KR20130104629A - Argonaute 4 of brassica rapa ssp. pekinensis and a gene encoding the same - Google Patents

Argonaute 4 of brassica rapa ssp. pekinensis and a gene encoding the same Download PDF

Info

Publication number
KR20130104629A
KR20130104629A KR1020120026278A KR20120026278A KR20130104629A KR 20130104629 A KR20130104629 A KR 20130104629A KR 1020120026278 A KR1020120026278 A KR 1020120026278A KR 20120026278 A KR20120026278 A KR 20120026278A KR 20130104629 A KR20130104629 A KR 20130104629A
Authority
KR
South Korea
Prior art keywords
gene
leu
argonaute
ser
val
Prior art date
Application number
KR1020120026278A
Other languages
Korean (ko)
Other versions
KR101409494B1 (en
Inventor
박영두
이기호
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020120026278A priority Critical patent/KR101409494B1/en
Publication of KR20130104629A publication Critical patent/KR20130104629A/en
Application granted granted Critical
Publication of KR101409494B1 publication Critical patent/KR101409494B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE: Brassica rapa ssp. Pekinensis-derived argonaute 4 protein and a gene encoding the same are provided to construct RNAivector using isolated argonaute 4 gene and to produce transgenic Brassica rapa ssp. Pekinensis. CONSTITUTION: A primer gene which encodes Brassica rapa ssp. Pekinensis-derived argonaute 4 protein has base sequences of sequence numbers 1 and 2. The gene has a base sequence of sequence number 3. Argonaute 4 protein has an amino acid sequence of sequence number 4. A recombinant plasmid is prepared by cloning argonaute 4 gene in pGEM-T easy vector.

Description

배추 유래의 아거노트 4 단백질 및 그의 코딩 유전자{Argonaute 4 of Brassica rapa ssp. pekinensis and a gene encoding the same}Arganote 4 protein derived from cabbage and its coding gene {Argonaute 4 of Brassica rapa ssp. pekinensis and a gene encoding the same}

본 발명은 배추(Brassica rapa ssp. pekinensis)로부터 분리된 아거노트(Argonaute) 4 단백질을 코딩하는 유전자에 관한 것이다.
The invention cabbage ( Brassica) rapa ssp. The present invention relates to a gene encoding an Argonaute 4 protein isolated from E. pekinensis .

아거노트 4(AGO4) 유전자는 PAZ/PIWI 도메인을 가지는 유전자로서 siRNA-mediated gene silencing에 관련된 단백질을 인코딩(encoding)한다. 아거노트(Argonaute) 패밀리 단백질은 식물에서 다양한 전사후 유전자 침묵현상(post-transcriptional gene silencing: PTGS) 발생에 있어 주요 인자로 알려져 있다. 이들 단백질은 21~22 뉴클레오타이드(nucleotide)의 siRNAs를 생성하는데 ribonuclease Ⅲ enzyme, DICER등을 이용하며, 이를 통해 PTGS가 진행된다. 또한 siRNAs, miRNAs 및 Piwi-interacting RNAs(piRNAs)들은 특이적 결합 부위(specific binding pocket)에 고정되어 아거노트 단백질로 하여 silencing을 일어나게 유도한다.
The Agonote 4 (AGO4) gene encodes a protein associated with siRNA-mediated gene silencing as a gene having the PAZ / PIWI domain. The Argonaute family protein is known to be a major factor in the development of post-transcriptional gene silencing (PTGS) in plants. These proteins produce siRNAs of 21 to 22 nucleotides using ribonuclease III enzyme, DICER, and so on, through which PTGS proceeds. In addition, siRNAs, miRNAs, and Piwi-interacting RNAs (piRNAs) are fixed to specific binding pockets and induce silencing to occur as agenote proteins.

AGO 패밀리는 종간 유사성이 매우 높으며 다양한 유전자들로 구성되어 배 발달(embryonic development), 세포 분화(cell differentiation) 그리고 트랜스포손(transposon) silencing에 중요한 역할을 한다(Hock J. and G. Meister. 2008. The Argonaute protein family. Genome Biol . 9:210). AGO 서브패밀리(subfamily)와 Piwi 서브패밀리로 분류되어지며 AGO 서브패밀리는 다양하게 발현하며 siRNA나 miRNA에 결합하여 mRNA를 불안정화시키거나 translational repression을 통해 PTGS를 유도한다. Piwi 서브패밀리는 대부분 생식계열에 국한되어 있으며 Piwi 단백질들은 piRNA와 연관되어 이동 유전 요소(mobile genetic element)의 silencing을 촉진시킨다(Hock J. and G. Meister. 2008. The Argonaute protein family. Genome Biol . 9:210). 이들은 정확한 기능이 밝혀지지 않은 NH2-말단 PAZ 도메인과 COOH-말단 PIWI 도메인으로 구성되어 있으며 AGO4 유전자는 이전에 연구된 RNA Slicer를 인코딩(encoding)하고 있는 AGO1 유전자(Fagard, M., S. Boutet, J.B. Morel, C. Bellini, and H. Vaucheret)와 상동성(homology)을 보이는 패밀리 유전자이다.
The AGO family is highly heterologous and composed of various genes and plays an important role in embryonic development, cell differentiation and transposon silencing (Hock J. and G. Meister. 2008. The Argonaute protein family. Genome Biol . 9: 210). It is divided into AGO subfamily and Piwi subfamily. AGO subfamily expresses variously and binds to siRNA or miRNA to destabilize mRNA or induce PTGS through translational repression. Piwi subfamilies are mostly restricted to the germ line and Piwi proteins are associated with piRNA to promote silencing of mobile genetic elements (Hock J. and G. Meister 2008. The Argonaute protein family. Genome Biol . 9: 210). These are composed of the NH 2 -terminal PAZ domain and the COOH-terminal PIWI domain which are not precisely characterized. The AGO4 gene is the AGO1 gene (Fagard, M., S. Boutet , JB Morel, C. Bellini, and H. Vaucheret).

AGO 서브패밀리에 속하는 AGO4 유전자는 애기장대(Arabidopsis thaliana)에서 RNA 폴리머라제 Ⅳ, Ⅴ와 함께 24 뉴클레오타이드 siRNAs에 유도되어 DNA 메틸화에 요구되는 유전자이다. AGO4 단백질은 nucleus와 근접하게 존재하고 있으며, 폴리머라제 Ⅳ(Pol Ⅳ) 서브유닛 NRPD1b와 small nuclear RNA binding protein SmD3, Cajal body의 두 표지인 trimethylguanosine-capped snRNAs, U2 snRNA 결합 단백질 U2B와 연관되어 있으며, DNA 메틸트랜스퍼라제 DRM2와도 밀접한 관계를 가지고 있는 주요 유전자이다(Li C.F., O. Pontes, M. El-Shami, I.R. Henderson, Y.V. Bernatavichute, S.W. Chan, T. Lagrange, C.S. Pikaard, and S.E. Jacobsen. 2006. An Argonaute4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis. Cell. 126:93-106).
The AGO4 gene belonging to the AGO subfamily belongs to Arabidopsis thaliana , is a gene required for DNA methylation induced by 24 nucleotide siRNAs along with RNA polymerases IV and V. AGO4 protein is located close to the nucleus and is associated with the polymerase IV (Pol Ⅳ) subunit NRPD1b, small nuclear RNA binding protein SmD3, trimethylguanosine-capped snRNAs, which are two markers of Cajal body, U2B snRNA binding protein, DNA methyltransferase DRM2 (Li CF, O. Pontes, M. El-Shami, IR Henderson, YV Bernatavichute, SW Chan, T. Lagrange, CS Pikaard, and SE Jacobsen. An Argonaute4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis . Cell . 126: 93-106).

