decomposition of these materials at high temperatures.

본 발명의 목적은 지연균열에 우수한 저항성을 갖는 오스테나이트강 시트의 제조 방법을 제공하는 것이다. An object of the present invention is to provide a method for producing an austenitic steel sheet having excellent resistance to delayed cracking.

또한, 본 발명의 목적은 증가된 항복응력 및 우수한 용접성을 갖는 오스테나이트강 시트의 제조방법을 제공하는 것이다. It is also an object of the present invention to provide a process for producing austenite steel sheets with increased yield stress and good weldability.

본 발명의 추가적 목적은 이러한 타입의 강에 대한 종래의 방법과 비교할 때, 에너지 효율이 높고 간단한 오스테나이트강 시트의 제조방법을 제공하는 것이다. It is a further object of the present invention to provide a method for producing an austenitic steel sheet which is energy efficient and simple when compared to conventional methods for this type of steel.

본 발명에 의하면, 이러한 하나 이상의 목적은 하기한 지연균열에 우수한 저항성을 갖는 오스테나이트강 시트의 제조방법을 제공함으로서 달성된다.According to the present invention, one or more of these objects are achieved by providing a method for producing an austenitic steel sheet having excellent resistance to delayed cracks as described below.

- 중량 %로서 하기의 조성을 포함하는 잉곳, 또는 연속 주조 슬래브, 또는 연속 주조 박형 슬래브 또는 스트립-주조 스트립을 주조하는 단계:Casting an ingot, or continuous casting slab, or continuous casting thin slab or strip-casting strip comprising the following composition as weight percent:

- 0.50% ~ 0.80% C    0.50% to 0.80% C

- 10 ~ 17% Mn    10 to 17% Mn

- 1.0% 이상의 Al    -1.0% Al

- 0.5 % 이하의 Si    -Less than 0.5% Si

- 0.020% 이하의 S    0.020% or less

- 0.050% 이하의 P     Less than or equal to 0.050%

- 50 ~ 200 ppm N    50 to 200 ppm N

- 0.050 ~ 0.25% V    0.050 to 0.25% V

- 잔부 철 및 제조에 수반되는 불가피한 불순물;    Residual iron and unavoidable impurities accompanying production;

- 상기 잉곳, 연속 주조 슬래브, 연속 주조 박형 슬래브 또는 스트립-주조 스트립을 원하는 열간압연 두께로 열간 압연함으로서 열간 압연 스트립을 제공하는 단계;Providing a hot rolled strip by hot rolling the ingot, continuous cast slab, continuous cast thin slab or strip-casting strip to a desired hot rolled thickness;

- 상기 열간 압연 스트립을 원하는 최종 두께로 냉간 압연하는 단계;Cold rolling the hot rolled strip to the desired final thickness;

- 어닐링 시간(ta) 동안 750 내지 850℃의 어닐링 온도(Ta)까지 가열 속도(Vh)로 상기 스트립의 가열 후 냉각 속도(Vc)로 냉각하는 것을 포함하는 공정으로 상기 냉각 압연 스트립을 연속 어닐링하는 단계를 포함하는 지연균열에 우수한 저항성을 갖는 오스테나이트강 시트의 제조방법.The cold rolling strip in a process comprising cooling to a cooling rate (V c ) after heating of the strip at a heating rate (V h ) to an annealing temperature (T a ) of 750 to 850 ° C. for an annealing time (t a ). Method for producing an austenitic steel sheet having excellent resistance to delayed cracking comprising the step of continuous annealing.

