KR20130100981A - 교류 바이어스 핫 캐리어 태양 셀 - Google Patents

교류 바이어스 핫 캐리어 태양 셀 Download PDF

Info

Publication number
KR20130100981A
KR20130100981A KR1020137003499A KR20137003499A KR20130100981A KR 20130100981 A KR20130100981 A KR 20130100981A KR 1020137003499 A KR1020137003499 A KR 1020137003499A KR 20137003499 A KR20137003499 A KR 20137003499A KR 20130100981 A KR20130100981 A KR 20130100981A
Authority
KR
South Korea
Prior art keywords
solar cell
cell
bias
core
energy
Prior art date
Application number
KR1020137003499A
Other languages
English (en)
Other versions
KR101867419B1 (ko
Inventor
허쎄인 에스 엘-고루리
데일 에이 맥닐
셀임 이 건서
Original Assignee
오스텐도 테크놀로지스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오스텐도 테크놀로지스 인코포레이티드 filed Critical 오스텐도 테크놀로지스 인코포레이티드
Publication of KR20130100981A publication Critical patent/KR20130100981A/ko
Application granted granted Critical
Publication of KR101867419B1 publication Critical patent/KR101867419B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02021Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/755Nanosheet or quantum barrier/well, i.e. layer structure having one dimension or thickness of 100 nm or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Abstract

극히 높은 효율 태양 셀의 고안이 설명된다. 신규한 교류 바이어스 기법은, 핫 캐리어 추출을 가능하게 함으로써, 셀 대역 갭보다 높은 광기전 파워 추출 기능을 개선한다. 종래의 태양 셀에 적용되는 경우, 이러한 교류 바이어스 기법은 그들의 생성 순 효율보다 2배 이상으로 높은 전위를 가진다. 양자 우물(QW) 또는 양자 도트(QD) 기반 태양 셀을 합체한 태양 셀과 함께 적용되면, 설명된 교류 바이어스 기법은 전체 태양 스펙트럼에 걸쳐 그러한 태양 셀 파워 추출 커버리지를 연장하는 전위를 가지며, 그에 따라 전례없은 태양 파워 추출 효율이 가능하게 된다. 그러한 셀 내에서, 신규한 교류 바이어스 기법은 셀 물질 대역 갭보다 높게 셀 에너지 변환 기능을 연장시키며, 양자 감금 구조는 셀 대역 갭보다 아래로 셀 에너지 변환 기능을 연장시키는 데 이용된다. 광 감금 공동은 셀 구조로 합체되며, 그에 따라 셀 내부 광 방출의 흡수가 가능하게 되어 셀 효율이 추가로 개선된다.

Description

교류 바이어스 핫 캐리어 태양 셀{ALTERNATING BIAS HOT CARRIER SOLAR CELLS}
본 출원은 2010년 7월 9일 출원된 미국특허출원번호 12/833,661호의 일부 계속 출원이다.
본 발명은 태양 셀, 태양 전력 시스템 및 방법 분야에 관한 것이다.
태양 셀 효율 손실 메커니즘(Solar Cell Efficiency Loss Mechanism)
오늘날의 태양 셀들은 실질적으로 쇼클리-퀘이서 모델(Sockley-Queisser Model)(SQ-모델[W. Shockley and H.J. Queisser, "Detailed Balance Limit of Efficiency of p-n Junction Solar Cell", J. App. Phys., Vol. 32, pp.510-519, March 1961])에 의해 수립된 이론상의 효율 레벨(theoretical efficiency level) 미만에서 작동한다. 본 명세서에서 설명된 태양 셀 고안은 SQ-모델에 의해 수립된 한계를 넘어설 수 있다. SQ 모델을 넘어서도록 태양 셀 효율을 개선하기 위해서는, 태양 셀 효율의 열화를 야기하는 메카니즘을 이해하는 것이 중요하다. 도 1("Third Generation Photovoltics: Advanced Solar Energy Conversion", M.A. Green, Springer, New York, 2003, pp. 35-43)에는 단일 접합 태양 셀에 있어서의 이들 효율 열화 메카니즘이 도시된다. 도 1을 참조하면, 태양 셀에 있어서 효율 손실 메카니즘은 이하에 나열된 효과를 포함한다.
Figure pct00001
은 장치의 대역 갭(band gap)(Eg로 표시) 미만의 흡수되지 않은 에너지(Ep)를 가진 입력 광자를 나타냄. 따라서 그들의 에너지는 태양 셀에 의해 전류로 변환되지 않음.
Figure pct00002
는 흡수는 되지만, (도 1에서 점선으로 나타낸 바와 같이) 포논(phonon)을 생성함에 의해 전도 대역 최소(Conductuon Band Minimum: CBM) 및 균형 대역 최대(Valance Band Maximum: VBM)까지 광-여기(photo-excited) 전자 및 정공(캐리어)의 이완(relaxation)으로 인해 그들의 초과 에너지가 열로서 손실되는 대역 갭 초과의 에너지를 가진 입력 광자를 나타냄. 이러한 손실 메카니즘에 있어서, 처음에, 태양 셀 물질 대역 갭보다 높은 에너지를 가진 광-여기 캐리어는 볼쯔만 분산(도 2)에 의해 설명될 수 있는 캐리어 개체군(carrier population)을 형성하기 위해 다른 캐리어와 평형을 이룰 것이다. 이 시점에서는, 캐리어 분산을 정의하는 온도가 물질 격자 온도보다 높으며, 따라서, 그 캐리어를 "핫 캐리어(hot carrier)"라고 한다. 전형적으로, 고온(elevated temperature)과 관련된 추가 에너지는 주로 전자에 의해 포함되는데, 이는 그의 낮은 유효 질량 때문이다. 전형적인 태양 셀에 있어서, 핫 정공은 그들의 냉각 시간(τc)의 기간(도 2) 동안에 포논을 생성함에 의해, 셀 물질에 그들의 초과 에너지를 발산함으로써 셀 물질 격자와 평형을 이룰 것이다. 이러한 포논은 다른 포논과 상호 작용하고, 셀 물질 대역 갭 Eg를 초과하는, 흡수된 광자 에너지 Ep는 열(heat)로 손실되어 태양 셀에 의한 전압으로 변환되지 않게 된다. 셀 물질의 결정 격자 특성과 캐리어 이동도에 따라, 캐리어 냉각 시간(τc)은 수 피코초(a few picoseconds) 내지 수 나노초(a few nanoseconds)의 기간에 존재한다. 도 2에 도시된 바와 같이, 캐리어 냉각 시간(τc)의 끝 무렵에 광-여기 캐리어 분산이 합쳐져서 셀 물질의 전도 대역 및 균형 대역의 각 에지, 즉, CBM 및 VBM의 근처에서 전자 및 정공의 협 에너지 분산으로 될 것이다. 광 여기 캐리어는 시스템적으로 재조합되어 그들의 잔류 획득 에너지를 광자에 제공하기 때문에, 광 여기 캐리어 수명의 이러한 최종 단계는 전형적으로 수 마이크로초(캐리어 재조합 시간
Figure pct00003
)동안 계속된다. 종래의 태양 셀이 광 여기 캐리어의 에너지를 전기 에너지로 변환시킬 수 있도록 하기 위하여, 광 여기 캐리어들은 재 조합되기 전(캐리어 재조합 시간
Figure pct00004
의 경과 전을 의미함)에 분리되고 셀 콘택트(cell contact)로 운송되어야 한다. 종래 태양 셀의 고안 파라메타는, 그들이 재 조합되기 전, 즉, 캐리어 재조합 시간
Figure pct00005
의 경과 전에 셀 콘택트로 광 여기 캐리어를 운송하는데 필요한 캐리어 운송 특성을 달성하도록 선택된다. 상기로부터, 광 여기 캐리어에 제공되는 태양 광자 에너지는 두 개의 주요한 스테이지, 즉, 캐리어 냉각 및 캐리어 재 조합 스테이지에서 소멸된다. 이러한 두 스테이지들 중 전자의 스테이지, 즉 냉각 스테이지 동안에, 광 여기 캐리어는 물질 대역 갭 에너지 분리(material band-gap energy separation)를 초과하는 그들의 에너지를 포논에 제공하고, 후자의 스테이지, 즉 재조합 스테이지 동안에 광 여기 캐리어는 물질 대역-갭 에너지 분리와 전형적으로 동일한 그들의 잔류 에너지를 방사 재조합을 통해 광자에 제공한다.
Figure pct00006
은 추출되기 전에 방사적으로 재조합되고, 대역 갭과 동일한 에너지를 갖는 광자 또는 대역 갭 미만의 에너지를 가진 가능한 다수의 광자를 생성하는 광 여기 캐리어(전자 및 정공)를 나타낸다. 이들 광자가 재흡수될 수 있기 때문에 이와 같이 방사된 에너지가 반드시 손실되는 것이 아니다. 그러나, 이와 같이 방사된 광자는, 감금되지 않는다면, 셀로부터 입력 태양광 쪽을 향해 되돌아가서 재방출되어 영원히 손실될 것이며, 그 결과, 태양 셀에 의해 달성될 수 있는 최대 효율이 궁극적으로 제한된다. 대부분의 벌크 반도체 물질(bulk semiconductor material)에 있어서, 캐리어 재조합의 기간은 전형적으로 수 마이크로초 미만이다(도 2). 태양 셀이 효율적으로 되기 위해서는, 캐리어가 재 조합되기 전에 대부분의 광 여기 캐리어가 셀 콘택트로 운송되어 추출되어야 하는데, 이것은 그 시점에 셀로부터 추출될 전자 및 정공의 에너지 분리가 셀 물질 대역 갭 에너지와 단지 비슷하더라도 그러하다.
Figure pct00007
는 대역 갭내의 전자적 상태의 도움으로 비 방사적(non-radiatively)으로 재조합되는 광 여기 캐리어(전자 및 정공)를 나타낸다. 이 상태들은 태양 셀 물질 격자 구조내의 결함 또는 불순물 원자에 의해 유발되며, 결과하는 비 방사 캐리어 재 조합은 포논을 생성하고, 그에 따라 이들 캐리어의 여기를 유발했던 흡수된 태양 광자의 에너지는 태양 셀에 의해 전류로 변환되기 보다는 열로 전달된다. 이러한 손실 메카니즘은 모놀리식 멀티-접합 스택 태양 셀(monolithic multi-junction stack solar cell)에 있어서의 주요한 효율 손실 메카니즘 중 하나로서, 거기에서는 캐리어가 비 방사적으로 재조합될 수 있는 스택형 셀 경계에 추가 영역을 생성함으로써, 태양 셀 성능을 심각하게 약화시킬 수 있는 격자 부적합 전위(lattice misfit dislocations)를 연속하는 층들간의 격자 부정합이 생성할 수 있다.