AGO4 단백질은 RdDM(RNA-directed DNA methylation)에서 크게 두 가지의 역할을 한다. 첫 번째 기능은 siRNA를 생성하는데 있어 요구되는 촉매작용이다(Qi, Y., X. He, X.J. Wang, O. Kohany, J. Jurka, and G.J. Hannon. 2006. Distinct catalytic and non-catalytic roles of Argonaute4 in RNA-directed DNA methylation. Nature. 443:1008-1012; Wierzbicki, A.T., J.R. Haag, and C.S. Pikaard. 2008. Noncoding transcription by RNA polymerase PolIVb/PolV mediates transcriptional silencing of overlapping and adjacent genes. Cell. 135:635-648). 두 번째로 AGO4 단백질은 target locus에 siRNAs와 함께 RdDM(RNA-directed DNA methylation) 복합체를 형성하여 크로마틴 리모델링 인자(chromatin remodelling factor)로서 작용하는 것이다. 이 복합체에서 AGO4 단백질은 slicer로서의 기능을 하는 것으로 알려져 있다. Pol Ⅳ와 RDR2(RNA-dependent RNA polymerase 2)에 의해 dsRNA가 생성되면 DCL3(ribonuclease 3)에 의해 siRNA가 만들어지게 된다. 이 24 뉴클레오타이드 siRNA가 AGO4 단백질에 결합하게 된다. DRD1에 의해 크로마틴 리모델링이 될 때 AGO4 단백질이 Pol Ⅴ의 c-말단 도메인(CTD)에 결합하게 된다. 먼저 Pol Ⅴ transcript에 결합한 뒤 AGO4의 siRNA는 DNA에 결합한다. 이를 통해 크로마틴 변형을 유도하는 것이다(Wierzbicki, A.T., J.R. Haag, and C.S. Pikaard. 2008. Noncoding transcription by RNA polymerase PolⅣb/PolⅤ mediates transcriptional silencing of overlapping and adjacent genes. Cell. 135:635-648).
The AGO4 protein plays two major roles in RNA-directed DNA methylation (RdDM). The first function is the catalysis required for siRNA production (Qi, Y., X. He, XJ Wang, O. Kohany, J. Jurka, and GJ Hannon, 2006. Distinct catalytic and non-catalytic roles of Argonaute4 in RNA-directed DNA methylation Nature 443 :..... 1008-1012; Wierzbicki, AT, JR Haag, and CS Pikaard 2008. Noncoding transcription by RNA polymerase PolIVb / PolV mediates transcriptional silencing of overlapping and adjacent genes Cell 135: 635 -648). Second, the AGO4 protein forms an RNA-directed DNA methylation (RdDM) complex with the siRNAs in the target locus and acts as a chromatin remodeling factor. In this complex, the AGO4 protein is known to function as a slicer. When dsRNA is generated by Pol IV and RDR2 (RNA-dependent RNA polymerase 2), siRNA is produced by DCL3 (ribonuclease 3). This 24-nucleotide siRNA binds to the AGO4 protein. Upon chromatin remodeling by DRD1, the AGO4 protein binds to the c-terminal domain (CTD) of Pol V. First, the siRNA of AGO4 binds to DNA after binding to Pol V transcript. (Wierzbicki, AT, JR Haag, and CS Pikaard, 2008). Noncoding transcription by RNA polymerase Pol IVb / Polv mediates transcriptional silencing of overlapping and adjacent genes Cell 135: 635-648.

이와 같이 특정 유전자의 발현에 관여하는 AGO4 유전자를 배추에서 분리하여 이를 이용해 내부 메틸화(methylation) 상태의 변화를 유도하면 이에 따른 관련 유전자의 전사 활성 억제에 중요한 변화를 야기할 수 있다.
Thus, when the AGO4 gene involved in the expression of a specific gene is isolated from a Chinese cabbage and induced to induce a change in the internal methylation state, an important change in the inhibition of the transcription activity of the related gene may be caused.

현대의 분자 생물학의 발달 및 유용 유전자의 형질전환은 우수한 작물 육종과 지속적으로 발생하는 이상 기후에 대비하기 위해 필수적이다. 그러나 이러한 형질전환에서 아그로박테리움 투메파시엔스(Agrobacterium tumefaciens)을 이용한 식물 형질전환은, T-DNA는 무작위로 여러 카피의 T-DNA가 대상 작물에 도입되어 1 카피가 아닌 멀티 카피 형질전환체는 유전자 침묵(silencing)이 일어나 해당 유전자의 발현이 억제된다. 또한 내생적인 방어 기작에 의하여 프로모터 지역이 메틸화되어 발현이 억제되거나, 결실되어 형질전환 작물의 실용화에 큰 걸림돌이 되고 있다. 그러므로 도입 유전자의 안정적인 발현은 식물학 및 원예생명공학에서 주요한 요소로서 확인되고 있다(Hobbs SL, Kpodar P, DeLong CM. 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Molecular Biology 15, 851-864; Holtorf S, Apel K, Bohlmann H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana. Plant Molecular Biology 29, 637-646). 특히 멀티 카피에 의한 도입 유전자의 침묵 현상은 다중으로 도입된 유전자에 RdDM 현상으로 기인한 siRNA의 연쇄반응이 침묵 현상을 촉진하는 것으로 보고되었다(Tang, W., R.J. Newton, and D.A. Weidner. 2007. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J. Exp . Bot . 58:545-554). 이에 따라 siRNA의 RdDM 경로를 조절하여 유전자의 발현을 유도하는 AGO4의 도입 유전자의 유전자 발현 제어의 내재적인 요인(유전자)을 발굴하는 데 적합하며, 외부요인 투여가 없어 결과해석에 용이할 것으로 판단된다. 즉, 유전자의 효과적인 발현을 확인할 수 있는 형질전환성 식물(competent plant)을 육성할 수 있다. 이러한 형질전환성 식물에 관한 보고는 아직 없으며, 앞으로의 식물 생명공학의 발전에 발맞추어 꼭 필요한 것이라고 본다. 또한 AGO4 유전자는 RdDM(RNA-directed DNA methylation) 복합체의 핵심적인 부분이며, 이것은 발현이 억제되어 있는 유전자들을 활성화시키는 기능을 할 뿐만이 아니라, siRNA에 의한 유전자 침묵(gene silencing) 조절과도 밀접한 관계를 가지고 있다. 이에 따라 AGO4 유전자를 조절하면 생물학적 혹은 비생물학적 스트레스에 의한 주요 유전자의 억제 현상을 해소할 수 있을 뿐만 아니라, 식물 형질전환으로 도입된 유용 유전자의 발현 안정성을 증가시킬 수 있다(Qi, Y., X. He, X.J. Wang, O. Kohany, J. Jurka, and G.J. Hannon. 2006. Distinct catalytic and non-catalytic roles of Argonaute4 in RNA-directed DNA methylation. Nature. 443:1008-1012).
The development of modern molecular biology and the transformation of useful genes are essential for good crop breeding and ongoing adverse weather conditions. However, in these transformations Agrobacterium ( Agrobacterium < RTI ID = 0.0 > Tumefaciens transformed the plant by randomly introducing multiple copies of T-DNA into the target crop, resulting in silencing of multicopy transfectants that are not one copy, resulting in suppression of gene expression do. In addition, the promoter region is methylated by an endogenous defense mechanism to inhibit expression or to be deleted, which is a major obstacle to the commercialization of transgenic crops. Therefore, stable expression of the transgene has been identified as a major factor in botanical and horticultural biotechnology (Hobbs SL, Kpodar P, DeLong CM 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants Plant Molecular Biology 15, 851-864; Holtorf S, Apel K, Bohlmann H. 1995. Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana . Plant Molecular Biology 29, 637-646). In particular, the silencing of transgenes by multicopy has been reported to stimulate silencing by siRNA chain reaction due to RdDM phenomena in multiple transfected genes (Tang, W., RJ Newton, and DA Weidner. 2007. .. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine J. Exp Bot 58:. 545-554). Accordingly, it is suitable to discover the intrinsic factors (genes) of gene expression control of AGO4 introductory gene which regulates the RdDM pathway of siRNA to induce gene expression. . That is, a competent plant capable of confirming the effective expression of the gene can be cultivated. There is no report on these transgenic plants yet, and it is necessary to keep pace with the future development of plant biotechnology. The AGO4 gene is also an integral part of the RdDM (RNA-directed DNA methylation) complex, which not only functions to activate genes whose expression is suppressed, but also has a close relationship with gene silencing regulation by siRNA. Have. Thus, the regulation of AGO4 genes not only eliminates the inhibition of major genes by biological or abiotic stresses, but also increases the expression stability of useful genes introduced into plant transformation (Qi, Y., X . He, XJ Wang, O. Kohany , J. Jurka, and GJ Hannon 2006. Distinct catalytic and non-catalytic roles of Argonaute4 in RNA-directed DNA methylation Nature 443:... 1008-1012).

또한, AGO4 유전자는 식물병원성 세균 중 하나인 수도모나스 시린가이( Pseudomonas syringae) 저항성을 나타내는데 필수적인 유전자로 확인되었다(Agorio, A. and P. Vera. 2007. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell. 19(11):3778-90). 수도모나스 시린가이(Pseudomonas syringae)는 배추 세균검은무늬병, 참대래 꽃썩음병, 토마토 반점세균병 등의 세균성 흑반병균으로 널리 알려진 병원균이다(Inoue, Y. and Y. Takikawa. 1999. Grouping Pseudomonas syringae strains by comparing DNA homology at the hrp gene cluster and its neighboring regions. Annals of the Phytopathological Society of Japan. 65(1):32-41).
In addition, the AGO4 gene has been identified as an essential gene for resistance to one of the plant pathogenic bacteria, Pseudomonas syringae (Agorio, A. and P. Vera. 2007. ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis . Plant Cell 19 (11): 3778-90). Pseudomonas syringae is a pathogenic bacterium that is known as a bacterial black rot fungus such as a black mold of Chinese cabbage, a flower rot, and a tomato bacterium (Inoue, Y. and Y. Takikawa 1999. Grouping Pseudomonas syringae strains by comparison DNA homology at the hrp gene cluster and its neighboring regions. Annals of the Phytopathological Society of Japan . 65 (1): 32-41).