고함량의 알루미늄을 사용함으로서, 강의 SFE가 증가한다. 실리콘과 같은 SFE를 저하시키는 원소의 역작용은 알루미늄 첨가에 의해 상쇄된다. 또한, 알루미늄은 오스테나이트 내의 탄소 활성(activity) 및 확산을 저하시키며, 이는 카바이드(carbide) 형성을 위한 구동력을 감소시킨다. 바나듐은 필수 합금 첨가물로서, 첨가되어 카바이드를 형성한다. 바나듐-카바이드의 크기 및 분포가 정확한 경우, 상기 바나듐-카바이드는 수소 싱크(sink)로서 작용한다. 따라서 증가된 알루미늄 함량은 알루미늄의 존재 결과로서 감소된 탄소 활성 및 확산으로 인해 바나듐-카바이드의 조대화(coarsening)를 방지하기 때문에 바나듐-카바이드 석출(precipitation)을 조절하는데 필수적이다. 본 발명자들은 이를 얻기 위하여 1.0 중량% 이상의 Al 및 0.050 내지 0.25 중량% V가 필요하다는 것을 발견하였다. 낮은 함량의 알루미늄은 너무 조대화된 바나듐-카바이드를 초래하여 이들이 수소 싱크로서 비효율적으로 작용하게 하며, 충분한 양의 작은 석출물을 얻기 위해서는 상기에 언급한 수치 사이에서 바나듐의 양을 조절할 필요가 있다. 더 높은 V-수치는 석출물의 조기 핵생성(nucleation)을 유발하여 조대화된 매우 소량의 석출물을 필연적으로 유발하는 반면, 0.050 중량% 미만의 V 수치는 충분히 미세함에도 불구하고 석출물을 거의 생성하지 않는다. 어닐링 처리는 바나듐-카바이드의 석출을 조절하고, 냉각 압연에 의해 유발되는 냉간-변형 미세 구조의 재결정화에 의해 세립 구조(fine grain structure)가 생성되도록 한다는 점에서 매우 중요하다. 바람직한 실시예에서, 실리콘 함량은 예를 들어 불순물 수준으로 매우 낮다. 원칙적으로, 알루미늄 함량은 본 발명에 의한 강이 오스테나이트강인 사실만으로도 제한된다. 실시예에서, 최대 알루미늄 함량은 5 중량%이다. 바람직하게는 알루미늄 함량은 1.25 중량% 이상 및/또는 최대 3.5 중량%, 보다 바람직하게는 1.5 중량% 이상 및/또는 최대 2.5 중량%이다. By using a high content of aluminum, the SFE of the steel increases. The reaction of elements that lower SFE, such as silicon, is offset by the addition of aluminum. In addition, aluminum reduces carbon activity and diffusion in austenite, which reduces the driving force for carbide formation. Vanadium is an essential alloy additive that is added to form carbides. If the size and distribution of vanadium-carbide are correct, the vanadium-carbide acts as a hydrogen sink. The increased aluminum content is therefore essential for controlling vanadium-carbide precipitation because it prevents coarsening of vanadium-carbide due to reduced carbon activity and diffusion as a result of the presence of aluminum. The inventors have found that at least 1.0% by weight of Al and 0.050 to 0.25% by weight V are required to obtain this. Low content aluminum results in too coarse vanadium-carbide, which makes them inefficiently acting as a hydrogen sink, and it is necessary to control the amount of vanadium between the above mentioned values in order to obtain a sufficient amount of small precipitates. Higher V-values lead to premature nucleation of precipitates, which inevitably leads to very small amounts of coarse precipitates, while V values below 0.050% by weight rarely produce precipitates despite being sufficiently fine. . The annealing treatment is very important in that it controls the precipitation of vanadium-carbide and allows fine grain structures to be produced by recrystallization of the cold-deformed microstructure caused by cold rolling. In a preferred embodiment, the silicon content is very low, for example at impurity levels. In principle, the aluminum content is limited only by the fact that the steel according to the invention is an austenitic steel. In an embodiment, the maximum aluminum content is 5% by weight. Preferably the aluminum content is at least 1.25% by weight and / or at most 3.5% by weight, more preferably at least 1.5% by weight and / or at most 2.5% by weight.

실시예에서, 최대 어닐링 온도(Ta)는 825 ℃ 또는 심지어 800 ℃이다. 실시예에서, 냉각 속도(Vc)는 10 내지 100℃/s이다. 바람직한 냉각 속도는 20 내지 80℃/s이다. 바람직하게는 가열 속도가 3 내지 60℃/s이다. 어닐링 시간(ta)은 바람직하게는 15 내지 300초이다.In an embodiment, the maximum annealing temperature T a is 825 ° C or even 800 ° C. In an embodiment, the cooling rate V c is 10 to 100 ° C./s. Preferred cooling rates are 20 to 80 ° C / s. Preferably the heating rate is 3 to 60 ° C / s. The annealing time t a is preferably 15 to 300 seconds.

바람직한 실시예에서, 최대 어닐링 온도(Ta)는 775 내지 795℃(예를 들어, 785±10℃)이다.In a preferred embodiment, the maximum annealing temperature T a is 775 to 795 ° C. (eg 785 ± 10 ° C.).

바람직하게는, 강 스트립 재료는 냉간압연 이전에 산세(pickle)된다. 상기 산세는 (종종) 산화물을 제거하여 산화물이 압연되는 것을 방지하기 위해 냉간 압연 이전에 필요하다. 바람직하게는, 냉간 압연 스트립 재료는 열간 압연 재료 또는 벨트 주조 스트립 재료로부터 제조된다. Preferably, the steel strip material is pickled prior to cold rolling. The pickling is necessary prior to cold rolling to remove the (often) oxide and prevent the oxide from rolling. Preferably, the cold rolled strip material is made from a hot rolled material or a belt cast strip material.

본 발명의 바람직한 실시예에서, 연속 어닐링 후 냉각 속도 Vc로 냉각하는 동안, 금속 코팅을 만드는 금속의 용융 욕 내로 스트립을 용융 침지함으로써 상기 스트립은 용융 침지욕을 통해 금속 코팅이 제공된다. 이 공정은 금속 코팅된 강 스트립을 생산하는데 매우 경제적이며 빠른 공정이 된다. 금속 코팅은 아연 또는 아연 합금과 같은 어떠한 공지의 코팅법도 가능하며, 상기 아연은 알루미늄 및/또는 마그네슘과 같은 원소와 합금될 수도 있다. In a preferred embodiment of the present invention, during cooling at a cooling rate V c after continuous annealing, the strip is provided with a metal coating via a melt immersion bath by melt dipping the strip into a molten bath of metal making a metal coating. This process is very economical and fast for producing metal coated steel strips. The metal coating may be of any known coating method, such as zinc or zinc alloy, which may be alloyed with elements such as aluminum and / or magnesium.