Figure pct00008
는 태양 셀 콘택트에 의해 효율적으로 추출되지 못하는 광 여기 캐리어(전자 및 정공)를 나타낸다. 이러한 손실 메카니즘은, 전형적으로, 셀 외부로 캐리어를 추출하는데 있어서 비효율성을 유발하여, 태양 셀에 의해 달성될 수 있는 최대 효율을 궁극적으로 제한하는 셀 콘택트에서의 고 저항에 의해 유발된다. 멀티-접합 스택으로부터 전류를 추출하기 위해 단지 두개의 콘택트만이 존재함으로써, 그 스택내의 가장 낮은 개별 전류 생성 셀 구조가 전체 멀티-접합 스택의 전체 전류를 제한함에 따라, 이러한 메카니즘은 모놀리식 멀티-접합 스택 태양 셀에 있어서 중요한 효율 손실 메카니즘이다. 또한, 이 손실 메카니즘은 태양 셀로부터 핫 캐리어를 추출하기 어렵게 하는 주된 요인인데, 그 이유는 이들 캐리어가 그 콘택트에서 신속하게 냉각되는 경향이 있으며, 그 결과 핫 캐리어가 셀 접합(cell junction) 근처에 집합하게 되어, 그들이 냉각되기 전에 이들 캐리어를 추출하는 것을 어렵게 하기 때문이다.
상술한 효율 손실 메카니즘에 부가하여, 태양 셀 효율을 예측하는데 전형적으로 이용되는 이론적 모델, 즉, SQ-모델은 태양 셀에 의해 달성될 수 있는 지각 효율(perceived efficiency)을 제한하는 특정의 가정을 포함하며, 따라서, 태양 셀 고안자가 그들의 진실한 제한에 그들의 고안을 푸싱(pushing)하는 것을 어느 정도 방지한다. 가장 관련성이 높은 이들 가정은 아래와 같다.
1. 입력은 비집광 태양 스펙트럼(un-concentrated solar spectrum)이다.
2. 각 입사 태양 광자는 단지 하나의 전자-정공 쌍만을 생성할 것이다.
3. 셀은 단지 하나의 QFL(Quasi-Fermi Level) 분리만을 달성할 수 있다.
4. 셀은 그 셀과 캐리어 온도가 동일한 열평형(thermal equilibrium)에서 동작중이다.
5. 셀은 안정 상태 전류 흐름 조건(steady state current flow condition)에서 동작중이다.
SQ-모델에 기초한 태양 셀 효율 한도는 입사 태양 광자 마다 추출될 수 있는 전기 에너지 량을 검사함에 의해 계산된다. 입사 태양 광자가 태양 셀 물질 균형 대역으로부터 그의 전도 대역으로 전자를 여기시키기 때문에, 단지 셀 물질 대역 갭보다 높은 에너지를 가진 광자만이 파워(power)를 생성할 것이다. 그것이 의미하는 것은, 1.1eV의 대역 갭을 가진 실리콘(Si) 태양 셀의 이론적 변환 효율이 50% 미만이 된다는 것이며, 그 이유는 태양 스펙트럼 내의 광자들의 거의 절반이 1.1eV 미만의 에너지를 갖기 때문이다. 6000
Figure pct00009
에서 태양광으로부터 흡수되는 태양 광자와 300
Figure pct00010
에서 동작하는 셀간의 에너지 차를 고려하면, SQ-모델 평형 가정이 암시하는 것은, 셀 물질 대역 갭 에너지를 넘어선 임의의 태양 광자 에너지가 손실된다는 것이다. 청색 광자(blue photon)가 1.1eV보다 높은 태양에너지의 대략 절반을 가지기 때문에, 이들 두 가정을 조합하면 단일 접합 Si 태양 셀에 대한 이론적인 효율 피크 성능은 대략 30%가 된다.
SQ-모델 가정에 의해 암시된 효율 한도에 추가하여, 물질 시스템의 이동도 특성 및 캐리어 생성 레이트(carrier production rate)와 같이 태양 셀에서 이용되는 물질 시스템이 암시하는 여러 다른 고려 사항이 있다. 이러한 유형의 고려 사항들은, 정상적인 상황하에서는 셀의 효율에 영향을 주지 않지만, 특정 상황(예를 들어, 집광(concentration)으로 인한 입사 태양 광자의 개수의 증가)하에서는 추가 한도를 도입한다. 이러한 두가지 영향 중 첫번째, 즉 캐리어 생성 레이트는, 광 여기(photo-excitation)의 결과로서 캐리어가 셀 물질내에 생성되는 레이트에 대해 포화(또는 최대) 레벨을 설정하며, 그에 따라 셀로부터 추출될 수 있는 에너지 량을 제한한다. 직관적으로, 셀 표면상에 입사하는 태양 광자의 개수가 증가함에 따라, 그 셀에 의해 생성될 수 있는 에너지 량은 증가한다. 그러나, 일부 물질 시스템(예를 들어, Si)에서는 그렇지 않는데, 그 물질 시스템에서는 낮은 전자 이동도로 인해 전자보다 훨씬 빠른 레이트로 증가하는 광 여기의 증가에 따라 홀의 개수가 증가한다. 이러한 홀 및 전자 밀도 불균형으로 인해, 광 여기된 전자들은 추출되기 전에 다량의 홀과 재조합될 수 있게 되며, 그에 따라 셀로부터 추출될 수 있는 전자/홀의 개수가 제한된다. Si 셀에 있어서, 이러한 제한 레이트(limiting rate)(평형)는 입사광의 2-sun 미만에서 이루어진다. 그 결과, 두배의 태양광이 Si 태양 셀의 표면상에 입사하면, 캐리어 생성 레이트는 단지 1-sun보다 약간 높게 되어, 입력 에너지대 출력 에너지의 비율이 낮아지게 되는데, 이것은 효율이 훨씬 낮아짐을 나타낸다. 이러한 이유 때문에, Si 태양 셀은 태양 집광기로는 비효율적이다.
GaAs 또는 GaN과 같은 다른 물질 시스템에 있어서의 전자 이동도는 실리콘의 전자 이동도보다 훨씬 높아서, 광 여기 전자가 보다 빠르게 셀 접합에 도달할 수 있게 하며, 그에 따라 홀/전자 밀도 불균형의 발생을 완화시키고 그들이 추출되기 전에 전자 및 홀을 재조합할 기회를 감소시키며, 이어서, 입사 태양 광자의 개수의 증가에 의해, 평형에 도달하기 전에 광 여기 캐리어의 개수가 계속적으로 증가하게 된다. 그러므로, 전자 이동도의 이러한 증가는 그러한 물질 시스템으로 만들어진 태양 셀이 집광된 태양광 하에서 높은 효율을 갖게 한다.
본 명세서의 이하의 섹션에서는 상술한 효율 손실 메카니즘들 중 많은 것들을 회피하고, 그에 따라 이하의 섹션에서 설명한 교류 바이어스 태양 광 고안이 아주 높은 태양 파워 변환 효율을 제공할 수 있게 하는 여러개의 신규한 고안 방식을 주로 설명하기 위한 것이다. 본 명세서의 후속하는 섹션에서는 교류 바이어스 태양 셀의 다수의 실시 예의 원가/효율 성능을 설명하고, 그것을 현재의 통상적인 태양 셀에 의해 달성되는 성능과 비교할 것이다. 아래의 설명은, 본 발명의 교류 바이어스 태양 셀이 달성할 것으로 예측한 원가/효율 성능이 태양광 셀 산업(photovoltaic solar cell industry)의 제 3 세대(3G) 목표를 달성하는 kWh당 태양 에너지 비용을 제공할 수 있음을 보여주기 위한 것이다.
캐리어 활용( Harnessing Hot Carriers )
상술한 바와 같이, 태양 셀에 있어서의 주요한 손실 메카니즘 중 하나는 핫 캐리어 이완에 기인한, 셀 물질 대역 갭보다 높은 에너지를 가진 입사 태양 광자의 손실, 즉 도 1의 손실 메카니즘
Figure pct00011
이다. 비록, 이론적으로는 핫 캐리어가 분리되어 냉각이 일어나기 전에 콘택트에서 수집될 수 있지만, 핫 캐리어의 빠른 열운동화(thermalization)(짧은 냉각 시간 τc)로 인해 종래의 태양 셀에서는 이것이 관찰되지 않는다. 현재, 핫 캐리어를 이용하여 태양 셀 효율을 증가시키는 분야에서 연구자가 구상하는 두 가지 개념이 존재하는데, 이것은 SEC(Selective Energy Contact)와 MEG(Multiple Exciton Generation)를 이용한 직접 추출이다. 두가지 개념은 캐리어 냉각을 우선 둔화시키는데 의존하지만, 핫 캐리어 에너지는 다른 방식으로 활용된다.
도 3a에 도시된 SEC를 이용한 직접 핫 캐리어 여기의 이론적 처리("Solar Energy Material and Solar Cells", P.Wurfel, 46(1997), pp.43-52)는 널리 공개되어 있으며, 핫 캐리어를 효과적으로 추출할 수 있다면, 단일 접합 셀("The Physics of Solar Cells" J. Nelson, Imperial College Press, 2003, pp. 309-316)로부터 68%의 열역학 한도 근처에서 실질적인 태양 셀 효율 증가가 가능함을 보였다. 그러나, 핫(고 에너지) 전자 및 홀(캐리어)을 셀 접합까지 분리하는 것이 쉬운것은 아니며, 그 이유는 핫 캐리어의 고 에너지를 열로서 신속하게 손실되게 하는 포논과의 상호 작용을 통해 이들 핫 캐리어가 그들의 고 에너지를 손실하는 경향이 있기 때문이다. SEC 및 MEG 방식에 있어서, 셀내의 광 여기 핫 캐리어 개체군을 유지하는 전체적인 개념은 전자-포논 상호 작용을 최소화시킨다는 것이다. 그러나, 금속 콘택트 근처에서는, 그 콘택트내의 상당수의 이용 가능한 전자적 상태를 통해 핫 캐리어가 매우 쉽게 냉각된다. 그러므로, 핫 캐리어는 전형적으로 셀 접합 근처에 모여들려고 하는 경향이 있으며, 그에 따라 그들이 냉각되기 전에 이들 캐리어를 운송 및 추출하는 것이 더 어렵게 된다. 전형적인 태양 셀 물질에 있어서, 핫 캐리어가 냉각전에 셀 물질을 통해 진행할 수 있는 거리는 매우 짧으며(미크론 미만), 그에 따라 냉각전에 셀 콘택트에 핫 캐리어를 운송하는 것이 더 어렵게 된다.
SEC 방식의 원리는 다음 이용 가능한 상태 사이의 큰 대역 갭과 함께 좁은 상태 밀도(narrow density of states)를 가진 콘택트 물질을 이용하는 것임을 알아야 한다("Solar Energy Material and Solar Cells", P.Wurfel, 46(1997), pp.43-52). 그러나, 좁은 상태 밀도는 아주 낮은 전자 이동도를 생성하며, 그러므로, 그 콘택트를 통한 전도성을 충분히 높게 유지하면서, 상태 밀도의 협소성(narrowness)들간에 어느 정도의 타협이 있어야만 한다. SEC가 실현 가능하게 되기 전에 처리될 필요가 있는 추가적인 논점은 셀의 기하학적 구조 및 그와 연관된 콘택트이다. 냉각 전에 핫 캐리어가 이동할 수 있는 거리가 전형적으로 매우 짧다는 것을 고려해 볼때, 캐리어가 콘택트에서 수집되기 전에 그 캐리어가 냉각되지 않도록 하기 위해 SEC 콘택트에 매우 가깝게 캐리어가 생성되도록 셀 구조를 고안하는 것이 필요하다. 그러므로, 핫 캐리어가 이동해야 할 거리를 최소화하기 위해 매우 짧은 흡수기(absorber) 영역 및/또는 곡세 표면(convoluted surface)이 요구된다("Third Generation Photovoltaics: Advanced Solar Energy Conversion", M.A. Green, Springer, New York, 2003, pp. 35-43).