이상에서 살펴본 바 배추의 AGO4 유전자를 조절한다면 배추 세균검은무늬병 방제에 도움이 될 것이나, 지금까지 배추과(Brassica) 및 배추(Brassica rapa ssp. pekinensis)의 아거노트 4를 코딩(coding)하는 유전자에 관해서는 보고된 바 없다.
As described above, controlling the AGO4 gene of Chinese cabbage will help to control the black spot disease of Chinese cabbage, but until now, the Chinese cabbage ( Brassica ) and Chinese cabbage rapa ssp. There has been no report on a gene coding for agenote 4 of C. pekinensis .

따라서, 본 발명의 목적은 배추(Brassica rapa ssp. pekinensis) 유래의 아거노트(Argonaute) 4 단백질 및 이를 코딩하는 유전자를 제공하는데 있다.Accordingly, an object of the present invention is to provide an Argonaute 4 protein derived from Chinese cabbage ( Brassica rapa ssp. Pekinensis ) and a gene encoding the same.

본 발명의 다른 목적은 상기 아거노트 4 유전자를 클로닝 할 수 있는 프라이머 및 이를 이용하여 배추로부터 아거노트 4 유전자를 분리하는 방법을 제공하는데 있다.It is another object of the present invention to provide a primer capable of cloning the Agenote 4 gene and a method for isolating the Agenote 4 gene from the cabbage using the primer.

본 발명의 또 다른 목적은 상기 배추로부터 분리한 아거노트 4 유전자를 이용한 형질전환 배추를 제공하는데 그 목적이 있다.
It is another object of the present invention to provide a transgenic Chinese cabbage using the Agenote 4 gene isolated from the Chinese cabbage.

본 발명의 상기 목적은 기존에 발표되어 있는 채소작물의 아거노트 4 염기서열들과의 상동성을 기초로하여 배추의 아거노트 4 유전자를 클로닝할 수 있는 프라이머의 작성 단계와; RT-PCR 방법을 통하여 상기 작성한 프라이머를 이용하여 배추로부터 아거노트 4 유전자의 단편 및 전체 유전자를 획득하는 단계를 통하여 달성하였다.
The above object of the present invention can be achieved by a method for preparing a plant, comprising the steps of: preparing a primer capable of cloning the Aegenote 4 gene of Chinese cabbage on the basis of homology with the Aegenomic four base sequence of a previously disclosed vegetable crop; Through the RT-PCR method, the primer thus prepared was used to obtain the fragment and the entire gene of the Agenote 4 gene from the cabbage.

본 발명은 배추 유래 아거노트(Argonaute) 4 유전자를 분리하여 제공하는 효과가 있고, 상기 분리한 아거노트(Argonaute) 4 유전자를 이용한 발현 억제 벡터(RNAivector) 구축과 이를 이용한 형질전환성 배추를 제공할 뿐만 아니라, 아거노트 4 유전자를 조절함으로써 생물학적 혹은 비생물학적 스트레스에 의한 주요 유전자의 억제현상을 해소하거나 또는 도입한 유전자의 발현 안정성을 증대시켜 배추의 세균검은무늬병 저항성을 가진 유용한 육종 재료를 제공하는 뛰어난 효과가 있다.
The present invention has the effect of separating and providing the Chinese cabbage-derived Argonaute (Argonaute) 4 gene, and provides for the construction of expression inhibition vector (RNA i vector) using the isolated Argonaute 4 gene and transformed cabbage using the same In addition, by regulating the Aganote 4 gene, it eliminates the inhibition of major genes due to biological or abiotic stress or increases the expression stability of the introduced gene, thereby providing useful breeding material with bacterial black pattern disease resistance of cabbage. Has an excellent effect.

도 1은 각 AGO4-F와 AGO4-R을 사용한 RT-PCR에 의해 배추로부터 증폭된 아거노트 4를 코딩하는 유전자의 단편을 전기영동한 사진이다.
도 2는 각 AGO4-F와 AGO4-R을 사용한 RT-PCR에 의해 배추로부터 증폭된 아거노트 4를 코딩하는 유전자를 pGEM-T easy vector에 넣은 후 정확한 삽입을 확인하기 위해 EcoRI을 처리하여 확인한 사진이다.
도 3은 RT-PCR에 의해 분리된 배추의 아거노트 4를 코딩하는 유전자의 시퀀스를 GenBank BlastN program을 사용하여 애기장대(Arabidopsis thaliana)의 시퀀스와 상동성을 비교한 결과이다.
도 4는 RT-PCR에 의해 분리된 배추의 아거노트 4를 코딩하는 유전자의 시퀀스를 GenBank BlastX program을 사용하여 애기장대(Arabidopsis thaliana)의 시퀀스와 상동성을 비교한 결과이다.
도 5는 RT-PCR에 의해 분리된 배추의 아거노트 4를 코딩하는 유전자의 염기서열 및 아미노산 서열 결과이다.
도 6은 RT-PCR에 의해 분리된 배추의 아거노트 4를 코딩하는 유전자를 NCBI Conserved Domain program을 이용하여 분석한 결과이다.
이하, 본 발명의 구체적인 내용을 바람직한 실시예와 실험예를 통하여 상세히 설명한다.
1 is a photograph of a fragment of a gene encoding Agenote 4 amplified from Chinese cabbage by RT-PCR using AGO4-F and AGO4-R, respectively.
FIG. 2 shows a gene encoding Agenote 4 amplified from Chinese cabbage by RT-PCR using AGO4-F and AGO4-R, inserted into pGEM-T easy vector, treated with EcoRI to confirm correct insertion to be.
FIG. 3 shows the sequence of a gene coding for Agenote 4 of Chinese cabbage isolated by RT-PCR using the GenBank BlastN program and Arabidopsis thaliana ) sequence and homology.
Figure 4 shows the sequence of the gene coding for the agenote 4 of Chinese cabbage isolated by RT-PCR using the GenBank BlastX program, Arabidopsis < RTI ID = 0.0 > thaliana ) sequence and homology.
5 shows the nucleotide sequence and amino acid sequence of the gene encoding Agenote 4 of Chinese cabbage separated by RT-PCR.
FIG. 6 shows the results of analysis of a gene encoding Agenote 4 of Chinese cabbage isolated by RT-PCR using the NCBI Conserved Domain program.
Hereinafter, the specific contents of the present invention will be described in detail through preferred embodiments and experimental examples.

본 발명에 사용된 배추(Brassica rapa ssp. pekinensis)는 기내의 무균상태에서 키운 것에서 샘플을 채취하여 RNA 분리에 사용하였다. 이하에서, 본 발명의 아거노트 4 유전자 분리과정을 설명한다.
The Chinese cabbage ( Brassica rapa ssp. Pekinensis ) used in the present invention was sampled from an aseptic condition in the cabin and used for RNA isolation. Hereinafter, the Agenote 4 gene separation process of the present invention will be described.

실시예 1 : 아거노트 4 유전자 조사Example 1: Agenote 4 gene probe

아거노트 4 유전자의 공통된 부분을 찾기 위하여 기존에 발표되어 있는 작물별 아거노트 4의 유전자를 "National Center for Biotechnology Information(NCBI) Genbank"에서 검색하였다. 유전자의 전체 염기서열을 수집하기 위해 Entrez program을 사용하였다. 검색방법으로는 유전자명을 아거노트(Argonaute) 4와 아거노트 4의 약어인 AGO4를 검색어로 선정하였다.In order to find a common part of the Agenote 4 gene, the gene of Agenote 4 for each crop has been searched for in the "National Center for Biotechnology Information (NCBI) Genbank". Entrez program was used to collect the entire nucleotide sequence of the gene. As a search method, the genome name was selected as the search term for Argonaute 4 and AGO 4, which is abbreviation of Agenote 4.

수집된 아거노트(Argonaute) 4 유전자 가운데, 같은 배추과 식물인 애기장대(Arabidopsis thaliana)의 염기서열을 선발하여 상동성을 많이 보이는 부분을 BLAST program으로 찾은 뒤 그 부분을 중심으로 프라이머를 제작하여 AGO4-F(서열번호 1) 및 AGO4-R(서열번호 2) 프라이머로 하기 [표 1] 에 나타내었다.The nucleotide sequence of Arabidopsis thaliana , which is a common Chinese cabbage, was selected from among the collected Argonaute 4 genes, and a portion having high homology was screened by BLAST program. F (SEQ ID NO: 1) and AGO4-R (SEQ ID NO: 2) primers are shown in Table 1 below.