본 발명의 다른 실시예에서, 스트립은 연속 어닐링된 후에 산세되며, 상기 금속 코팅을 만드는 금속 용융 욕 내로 스트립을 용융 침지함으로서 상기 스트립에 용융 침지욕을 통해 금속 코팅을 제공하기 전에, 상기 스트립을 어닐링 후 산세한 다음 연속 어닐링 온도 미만의 온도로 가열함으로서 금속코팅을 제공한다. 이러한 대안적 공정은 상기에서 설명한 경제적 공정이 바람직하지 않은 경우 사용할 수 있다. 산세 처리가 필요할 수도 있는 어떤 특수한 금속 코팅으로 접착(adhesion)되는 문제가 있을 수 있다. 산세 후 상기 Ta 초과의 온도로 스트립을 가열하는 것은 필요하지도 바람직하지도 않다. 가열 온도를 Ta 미만으로 유지하는 것이 바람직하다. In another embodiment of the invention, the strip is pickled after continuous annealing, and before the strip is immersed into the metal melt bath to make the metal coating, the strip is annealed prior to providing the metal coating through the melt immersion bath. The metal coating is then provided by pickling and then heating to a temperature below the continuous annealing temperature. This alternative process can be used when the economic process described above is undesirable. There may be problems with adhesion to any special metal coating that may require pickling treatment. It is neither necessary nor desirable to heat the strip to a temperature above T a after pickling. It is desirable to maintain the heating temperature below T a .

이러한 방법으로, 스트립 재료는 폐쇄된 억제층(closed inhibition layer)을 형성하기에 충분한 온도로 단지 가열된다. 온도는 (기계적 특성에 영향을 미치는 재결정화와 같은) 금속학적 이유에 필요한 일반적인 연속 어닐링 온도보다 낮다. 강 스트립 재료 표면 상의 산화물 생성은 이로 인하여 감소한다. In this way, the strip material is only heated to a temperature sufficient to form a closed inhibition layer. The temperature is lower than the typical continuous annealing temperature required for metallic reasons (such as recrystallization affecting mechanical properties). Oxide production on the steel strip material surface is thereby reduced.

바람직하게는, 연속 어닐링 온도 미만의 온도는 400 내지 600℃이다. 이 온도 범위 내에서, 산화물 생성은 상당히 감소하며, 스트립 재료는 후속 용융 침지 아연도금을 위해 충분히 가열된다.Preferably, the temperature below the continuous annealing temperature is 400 to 600 ° C. Within this temperature range, oxide production is significantly reduced and the strip material is sufficiently heated for subsequent hot dip galvanizing.

바람직한 실시예에서, 스트립 재료 내의 철(Fe)은 연속 어닐링 온도 미만의 온도로 가열하는 도중 또는 그 이후, 및 용융 침지 아연도금 이전에 환원된다. 스트립 재료를 환원시킴으로서, 생성되는 산화철(Fe-oxide)이 감소되며, 이러한 방식으로 용융 침지 아연 도금 이전에 스트립 재료의 표면 상에 존재하는 산화물의 양이 상당히 감소된다.    In a preferred embodiment, iron (Fe) in the strip material is reduced during or after heating to a temperature below the continuous annealing temperature, and prior to hot dip galvanizing. By reducing the strip material, the resulting Fe-oxide is reduced and in this way the amount of oxide present on the surface of the strip material prior to hot dip galvanizing is significantly reduced.

바람직하게는, H2N2, 보다 바람직하게는 5 ~ 30%의 H2N2를 환원 분위기에서 사용하여 상기 환원이 실시된다. 이러한 분위기의 사용으로 대부분의 산화물을 제거시킬 수 있다는 것을 발견하였다.Preferably, the reduction is carried out using H 2 N 2 , more preferably 5 to 30% of H 2 N 2 in a reducing atmosphere. It has been found that the use of this atmosphere can remove most of the oxides.

바람직한 실시예에 의하면, 스트립 재료의 가열 도중 또는 그 후, 및 스트립 재료의 환원 이전에 과다량(excesss amount)의 O2가 상기 분위기에 제공된다. 과다량의 산소를 제공함으로서 용융 침지 아연도금 이전에 강 스트립 재료 표면의 품질을 개선하여, AHSS 스트립 재료 상에 코팅된 아연층의 품질도 개선된다. 산소가 스트립 재료의 표면 및 그 내부 모두에서 AHSS 스트립 재료 내의 합금 원소와 결합하고, 이러한 방식으로 형성된 산화물이 스트립 재료의 표면으로 옮겨갈 수 없을 것으로 보인다.According to a preferred embodiment, an excess amount of O 2 is provided to the atmosphere during or after heating of the strip material and before the reduction of the strip material. Providing excess oxygen improves the quality of the steel strip material surface prior to hot dip galvanizing, thereby improving the quality of the zinc layer coated on the AHSS strip material. Oxygen combines with alloying elements in the AHSS strip material both on and within the surface of the strip material, and it is likely that oxides formed in this way cannot migrate to the surface of the strip material.

산화 후의 환원 분위기는 그 후 스트립 재료의 표면에서 산화물을 환원시킬 것이며, 이러한 방식으로 스트립 재료 표면의 산화물의 양이 상당히 감소하거나 또는 실험에서 나타난 바와 같이 심지어 거의 없어진다. 바람직하게는, 과다량의 O2가 0.05 ~5% O2의 양으로 제공된다. 이러한 산소의 양은 충분한 것으로 발견되었다.The reducing atmosphere after oxidation will then reduce the oxide at the surface of the strip material, in this way the amount of oxide on the strip material surface is considerably reduced or even almost disappeared as shown in the experiment. Preferably, excess O 2 is provided in an amount of 0.05-5% O 2 . This amount of oxygen was found to be sufficient.

본 발명의 바람직한 실시예에서, 본 발명에 의한 V-합금 TWIP 강 스트립 재료는 열간 압연, 산세 및 냉간 압연되며, 본 발명에 의한 온도로 연속 어닐링되고 다시 산세된다. 그 다음에 스트립 재료가 어닐링 라인에서 527℃의 온도로 가열된 후, 대략 450℃에서 아연도금 욕 내에서 용융 침지 아연도금된다.In a preferred embodiment of the invention, the V-alloy TWIP steel strip material according to the invention is hot rolled, pickled and cold rolled, continuously annealed to the temperature according to the invention and pickled again. The strip material is then heated to a temperature of 527 ° C. in the annealing line and then hot dip galvanized in a galvanizing bath at approximately 450 ° C.