핫 캐리어를 이용하는 태양 셀의 효율을 증가시키는 다른 가능성은 MEG를 통해서이다("Third Generation Photovoltaics: Advanced Solar Energy Conversion", M.A. Martin, Springer, 2006, pp. 81-88). 이 경우, 핫 전자의 초과 에너지는 추가 여기, 즉, 경계 전자-정공 쌍을 생성하는데 이용된다. 핫 전자는 추가적인 전자-정공 쌍을 생성하기 위해 대역 갭(Eg)의 적어도 2배의 에너지를 가져야 한다. 이러한 프로세스는 대역 갭의 2배의 에너지를 가진 전자에 국한되는 것이 아니라, 보다 높은 에너지를 가진 전자로 연장될 수도 있다. 1-sun AM1.5 스펙트럼하에서, MEG-개선 셀의 예측된 이론적 효율은 44% 초과이지만, 최대 태양 집광(sunlight concentration)하에서는, 그 효율이 SEC 셀의 그것에 근접할 수 있다. MEG가 벌크 반도체(bulk semiconductor)에서 일어날 수 있지만, 그 발생 가능성은 매우 낮아서 셀의 효율에 대해 크게 기여하지는 않는다("Third Generation Photovoltaics", Gregory F. Brown and Junqiao Wu, Laser & Photon Rev., 1-12 (2009), published online: 2 February 2009).
상술한 바와 같이, 핫 캐리어의 냉각을 늦추는 것은 SEC 및 MEG 방식에 대한 전제 조건이며, 당 분야에서 진행중인 연구에 의해 이것을 달성하는 가장 널리 추구되는 방식은 양자 감금 구조를 사용하는 것이다. 핫 캐리어의 냉각 시간이 벌크 반도체에 있어서의 전형적인 냉각 시간을 초과하는 경우가 있다. 이러한 현상은 양자 감금 구조가 합체된 많은 물질 시스템에서 발생할 것으로 기대된다. 우선, MQW(Multiple Quantum Well) 및 QD(Quantum Dot)가 연구되었고, 그것이 벌크 반도체보다 훨씬 큰 핫 캐리어 냉각 시간을 갖는다는 것을 알게 되었다("Third Generation Photovoltaics", Gregory F. Brown and Junqiao Wu, Laser & Photon Rev., 1-12 (2009), published online: 2 February 2009). 수십 나노초에 근접한 핫 캐리어 냉각 시간이 이러한 유형의 구조에서 관찰되었다. 이러한 증가는 양자 구조에 있어서 포논 병목 효과로서 알려진 현상 덕분이었다. 전형적으로, 핫 전자는 광학적 포논과의 상호 작용을 통해 냉각되며, 양자 감금의 존재 때문에, 광학적 포논의 불평형 레벨이 생성될 수 있다. MQW 또는 QD의 양자 감금 양상에 의해 발생하는 포논 병목 효과 때문에, 이들 광학적 포논은 격자와 충분히 빠르게 평형을 이룰 수 없으며, 그에 따라, 핫 전자의 추가적인 냉각이 천천히 이루어짐으로써, 그들의 냉각 시간(τc)이 연장된다(도 2 참조). MQW의 2차원 양자 감금내에서는, 태양 집광 하에서 전형적으로 발생하는 것과 같이 상대적으로 높은 조사 레벨을 요구하는 높은 캐리어 광 여기 밀도(photo-excitation densities)에서 포논 병목 효과가 발생한다. 그러나, QD의 3차원 양자 감금 양상 때문에, 모든 조사 레벨 하에서 포논 병목 효과가 발생할 것으로 예측된다. MWQ 및 QD에서의 핫 캐리어의 느려진 냉각의 결과로서, 이러한 유형의 장치 구조는 핫 캐리어 추출에 있어서 중요한 역할을 할 것으로 예측된다.
원칙적으로, 도 3a에 도시된 SEC 핫 캐리어 셀에 있어서, 핫 캐리어 냉각은 셀 물질과 함께 합체된 양자 감금 구조에 의해 느려지며, 그들이 핫 상태로 있는 동안, 콘택트로 캐리어를 운송하기 위한 시간은 느려지며, 그 콘택트의 좁은 상태 밀도에 의해 그들의 높은 에너지 레벨에서 그들이 수집될 수 있게 된다. 이에 따라 이론적으로 셀에 의해 생성된 광전압이 증가된다. 그러나, 셀 콘택트에서의 증가된 광전압은 셀 콘택트로 캐리어를 운송하는 역할을 하는 내부 확산 전위(built-in potential)(Vbi)를 상쇄시키는 경향이 있다. 그 결과, 그 콘택트에 캐리어를 운송하는데 걸리는 시간(캐리어 추출 시간)이 실질적으로 캐리어 재조합 시간(
Figure pct00012
)에 도달할 수 있는 시점까지 증가되는데, 이것이 의미하는 것은, 캐리어가 셀 캐리어 내부 운송 메카니즘의 약화로 인해 콘택트에 도달하기 전에 재조합되고, 이어서 종래의 셀보다 실질적으로 크지 않은 순 에너지 추출(net energy extration)과 함께 셀에 의해 생성된 광 전류의 상당한 감소를 초래한다는 것이다. 그래서, SEC 핫 캐리어 셀이 이론적으로 보다 높은 광전압을 생성할 수는 있지만, 연장된 캐리어 추출 시간의 직접적인 결과인 광전류의 감소에 의해 실현된 증가(realized increase)가 상쇄될 것이다.
재생 가능 에너지, 특히 태양광 셀(PV solar cell)에 대한 관심의 증가를 고려해 볼 때, 그들의 원가를 실질적으로 증가시키지 않으며, PV 셀의 효율을 증가시키기 위한 요구가 증가하고 있다. 핫 캐리어 PV 셀은 이론적으로는 PV 셀 효율의 실질적인 증가를 제공할 수 있을 것으로 예측되었지만, 지금까지 이러한 예측의 어느 것도 실현된 적이 없다. 상기에서 설명한 2가지의 핫 캐리어 태양 셀 방식은, 셀 물질내에 양자 감금 구조를 포함시키는 것을 필요로 하고, 그에 따라 셀의 원가를 아마도 높이며, 캐리어 냉각 시간을 증가시키는 수단을 요구한다. MEG 핫 캐리어 셀의 장점은 매우 높은 집광하에서만 실현될 수 있으며, 그러므로 그 방식은 비 실용적이다. 다층 슈퍼 격자(multi layer superlattice)의 이용을 빈번하게 요구하는 특정 유형의 콘택트들을 요구하는 것에 더하여, SEC 핫 캐리어 태양 셀 방식은 종래의 PV 셀이 제공할 수 있는 보다 높은 에너지 효율에 도달하기 위한 그의 기능을 상쇄시키는 내적 결함(built-in deficiency)을 겪을 것으로 보인다.
보다 높은 효율 및 보다 낮은 원가의 PC 셀과, 이러한 목적을 달성하기 위해 현재 추구되는 방식의 약점을 고려할 때, 태양 셀의 상당한 증가없이 보다 높은 효율을 효과적으로 실현할 수 있는 PV 셀 방식은 아마도 상당한 시장 가치를 가질 것이다.
본 발명은 태양 셀을 동작시키는 방법으로서, 단일 접합과 제 1 콘택트 및 제 2 콘택트를 가진 태양 셀에 대하여, 상기 제 1 콘택트와 제 2 콘택트 양단의 바이어스가 최대 바이어스 값과 최소 바이어스 값 사이에서 주기적으로 교호하도록 하되,상기 최대 바이어스 값과 상기 최소 바이어스 값 사이에서의 상기 바이어스의 교호의 주기는, 상기 태얄 셀로부터 에너지 레벨 범위를 가로지르는 광 여기 캐리어를 추출하기 위한 태양 셀의 핫 캐리어 냉각 시간보다 더 짧다.
보다 높은 효율 및 보다 낮은 원가의 PC 셀과, 이러한 목적을 달성하기 위해 현재 추구되는 방식의 약점을 고려할 때, 태양 셀의 상당한 증가없이 보다 높은 효율을 효과적으로 실현할 수 있는 PV 셀 방식은 아마도 상당한 시장 가치를 가질 것이다.
도 1은 태양광 셀 효율 손실 메카니즘을 도시한 도면,
도 2는 태양광 셀 효율 손실 메카니즘을 도시한 도면,
도 3a는 선택적인 에너지 콘택트를 이용하는 종래 기술의 태양광 셀의 에너지 대역 구조를 도시한 도면,
도 3b는 종래의 고정된 바이어스 요법 태양 셀(fixed bias regime solar cell)에 있어서의 전자 흐름을 도시한 도면,
도 4는 어두운 곳에서 조사중인 종래의 p-n 접합 태양 셀의 전류-전압(I,V) 특성을 도시한 도면,
도 5a는 본 발명의 가변 바이어스 핫 캐리어 셀(variable bias hot carrier solar cell)의 바람직한 실시예의 고 레벨의 블럭도를 나타낸 도면,
도 5b는 본 발명의 가변 바이어스 핫 캐리어 셀의 광전압의 파형을 도시한 도면,
도 5c는 본 발명의 핫 캐리어 태양 셀의 세부적인 블럭도를 나타낸 도면,
도 6은 본 발명의 핫 캐리어 태양 셀의 기대되는 (I,V) 특성을 도시한 도면,
도 7a는 직류(DC) 출력을 가진 본 발명의 핫 캐리어 태양 셀의 예시적인 블럭도를 도시한 도면,
도 7b는 교류(AC) 출력을 가진 본 발명의 핫 캐리어 태양 셀의 예시적인 블럭도를 도시한 도면,
도 7c는 본 발명의 자기 바이어스 핫 캐리어 태양 셀의 예시적인 블럭도를 도시한 도면,
도 7d는 직류(DC) 출력을 가진 본 발명의 대안적인 핫 캐리어 태양 셀의 예시적인 블럭도를 도시한 도면,
도 8은 본 발명의 교류 바이어스 핫 캐리어 태양 셀의 예시적인 구현을 도시한 도면,
도 9a는 본 발명의 핫 캐리어 태양 셀의 대안적인 실시 예의 고 레벨 블럭도를 도시한 도면,
도 9b는 본 발명의 핫 캐리어 태양 셀의 대안적인 실시 예의 교류 직렬 바이어스(alternating serial bias)의 광전압의 파형을 도시한 도면,
도 9c는 본 발명의 핫 캐리어 태양 셀의 대안적인 실시 예의 펄스형 병렬 바이어스(pulsed parallel bias)의 광전압의 파형을 도시한 도면,
도 9d는 본 발명의 핫 캐리어 태양 셀의 대안적인 실시 예의 병렬 바이어스 회로의 전형적인 블럭도를 도시한 도면,
도 10a는 양자 감금 수단을 합체한 본 발명의 핫 캐리어 태양 셀의 코어 태양 셀(core solar cell)의 에너지 대역 구조를 도시한 도면,
도 10b는 양자 감금 수단을 합체한 본 발명의 핫 캐리어 태양 셀의 코어 태양 전이의 중간 대역을 도시한 도면,
도 11a는 광학적 감금 수단을 합체한 본 발명의 핫 캐리어 태양 셀의 코어 태양 셀의 단면도,
도 11b는 광학적 및 양자 감금 수단을 합체한 본 발명의 핫 캐리어 태양 셀의 코어 태양 셀의 단면도,
도 12는 본 발명의 교류 핫 캐리어 태양 셀에 대한 후보 물질 시스템을 나타낸 도면.