프라이머primer 염기서열Base sequence AGO4-F (서열번호 1)AGO4-F (SEQ ID NO: 1) 5'-ATG GAT GCT ACT ACC GGT AAT G-3'5'-ATG GAT GCT ACT ACC GGT AAT G-3 ' AGO4-R (서열번호 2)AGO4-R (SEQ ID NO: 2) 5'-CTA ACA GAA GAA CAT GGA GTT GG-3'5'-CTA ACA GAA GAA CAT GGA GTT GG-3 '

실시예 2 : 배추로부터 RNA 분리Example 2 RNA Separation from Chinese Cabbage

배추(Brassica rapa ssp. pekinensis)의 잎을 액체 질소를 이용하여 파쇄한 후 1 ㎖ 트리졸(Trizol, Gibco BRL) 용액을 첨가하여 잘 섞은 다음 5분 동안 상온에서 방치하였다. 200 ㎕의 클로로포름(chloroform)을 넣고 섞은 다음 4℃에서 13,000 rpm으로 10분 동안 원심분리한 뒤 그 혼합액의 상등액을 새 튜브로 옮겼다. 이소프로페놀 (isopropanol) 500 ㎕를 넣고 13,000 rpm으로 15분간 원심분리하여 침전시킨 뒤 이소프로페놀을 제거하고 침전물을 75% 에탄올로 세척한 다음, 에탄올이 없도록 잘 건조시킨 후 DEPC(diethyl pyrocarbonate) 처리된 멸균 증류수에 녹여 사용하였다.
The leaf of Chinese cabbage ( Brassica rapa ssp. Pekinensis ) was disrupted with liquid nitrogen, and 1 ml of trizol (Trizol, Gibco BRL) solution was added, mixed well and allowed to stand at room temperature for 5 minutes. After adding 200 μl of chloroform, the mixture was centrifuged at 4 ° C and 13,000 rpm for 10 minutes, and the supernatant of the mixture was transferred to a new tube. 500 μl of isopropanol was added and centrifuged at 13,000 rpm for 15 minutes to precipitate. Isopropanol was removed, the precipitate was washed with 75% ethanol, dried well without ethanol, and then treated with DEPC (diethyl pyrocarbonate) Dissolved in sterile distilled water.

실시예 3 : 배추의 RNA로부터 아거노트 4 유전자 분리Example 3: Detection of Agenote 4 gene from Chinese cabbage RNA

아거노트 4 유전자의 분리는 상기 확보된 RNA를 주형으로 oligo dT 프라이머(primer)와 역전사효소(reverse transcriptase)를 이용하여 cDNA를 합성한 뒤 [표 1]에 작성된 프라이머로 PCR하여 분리하였다. In order to isolate the Agenote 4 gene, cDNA was synthesized using oligo dT primer and reverse transcriptase using the obtained RNA as a template, followed by PCR using the primers prepared in [Table 1].

cDNA 합성 프로그램 조건은 1 ㎍의 RNA를 oligo dT primer와 70℃에 두어 RNA 이차구조를 제거한 뒤 45℃에서 30분간 역전사시키고 그 사용된 역전사효소를 불활성화시키기 위해 94℃에서 5분간 두었다. 그 후 합성된 cDNA 1 ㎍을 사용하여 상기 작성한 프라이머와 태그 중합효소(tag polymerase)로 PCR 하였는데 그 프로그램은 94℃에서 2분간 초기 변성 시간을 둔 뒤 94℃에서 30초, 50℃에서 30초, 72℃에서 3분으로 40 반복(cycle) 실행하고 마지막으로 72℃에서 10분간 최종 연장시킨 후 4℃를 유지하여 전체 반응을 종료하였다. 상기 방법에서 긴 유전자를 효과적으로 분리하기 위하여, 결합(annealing) 단계에서 각 반복마다 0.5℃씩 점차 올려주는 터치업(touch-up) 방법을 적용하였고, 신장(elongation) 단계에서는 각 반복마다 1초씩 시간을 증가시키는 오토세그먼트(Auto-segment) 방법을 적용하였다.
The cDNA synthesis program conditions were as follows: 1 ㎍ of RNA was incubated with oligo dT primer at 70 ° C to remove the RNA secondary structure and then reverse transcribed at 45 ° C for 30 minutes and placed at 94 ° C for 5 minutes to inactivate the used reverse transcriptase. Then, 1 μg of the synthesized cDNA was subjected to PCR using the primer and the tag polymerase described above. The program was subjected to an initial denaturation time of 94 ° C for 2 minutes, followed by 30 seconds at 94 ° C, 30 seconds at 50 ° C, Followed by 40 cycles of 3 min at 72 ° C, final extension at 72 ° C for 10 min, and then the whole reaction was terminated at 4 ° C. In order to effectively isolate a long gene in the above method, a touch-up method in which the annealing step is performed at 0.5 DEG C for each repetition is applied. In the elongation step, (Auto-segment) method is applied.

실험결과 증폭된 아거노트 4 유전자의 단편은 전기영동을 통해 확인하였다(도 1). 각각의 프라이머들로 증폭된 단편들은 그 각각의 염기서열을 분석하기 위해 PCR 산물용 벡터 pGEM-T easy vector에 클로닝하여 재조합 플라스미드 DNA를 구축하였다.
As a result of the experiment, the fragment of the amplified Agenote 4 gene was confirmed by electrophoresis (FIG. 1). Recombinant plasmid DNA was constructed by cloning the fragments amplified with each primer into a vector pGEM-T easy vector for PCR product to analyze the respective base sequences.

실험예 1 : 재조합 플라스미드 DNA를 이용한 Experimental Example 1: Using recombinant plasmid DNA E.coliE. coli DH5α의 형질전환 Transformation of DH5α

대장균 DH5α를 LB 50 ㎖에 접종시켜 37℃에서 OD570= 0.375 ~ 0.400이 되도록 배양한 후 균주배양액을 3000 rpm에서 10분간 원심분리하여 얻어진 침전물은 0.1M CaCl2 용액으로 풀어준 뒤 30분간 얼음에 두었다. 그 후 3000 rpm에서 7분간 원심분리한 뒤 0.1M CaCl2에 침전물을 녹인 다음 상기에서 구축한 재조합 플라스미드를 함께 섞어 얼음에 30분간 두었다가 42℃에서 90초간 열 충격을 주었다. 10분간 얼음에 방치한 후 LB 배지 700 ㎕를 첨가하여 37℃에서 1시간 진탕배양하였다. 배양액을 12000 rpm으로 수초간 원심분리한 후 100 ㎕만 남기고 상등액을 제거하였으며 남은 상등액으로 침전물을 녹였다. 이후 앰피실린(Ampicillin) (50 mg/ℓ), X-gal(200 mg/ℓ in N-N dimethylformamide) 및 IPTG(200 mg/ℓ)가 첨가된 고체 LB 배지에 녹인 침전물을 전개하여 37℃에서 12시간 배양한 후 고체 배지에서 저항성을 보이며 흰색의 콜로니를 형성하는 형질전환된 것을 선발하였다.
Escherichia coli DH5α was inoculated into 50 ml of LB and cultured at 37 ° C to OD 570 = 0.375-0.400. The culture broth was centrifuged at 3000 rpm for 10 minutes and the resulting precipitate was dissolved in 0.1 M CaCl 2 solution. I have. After centrifugation at 3000 rpm for 7 minutes, the precipitate was dissolved in 0.1M CaCl 2 , and the reconstituted plasmid constructed above was mixed with ice for 30 minutes, followed by thermal shock at 42 ° C for 90 seconds. After standing for 10 minutes on ice, 700 μl of LB medium was added and incubated with shaking at 37 ° C for 1 hour. After centrifuging the culture at 12000 rpm for several seconds, the supernatant was removed, leaving only 100 μl. The supernatant was dissolved in the remaining supernatant. Subsequently, a precipitate was dissolved in solid LB medium supplemented with Ampicillin (50 mg / L), X-gal (200 mg / L in NN dimethylformamide) and IPTG (200 mg / L) After the culture, transformants showing resistance to the solid medium and forming white colonies were selected.

실험예 2 : 재조합 플라스미드 DNA 분리 및 유전자 삽입 여부 조사Experimental Example 2: Detection of recombinant plasmid DNA and gene insertion

항생제가 첨가된 LB 배지 3 ㎖에 상기로부터 선발한 형질전환 콜로니를 접종한 후 37℃에서 12시간 배양한 뒤 배양액을 4℃에서 12,000 rpm으로 10분간 원심분리하였다. 침전된 균 덩어리에 Solution I (200 ㎕/㎖)을 첨가하여 보텍스(vortex)를 수초간 수행하여 충분히 풀어준 뒤 Solution Ⅱ (200 ㎕/㎖)를 첨가하여 조심스럽게 섞어 세포막이 완전히 깨어지도록 실온에서 5분간 방치하였다. 이후 Solution Ⅲ (200 ㎕/㎖)를 첨가하여 잘 섞은 다음 얼음에서 10분간 방치한 뒤 12000 rpm으로 4℃에서 10분간 원심분리하여 상등액을 획득하였다. 획득한 상등액의 1/10 양의 NaOAc와 2.5배의 100% 에탄올을 첨가하여 -20℃에서 2시간 동안 플라스미드 DNA를 침전시킨 후 원심분리하여 침전물을 얻었다. 70% 에탄올로 침전물을 세척한 다음 멸균 증류수에 녹여 사용하였다.
Transformed colonies selected from the above were inoculated in 3 ml of LB medium supplemented with antibiotics, and then cultured at 37 占 폚 for 12 hours. Then, the culture broth was centrifuged at 4 占 폚 and 12,000 rpm for 10 minutes. Solution II (200 μl / ml) was added to the precipitated bacterial mass, followed by vortexing for a few seconds, followed by Solution II (200 μl / ml) and carefully mixed at room temperature And allowed to stand for 5 minutes. After adding Solution III (200 μl / ml), the mixture was mixed well and left on ice for 10 minutes, followed by centrifugation at 12000 rpm at 4 ° C for 10 minutes to obtain supernatant. The obtained supernatant was added with 1/10 of NaOAc and 2.5 times of 100% ethanol, and the plasmid DNA was precipitated at -20 ° C for 2 hours, followed by centrifugation to obtain a precipitate. The precipitate was washed with 70% ethanol and dissolved in sterile distilled water.