527℃의 온도로 스트립 재료를 가열하는 도중, 과다량의 1% O2가 제공된다. 상기의 고온에서 산소가 제공되어, 스트립 재료의 표면에서 산화물을 생성할 뿐만 아니라 표면 아래의 어느 깊이에서 합금 원소와 결합한다. 산소 제공 후, 대략 5%의 H2N2를 사용하여 스트립 재료를 환원시켰다. 스트립 재료의 환원은 상기 표면에서 산화물을 제거하나, 상기 표면 아래에 형성된 산화물은 원래의 자리에 유지되어 상기 표면으로 이동할 수 없다. During heating the strip material to a temperature of 527 ° C., an excess of 1% O 2 is provided. Oxygen is provided at these high temperatures to produce oxides at the surface of the strip material as well as to combine with alloying elements at any depth below the surface. After oxygenation, the strip material was reduced using approximately 5% H 2 N 2 . Reduction of the strip material removes oxides from the surface, but oxides formed below the surface remain intact and cannot migrate to the surface.

따라서, 표면을 환원시킴으로서 산화물을 효과적으로 제거시키며, 상기 표면 상에 새로운 산화물이 형성될 수 없다. 이러한 산화물이 제거되지 않는 경우 아연층의 기재로의 불량한 접착을 유발하여 무도금(bare spot), 박리(flaking) 및 재료가 굽혀질 때 아연층 내의 균열 형성이 발생한다. 일반적 환원법에 의하여, 합금 원소가 합금 온도에서 매우 빠르게 표면으로 이동하여, 용융 침지 아연도금이 일어나기 전에 표면에 다시 산화물을 생성하는 것으로 생각된다. 정확한 메커니즘이 무엇이든 간에, 이러한 방법을 사용하여 V-합금 TWIP 강 상의 용융 침지 아연 도금된 아연층 내에서 발견되는 산화물의 양을 감소시키거나 또는 거의 제거할 수 있다.Thus, reducing the surface effectively removes the oxide, and no new oxide can be formed on the surface. If these oxides are not removed, this leads to poor adhesion of the zinc layer to the substrate, resulting in bare spots, flaking and crack formation in the zinc layer when the material is bent. It is believed that by the general reduction method, the alloying elements move to the surface very quickly at the alloy temperature, producing oxides on the surface again before hot dip galvanizing takes place. Whatever the exact mechanism, this method can be used to reduce or nearly eliminate the amount of oxide found in the hot dip galvanized zinc layer on the V-alloy TWIP steel.

본 발명의 실시예에서, 냉간 압연 압하율(cold-rolling reduction)은 10 내지 90%, 보다 바람직하게는 30 내지 85%, 더욱더 바람직하게는 45 내지 80%이다.In an embodiment of the invention, the cold rolling reduction is from 10 to 90%, more preferably from 30 to 85%, even more preferably from 45 to 80%.

본 발명의 실시예에서, 어닐링된 스트립은 상기 스트립에 금속 코팅을 제공하기 전 또는 그 후에 0.5 내지 10%의 압하율로서 템퍼(temper) 압연된다.In an embodiment of the invention, the annealed strip is temper rolled at a rolling reduction of 0.5 to 10% before or after providing the metal coating to the strip.

본 발명의 실시예에서, 바나듐 함량은 0.06 내지 0.22%이다.In an embodiment of the present invention, the vanadium content is from 0.06 to 0.22%.

본 발명의 제 2 측면에서, 스트립 또는 시트는 제 1 내지 제 6항 중 어느 한 항에 의한 방법에 의해 제조 및 제공되며, 상기 강은 바람직하게는 금속 코팅되어 제공된다. 본 발명의 바람직한 실시예에서, 스트립 또는 시트는 자동차 내부 또는 외부 부품 또는 바퀴의 제조, 또는 액상 성형 응용(hydroforming applications)에 사용된다.In a second aspect of the invention, the strip or sheet is produced and provided by the method according to any one of claims 1 to 6, wherein the steel is preferably provided with a metal coating. In a preferred embodiment of the invention, the strip or sheet is used for the manufacture of internal or external parts or wheels for automobiles, or for hydroforming applications.

본 발명은 하기의 제한되지 않은 실시예에 의해 추가로 설명된다.The invention is further illustrated by the following non-limiting examples.

본 연구에 사용된 재료의 화학 조성은 표 1에 나타나있다.The chemical compositions of the materials used in this study are shown in Table 1.

Figure pct00001
Figure pct00001

변형된 미세구조의 재결정화를 보장하기 위하여 마무리 압연온도(FRT)를 선택하고, 권취 온도는 카바이드 석출을 피하기 위하여 500℃ 미만으로 유지한다. 재결정화는 FRT에만 의존할 뿐만 아니라 열간 압연 과정의 최종 재결정화 이후 축적된 압연 스트레인, 시간 및 스트레인 속도에 의존한다. The finish rolling temperature (FRT) is chosen to ensure recrystallization of the modified microstructure, and the winding temperature is kept below 500 ° C. to avoid carbide precipitation. Recrystallization depends not only on the FRT but also on the rolling strain, time and strain rate accumulated since the final recrystallization of the hot rolling process.