본 발명의 이하의 상세한 설명에 있어서, "일 실시 예" 또는 "실시 예"는 그 실시 예와 관련하여 설명된 특정의 특징, 구조 또는 특성이 본 발명의 적어도 일 실시 예에 포함됨을 의미한다. 본 상세한 설명의 여러 곳에 있는 "일 실시 예에 있어서"라는 문구는 그 모두가 동일한 실시 예를 지칭하는 것은 아니다.
본 명세서에서 설명할 핫 캐리어를 채취하는 방식은, 설명한 종래 기술에서 처럼 핫 캐리어 냉각을 늦추는 것에 의존하기 보다는, 핫 캐리어 추출을 가속화하는 것에 의존한다. 본 명세서에서 설명한 핫 캐리어 추출 방식은, 캐리어 추출이 충분히 빠르면, 그들의 높은 에너지를 열로 손실하기 전에, 캐리어를 추출할 수 있다는 관찰로부터 비롯된 것이다. 캐리어를 콘택트에 운송하는 것을 담당하는 전계의 세기가, 캐리어가 냉각되기 전을 의미하는 핫 캐리어 냉각 시간(τc)의 기간내에 순간적으로 증가될 수 있다면, 이것은 달성될 수 있다. 그러한 전계 세기의 증가는 캐리어 추출 시간이 캐리어 냉각 시간(τc)보다 더 짧게 되는 정도까지 핫 캐리어의 운송 속도를 증가시키는 효과가 있으며, 그에 따라, 그들이 "핫 상태(hot)"일 때, 즉, 캐리어가 셀 대역 갭의 에지보다 높은 에너지 레벨을 갖고 있는 동안에 캐리어의 추출이 가능하게 된다. 이러한 것이 달성될 수 있다면, 기하학적으로 달성하기 매우 어려운 것으로 입증된, 근처에 핫 캐리어가 집중되는 복잡한 슈퍼 격자 콘택트를 이용하는 현재 추구하고 있는 주요한 방식보다, 그 장치 레벨에서 구현하기가 확실히 훨씬 쉽게 된다. 그러한 방식의 핫 캐리어 추출 기능은 상술한 복잡한 슈퍼 격자 콘택트의 임의의 선택적 에너지 양상에 의해 제한되지 않으며, 태양 셀 장치 구조를 복잡하게 하는 임의 기하학적 제한을 두지도 않는다. 그 보다는, 장치 물질 레벨에서가 아닌 단지 회로 레벨에서 추가적으로 종래의 벌크 물질 및 양자 감금 기반 태양 셀과 함께 적용될 수 있다. 이하에서는, 이번 섹션의 경우에 벌크 물질에 있어서의 이러한 방식의 응용에 대해 보다 상세한 설명을 제공하고, 다음 섹션에서는 본 명세서에서 설명한 캐리어 가속 방식이 동일하게 적용될 수 있는 양자 감금 구조를 합체한 셀에 있어서의 이러한 방식에 응용에 대해 보다 상세한 설명을 제공한다.
조사(illumination) 없이, 태양광 셀의 n-도핑 측면 및 p-도핑 측면을 콘택트로 이동시키면, n-도핑 측면에서 p-도핑 측면으로 전자의 일시적인 전류 흐름이 발생하게 되어, 통상적으로 접합의 내부 확산 전위(Vbi)로서 알려진, 셀 접합의 양측의 페르미 레벨의 차이에 의해 유발되는 콘택트 전위를 오프셋시킨다. 이러한 일시적인 전류 흐름은, 셀 접합에서의 확산된 전하에 의해 형성된 전계가 전자 및 정공에 작용하는 콘택트 확산력을 오프셋시키면 중단된다. 조사하에서, 셀의 p-도핑 측면의 균형 대역으로부터의 광 여기 전자가 전도 대역으로 올라감에 따라, 순시 태양 광자에 의해 유발된 광 여기로 인해 그 셀 내의 캐리어 개체군 밀도가 증가하게 된다. 셀 내의 광 여기 캐리어 개체군의 이러한 증가 때문에, 셀의 내부 전계(
Figure pct00013
)는 광 여기 캐리어들을 분리시키고, 전자 및 정공을 각각 셀 n-콘택트 및 p 콘택트 쪽으로 이동시킨다. 도 3b에 도시된 바와 같이, 셀의 두 측면을 가로질러 부하(load)가 접속되면, 광 여기 전자들은 셀의 p-도핑 측면의 방향에서 n-도핑 측면으로 셀 내에서 흐르며, n-도핑측 콘택트에서 추출되어 접속된 부하로 흐르고, 부하내로 이동하는 동안 그들의 에너지를 손실하고, 셀의 p-도핑 측면에 있는 콘택트를 통해 셀로 되돌아 가서 셀의 p-도핑 측면내의 대기중인 정공과 재조합된다. 태양 셀 및 접속된 부하내의 이러한 순방향 바이어스 흐름이 도 3b에 도시된다.
도 3b를 참조하면, 셀 콘택트 양단의 부하 저항(RLoad)에 의거하여, 셀 콘택트에 구축된 광 전압은 캐리어 운송 효과를 담당하는 셀 내부 전계(
Figure pct00014
)를 상쇄시키는 셀 접합 양단의 전계(
Figure pct00015
)를 유발한다. 셀 콘택트 양단의 광 전압이 증가함에 따라, 셀 내부 전위(
Figure pct00016
)에 의해 유발된 셀 내부 전계(
Figure pct00017
)는, 셀 콘택트에 구축된 광 전압을 유발하는 반대되는 전계(
Figure pct00018
)에 의해 약화된다. 결론적으로, 셀 콘택트를 향한 광 여기 캐리어 운송이 시스템적으로 약화되어, 조합되기 전에 보다 소수의 광 여기 캐리어만이 셀 콘택트에 도달할 수 있게 된다. 이러한 효과는 핫 캐리어 태양 셀에 좋지 않는데, 그 이유는 셀 운송 메카니즘이 전자의 에너지가 셀로부터 추출되는 동안 주로 셀 내부 전위(
Figure pct00019
)에 의해 유발된 셀 내부 전계(
Figure pct00020
)이며, 그러므로, 그들이 생성할 것으로 기대한 셀 콘택트 양단의 광 전압이 종래의 태양 셀의 광 전압보다 훨씬 크게 되기 때문이다. 상술한 바와 같이, 핫 캐리어 추출로부터 얻고자 하는 보다 높은 광 전압은 셀의 내부 캐리어 운송 메카니즘을 약화시켜 감소된 광 전류를 유도하며, 그에 따라 핫 캐리어 태양 셀의 보다 높은 파워 추출 효율이 실현되지 못하게 된다.
도 4에는 어두운 곳에서(405) 및 조사 하(410)에서 종래의 p-n 접합 태양 셀의 전류-전압(I,V) 특성이 도시된다. 오늘날의 통상적인 단일 접합 태양 셀로부터 생성된 출력 파워를 최대화하기 위해, 셀로부터 최대 생성 광 전압(Vm)과 광 전류(Im)를 달성할, 상쇄(counteracting) 전계
Figure pct00021
Figure pct00022
, 즉 셀 콘택트에 구축된 광 전압 및 셀 내부 전위(
Figure pct00023
)에 의해 유발되는 전계들간의 균형점(balance point)에서 전형적으로 부하 저항(RLoad)의 값이 선택된다. 최대 생성 광 전압(Vm)과 광 전류(Im)는 도 4의 (I,V) 곡선의 무릎점(415) 근처의 바이어스에서 셀에 의해 전형적으로 달성된다. 이러한 최대 광전압(Vm) 및 광 전류(Im) 값을 달성하기 위해서는, 캐리어가 재 조합되기 전에, 콘택트에 최대 개수의 광 여기 캐리어를 운송하기에 충분한 캐리어 운송력(carrier transport force)을, 상쇄 전계
Figure pct00024
Figure pct00025
간의 균형이 유지시켜야 한다. 수 미크론의 접합 공핍 영역 양단에 내부 전계를 생성하는 ~1볼트의 전형적인 셀 내부 전위에 의해, 캐리어 운송 속도(또한 일반적으로 드리프트 속도로 알려짐)는 셀 공핍 영역을 가로지르는 전형적인 ~107cm/s 범위의 포화 속도에 도달할 수 있다. 셀 콘택트 양단의 광전압이 최소값일 경우, 이러한 캐리어 운송 속도 레벨은, 캐리어가 재조합되기 전에, 셀 콘택트에 광 여기 캐리어가 쉽게 운송될 수 있게 한다. 이것은, 셀 광 전압이 도 4의 (I,V) 곡선의 무릎점(415) 미만일 때, 셀에 의해 생성된 광 전류가 그의 최대값이 됨을 보여주는 도 4에 명백히 나타나 있다. 그러나, 셀 콘택트 양단의 광 전압이 전형적으로 셀 대역 갭의 범위 이내에 있는 가능한 가장 높은 값(전형적으로 실리콘에서는 1.1eV이고 비화 갈륨(gallium arsenide)에서는 1.4eV)이면, 셀 콘택트 양단의 결과하는 전계(
Figure pct00026
)는, 셀 내부 전계(
Figure pct00027
)를 약화시키는데, 이러한 약화는, 캐리어가 셀 콘택트에 도달하여 셀로부터 추출되기 전에, 재조합됨에 따라 셀의 광 전류가 최소값으로 감소되고 셀 콘택트로의 캐리어 운송이 거의 중단될 정도까지 이루어진다. 이것은, 셀 광 전압이 도 4의 (I,V) 곡선의 무릎점(415)보다 높을 때, 셀에 의해 생성된 광 전류가 최소값으로 빠르게 감소하는 것을 보여주는 도 4에 명백히 나타나 있다. 이러한 조건은 핫 캐리어 태양 셀에서 심각하게 악화되는데, 그 이유는 그러한 셀의 주요 목적이 셀 물질 대역 갭 에너지보다 실질적으로 높은 에너지를 가진 핫 전자를 추출하는데 있기 때문이며, 이것은 셀 광 전압이 셀 물질 대역 갭 에너지보다 실질적으로 높은 값에 도달할 때, 캐리어 운송을 담당하는 셀 내부 전계(
Figure pct00028
)가 상당히 약화되어, 임의 에너지 레벨의 광 여기 캐리어의 어느 것도 셀 콘택트에 도달할 수 없기 때문이다.