배추로부터 증폭된 아거노트(Argonaute) 4를 코딩하는 유전자의 pGEM-T easy vector 내로의 삽입 여부를 확인하기 위해서 제한효소 EcoRⅠ을 상기 분리한 재조합 플라스미드에 처리하여 확인하였다(도 2). 삽입된 자리에 근접한 T7 및 SP6 프라이머를 이용하여 염기서열을 조사하였다.
To confirm the insertion of the gene coding for Argonaute 4 amplified from Chinese cabbage into the pGEM-T easy vector, restriction enzyme EcoRI was confirmed by treating the isolated recombinant plasmid (Fig. 2). The sequence was examined using T7 and SP6 primers adjacent to the inserted sites.

실험예Experimental Example 3:  3: 아거노트Agenote 4 유전자 전체의 확인 Identification of all four genes

염기서열 분석용 pGEM-T easy vector 내부에 클로닝 된 PCR 단편의 염기서열 분석은 GenBank BLAST program을 사용하여 이루어졌다. AGO4-F(서열번호 1)와 AGO4-R(서열번호 2) 프라이머로 증폭된 2769 bp 산물의 염기서열과 아미노산 서열을 분석한 결과(도 5), 애기장대(Arabidopsis thaliana)의 아거노트 4 유전자와 84%의 높은 상동성을 보였다(도 3, 도 4). 즉, RNA를 대상으로 AGO4-F와 AOG4-R 프라이머를 이용해 RT-PCR을 수행한 결과 배추의 아거노트 4 유전자의 전체 유전자가 증폭된다는 것을 확인할 수 있었다(도 5). 또한 NCBI Conserved Domain program을 이용하여 분리한 유전자에 아거노트 4(AGO4) 유전자를 특징짓는 PAZ/PIWI 도메인을 확인하였다(도 6). 그 결과 PAZ 도메인(PAZ_argonaute_like[cd02846], PAZ domain)은 E-value가 7.65e-23로 정확히 존재함을 확인하였으며, PIWI 도메인(Piwi_ago-like: PIWI domain, Argonaute-like 서브패밀리) 역시 E-value가 1.09e-155로 그 정확도가 높음을 확인하였다. 확인된 염기서열을 바탕으로 시작 코돈(codon)과 종료 코돈을 결정한 후, 그것이 배추로부터 분리된 전체 아거노트 4 유전자로 결정하여 서열번호 3에 그 염기서열을 제시하고 서열번호 4에 아미노산 서열을 제시한다.
Sequencing of the PCR fragment cloned inside the pGEM-T easy vector for sequencing was performed using the GenBank BLAST program. The nucleotide sequence and amino acid sequence of the 2769 bp product amplified with AGO4-F (SEQ ID NO: 1) and AGO4-R (SEQ ID NO: 2) primers (FIG. 5), Arabidopsis It showed a high homology ahgeo Note 4 gene and 84% of thaliana) (3, 4). That is, RT-PCR using AGO4-F and AOG4-R primers for RNA showed that the entire gene of the agenote 4 gene of Chinese cabbage was amplified (FIG. 5). The PAZ / PIWI domain, which characterizes the Agonote 4 (AGO4) gene, was also identified in the gene isolated using the NCBI Conserved Domain program (FIG. 6). As a result, it was confirmed that the PAZ domain (PAZ_argonaute_like [cd02846], PAZ domain) had an E-value exactly 7.65e-23 and the PIWI domain (PIWI domain, Argonaute-like subfamily) Was 1.09e-155 and the accuracy was high. After determining the start codon and termination codon based on the confirmed nucleotide sequence, it is determined as the entire Aegenote 4 gene isolated from the Chinese cabbage, and its nucleotide sequence is shown in SEQ ID NO: 3 and the amino acid sequence is shown in SEQ ID NO: do.

이상에서 설명한 바와 같이 본 발명은 배추 유래의 아거노트(Argonaute) 4 유전자를 제공하는 효과가 있고 이 유전자를 이용한 형질전환성 배추 신품종을 육성하여 식물학 및 육종학적으로 유용한 재료를 제공하는 뛰어난 효과가 있으므로 식물육종산업상 매우 유용한 발명인 것이다.As described above, the present invention has an effect of providing the Argonaute 4 gene derived from Chinese cabbage, and it has an excellent effect of cultivating a new transgenic Chinese cabbage cultivar using this gene and providing botanical and breeding materials, It is a very useful invention in the breeding industry.