모든 열간 압연 재료는 50% 냉간 압연되고, 이어서 재결정 어닐링된다. 최적 어닐링 파라미터를 결정하기 위하여 다른 어닐링 싸이클을 적용한다. 연신율(elongation)은 재결정화되지 않는 재료(36~45%) 및 920℃에서 어닐링된 재료(65%)를 제외하고는 45% 내지 50%라는 것을 주목하라. 강도가 더 중요하게 고려되므로, 하기의 논의에서는 그에 집중할 것이다.All hot rolled materials are 50% cold rolled and then recrystallized annealed. Different annealing cycles are applied to determine the optimum annealing parameters. Note that elongation is 45% to 50% except for materials that do not recrystallize (36-45%) and materials annealed at 920 ° C. (65%). Since strength is considered more important, the following discussion will focus on it.

750℃까지의 어닐링 온도에 대해서는, 증가된 부분의 재결정화 재료 및 아마도 일부 결정의 성장 때문에 재료가 연화된다. 이러한 온도에서는, 석출 효과가 제한된다. 결정 성장을 최소화하기 위해서는 이 온도 영역에서 석출되는 것이 최적이라고 생각되기 때문에 775℃ 및 800℃에서 어닐링된 (완전 재결정화) 재료들 간의 차이는 미미하다. 이러한 관찰에 기초할 때, 추천 어닐링 온도는 785±10℃이다.For annealing temperatures up to 750 ° C., the material softens due to the growth of the increased portion of recrystallized material and possibly some crystals. At such a temperature, the precipitation effect is limited. The difference between the materials annealed (fully recrystallized) at 775 ° C. and 800 ° C. is insignificant because it is thought that it is optimal to precipitate in this temperature range to minimize crystal growth. Based on this observation, the recommended annealing temperature is 785 ± 10 ° C.

Figure pct00002
Figure pct00002

V-합금 등급 상의 지연 균열 및 응력부식 균열의 결과는 재료가 더 높은 온도에서 어닐링될 때 균열 형성에 대한 감수성(susceptibility)이 더 낮다는 것을 보여준다. 응력부식 균열 민감도에 대하여, V 첨가는 750℃ 뿐만 아니라 더 고온의 어닐링 온도에서 확실히 더 유리하다. The results of delayed cracking and stress corrosion cracking on the V-alloy grade show that the material is less susceptible to crack formation when annealed at higher temperatures. For stress corrosion cracking sensitivity, V addition is certainly more advantageous at 750 ° C. as well as higher annealing temperatures.

V-합금에 저항 스팟 용접 실험(resistance spot welding test)을 실시하였다. 용접 시의 열균열은 무실리콘의 비 V-합금 재료에 비하여 크게 감소한다.
Resistance spot welding tests were performed on the V-alloys. Thermal cracking during welding is greatly reduced compared to non-silicon free V-alloy materials.

Claims (15)