본 발명의 핫 캐리어 태양 셀 고안의 바람직한 실시 예의 고 레벨 블럭도가 도 5a에 도시된다. 본 발명의 핫 캐리어 태양 셀의 이러한 바람직한 실시 예는, 전술한 종래 기술의 핫 캐리어 셀 고안에 존재하는 단점을 극복하는데, 이러한 극복은, 셀을 가로지르는 광 여기 캐리어의 평균 운송 속도가 소정 값으로 유지되어, 캐리어 냉각 전(이것은 캐리어 냉각 시간(τc)보다 짧은 기간(time duration)이내 임을 나타냄)에 광 여기 캐리어가 셀 콘택트로 운송되도록, 셀에 의해 생성된 광 전압을 최소값(Vmin) 및 최대값(Vmin)사이에서 단속적으로 가변시킴에 의해 이루어진다. 본 발명의 핫 캐리어 태양 셀(500) 고안의 교류 광 전압의 최소값(Vmin)은 셀 내부 전계(
Figure pct00029
)가 여전히 그의 가장 높은 값을 가지는 지점(즉, 광 여기 캐리어 운송 속도가 그의 최대값에 도달할 수 있는 지점)에서 선택될 수 있다. 본 발명의 핫 캐리어 태양 셀(500)의 교류 광 전압의 최대값(Vmax)은 태양 셀(500)내의 광 여기 캐리어의 전기 화학적 전위의 최대값에 실질적으로 상응하는 값으로 선택될 수 있다. (전기 화학적 전위는 태양 광자에 의한 광 여기에 의해 유발된 반도체 물질의 쿼시-페르미 레벨(Quasi-Fermi level)들간의 에너지 분리(energr separation)이다).본 발명의 핫 캐리어 태양 셀(500)의 교류 광 전압의 그러한 최대값(Vmax)은, 그러한 높은 광 전압값이 셀 내부 전계(
Figure pct00030
)의 값을 줄이는데 미치는 상쇄 효과와 무관하게, 셀에 의해 달성될 수 있는 가장 높은 광 전압으로 선택될 수 있다. 종래의 태양 셀의 (I,V) 특성에 대한 Vmin 및 Vmax 값의 가능한 범위는 참조 번호 420과 함께 도 4에 도시된다. 상술한 기준에 기초하여 선택된 최소 Vmin 및 최대 Vmax들 사이에서의, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압의 교호(alternation)는, 셀을 가로지르는 광 여기 캐리어 운송 속도가 각각 최대값 및 최소값에 도달하는 교호 기간(alternating time period)으로 결과한다. 본 발명의 핫 캐리어 셀의 광 전압의 최소값 및 최대값 사이에서의 교호의 듀티 사이클에 의거하여, 광 여기 캐리어의 결과하는 평균 운송 속도는, 셀 콘택트를 향해 캐리어의 연속하는 운송을 제공하고, 그에 따라 셀 광 전압이 그의 교호 사이클의 최대 값을 가질 때에도, 광 전류를 제공하는 값으로 유지될 수 있다.
도 5b에는 본 발명의 핫 캐리어 셀(500)의 광 전압의 교호를 나타낸 파형이 도시된다. 도 5b에 도시된 바와 같이, 최소값 Vmin 및 최대값 Vmax 사이에서의, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압의 교호는 기간(Tb)를 가질 수 있다. 본 발명의 핫 캐리어 셀(500)의 광 전압의 교호를 나타내는 도 5b에 도시된 파형의 첫번째 핵심 파라메타는, 광 전압이 도 5b에 도시된 그의 최소값(Vmin)에 도달할 수 있게 하는 사이클(Tb)의 백분율인데, 그 이유는 (αTb)가 광 여기 캐리어에 대해 필요한 평균 운송 속도를 유지하기에는 충분히 길지만, 핫 캐리어 셀(500)에 의해 달성되는 평균 광 전압이 가장 높은 값을 유지하도록 충분히 짧게 유지되어야 하기 때문이다. 본 발명의 핫 캐리어 태양 셀(500)의 콘택트로의 광 여기 캐리어의 운송의 도미넌트 부분은, 교호 사이클(Tb) 중에, 셀의 내부 전계(
Figure pct00031
)를 그의 최대값까지 증가시키는 광 전압 교호 사이클(Tb)의 기간(αTb) 동안에 발생한다. 상술한 바와 같이, 셀 광 전압이 그의 최소값 Vmin을 가질 때, 광 여기 캐리어 운송 속도는 그 기간(αTb) 동안에 ~107cm에 도달할 수 있게 되어, 1ns당 100㎛에 근접하게 광 여기 캐리어를 충분히 운송할 수 있게 된다. 그 기간(αTb) 동안의 캐리어 운송 속도의 구축 및 감쇄의 과도 효과를 고려하여, 그 기간 동안의 광 여기 캐리어의 평균 운송 속도가 단지 ~0.1×107cm/s에 도달할 수 있다고 가정한 것은 타당하며, 거의 1ns당 10㎛에 근접하게 광 여기 캐리어를 충분히 운송할 수 있다. 그것이 의미하는 것은, 셀 광 전압이 그의 최소값 Vmin에 도달하는 광 전압 교호 기간의 서브 간격(sub-interval), 즉 (αTb)이 1ns이라면, 셀 내부 전계(
Figure pct00032
)는 10㎛에 근접한 그 시간 간격 이내에 광 여기 캐리어를 운송할 수 있을 것이라는 것이다. 이것은, 광 여기 캐리어가 셀 콘택트에 운송되어야 하는 평균 거리에 의거하여 그 기간(αTb)이 선택될 수 있음을 암시한다. 예를 들어, GaAs 단일 접합 태양 셀에 있어서, 셀 에미터(cell emitter)와 베이스 층(base layer)간의 전형적인 두께는 5㎛ 미만일 수 있으며, 이것은 GaAs 태양 셀내의 광 여기 캐리어가 셀 콘택트에서 추출되기 위해 2.5㎛의 평균 거리를 이동해야만 함을 의미한다. 이것이 의미하는 것은, GaAs 태양 셀의 경우, 핫 캐리어 냉각 시간(τc)내에 콘택트로 셀(500)내의 모든 광 여기 캐리어를 완전히 운송하기에 충분한 시간을 갖기 위해서는 (αTb) = 0.25ns이면 충분하다는 것이다. 비슷한 값(αTb)이, CdTe(cadmium telluride), CIS(copper indium diselenide) 및 CIGS(copper indium gallium diselenide)와 같은 박막형 태양 셀에 적용될 수 있는데, 이것은 이러한 유형의 태양 셀의 셀 에미터와 베이스 층간의 전형적인 두께가 5㎛ 미만일 수 있기 때문이다. Si 및 Ge 태양 셀과 같은 간접 대역 갭 태양 셀의 경우, 이들 셀의 보다 큰 광 흡수 길이 때문에, 셀 에미터와 베이스 층의 전형적인 두께는 GaAs, CdTe 및 CIGS 태양 셀보다 훨씬 클 수 있다. 그러나, 이들 셀의 간접 대역 갭 캐리어 이동도 및 결정 격자 특성으로 인해 이들 셀의 핫 캐리어 냉각 시간(τc)은 적어도 GaAs, CdTe 및 CIGS 태양 셀보다 열배 더 길게 된다. Si 단일 접합 태양 셀에 있어서, 셀 에미터 및 베이스 층의 전형적인 두께는 300㎛일 수 있으며, 이것은 Si 태양 셀의 광 여기 캐리어가 셀 콘택트에서 추출되기 위해 150㎛의 평균 거리를 이동해야만 할 것이라는 것을 암시한다. 이것이 의미하는 것은, Si 태양 셀의 경우, 핫 캐리어 냉각 시간(τc)내에 콘택트로 셀(500)내의 모든 광 여기 캐리어를 완전히 운송하기에 충분한 시간을 갖기 위해서는 (αTb) = 15ns이면 충분하다는 것이다.
캐리어 운송 시간값이 Si 태양 셀의 경우에 더 높지만, Si에 있어서의 핫 캐리어 냉각 시간(τc)은 또한 더 길 것으로 예상된다는 것을 알아야 한다. 그럼에도, 본 명세서에서의 후속하는 설명은, Si 셀에서 콘택트와 콘택트간 두께(contact-to-contact thickness)를 실질적으로 감소시키는 Si 태양 셀 구조내에 광 감금 수단이 합체되는 경우에 캐리어 운송 시간이 실질적으로 더 짧게 될 수 있음을 보여줄 것이다. 광 감금 수단을 합체한 그러한 얇은 Si 태양 셀의 경우, 20㎛ 두께의 실리콘막이 광 감금 수단이 없는 400㎛ 두께의 Si 셀보다 훨씬 높은 흡수율을 가질 수 있다("Physice of Solar Cells", Wurfel, pp. 173-177). 또한, 후술하겠지만, 매립형 콘택트를 합체한 광 감금 수단을 합체한 얇은 Si 태양 셀에 있어서, 셀 콘택트드들간의 거리는 대략 5㎛로 형성될 수 있으며, 그 다음 이러한 유형의 셀에 대한 캐리어 운송 시간은 GaAs, CdTe 및 CIGS 태양 셀의 그것에 필적하게 될 수 있다. 이것은, 광 감금 수단을 합체한 Si 태양 셀의 경우, (αTb) = 0.25ns가 가능하게 될 수 있다는 것을 의미한다.
본 발명의 핫 캐리어 셀(500)의 광 전압의 교호를 나타내는 도 5b에 도시된 파형의 두 번째 핵심 파라메타는 사이클(Tb)로서, 그 사이클(Tb)동안 최소값 Vmin 부터 최대값 Vmax 까지의 전체 사이클을 광 전압이 진행한다. 최소 광 전압 기간(αTb)중에 셀내의 광 여기 캐리어를 운송하는 기능에 의해, 남아있는 것은 사이클(Tb)이 캐리어 냉각 시간(τc)과 동일하거나 더 짧게 되도록 선택하는 것이다. 상술한 바와 같이, 셀 물질 결정 격자 특성에 의거하여, 수 나노초의 기간에 핫 캐리어 냉각이 발생하기 때문에, 본 발명의 핫 캐리어 셀의 광 전압의 교호, 즉, 사이클(Tb)은 대략 수 나노초가 되도록 선택될 수 있다. GaAs, CdTe, CIGS 및 박막 Si 유형의 태양 셀에 대해 기간 (αTb) = 0.25ns를 선택함으로써, 파라메타 α=0.1의 값은 Tb=2.5ns에 대한 값으로 될 것이며, 그 값은 실질적으로 모든 핫 캐리어가 셀(500)의 콘택트로 운송되는 서브 사이클(αTb)의 발생 전에, 사이클 시간(Tb)내에 셀에 의해 생성된 핫 캐리어가 냉각될 기회를 갖지 못하는 것을 보장할 정도로 충분히 짧다.