<110> University-Industry Cooperation Group of Kyung Hee University <120> Argonaute 4 of Brassica rapa ssp. pekinensis and a gene encoding the same <130> 5101 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 22 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 1 atggatgcta ctaccggtaa tg 22 <210> 2 <211> 23 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 2 ctaacagaag aacatggagt tgg 23 <210> 3 <211> 2769 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 3 atggatgcta ctaccggtaa tggagctgag ctcgagtcag caaatgggag tggggtttcc 60 gacgcgctgc ctcctcctcc accggtcata ccgcccaacg tggagcctgt gagggttcaa 120 accgaagttg ctgtgaagaa gaacctaaga gtacctatgg ctcgtccagg ctttggatca 180 aagggtcaaa agattcagct tttgactaat cacttcggag tcaaagttgc aaatcttcag 240 ggattcttct accactacag tgtggcgctc ttctatgatg atgggcgtcc tgttgagcag 300 aaaggggttg gaaggaaagt tcttgacaag gttcatgaga cgtaccactc ggatcttgat 360 ggcaagcagt tcgcctacga tggagagaag acgctgttca cttttggagc tttgcccagc 420 aacaaaatgg atttctccgt ggtccttgag gaagtttctt ccgccaggac taatggaaac 480 gcaagcccca atgggaatga agagccaagt gacggtgata gaaaaagact tcgtcagcct 540 aaccgttcca agagcttcag agtcgagatc agttacgcag caaaaattcc tctccaagct 600 cttgctaacg ctatgcgtgg gcaagaatcc gagaattcac aggaggcaat aagggtgttg 660 gacatcatcc ttcgacagca tgctgctaga caaggttgcc tgcttgtgag acagtccttc 720 ttccacaatg acccgagcaa ctgtgaacct gttggtggta acatcttggg atgtagaggg 780 ttccattcga gtttccggac aacacaaggt ggaatgtcac tcaacatgga tgttacaacc 840 actatgataa tcaagcctgg tccgcttgtt gactttgtca ttgctaacca aggtgcaaag 900 gatcccttta cggttgactg gtctaaggct aaaagaacac ttaagaatct gaggattaaa 960 gtcagcccct caaaccagga gtacaggatc actggcatga gtgacaagcc ttgcagggaa 1020 caaacgtttg agtatagacc aaggaacgca cccaagaatg agaatggaga gtctgaaacc 1080 gttgaaataa cggtgtatga ctacttcctc agagaacgga acctagagtt gcagtactct 1140 gcggatttgc cttgcgtcaa tgttgggagg ccaaagcgac ccacctatat cccccttgag 1200 cactgcacat tgattcccct tcagaggtac acaaaggctc tgaacacttt ccaaagatct 1260 gccctggttg agaaatctag acagaagccg caagagagga tgaatgttct gtcaaaggcg 1320 ctgaaagtga gcaactatga cgctgaacct ctcctgcgtt catgtgggat ttctatcagc 1380 tccaacttta ctcaggtgga gggtcgtgtt ctgccagctc ccaagctgaa aatgggacgt 1440 ggagatgaac tgtttccgag aaatggtcgc tggaatttca acaacaagca atttgtggag 1500 ccaaccaaga ttgataaatg ggctgtagca aatttctctg ctcgctgtaa cgtgcgtcaa 1560 ctggttgatg atctaatccg aattggtgga atgaaaggaa ttgaaattgc tgccccattt 1620 gatgtgtttg aggagggtca tcagtttcgc cgtgctcctc ctatgattcg tgtagagaag 1680 atgtttgaag agatccagtc taagctccct ggtgctcctc agttccttct gtgtctcctc 1740 cccgaaagga agaactgcga catctacggg ccatggaaga agaaaaactt aactgaatac 1800 ggcatcgtta cacaatgcat ggctccggtg aggcagccta atgatcagta tcttaccaac 1860 tgtcttctga agatcaatgc aaagcttggt ggcctcaact ccatgttgag tgtggagcgt 1920 actccagcct ttaccgtcat ttccaaggtt ccaaccatca tccttgggat ggatgtttca 1980 catggatctc ctggacagtc tgatgttccc tccattgctg cggtggtgag ttcaaggcag 2040 tggcctctag tctcgaaata cagagcatct gtacgcacac agccttcaaa ggctgagatg 2100 attgagtcac tcgtcaagaa aaatggaact gaagatgatg gcataatcaa ggagttgctg 2160 gtagatttct acaccagctc gggtaagaga aagccagagc atatcataat cttcagggat 2220 ggtgttagtg aatctcagtt caaccaggtt ctgaacattg agctcgatca gatcattgag 2280 gcctgcaagc ttctagatga gaactggaac ccaaagttcc tcttgttggt ggctcagaag 2340 aatcaccaca ccaagttttt ccagccaaac tctcctgaca acgttccccc agggactatc 2400 atcgacaaca aaatctgcca cccaaagaac aacgacttct atctctgtgc ccacgctggg 2460 atgattggaa caacacgtcc tacgcattac cacgtcctgt atgatgagat tcatttctca 2520 cctgatgagc ttcaagagct cgtccactcg ctctcttacg tgtaccaaag aagcacaacc 2580 gccatctctg ttgttgcacc gatctgctat gcgcacttgg cagctgctca gctaggaacg 2640 ttcatgaagt ttgaagatca gtctgagacg tcctcgagcc atggtggcgt gacagctcca 2700 ggaccagtct ctgttgcgca gctccctaaa ctcaaagaca acgtcgccaa ctccatgttc 2760 ttctgttag 2769 <210> 4 <211> 923 <212> PRT <213> Brassica rapa ssp. pekinensis <400> 4 Met Asp Ala Thr Thr Gly Asn Gly Ala Glu Leu Glu Ser Ala Asn Gly 1 5 10 15 Ser Gly Val Ser Asp Ala Leu Pro Pro Pro Pro Pro Val Ile Pro Pro 20 25 30 Asn Val Glu Pro Val Arg Val Gln Thr Glu Val Ala Val Lys Lys Asn 35 40 45 Leu Arg Val Pro Met Ala Arg Pro Gly Phe Gly Ser Lys Gly Gln Lys 50 55 60 Ile Gln Leu Leu Thr Asn His Phe Gly Val Lys Val Ala Asn Leu Gln 65 70 75 80 Gly Phe Phe Tyr His Tyr Ser Val Ala Leu Phe Tyr Asp Asp Gly Arg 85 90 95 Pro Val Glu Gln Lys Gly Val Gly Arg Lys Val Leu Asp Lys Val His 100 105 110 Glu Thr Tyr His Ser Asp Leu Asp Gly Lys Gln Phe Ala Tyr Asp Gly 115 120 125 Glu Lys Thr Leu Phe Thr Phe Gly Ala Leu Pro Ser Asn Lys Met Asp 130 135 140 Phe Ser Val Val Leu Glu Glu Val Ser Ser Ala Arg Thr Asn Gly Asn 145 150 155 160 Ala Ser Pro Asn Gly Asn Glu Glu Pro Ser Asp Gly Asp Arg Lys Arg 165 170 175 Leu Arg Gln Pro Asn Arg Ser Lys Ser Phe Arg Val Glu Ile Ser Tyr 180 185 190 Ala Ala Lys Ile Pro Leu Gln Ala Leu Ala Asn Ala Met Arg Gly Gln 195 200 205 Glu Ser Glu Asn Ser Gln Lys Ala Ile Arg Val Leu Asp Ile Ile Leu 210 215 220 Arg Gln His Ala Ala Arg Gln Gly Cys Leu Leu Val Arg Gln Ser Phe 225 230 235 240 Phe His Asn Asp Pro Ser Asn Cys Glu Pro Val Gly Gly Asn Ile Leu 245 250 255 Gly Cys Arg Gly Phe His Ser Ser Phe Arg Thr Thr Gln Gly Gly Met 260 265 270 Ser Leu Asn Met Asp Val Thr Thr Thr Met Ile Ile Lys Pro Gly Pro 275 280 285 Leu Val Asp Phe Val Ile Ala Asn Gln Gly Ala Lys Asp Pro Phe Thr 290 295 300 Val Asp Trp Ser Lys Ala Lys Arg Thr Leu Lys Asn Leu Arg Ile Lys 305 310 315 320 Val Ser Pro Ser Asn Gln Glu Tyr Arg Ile Thr Gly Met Ser Asp Lys 325 330 335 Pro Cys Arg Glu Gln Thr Phe Glu Tyr Arg Pro Arg Asn Ala Pro Lys 340 345 350 Asn Glu Asn Gly Glu Ser Glu Thr Val Glu Ile Thr Val Tyr Asp Tyr 355 360 365 Phe Leu Arg Glu Arg Asn Leu Glu Leu Gln Tyr Ser Ala Asp Leu Pro 370 375 380 Cys Val Asn Val Gly Arg Pro Lys Arg Pro Thr Tyr Ile Pro Leu Glu 385 390 395 400 His Cys Thr Leu Ile Pro Leu Gln Arg Tyr Thr Lys Ala Leu Asn Thr 405 410 415 Phe Gln Arg Ser Ala Leu Val Glu Lys Ser Arg Gln Lys Pro Gln Glu 420 425 430 Arg Met Asn Val Leu Ser Lys Ala Leu Lys Val Ser Asn Tyr Asp Ala 435 440 445 Glu Pro Leu Leu Arg Ser Cys Gly Ile Ser Ile Ser Ser Asn Phe Thr 450 455 460 Gln Val Glu Gly Arg Val Leu Pro Ala Pro Lys Leu Lys Met Gly Arg 465 470 475 480 Gly Asp Glu Leu Phe Pro Arg Asn Gly Arg Trp Asn Phe Asn Asn Lys 485 490 495 Gln Phe Val Glu Pro Thr Lys Ile Asp Arg Trp Ala Val Ala Asn Phe 500 505 510 Ser Ala Arg Cys Asn Val Arg Gln Leu Val Asp Asp Leu Ile Arg Ile 515 520 525 Gly Gly Met Lys Gly Ile Glu Ile Ala Ala Pro Phe Asp Val Leu Glu 530 535 540 Glu Gly His Gln Phe Arg Arg Ala Pro Pro Met Ile Arg Val Glu Lys 545 550 555 560 Met Phe Glu Glu Ile Gln Ser Lys Leu Pro Gly Ala Pro Gln Phe Leu 565 570 575 Leu Cys Leu Leu Pro Glu Arg Lys Asn Cys Asp Ile Tyr Gly Pro Trp 580 585 590 Lys Lys Lys Asn Leu Thr Glu Tyr Gly Ile Val Thr Gln Cys Met Ala 595 600 605 Pro Val Arg Gln Pro Asn Asp Gln Tyr Leu Thr Asn Cys Leu Leu Lys 610 615 620 Ile Asn Ala Lys Leu Gly Gly Leu Asn Ser Met Leu Ser Val Glu Arg 625 630 635 640 Thr Pro Ala Phe Thr Val Ile Ser Lys Val Pro Thr Ile Ile Leu Gly 645 650 655 Met Gly Val Ser His Gly Ser Pro Gly Gln Ser Asp Val Pro Ser Ile 660 665 670 Ala Ala Val Val Ser Ser Arg Gln Trp Pro Leu Val Ser Lys Tyr Arg 675 680 685 Ala Ser Val Arg Thr Gln Pro Ser Lys Ala Glu Met Ile Glu Ser Leu 690 695 700 Val Lys Lys Asn Gly Thr Glu Asp Asp Gly Ile Ile Lys Glu Leu Leu 705 710 715 720 Val Asp Phe Tyr Thr Ser Ser Gly Lys Arg Lys Pro Glu His Ile Ile 725 730 735 Ile Phe Arg Asp Gly Val Ser Glu Ser Gln Phe Asn Gln Val Leu Asn 740 745 750 Ile Glu Leu Asp Gln Ile Ile Glu Ala Cys Lys Leu Leu Asp Glu Asn 755 760 765 Trp Asn Pro Lys Phe Leu Leu Leu Val Ala Gln Lys Asn His His Thr 770 775 780 Lys Phe Phe Gln Pro Asn Ser Pro Asp Asn Val Pro Pro Gly Thr Ile 785 790 795 800 Ile Asp Asn Lys Ile Cys His Pro Lys Asn Asn Asp Phe Tyr Leu Cys 805 810 815 Ala His Ala Gly Met Ile Gly Thr Thr Arg Pro Thr His Tyr His Val 820 825 830 Leu Tyr Asp Glu Ile His Phe Ser Pro Asp Glu Leu Gln Glu Leu Val 835 840 845 His Ser Leu Ser Tyr Val Tyr Gln Arg Ser Thr Thr Ala Ile Ser Val 850 855 860 Val Ala Pro Ile Cys Tyr Ala His Leu Ala Ala Ala Gln Leu Gly Thr 865 870 875 880 Phe Met Lys Phe Glu Asp Gln Ser Glu Thr Ser Ser Ser His Gly Gly 885 890 895 Val Thr Ala Pro Gly Pro Val Ser Val Ala Gln Leu Pro Lys Leu Lys 900 905 910 Asp Asn Val Ala Asn Ser Met Phe Phe Cys *** 915 920 <110> University-Industry Cooperation Group of Kyung Hee University <120> Argonaute 4 of Brassica rapa ssp. pekinensis and a gene encoding          the same <130> 5101 <160> 4 <170> Kopatentin 2.0 <210> 1 <211> 22 