지연 균열에 우수한 저항성을 갖는 오스테나이트강 시트의 제조 방법에 있어서,
- 중량 %로 하기의 조성을 포함하는 잉곳, 또는 연속 주조 슬래브, 또는 연속 주조 박형 슬래브 또는 스트립-주조 스트립을 주조하는 단계:
- 0.50% ~ 0.80% C
- 10 ~ 17% Mn
- 1.0% 이상의 Al
- 0.5% 이하의 Si
- 0.020% 이하의 S
- 0.050% 이하의 P
- 50 ~ 200ppm N
- 0.050 ~ 0.25% V
- 잔부 철 및 제조 과정에서 불가피하게 첨가되는 불순물;
- 상기 잉곳, 연속 주조 슬래브, 연속 주조 박형 슬래브 또는 스트립-주조 스트립을 원하는 열간 압연 두께로 열간 압연함으로서 열간 압연 스트립을 제공하는 단계;
- 상기 열간압연 스트립을 원하는 최종 두께로 냉각압연하는 단계; 및
- 어닐링 시간(ta) 동안 750 내지 850℃의 어닐링 온도(Ta)로 가열 속도(Vh)에서 상기 스트립을 가열한 후 냉각 속도(Vc)로 냉각하는 것을 포함하는 공정에서 상기 냉간 압연 스트립의 연속 어닐링 단계를 포함하는 오스테나이트강 시트의 제조 방법.
In the method for producing an austenitic steel sheet having excellent resistance to delayed cracking,
Casting an ingot, or continuous casting slab, or continuous casting thin slab or strip-casting strip comprising, by weight%:
0.50% to 0.80% C
10 to 17% Mn
-1.0% Al
0.5% Si or less
0.020% or less
Less than or equal to 0.050%
-50 to 200 ppm N
0.050 to 0.25% V
Residual iron and impurities which are inevitably added during the production process;
Providing a hot rolled strip by hot rolling the ingot, continuous cast slab, continuous cast thin slab or strip-cast strip to a desired hot roll thickness;
Cold rolling the hot rolled strip to the desired final thickness; And
The cold rolling in a process comprising heating the strip at a heating rate (V h ) at an annealing temperature (T a ) of 750 to 850 ° C. for an annealing time (t a ) followed by cooling to a cooling rate (V c ). A method for producing austenite steel sheet comprising a continuous annealing step of strips.
제 1항에 있어서,
상기 알루미늄 함량이 1.25% 이상 및/또는 3.5% 이하인 오스테나이트강 시트의 제조 방법.
The method of claim 1,
A process for producing austenitic steel sheets having an aluminum content of at least 1.25% and / or at most 3.5%.
제 1항에 있어서,
상기 연속 어닐링 후 냉각 속도(Vc)로 냉각하는 동안, 금속 코팅을 실시하는 금속의 용융욕 내로 스트립을 용융 침지함으로서 상기 스트립에 용융침지욕을 통하여 금속코팅이 제공되는 오스테나이트강 시트의 제조 방법.
The method of claim 1,
While cooling at a cooling rate (V c ) after the continuous annealing, a method of producing an austenitic steel sheet in which the metal coating is provided through the melt immersion bath by melt immersing the strip into a melt bath of the metal to which the metal coating is applied. .
제 1항에 있어서,
상기 스트립은 연속 어닐링 후 산세되고, 금속 코팅을 실시하는 금속의 용융 욕 내로 스트립을 침지함으로서 상기 스트립에 용융침지욕을 통해 금속 코팅이 제공되기 전에, 상기 스트립을 어닐링 후 산세한 다음 연속 어닐링 온도 미만의 온도로 가열함으로서 금속 코팅이 제공되는 오스테나이트강 시트의 제조 방법.
The method of claim 1,
The strip is pickled after continuous annealing, and after the strip is annealed and pickled and then below the continuous annealing temperature before the metal coating is provided through the melt immersion bath by dipping the strip into a molten bath of the metal to which the metal is coated. A method for producing an austenitic steel sheet provided with a metal coating by heating to a temperature of.
제 1항 내지 제 4항 중 어느 한 항에 있어서,
상기 냉간 압연의 압하율이 10 내지 90%, 보다 바람직하게는 30 내지 85%, 더욱더 바람직하게는 45 내지 80%인 오스테나이트강 시트의 제조 방법.
The method according to any one of claims 1 to 4,
The cold rolling reduction rate is 10 to 90%, more preferably 30 to 85%, even more preferably 45 to 80% method for producing austenite steel sheet.
제 1항 내지 제 5항 중 어느 한 항에 있어서,
상기 금속 코팅을 상기 스트립에 제공하기 이전 또는 이후에 어닐링된 상기 스트립이 0.5 내지 10%의 압하율로 템퍼 압연되는 오스테오나이트강 시트의 제조 방법.
6. The method according to any one of claims 1 to 5,
And wherein said annealed strip is temper rolled to a rolling reduction of 0.5 to 10% before or after providing said metal coating to said strip.
제 1항 내지 제 6항 중 어느 한 항에 있어서,
상기 바나듐 함량이 0.06 내지 0.22%인 오스테나이트강 시트의 제조방법.
7. The method according to any one of claims 1 to 6,
The vanadium content of 0.06 to 0.22% of austenite steel sheet manufacturing method.
제 1항 내지 제 7항 중 어느 한 항에 있어서,
상기 냉각 속도(Vc)는 10 내지 100 ℃/s, 및/또는
상기 가열 속도(Vh)가 바람직하게는 3 내지 60℃/s, 및/또는
상기 어닐링 시간(ta)이 바람직하게는 15 내지 300초인 오스테나이트강 시트의 제조방법.
8. The method according to any one of claims 1 to 7,
The cooling rate (V c ) is from 10 to 100 ° C./s, and / or
The heating rate (V h ) is preferably 3 to 60 ° C./s, and / or
The annealing time (t a ) is a manufacturing method of the austenite steel sheet is preferably 15 to 300 seconds.
제 1항, 제 2항 또는 제 4항 내지 제 8항 중 어느 한 항에 있어서,
상기 스트립은 연속 어닐링 후 산세되고, 금속 코팅을 실시하는 금속의 용융 욕 내로 스트립을 침지함으로서 용융 침지욕을 통해 상기 스트립에 금속 코팅이 제공되기 전에, 상기 스트립을 연속 어닐링 후 산세한 다음 400 내지 600℃의 온도로 가열함으로서, 금속 코팅을 제공하는 오스테나이트강 시트의 제조방법.
The method according to any one of claims 1, 2 or 4 to 8,
The strips are pickled after continuous annealing, and after the continuous annealing and pickling of the strips before the metal coating is provided through the melt dip bath by dipping the strips into a molten bath of the metal to which the metal coating is applied, then 400 to 600 A method of producing an austenitic steel sheet by providing a metal coating by heating to a temperature of < RTI ID = 0.0 >
제 9항에 있어서,
상기 스트립 재료 중의 Fe가 연속 어닐링 온도 미만의 온도로 가열 도중 또는 그 이후 및 용융 침지 아연 도금되기 전에 환원되며, 바람직하게는 상기 환원은 H2N2, 더욱 바람직하게는 환원 분위기 하에서 5 ~ 30% H2N2를 사용하여 수행되는 오스테나이트강 시트의 제조방법.
The method of claim 9,
Fe in the strip material is reduced during or after heating to a temperature below the continuous annealing temperature and before hot dip galvanizing, preferably the reduction is 5 to 30% under H 2 N 2 , more preferably in a reducing atmosphere A process for producing austenite steel sheet carried out using H 2 N 2 .
제 10항에 있어서,
상기 스트립 재료의 가열 도중 또는 그 이후 및 상기 스트립 재료의 환원 이전에 과다량의 O2가 상기 분위기 중에 제공되며, 바람직하기는 상기 과다량의 02는 0.05 ~ 5% 의 02인 오스테나이트강 시트의 제조방법.
The method of claim 10,
An excess amount of O 2 is provided in the atmosphere during or after heating of the strip material and before the reduction of the strip material, preferably the excess amount of 0 2 is 0.05 to 5% of 0 2 austenite steel Manufacturing method of the sheet.
제 1항 내지 제 11항 중 어느 한 항에 있어서,
상기 열간압연 후의 권취 온도가 500℃ 미만으로 유지 및/또는 상기 어닐링 온도(Ta)가 785℃±10℃인 오스테나이트강 시트의 제조방법.
12. The method according to any one of claims 1 to 11,
Maintained at the hot coiling temperature is less than 500 ℃ after rolling and / or the annealing temperature (T a) is 785 ℃ ± 10 ℃ the austenite method of producing a steel sheet night.
제 1항 내지 제 12항 중 어느 한 항에 의한 방법에 의해 제조된 스트립 또는 시트에 있어서,
상기 강에 바람직하게는 금속 코팅이 제공되는 스트립 또는 시트.
A strip or sheet produced by the method according to claim 1, wherein
Strip or sheet, wherein the steel is preferably provided with a metal coating.
자동차 내부 또는 외부 부품 또는 바퀴의 제조에 사용되는 제 13항에 의한 스트립 또는 시트의 사용방법.Use of a strip or sheet according to claim 13 for the manufacture of internal or external parts or wheels of a motor vehicle. 제 13항에 있어서,
액압 성형에 사용되는 스트립 또는 시트의 사용 방법.
The method of claim 13,
Method of use of strips or sheets used in hydraulic forming.
KR1020127032074A 2010-06-10 2011-06-10 Method of producing an austenitic steel KR101900963B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10165596 2010-06-10
EP10165596.7 2010-06-10
PCT/EP2011/002868 WO2011154153A1 (en) 2010-06-10 2011-06-10 Method of producing an austenitic steel