광 여기 캐리어 운송은 전체 사이클(Tb)에 걸쳐 가변하는 운송 속도로 계속 이루어질 것이며, 그 사이클(Tb) 내의 서로 다른 시점에 셀(500) 콘택트에 도달하는 캐리어는 그들의 에너지 레벨에 비례한 에너지 레벨로 추출되는데, 이는 그 사이클(Tb)동안에, 셀의 대역 갭 에너지 미만의 에너지에서부터 셀(500)로부터 추출될 핫 캐리어의 에너지에 대응하는 원하는 최대값까지의 범위에 걸쳐서 셀(500) 콘택트 양단의 광 전압이 변경되기 때문이다. 종래의 Si 태양 셀(광 감금 수단 또는 매립형 콘택트가 합체되어 있지 않음)의 경우, 보다 큰 값의 파라메타 α, 예를 들어, α=0.5이 선택될 수 있으며, 그 결과 Tb=30ns에 대한 값으로 되어, 광 생성 핫 캐리어들의 상당 수를 냉각 전에 셀로부터 추출하는 것을 충분히 보장할 수 있게 되는데, 이것은 상술한 바와 같이, Si 기반 셀에 있어서 핫 캐리어 냉각 시간(τc)이 GaAs, CdTe 및 CIGS 기반 태양 셀에서의 그것보다 실질적으로 더 길게(거의 10배에 가깝게) 될 것으로 예상되기 때문이다.
최소값(Vmin)에서 최대값(Vmax)까지의 사이클(Tb) 동안의 본 발명의 핫 캐리어 셀(500)의 광 전압 가변성에 의해, 셀의 대역 갭 에너지에서부터 (그 사이클(Tb) 동안에 셀(500)의 광 전압이 도달할 수 있는 선택된 최대값에 의해 정의된) 최대 에너지 레벨까지 걸쳐있는 셀 내에 생성된 광 여기 캐리어의 에너지 프로파일과 실질적으로 일치하도록 만들어진 추출 에너지 범위에 걸쳐서 광 여기 캐리어의 추출이 가능하게 된다. 이것은 본 발명의 핫 캐리어 셀(500) 고유의 명백한 특징인데, 그 이유는 모든 현재의 일반적인 단일 접합 태양광 셀이 단일 에너지 레벨에서만 그 셀로부터 광 여기 캐리어를 추출할 수 있기 때문이다. 단지 멀티-접합 태양 셀만이 고가의 p-n 접합 스택을 이용하여 넓은 에너지 레벨 범위에 걸쳐 광 여기 캐리어를 추출하고, 그 다음 접합층마다의 단일 에너지 레벨에서 광 여기 캐리어를 추출할 수 있다. 이와 대조적으로, 본 발명의 핫 캐리어 셀(500)은 넓은 에너지 레벨 범위에 걸쳐서 단지 단일 접합만을 이용하여 광 여기 캐리어를 추출할 수 있다. 그 광 전압의 교호 때문에, 본 발명의 핫 캐리어 태양 셀(500)은, 핫 캐리어 냉각 레이트(τc)에 필적하거나 그보다 빠른 레이트(rate)로, 넓은 추출 에너지 범위를 일시적으로 스위핑(sweeping)하는 태양 셀로 생각될 수 있으며, 그에 따라 냉각 전에 그들의 에너지 레벨에 비례한 에너지 레벨에서 모든 캐리어들이 셀로부터 추출될 수 있게 된다. 또한, 상술한 바와 같이, 본 발명의 핫 캐리어 셀(500)에 있어서의 캐리어 추출 에너지는, 핫 캐리어 냉각 시간(τc)내에, 넓은 에너지 레벨 범위에 걸쳐 순환(cycle)하므로, 주어진 전기 화학적 전위 값(에너지 분리)에서 셀 콘택트에 도달하는 핫 전자/정공 쌍(캐리어 쌍)은, 그들이 콘택트에서 냉각되기 전에, 셀(500) 부하로 전달될 수 있게 되는데, 이것은, 셀(500) 콘택트들간의 순시 추출 에너지 차이가, 캐리어 쌍 냉각 시간 간격(τc)이내에, 핫 전자/정공 쌍 에너지 레벨 분리와 매칭될 것이기 때문이다. 이것이 의미하는 것은, 사이클(Tb)의 임의의 주어진 시점에, 셀(500)의 순시 광 전압 및 그에 따른 그의 콘택트들간의 전위 분리가 시간 간격 Tb≤τc 이내에 광 여기된 핫 전자/정공 쌍의 일부의 에너지 레벨 분리와 매칭되며, 그에 따라 그 에너지 레벨 분리의 감쇄전에, 매칭된 에너지 분리를 가진 콘택트를 통해 그러한 캐리어 쌍이 셀로부터 부하로 전달될 수 있다는 것이다. 이러한 특징에 의해 본 발명의 핫 캐리어 셀(500)은 셀 외부로 핫 캐리어를 추출하는데 있어서 복잡한 선택적 에너지 콘택트를 필요로 하지 않게 된다. 이것이 가능한 것은, 본 발명의 핫 캐리어 셀(500)의 교류 광 전압이, (핫 캐리어 냉각 시간 간격(τc)보다 짧거나 그 간격에 필적하는) 셀 광 전압의 교호 싸이클(Tb)내의 임의의 이산적인 시점에, 캐리어의 냉각 시간(τc)과 같거나 그보다 짧은 레이트(Tb)로, 순환적으로 이용할 수 있는 핫 캐리어 냉각 시간 간격(τc)보다 실질적으로 짧은 시간 간격 동안 지속되는 셀 콘택트에서의 순시적이고 일시적인 좁은 이산 추출 에너지 대역(instantaneous and temporally discrete narrow extration energy band)을 이용할 수 있기 때문이다. 다시 말해, 본 발명의 핫 캐리어 셀(500)의 콘택트에서의 추출 에너지 레벨은, 셀의 광 전압이 핫 캐리어 냉각 레이트보다 빠른 레이트로 교호하게 됨에 따라, 일시적인 에너지 선택 상태로 된다. 또한, 일시적인 에너지 선택 상태로 되는 것 외에, 핫 캐리어 셀(500)의 콘택트들간의 추출 에너지 레벨 분리는, 셀 대역 갭 에너지에서부터 셀 대역 갭 에너지보다 실질적으로 높은 원하는 에너지 레벨까지의, 범위에 걸쳐 있는 넓은 에너지 대역을 커버하도록 일시적으로 가변하게 된다. 사실상, 본 발명의 핫 캐리어 태양 셀(500)의 이러한 고유한 특징 때문에, 상당히 낮은 원가로, 단일 접합 태양 셀로부터 멀티-접합 태양 셀의 셀 에너지 추출 효율 장점을 얻을 수 있게 된다.
도 5a에 도시된 바와 같이, 바이어스 회로 510 또는 520를 각각 코어 태양 셀 소자(530)와 직렬 또는 병렬로 합체함에 의해, 본 발명의 핫 캐리어 셀(500)의 광 전압은 도 5b에 도시된 파형에 따라 가변한다. 바이어스 회로 510 또는 520는, 통상적인 GaAs, CdTe 및 CIGS 기반 태양 셀에 집적될 수 있는 이산 부품 회로 보드(discrete component circuit board) 또는 집적 회로 장치로서 구현될 수 있다. 셀의 광 전압이 도 5b에 도시된 바와 같이 일시적으로 가변하도록 하기 위해, 바이어스 회로 510 또는 520은 코어 태양 셀(530)의 콘택트 양단의 유효 저항을 일시적으로 가변시키는데, 그 가변 방식은, 코어 태양 셀(530)의 콘택트 양단의 광 전압이 도 5b에 도시된 파형을 따르게 하는 것이다. 일반성을 가지고, 이하의 설명에서는 직렬 바이어스 회로(510)에 대한 상세한 설명에 초점을 맞출 것이다. 이는 병렬 바이어스 회로(520)의 고안이 비록 다른 고안 파라메타 세트를 갖지만 그와 실질적으로 유사하기 때문이다. 당업자라면 병렬 바이어스 회로(520)의 고안 파라메타를 선택하는데 있어서 본 명세서에서 제공한 직렬 바이어스 회로(510)의 상세한 설명을 쉽게 이용할 수 있을 것이다.
도 5c에는 도 5c의 점선 블럭(510)내에 합체된 직렬 바이어스 회로를 이용하는 본 발명의 핫 캐리어 태양 셀(500)의 예시적인 세부 블럭도가 도시된다. 도 5c에는 GaAs, CdTe 및 CIGS 기반 p-n 접합 태양 셀일 수 있는 코어 태양 셀(530)과 직렬 접속된 바이어스 회로(510)가 도시된다. 도 5c에 도시된 바이어스 회로(510)는 기본적으로 일시적인 가변 저항(Rv)으로서, 그 저항은 도 5c에 표시된 오실레이터(550), 다이오드(560), 다수의 저항 및 커패시터로 이루어진다. 오실레이터(550)의 기능은, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압(Vout)의 원하는 교호 사이클(Tb)의 역치(reciprocal value)와 동일한 값을 가진 주파수(fs) 또는 fs=(Tb)-1을 가진 가변 전압 신호(vin)를 생성하기 위한 것이다. 상기에서 예시한 고안의 경우, GaAs, CdTe 및 CIGS 또는 본 발명의 박막 Si 기반 핫 캐리어 태양 셀에 있어서의 구현을 위해 Tb=2.5ns가 선택되면, 오실레이터(550)에 의해 생성될 필요가 있는 주파수(fs)는 fs=400MHz로 된다. 상기에서 예시한 고안의 경우, 통상적인 Si 기반 셀과 함께 본 발명의 핫 캐리어 셀(500)의 구현을 위해 Tb=15ns의 값이 선택되면, 오실레이터(550)에 의해 생성될 필요성이 있는 주파수(fs)는 fs=66.7MHz이다.
코어 태양 셀(530)의 콘택트 양단의 광 전압(Vout)의 요구되는 최대값 및 최소값을 각각 생성하는데 필요한 가변 저항(Rv)의 최대 및 최소값을 실현하기 위해 저항 및 커패시터의 값(R1,C1)과 함께 다이오드(560)의 (I,V) 특성이 선택될 수 있다. 사이클 기간(Tb)에 대한 서브 간격(αTb)의 듀티 사이클을 설정하는 비율(α)을 실현하기 위해, 저항 및 커패시터 쌍의 값(R2,C2)과 함께 다이오드(560)의 (I,V) 특성이 선택될 수 있다. 오실레이터(550)에 의해 생성된 전압(vin)의 한 싸이클 동안에, 그 전압(vin)의 시간 변동으로 인해 다이오드(560) 양단의 유효 저항은 순환적으로 변경될 것이며, 이어서, 전체 바이어스 회로(510)의 유효 저항(Rv)이 최소값(Rvmin)에서 최대값(Rvmax)까지 순환적으로 변경될 것이다. 부하 저항(RL)의 값과 함께 고려할 때, 바이어스 회로(510)의 유효 저항의 이러한 순환적 변경에 의해, 본 발명의 핫 캐리어 태양 셀(500)의 도 5c의 예시적인 구현의 광 전압(Vout)은 도 5b에 도시된 파형을 따라 순환적으로 변경될 것이다. 당업자라면 일시적 가변 저항을 구현하는 상술한 것과는 다른 많은 대안적인 방식으로 원하는 효과를 실현할 수 있으며, 그의 궁극적인 효과도 동일할 것임을 알 것이다.
도 5c에 도시된 직렬 바이어스 회로(510)의 유형은 교류 바이어스 태양 셀(500)의 구현을 위해 필요한 주파수 범위내에서 변조 신호를 생성하기 위해 고안될 수 있는 무선 애플리케이션에 전형적으로 이용된 것과 유사하다. 당업자라면, 유사한 효과를 가진 도 5b에 도시된 바이어스 파형을 생성하는데 이용될 수 있는 도 5c에 도시된 것과 다른 대안적인 많은 회로 고안이 있음을 알 것이다.