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 1 atggatgcta ctaccggtaa tg 22 <210> 2 <211> 23 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 2 ctaacagaag aacatggagt tgg 23 <210> 3 <211> 2769 <212> DNA <213> Brassica rapa ssp. pekinensis <400> 3 atggatgcta ctaccggtaa tggagctgag ctcgagtcag caaatgggag tggggtttcc 60 gacgcgctgc ctcctcctcc accggtcata ccgcccaacg tggagcctgt gagggttcaa 120 accgaagttg ctgtgaagaa gaacctaaga gtacctatgg ctcgtccagg ctttggatca 180 aagggtcaaa agattcagct tttgactaat cacttcggag tcaaagttgc aaatcttcag 240 ggattcttct accactacag tgtggcgctc ttctatgatg atgggcgtcc tgttgagcag 300 aaaggggttg gaaggaaagt tcttgacaag gttcatgaga cgtaccactc ggatcttgat 360 ggcaagcagt tcgcctacga tggagagaag acgctgttca cttttggagc tttgcccagc 420 aacaaaatgg atttctccgt ggtccttgag gaagtttctt ccgccaggac taatggaaac 480 gcaagcccca atgggaatga agagccaagt gacggtgata gaaaaagact tcgtcagcct 540 aaccgttcca agagcttcag agtcgagatc agttacgcag caaaaattcc tctccaagct 600 cttgctaacg ctatgcgtgg gcaagaatcc gagaattcac aggaggcaat aagggtgttg 660 gacatcatcc ttcgacagca tgctgctaga caaggttgcc tgcttgtgag acagtccttc 720 ttccacaatg acccgagcaa ctgtgaacct gttggtggta acatcttggg atgtagaggg 780 ttccattcga gtttccggac aacacaaggt ggaatgtcac tcaacatgga tgttacaacc 840 actatgataa tcaagcctgg tccgcttgtt gactttgtca ttgctaacca aggtgcaaag 900 gatcccttta cggttgactg gtctaaggct aaaagaacac ttaagaatct gaggattaaa 960 gtcagcccct caaaccagga gtacaggatc actggcatga gtgacaagcc ttgcagggaa 1020 caaacgtttg agtatagacc aaggaacgca cccaagaatg agaatggaga gtctgaaacc 1080 gttgaaataa cggtgtatga ctacttcctc agagaacgga acctagagtt gcagtactct 1140 gcggatttgc cttgcgtcaa tgttgggagg ccaaagcgac ccacctatat cccccttgag 1200 cactgcacat tgattcccct tcagaggtac acaaaggctc tgaacacttt ccaaagatct 1260 gccctggttg agaaatctag acagaagccg caagagagga tgaatgttct gtcaaaggcg 1320 ctgaaagtga gcaactatga cgctgaacct ctcctgcgtt catgtgggat ttctatcagc 1380 tccaacttta ctcaggtgga gggtcgtgtt ctgccagctc ccaagctgaa aatgggacgt 1440 ggagatgaac tgtttccgag aaatggtcgc tggaatttca acaacaagca atttgtggag 1500 ccaaccaaga ttgataaatg ggctgtagca aatttctctg ctcgctgtaa cgtgcgtcaa 1560 ctggttgatg atctaatccg aattggtgga atgaaaggaa ttgaaattgc tgccccattt 1620 gatgtgtttg aggagggtca tcagtttcgc cgtgctcctc ctatgattcg tgtagagaag 1680 atgtttgaag agatccagtc taagctccct ggtgctcctc agttccttct gtgtctcctc 1740 cccgaaagga agaactgcga catctacggg ccatggaaga agaaaaactt aactgaatac 1800 ggcatcgtta cacaatgcat ggctccggtg aggcagccta atgatcagta tcttaccaac 1860 tgtcttctga agatcaatgc aaagcttggt ggcctcaact ccatgttgag tgtggagcgt 1920 actccagcct ttaccgtcat ttccaaggtt ccaaccatca tccttgggat ggatgtttca 1980 catggatctc ctggacagtc tgatgttccc tccattgctg cggtggtgag ttcaaggcag 2040 tggcctctag tctcgaaata cagagcatct gtacgcacac agccttcaaa ggctgagatg 2100 attgagtcac tcgtcaagaa aaatggaact gaagatgatg gcataatcaa ggagttgctg 2160 gtagatttct acaccagctc gggtaagaga aagccagagc atatcataat cttcagggat 2220 ggtgttagtg aatctcagtt caaccaggtt ctgaacattg agctcgatca gatcattgag 2280 gcctgcaagc ttctagatga gaactggaac ccaaagttcc tcttgttggt ggctcagaag 2340 aatcaccaca ccaagttttt ccagccaaac tctcctgaca acgttccccc agggactatc 2400 atcgacaaca aaatctgcca cccaaagaac aacgacttct atctctgtgc ccacgctggg 2460 atgattggaa caacacgtcc tacgcattac cacgtcctgt atgatgagat tcatttctca 2520 cctgatgagc ttcaagagct cgtccactcg ctctcttacg tgtaccaaag aagcacaacc 2580 gccatctctg ttgttgcacc gatctgctat gcgcacttgg cagctgctca gctaggaacg 2640 ttcatgaagt ttgaagatca gtctgagacg tcctcgagcc atggtggcgt gacagctcca 2700 ggaccagtct ctgttgcgca gctccctaaa ctcaaagaca acgtcgccaa ctccatgttc 2760 ttctgttag 2769 <210> 4 <211> 923 <212> PRT <213> Brassica rapa ssp. pekinensis <400> 4 Met Asp Ala Thr Thr Gly Asn Gly Ala Glu Leu Glu Ser Ala Asn Gly   1 5 10 15 Ser Gly Val Ser Asp Ala Leu Pro Pro Pro Pro Pro Val Ile Pro Pro              20 25 30 Asn Val Glu Pro Val Arg Val Gln Thr Glu Val Ala Val Lys Lys Asn          35 40 45 Leu Arg Val Pro Met Ala Arg Pro Gly Phe Gly Ser Lys Gly Gln Lys      50 55 60 Ile Gln Leu Leu Thr Asn His Phe Gly Val Lys Val Ala Asn Leu Gln  65 70 75 80 Gly Phe Phe Tyr His Tyr Ser Val Ala Leu Phe Tyr Asp Asp Gly Arg                  85 90 95 Pro Val Glu Gln Lys Gly Val Gly Arg Lys Val Leu Asp Lys Val His             100 105 110 Glu Thr Tyr His Ser Asp Leu Asp Gly Lys Gln Phe Ala Tyr Asp Gly         115 120 125 Glu Lys Thr Leu Phe Thr Phe Gly Ala Leu Pro Ser Asn Lys Met Asp     130 135 140 Phe Ser Val Val Leu Glu Glu Val Ser Ser Ala Arg Thr Asn Gly Asn 145 150 155 160 Ala Ser Pro Asn Gly Asn Glu Glu Pro Ser Asp Gly Asp Arg Lys Arg                 165 170 175 Leu Arg Gln Pro Asn Arg Ser Lys Ser Phe Arg Val Glu Ile Ser Tyr             180 185 190 Ala Ala Lys Ile Pro Leu Gln Ala Leu Ala Asn Ala Met Arg Gly Gln         195 200 205 Glu Ser Glu Asn Ser Gln Lys Ala Ile Arg Val Leu Asp Ile Ile Leu     210 215 220 Arg Gln His Ala Ala Arg Gln Gly Cys Leu Leu Val Arg Gln Ser Phe 225 230 235 240 Phe His Asn Asp Pro Ser Asn Cys Glu Pro Val Gly Gly Asn Ile Leu                 245 250 255 Gly Cys Arg Gly Phe His Ser Ser Phe Arg Thr Thr Gln Gly Gly Met             260 265 270 Ser Leu Asn Met Asp Val Thr Thr Thr Met Ile Ile Lys Pro Gly Pro         275 280 285 Leu Val Asp Phe Val Ile Ala Asn Gln Gly Ala Lys Asp Pro Phe Thr     290 295 300 Val Asp Trp Ser Lys Ala Lys Arg Thr Leu Lys Asn Leu Arg Ile Lys 305 310 315 320 Val Ser Pro Ser Asn Gln Glu Tyr Arg Ile Thr Gly Met Ser Asp Lys                 325 330 335 Pro Cys Arg Glu Gln Thr Phe Glu Tyr Arg Pro Arg Asn Ala Pro Lys             340 345 350 Asn Glu Asn Gly Glu Ser Glu Thr Val Glu Ile Thr Val Tyr Asp Tyr         355 360 365 Phe Leu Arg Glu Arg Asn Leu Glu Leu Gln Tyr Ser Ala Asp Leu Pro     370 375 380 Cys Val Asn Val Gly Arg Pro Lys Arg Pro Thr Tyr Ile Pro Leu Glu 385 390 395 400 His Cys Thr Leu Ile Pro Leu Gln Arg Tyr Thr Lys Ala Leu Asn Thr                 405 410 415 Phe Gln Arg Ser Ser Ala Leu Val Glu Lys Ser Arg Gln Lys Pro Gln Glu             420 425 430 Arg Met Asn Val Leu Ser Lys Ala Leu Lys Val Ser Asn Tyr Asp Ala         435 440 445 Glu Pro Leu Leu Arg Ser Ser Cys Gly Ile Ser Ile Ser Ser Asn Phe Thr     450 455 460 Gln Val Glu Gly Arg Val Leu Pro Ala Pro Lys Leu Lys Met Gly Arg 465 470 475 480 Gly Asp Glu Leu Phe Pro Arg Asn Gly Arg Trp Asn Phe Asn Asn Lys                 485 490 495 Gln Phe Val Glu Pro Thr Lys Ile Asp Arg Trp Ala Val Ala Asn Phe             500 505 510 Ser Ala Arg Cys Asn Val Arg Gln Leu Val Asp Asp Leu Ile Arg Ile         515 520 525 Gly Gly Met Lys Gly Ile Glu Ile Ala Ala Pro Phe Asp Val Leu Glu     530 535 540 Glu Gly His Gln Phe Arg Arg Ala Pro Pro Met Ile Arg Val Glu Lys 545 550 555 560 Met Phe Glu Glu Ile Gln Ser Lys Leu Pro Gly Ala Pro Gln Phe Leu                 565 570 575 Leu Cys Leu Leu Pro Glu Arg Lys Asn Cys Asp Ile Tyr Gly Pro Trp             580 585 590 Lys Lys Lys Asn Leu Thr Glu Tyr Gly Ile Val Thr Gln Cys Met Ala         595 600 605 Pro Val Arg Gln Pro Asn Asp Gln Tyr Leu Thr Asn Cys Leu Leu Lys     610 615 620 Ile Asn Ala Lys Leu Gly Gly Leu Asn Ser Met Leu Ser Val Glu Arg 625 630 635 640 Thr Pro Ala Phe Thr Val Ile Ser Lys Val Pro Thr Ile Ile Leu Gly                 645 650 655 Met Gly Val Ser His Gly Ser Pro Gly Gln Ser Asp Val Ser Ser             660 665 670 Ala Ala Val Val Ser Ser Arg Gln Trp Pro Leu Val Ser Lys Tyr Arg         675 680 685 Ala Ser Val Arg Thr Gln Pro Ser Lys Ala Glu Met Ile Glu Ser Leu     690 695 700 Val Lys Lys Asn Gly Thr Glu Asp Asp Gly Ile Ile Lys Glu Leu Leu 705 710 715 720 Val Asp Phe Tyr Thr Ser Ser Gly Lys Arg Lys Pro Glu His Ile Ile                 725 730 735 Ile Phe Arg Asp Gly Val Ser Glu Ser Gln Phe Asn Gln Val Leu Asn             740 745 750 Ile Glu Leu Asp Glu Ile Ile Glu Ala Cys Lys Leu Leu Asp Glu Asn         755 760 765 Trp Asn Pro Lys Phe Leu Leu Leu Val Ala Gln Lys Asn His His Thr     770 775 780 Lys Phe Phe Gln Pro Asn Ser Pro Asp Asn Val Pro Pro Gly Thr Ile 785 790 795 800 Ile Asp Asn Lys Ile Cys His Pro Lys Asn Asn Asp Phe Tyr Leu Cys                 805 810 815 Ala His Ala Gly Met Ile Gly Thr Thr Arg Pro Thr His Tyr His Val             820 825 830 Leu Tyr Asp Glu Ile His Phe Ser Pro Asp Glu Leu Gln Glu Leu Val         835 840 845 His Ser Leu Ser Tyr Val Tyr Gln Arg Ser Thr Thr Ala Ile Ser Val     850 855 860 Val Ala Pro Ile Cys Tyr Ala His Leu Ala Ala Ala Gln Leu Gly Thr 865 870 875 880 Phe Met Lys Phe Glu Asp Gln Ser Glu Thr Ser Ser Ser His Gly Gly                 885 890 895 Val Thr Ala Pro Gly Pro Val Val Ser Ala Gln Leu Pro Lys Leu Lys             900 905 910 Asp Asn Val Ala Asn Ser Met Phe Phe Cys ***         915 920