Publications (2)

Publication Number Publication Date
KR20130111214A true KR20130111214A (en) 2013-10-10
KR101900963B1 KR101900963B1 (en) 2018-09-20

Family

ID=42732626

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127032074A KR101900963B1 (en) 2010-06-10 2011-06-10 Method of producing an austenitic steel

Country Status (8)

Country Link
US (1) US20130118647A1 (en)
EP (1) EP2580359B1 (en)
JP (1) JP6009438B2 (en)
KR (1) KR101900963B1 (en)
CN (1) CN102939394A (en)
BR (1) BR112012031466B1 (en)
WO (1) WO2011154153A1 (en)
ZA (1) ZA201300240B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180132930A (en) * 2016-05-24 2018-12-12 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts
KR20180135966A (en) * 2016-05-24 2018-12-21 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts
KR20180136539A (en) * 2016-05-24 2018-12-24 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their manufacture, and uses of such steels for manufacturing vehicle parts
KR20190052683A (en) * 2016-09-16 2019-05-16 잘쯔기터 플래시슈탈 게엠베하 A method for producing a flat steel product comprising manganese-containing flat steel and a method for producing such a flat steel product
KR20190130681A (en) * 2016-05-24 2019-11-22 아르셀러미탈 Method for the manufacture of twip steel sheet having an austenitic matrix
US10995381B2 (en) 2016-05-24 2021-05-04 Arcelormittal Method for producing a TWIP steel sheet having an austenitic microstructure
KR20210098545A (en) * 2016-05-24 2021-08-10 아르셀러미탈 Twip steel sheet having an austenitic matrix

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003516A1 (en) 2013-03-04 2014-09-04 Outokumpu Nirosta Gmbh Process for the production of an ultra-high-strength material with high elongation
DE102015111866A1 (en) 2015-07-22 2017-01-26 Salzgitter Flachstahl Gmbh Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
KR20180098645A (en) 2015-12-28 2018-09-04 더 나노스틸 컴퍼니, 인코포레이티드 Prevents delayed cracking during drawing of high strength steel
KR101747034B1 (en) * 2016-04-28 2017-06-14 주식회사 포스코 Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
WO2017203309A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Twip steel sheet having an austenitic matrix
KR101889185B1 (en) 2016-12-21 2018-08-16 주식회사 포스코 Hot-rolled steel sheet having superior formability and fatigue property, and method for manufacturing the same
CN108929991B (en) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 Hot-dip plated high manganese steel and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108610A (en) * 2008-01-30 2010-10-07 코루스 스타알 베.뷔. Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
FR2731713B1 (en) * 1995-03-14 1997-04-11 Ugine Sa PROCESS FOR THE MANUFACTURE OF A SHEET OF ELECTRIC STEEL WITH ORIENTED GRAINS FOR THE PRODUCTION OF MAGNETIC TRANSFORMER CIRCUITS IN PARTICULAR
KR970043162A (en) * 1995-12-30 1997-07-26 김종진 Annealing heat treatment method and pickling method of high manganese cold rolled steel
FR2881144B1 (en) * 2005-01-21 2007-04-06 Usinor Sa PROCESS FOR MANUFACTURING FERRO-CARBON-MANGANIZED AUSTENITIC STEEL TILES HAVING HIGH RESISTANCE TO DELAYED CRACKING, AND SHEETS THUS PRODUCED
WO2006082104A1 (en) * 2005-02-02 2006-08-10 Corus Staal Bv Austenitic steel having high strength and formability, method of producing said steel and use thereof
KR100742833B1 (en) * 2005-12-24 2007-07-25 주식회사 포스코 High Mn Steel Sheet for High Corrosion Resistance and Method of Manufacturing Galvanizing the Steel Sheet
KR100851158B1 (en) * 2006-12-27 2008-08-08 주식회사 포스코 High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It
US8465806B2 (en) * 2007-05-02 2013-06-18 Tata Steel Ijmuiden B.V. Method for hot dip galvanizing of AHSS or UHSS strip material, and such material
KR20090070509A (en) * 2007-12-27 2009-07-01 주식회사 포스코 High manganese coated steel sheet having high strength and ductility and manufacturing method thereof
KR100985286B1 (en) * 2007-12-28 2010-10-04 주식회사 포스코 High Manganese Steel Having High Strength and Excellent Delayed Fracture Resistance and Manufacturing Method Thereof
EP2090668A1 (en) * 2008-01-30 2009-08-19 Corus Staal BV Method of producing a high strength steel and high strength steel produced thereby
KR101079472B1 (en) * 2008-12-23 2011-11-03 주식회사 포스코 Method for Manufacturing High Manganese Hot Dip Galvanizing Steel Sheet with Superior Surface Property
EP2208803A1 (en) * 2009-01-06 2010-07-21 ThyssenKrupp Steel Europe AG High-tensile, cold formable steel, steel flat product, method for producing a steel flat product and use of a steel flat product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100108610A (en) * 2008-01-30 2010-10-07 코루스 스타알 베.뷔. Method of producing a hot-rolled twip-steel and a twip-steel product produced thereby