도 6에는, 본 발명의 핫 캐리어 태양 셀(500)에 의해 생성될 것으로 예상되는 광 전압 및 광 전류(I,V) 특성이 도시된다. 핫 캐리어 태양 셀(500)에 의해 달성되는 광 전압 및 광 전류는, 상술한 바와 같이, 동적으로 바이어스될 때, 코어 태양 셀(530)에 의해 제공된 광 전압 및 광 전류와 실질적으로 동일한 것임을 알아야 한다. 그러므로, 도 5c를 참조하면, 핫 캐리어 태양 셀(500)에 의해 달성되는 광 전압 및 광 전류는, 각각, 부하 저항(RL) 양단의 전압 및 그 저항을 흐르는 전류이다. 상술한 바와 같이, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압(Vout)이 도 5b에 도시된 파형을 따라 일시적으로 가변되면, 코어 태양 셀(530)의 콘택트에서의 유효 추출 에너지(Eout)는 도 5b에 도시된 파형을 따라 일시적으로 가변될 것이다. 도 6에는, 콘택트에서의 추출 에너지가 1.5eV 내지 2.5eV의 범위를 가진 Eout의 값일 때 코어 태양 셀(530)에 의해 생성되는 기대 (I,V) 특성을 각각 나타내는 곡선 그룹(611,612,613,614,615,616)이 도시된다. 도 6에는, 코어 태양 셀(530) 양단의 전압이 Vmin 내지 Vmax의 광 전압 범위내의 값들의 세트에 걸쳐 스위핑될 때, 핫 캐리어 태양 셀(500)에 의해 달성될 것으로 기대되는 광 전압 및 광 전류를 나타내는 곡선 그룹(611,612,613,614,615,616)의 엔벨로프로서, 본 발명의 핫 캐리어 태양 셀(500)에 의해 생성될 기대 (I,V) 특성이 도시된다.
도 6에 도시된 바와 같이, 본 발명의 핫 캐리어 태양 셀(500)에 의해 생성될 것으로 기대되는 (I,V) 특성은 넓은 범위에 걸쳐 연장되는데, 그 넓은 범위는 코어 태양 셀(530)의 대역 갭의 약간 아래에서부터, 합체된 바이어스 셀(510)에 의해 이루어질 수 있는 핫 캐리어 태양 셀(500)의 최대 광 전압(Vout)에 대응하는 Eout의 값까지, 연장되는 셀(500) 콘택트에서의 넓은 범위의 추출 에너지(Eout) 값에 의해 이루어진다. 예를 들어, 핫 캐리어 태양 셀(500)의 콘택트에서의 추출 에너지(Eout)가 핫 캐리어 냉각 레이트와 비슷하거나 그보다 빠른 레이트로 가변하기 때문에, 셀(500)의 콘택트에서의 추출 에너지(Eout)의 순시값이 1.7eV일 때, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압 변동 사이클(Tb)내의 그 시점에, 셀(500)의 광 전압은 ~1.15eV로 되고, 광 전류값은 Eout=1.7eV의 에너지값의 태양 광자에 의해 광 여기되었던 셀(500)에 의해 추출된 캐리어의 수를 나타낸다. 유사하게, 셀(500) 광 전압(Vout)이 ~1.35eV인 시점에, 핫 캐리어 셀(500)의 광 전류값은 Eout=1.9eV의 에너지값을 가진 태양 광자에 의해 광 여기되었던 셀(500)의 의해 추출된 캐리어의 수를 나타낸다. 사실상, 본 발명의 핫 캐리어 태양 셀(500)의 가변 바이어스에 의해, 이들 광 여기된 캐리어가 캐리어 냉각 효과로 인해 손실되기 전에 넓은 범위에 걸쳐 연장되는 에너지를 가진 태양 광자에 의해 광 여기된 캐리어를 셀이 추출할 수 있게 되며, 그에 따라 본 발명의 핫 캐리어 셀(500)은 엔벨로프(620)에 의해 표시된 광 전압 및 광 전류의 값을 생성할 수 있게 되는데, 이 광 전압 및 광 전류 값은 종래의 정적(고정된) 바이어스 값에서 단독으로 동작하는 코어 셀(530)에 의해 제공되는 것 보다 실질적으로 더 높다.
상술한 바와 같이, 본 발명의 핫 캐리어 태양 셀(500)의 광 전압과 광 전류는 도 5b에 도시된 파형에 실질적으로 필적하는 프로파일로 일시적으로 가변될 것이다. 핫 캐리어 태양 셀(500)의 가변 출력을 이용하기 위해, 그의 출력은 DC 또는 AC 포맷으로 변환되어야 할 것이다. 본 발명의 핫 캐리어 태양 셀(500)의 DC 포맷으로의 변환은 핫 캐리어 태양 셀(500)의 광 전압(Vout)과 바이어스 회로(510)의 출력(vout)을 혼합함에 의해 달성될 수 있으며, 그럼으로써 라디오(radio)에 의해 수신된 신호가 RF(Radio Frequency) 대역에서 기저 대역으로 변환되는 다운 변환과 아주 동일한 방식으로 그것이 기저 대역으로 변환하게 된다.
도 7a에 도시된 바와 같이, 핫 캐리어 태양 셀(500)의 출력에서 믹서(540)를 추가함에 의해 이러한 것이 달성될 수 있다. 도 7a에서 700으로 도시된, 본 발명의 핫 캐리어 셀의 전체 구성은 코어 태양 셀(530)과, 그 셀(530)과 직렬 접속된 바이어스 회로(510)와, 셀(530) 및 회로(510)의 출력에 접속된 믹서(540)로 이루어진다. 본 발명의 핫 캐리어 셀(700)의 전체적인 구성은 도 5a에 도시된 코어 태양 셀(530)과 병렬 접속된 바이어스 회로(520)를 이용하여 등가적으로 구현될 수 있음을 알아야 한다.
대안적으로 본 발명의 핫 캐리어 태양 셀(700)의 출력은, 도 7b에 도시된 바와 같이, 먼저 바이어스 회로(510)의 출력(vout)을 원하는 AC 포맷과 동일한 주파수를 가진 오실레이터 신호와 혼합하고, 그 다음, 출력(vout)의 혼합 버전을 핫 캐리어 태양 셀(500)의 광 전압(Vout)과 혼합함에 의해 AC 포맷으로 변환할 수 있으며, 그에 의해 그것은 AC 포맷의 원하는 주파수로 다운 변환된다. 예를 들어, 본 발명의 핫 캐리어 태양 셀(700)의 출력이 60-Hz AC 포맷이 되기를 원한다면, 바이어스 회로(510)의 출력(vout)은 우선 믹서(750)를 이용하여 60Hz 오실레이터(745)의 출력 신호와 혼합되고, 그 결과 신호는 믹서(540)를 이용하여 핫 캐리어 태양 셀(500)의 출력(vout)과 혼합되어, 전체 핫 캐리어 태양 셀(700)로부터 출력된 60-Hz AC 포맷을 생성한다. 출력이 AC 또는 DC 포맷으로 변환될 수 있게 하는 핫 캐리어 태양 셀(700)의 이러한 고유한 특성은 핫 캐리어 태양 셀(500)의 교류 바이어스 양상에 의해 가능하게 된다. 출력을 DC 또는 AC로 하기 위한 핫 캐리어 태양 셀(700)의 도 7a 및 도 7b의 구성에 포함된 믹싱 회로들간의 차이가 크게 복잡하지 않다는 것은 언급할 가치가 있다. 그 다음, 그것이 암시하는 것은 핫 캐리어 태양 셀(700)의 도 7a 및 도 7b의 DC 및 AC 구성이 실질적으로 동일한 비용으로 제조될 수 있으며, 실질적으로 동일한 태양 파워 변환 효율을 달성할 수 있다는 것이다. DC 출력을 AC로 변환하기 위한 인버터(inverter)를 전형적으로 요구함으로써 비용이 추가되고 전체 셀 효율이 25% 감소하는 오늘날의 통상적인 태양 셀과 비교할 때, 본 발명의 핫 캐리어 태양 셀(700)과는 상당한 차별이 있다.
이용될 수 있는 다른 바이어싱 기법(biasing scheme)이 원하는 목적 및 원하는 결과를 나타낸 도 7d에 도시된다. 거기에 도시된 바와 같이, 코어 태양 셀(530)은 접지와 출력 회로(710) 사이에 접속되고, 그 다음 출력 회로(710)는 부하에 접속된다. 출력 회로(710)는, DC 출력을 제공하며, 코어 태양 셀(530)상에 가변 비소산 부하(variable non-dissipative load)(통상적인 회로 손실은 제외됨)(코어 태양 셀의 출력과 회로 접지 사이에 일시적으로 결합된 인덕터로서, 그 인덕터에 일시 저장된 자기 에너지를 복구하기 위해 회로 출력으로 절환됨)를 나타내도록 스위칭 레귤레이터(740)의 스위칭을 제어하는 (Vmax,Vmin) 전압 값을 제어하기 위해 다른 것 중에서 전압 제어(730)를 가진 고 주파수 형태의 스위칭 레귤레이터(740)를 포함한다. 특히, 대부분의 스위칭 레귤레이터는 레귤레이터 전압 출력(regulated voltage output)을 부하에 제공하도록 스위칭을 제어하지만, 부하에 있어서의 변화와 무관하게, 도 7d의 스위칭 레귤레이터(740)는 그의 입력(코어 태양 셀(530)의 출력)에서의 전압을 제어하여, 코어 태양 셀(530)의 출력에서의 전압이 Vmin과 Vmax 사이에서 원하는 주파수로 스윙(swing)되게 한다. 당업자라면 스위칭 듀티 사이클, 스위칭 주파수 또는 이들 파라메타의 조합이나 다른 파라메타의 조합에 의해 이것을 달성할 수 있을 것이다.
Vmax에 대한 전압 스윙의 경우, (Vmin, Vmax)를 제어하는 전압 제어(730)가 코어 태양 셀의 개방 회로 전압보다 높은 전압까지 Vmax를 풀링(pulling)하는 기능을 가질 필요가 있도록 하기 위해, Vmax가 코어 태양 셀의 개방 회로 전압보다 더 높게 될 것이라는 것을 알아야 한다. 따라서, 도 7d에 있어서, (Vmin, Vmax)를 제어하는 전압 제어(730)는 노드(720)의 전압을 감지하고, 그 자신이 도달할 수 있는 전압 이상으로 노드(720)의 전압을 풀링하는 기능을 갖는다. 풀-업을 위한 노드(720)의 임피던스는 매우 높을 것으로 기대되는데, 이는 코어 태양 셀(530)이 보다 높은 전압에서 전류를 출력하기 때문이다. 이와 관련하여, 어떤 이유로 얼마간 더 높은 값의 Vmax가 이용 가능하다는 것이 발견되지 않는다면, 노드(720)상의 전압을 상승시키는데 필요한 파워가 코어 태양 셀(530)로부터 복구되는 파워를 초과하도록 하는 전압으로 Vmax가 설정될 수 있다. 시스템의 일부 작은 부분의 효율이 아닌, 전체 태양 셀 시스템 효율을 종합적으로 고려한다면, 노드(710)상의 전압을 상승시키는데 필요한 파워가 코어 태양 셀(530)로부터 복구되고 있는 파워와 동일하게 되도록 하는 전압보다 얼마간 낮은 전압으로 Vmax가 설정될 수 있다. 도 7d에 도시된 바와 같이, 출력에서 부하까지 풀-업에 대한 소량의 파워가 획득될 수 있다.