Claims (5)

서열번호 1 및 서열번호 2의 염기서열로 이루어진 배추(Brassica rapa ssp. pekinensis) 유래의 아거노트(Argonaute) 4 단백질을 코딩하는 프라이머 유전자.
SEQ ID NO: 1 and consisting of Chinese cabbage of the nucleotide sequence of SEQ ID NO: 2 (Brassica rapa ssp. Pekinensis) ahgeo notes (Argonaute) 4 primers derived from the gene encoding the protein.
서열번호 3의 염기서열로 구성되는 배추 유래의 아거노트(Argonaute) 4 단백질을 코딩하는 유전자.
A gene coding for the Argonaute 4 protein derived from cabbage comprising the nucleotide sequence of SEQ ID NO: 3.
서열번호 4의 아미노산 서열로 이루어지는 배추 유래의 아거노트(Argonaute) 4 단백질.
Argonaute 4 protein from cabbage comprising the amino acid sequence of SEQ ID NO: 4.
제2항 기재의 아거노트(Argonaute) 4 유전자를 pGEM-T easy vector에 클로닝하여 제작된 재조합 플라스미드.
A recombinant plasmid prepared by cloning the Argonaute 4 gene of claim 2 into a pGEM-T easy vector.
배추 유래의 아거노트(Argonaute) 4 유전자가 도입되어 발현된 형질전환 배추.Transgenic cabbage expressed by introduction of Argonaute 4 gene derived from Chinese cabbage.
KR1020120026278A 2012-03-14 2012-03-14 Argonaute 4 protein of Brassica rapa ssp. pekinensis and a gene encoding the same KR101409494B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120026278A KR101409494B1 (en) 2012-03-14 2012-03-14 Argonaute 4 protein of Brassica rapa ssp. pekinensis and a gene encoding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120026278A KR101409494B1 (en) 2012-03-14 2012-03-14 Argonaute 4 protein of Brassica rapa ssp. pekinensis and a gene encoding the same

Publications (2)

Publication Number Publication Date
KR20130104629A true KR20130104629A (en) 2013-09-25
KR101409494B1 KR101409494B1 (en) 2014-06-25

Family

ID=49453422

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120026278A KR101409494B1 (en) 2012-03-14 2012-03-14 Argonaute 4 protein of Brassica rapa ssp. pekinensis and a gene encoding the same

Country Status (1)

Country Link
KR (1) KR101409494B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129341A1 (en) * 2017-01-06 2018-07-12 Alpine Biotherapeutics Corporation Nucleic acids and methods for genome editing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129341A1 (en) * 2017-01-06 2018-07-12 Alpine Biotherapeutics Corporation Nucleic acids and methods for genome editing

Also Published As

Publication number Publication date
KR101409494B1 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN109022449B (en) Cucumber CsMLO1 gene and construction method and application of silent expression vector thereof
CN101130785B (en) Clone of rice WRKY gene relative to drought resistance and application thereof
EP0335451A2 (en) Genetically engineered plant cells and plants, as well as recombinant DNA suitable therefor
CN104946665B (en) GmMYB62Application in cultivating transgenic plant with improved stress resistance
CA2269111C (en) Genes encoding plant transcription factors
WO2012126367A1 (en) Nitrogen fixation gene island suitable for expressing in prokaryotic and eukaryotic systems
CN110408626B (en) Gene GmWRKY148 capable of improving phytophthora sojae resistance and application thereof
Weise et al. Use of Physcomitrella patens actin 5′ regions for high transgene expression: importance of 5′ introns
US8044262B2 (en) Generation of plants with improved drought tolerance
US7429654B1 (en) Cold-shock regulatory elements, constructs thereof, and method of use
KR101409494B1 (en) Argonaute 4 protein of Brassica rapa ssp. pekinensis and a gene encoding the same
CN102242134B (en) Cloning of soybean GmSGT (Glycine max serine glyoxylate aminotransferase) gene and 5&#39; UTR (Untranslated Regions) thereof and application thereof
CN106831967B (en) Application of reducing IAA10 protein and coding gene expression thereof in improving resistance of plants to rice dwarf virus
CN112142853B (en) Cabbage type rape BnTLK1 gene related to fungal disease and application thereof
CN110042113B (en) Rice grain type positive regulatory gene OsMAPKKK70, and encoding protein and application thereof
WO2020104524A1 (en) Chimeric pattern recognition receptor kinases
US7420103B2 (en) Plant RNA transport and RNA-directed RNA polymerase proteins
KR102424692B1 (en) OsSP4 gene from Oryza sativa for controlling bacterial leaf blight disease resistance of plant and uses thereof
CN110317823B (en) Function identification and application of gossypol biosynthetic pathway enzyme gene 2-ODD-1
CN102021178B (en) Application of gene KT479 from rice in improving stress tolerance of plants
CN102021180B (en) Application of rice genome KT487 in improvement of plant stress tolerance
WO2000009698A2 (en) Compounds useful to affect resistance in plants and methods related thereto
KR101825219B1 (en) NtROS2a gene involved in demethylation from Nicotiana tabacum and uses thereof
CN105505949B (en) Regulate and control rice transcription factor OsGTBP and its application of cis-acting elements GT-1
CN118063576A (en) Cucumber small G protein gene CsROP and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 5