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180132930A (en) * 2016-05-24 2018-12-12 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts
KR20180135966A (en) * 2016-05-24 2018-12-21 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their production and uses of such steels for manufacturing automotive parts
KR20180136539A (en) * 2016-05-24 2018-12-24 아르셀러미탈 Cold rolled and annealed steel sheets, methods for their manufacture, and uses of such steels for manufacturing vehicle parts
CN109154052A (en) * 2016-05-24 2019-01-04 安赛乐米塔尔公司 The purposes of steel plate, its manufacturing method and such steel to manufacture vehicle part through cold rolling and annealing
KR20190130681A (en) * 2016-05-24 2019-11-22 아르셀러미탈 Method for the manufacture of twip steel sheet having an austenitic matrix
CN109154052B (en) * 2016-05-24 2021-04-02 安赛乐米塔尔公司 Cold-rolled and annealed steel sheet, method for the production thereof and use of such a steel for producing vehicle parts
US10995381B2 (en) 2016-05-24 2021-05-04 Arcelormittal Method for producing a TWIP steel sheet having an austenitic microstructure
KR20210098545A (en) * 2016-05-24 2021-08-10 아르셀러미탈 Twip steel sheet having an austenitic matrix
US11414721B2 (en) 2016-05-24 2022-08-16 Arcelormittal Method for the manufacture of TWIP steel sheet having an austenitic matrix
KR20190052683A (en) * 2016-09-16 2019-05-16 잘쯔기터 플래시슈탈 게엠베하 A method for producing a flat steel product comprising manganese-containing flat steel and a method for producing such a flat steel product
US11261503B2 (en) 2016-09-16 2022-03-01 Salzgitter Flachstahl Gmbh Method for producing a flat steel product made of a manganese-containing steel, and such a flat steel product

Also Published As

Publication number Publication date
CN102939394A (en) 2013-02-20
JP6009438B2 (en) 2016-10-19
KR101900963B1 (en) 2018-09-20
JP2013534566A (en) 2013-09-05
EP2580359A1 (en) 2013-04-17
WO2011154153A1 (en) 2011-12-15
US20130118647A1 (en) 2013-05-16
ZA201300240B (en) 2014-03-26
EP2580359B1 (en) 2017-08-09
BR112012031466A2 (en) 2016-11-08
BR112012031466B1 (en) 2019-07-09

Similar Documents

Publication Publication Date Title
KR101900963B1 (en) Method of producing an austenitic steel
JP5532188B2 (en) Manufacturing method of high-strength steel sheet with excellent workability
JP7055171B2 (en) TWIP steel sheet with austenitic matrix
CN109154048B (en) Method for manufacturing TWIP steel sheet having austenitic microstructure
CN111433380A (en) High-strength galvanized steel sheet and method for producing same
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
WO2013084478A1 (en) Method for manufacturing high-strength cold-rolled steel sheet having excellent aging resistance and bake hardenability
WO2013034317A1 (en) Low density high strength steel and method for producing said steel
WO2021100842A1 (en) Coated steel member, coated steel sheet, and methods respectively manufacturing those
JP4528184B2 (en) Method for producing alloyed hot-dip galvanized high-strength steel sheet with good workability
JP4924203B2 (en) High-strength galvannealed steel sheet and method for producing the same
KR102277396B1 (en) TWIP steel sheet with austenitic matrix
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2013185240A (en) High-tension cold-rolled steel sheet, high-tension plated steel sheet, and method for producing them
JP6683291B2 (en) Steel plate and method for manufacturing steel plate
JP6683292B2 (en) Steel plate and method for manufacturing steel plate
JP4293020B2 (en) Manufacturing method of high-strength steel sheet with excellent hole expandability
JP4010132B2 (en) Composite structure type high-tensile hot-dip galvanized steel sheet excellent in deep drawability and method for producing the same
JP3873638B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2005290485A (en) Strain aging treatment method for steel plate and method for manufacturing high-strength structural member
JPH0154413B2 (en)
JP3773604B2 (en) High-strength cold-rolled steel sheet or hot-dip galvanized steel slab excellent in deep drawability and method for producing the same
JP5682356B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5682357B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4325233B2 (en) Composite structure type high-tensile cold-rolled steel sheet and hot-dip galvanized steel sheet excellent in deep drawability and strain age hardenability, and methods for producing them

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right