노드(720)의 전압을 Vmax로 증가시키는데 있어서, 스위칭 레귤레이터(740)는 비교적 불활성 상태이거나 아마도 전체적으로 불활성 상태일 수 있으며, Vmax까지의 램프(ramp)는 코어 태양 셀(530)의 출력, 커패시터(C1)의 값 및 노드(720)의 풀업에 의해 주로 제어되고, 스위칭 레귤레이터(740)는 보다 활성화되어, 코어 태양 셀(530)에 의해 커패시터(C1)에 추가되는 전하보다 더 빠르게, 커패시터(C1)에서 스위칭 레귤레이터(740)를 통해 부하 및 출력 커패시터(C2)로 전하를 전달하며, 그에 따라 커패시터(C1)상의 전압은 Vmin으로 감소되고, 이후 그 사이클이 반복된다. 이러한 제한에 있어서, Vmax에서 Vmin까지의 전압 스윙은 스위칭 레귤레이터(740)의 단일 스위칭 사이클내에 달성될 수 있으며, Vmin에 있어서의 원하는 정확성을 유지하기 위해 각 사이클마다 조정이 이루어질 수 있다. 이것은, 스위칭 레귤레이터의 주파수 요건을 최소화시키며, Vmax와 Vmin 사이의 전압의 파형은 커패시터(C1)의 값에 의해 적어도 부분적으로 제어된다. 도 7d는, 전압 제어(730)로의 입력이 fs=1/Tb임을 보여준다(도 5b 및 도 6 참조). 실질적인 스위칭 주파수는 fs이거나, 시스템의 동작에 의거하여 더 높을 수 있다. 또한, Vmax 및 Vmin은 아침, 낮, 저녁, 양지, 흐림, 인공광(artifical light)등의 코어 태양 셀상에 입사하는 광의 특성을 조정하도록 프로그램될 수 있으며, 또는 자기 조정될 수 있다.
도 7d에 있어서, 스위칭 레귤레이터(740)는 원하는 주파수로 Vmin과 Vmax를 달성하기 위해 커패시터(C1)상의 전압을 제어한다. 결론적으로, 파워 분배 시스템과의 커플링을 위해 부하상의 DC 전압을 60Hz로 변환하도록, 부하 상의 DC 전압은 이 회로에 의해 레귤레이팅(regulating)되지 않으며, 거기에 접속된 회로, 예를 들어 인버터에 의해 효과적으로 레귤레이팅된다. 또한, 스위칭 레귤레이터(740)는, 소망에 따라, 스텝-업 레귤레이터(step-up regulator), 스텝-다운 레귤레이터(step-down regulator) 또는 스텝-업/스텝 다운 레귤레이터일 수 있다. 그러한 스위칭 회로는 종래 기술에 널리 알려져 있으므로, 본 명세서에서 추가적인 설명을 할 필요가 없을 것이다.
교류 바이어스 핫 캐리어 태양 셀의 성능
본 발명의 핫 캐리어 태양 셀의 실시 예(700)의 성능을 분석하기 위해서는, 특정 고안 파라메타 및 구현 세부 사항이 고려되어야 할 것이다. 그러한 세부 사항의 첫번째는 바이어스 회로(510 또는 520), 믹서 회로(540)를 구현하는데 이용되는 방식과, 이들 회로들이 핫 캐리어 태양 셀(700)의 코어 태양 셀 소자(530)와 집적화되는 방법이다. 도 8에는, 바이어스 회로(510 또는 520) 및 믹서 회로(540)가 태양 셀 모듈의 후면에 접착되는 IC(Intergrated Circuit) 장치로서 구현되는, 본 발명의 핫 캐리어 태양 셀(700)의 예시적인 구현이 도시된다. 핫 캐리어 태양 셀(700)이 코어 태양 셀(530)과는 다른 추가적인 회로, 즉, 셀에 의해 생성될 수 있는 파워의 일부를 소모할, 바이어스 회로(510 또는 520)와 믹서 회로(540)를 포함하기 때문에, 핫 캐리어 태양 셀(700)의 효율은 그의 결과적인 기대 PAE(expected Power-Added Efficiency)(PAE는 RF 회로 고안으로부터 채택된 용어로서, 그에 따라서 입력이 증폭 이득을 출력하도록 하는 RF 회로의 PAE는 공급 파워에 의해 분할된 회로의 입력 및 출력 파워간의 차이가 된다)의 견지에서 평가되어야 하며, 이것은 아래와 같이 나타낼 수 있다.
[수학식 1]
Figure pct00033
여기에서,
Figure pct00034
는 핫 캐리어 태양 셀(700)에 의해 달성될 수 있는 태양 파워 변환 효율이고,
ILM은 출력-입력 파워 비율로서 나타낸 출력 믹서(540)의 삽입 손실이고,
PLO는 바이어스 회로(510 또는 520)에 의해 소모되는 파워이고,
PM은 믹서 회로(540)에 의해 소모되는 파워이고,
PL은 핫 캐리어 태양 셀(700)상에 입사하는 태양 방사의 방사 파워이다.
ILM과 PM의 값은 핫 캐리어 태양 셀(700)의 출력 믹서(540)에 의해 조정되는 파워 레벨과 고안 방식에 의해 좌우된다. 수학식 1에 나타난 핫 캐리어 태양 셀(700)의 효율을 정량적으로 분석하기 위해, 도 7a에 도시된 바이어스 회로(510) 및 출력 믹서 회로(540)가 코어 태양 셀 소자(530)의 100㎠ 서브-셀 영역을 구동(drive)하도록 고안된다고 가정한다. 도 8에 도시된 바와 같이 그러한 다수의 서브-셀(그들 각각은 그 자신의 구동 회로를 가지며, 그들의 출력은 단일 출력을 AC 또는 DC 포맷으로 제공하도록 조합됨)을 이용하여 핫 캐리어 태양 셀(700)의 임의 크기가 생성될 수 있음을 알아야 한다. 그와 같이 가정한 서브 셀 크기에 대해, 가정한 서브-셀 영역에 입사하는 AM 1.5 태양 플럭스(solar flux)의 방사 파워는 PL=10W일 것이다.
Figure pct00035
=0.54의 핫 캐리어 태양 셀(700)에 대한 기대 태양 파워 변환 효율 및 그러한 레벨의 태양 입사광 방사 파워의 경우, 믹서(540)의 입력에서의 기대 파워는 5.4W의 범위 이내일 것이다. 핫 캐리어 태양 셀의 이론적 기대 효율이 1-sun하에서 68%의 열역학 한도에 도달할 수 있을 지라도, 이러한 성능 분석 예시의 목적은, 핫 캐리어 태양 셀(700)이 달성할 수 있는 효율의 기대값이 핫 캐리어 태양 셀의 효율에 대해 예측된 이론적 제한의 80% 미만으로 되도록 보수적으로 선택되는 구현 손실 마진(implementation loss margin)을 허용하기 위한 것임을 알아야 한다.
이러한 기대값에 기초하여, 바이어스 회로(510) 및 믹서 회로(540)의 0.18 미크론 CMOS 집적 회로 구현은 이하의 성능 파라메타를 보수적으로 달성할 수 있도록 추정된다.
ILM = 0.95
PLO = 108mW
PM = 270mW
PL = 10W
상기 값들이 수학식 1에서 이용되면, 우리의 기준 고안 예시(our benchmark design example)에서 이용된 핫 캐리어 태양 셀(700)에 대한 PAE 추정은 PAE=0.47로서, 핫 캐리어 태양 셀(700)을 구현하는데 이용된 전형적인 종래의 코어 태양 셀(530)의 효율의 두배 이상으로 된다.
Figure pct00036
=0.54의 핫 캐리어 태양 셀(700)의 가정된 효율(assumed efficiency)을 고려해 볼때, 이러한 기준 고안 예시는, 핫 캐리어 태양 셀(700)의 출력을 AC 또는 DC로 변환하고 교류 바이어스를 생성하는데 이용되는 추가적인 회로가 셀 출력 파워의 대략 12%를 소모함을 암시한다. 종래의 태양 셀은 그들의 출력에서 전형적으로 이용된 DC/AC 인버터에 대해 그들의 생성 파워의 25% 초과를 소모하지만, 본 발명의 핫 캐리어 태양 셀(700)은 그의 바이어스 및 믹서 회로에 대해 그 백분률의 절반 미만만을 손실하고, 종래의 코어 태양 셀(530)의 DC/AC 인버터가 고정 바이어스로 동작하는 핫 캐리어 태양 셀(700)을 구현하는데 이용되기 전에는 2배 이상의 로 효율(raw efficiency)이 실현될 수 있게 함을 알아야 한다. AC 출력에서의 비교에 기초해 보면, 핫 캐리어 태양 셀(700)이, 출력에 AC/DC 인버터를 가진 종래의 태양 셀보다 거의 2.7배 더 높은 전체 태양 파워 변환 효율을 달성할 수 있다는 것이다.
PAE의 상술한 추정 레벨에 의해, 핫 캐리어 태양 셀(700)의 자기 바이어싱 기법(self-biasing scheme)이 또한 실현 가능함을 알아야 한다. 도 7c에 도시된 자기 바이어싱 기법에 있어서, 핫 캐리어 태양 셀(700)은 초기화되기 위해 추가적인 파워의 공급이 필요하지 않게 되며, 초기에 비-교류(고정) 바이어스 모드에서 동작하고, 그의 생성된 에너지의 작은 부분은 그의 교류 바이어스 및 믹서 회로를 초기화 하는데 이용된다. 도 7c에 도시된 바와 같이, 핫 캐리어 태양 셀(700)의 파워 출력은, 도 7c의 점선 박스(580)안에 있는 바이어스 회로(510)와 믹서 회로(540)에 공급 파워를 제공하는데 이용될 것이며, 그들의 파워 공급 라인(585)은 태양 셀 출력 파워(590)로부터 제공된다. 바이어스 회로(510)와 믹서 회로(540)가 안정 상태에 도달하면(천분의 1초 미만) 본 발명의 핫 캐리어 태양 셀(700)의 동작의 교류 바이어스 모드는 핫 캐리어 태양 셀(700)을 구현하는데 이용되는 종래의 코어 태양 셀(530)에 의해 생성된 출력 파워의 2배 이상의 파워가 될 것으로 기대된다.
비용 고려
상기에서 설명한 교류 바이어스 및 믹서 회로는 0.18CMOS 기술을 이용하여 ~1mm2 의 다이 면적이 필요할 것으로 추정된다. 그러한 작은 다이 크기와 연관된 패키징 간접비를 줄이기 위해, 도 8에 도시된 서브-셀중 4개의 바이어스 및 믹서 회로를 단일 칩상에 쉽게 조합할 수 있으며, 4(Quad)개의 서브-셀의 각각의 중앙에 있는 후면상에 배치한다. 그러한 칩은 0.18미크론 CMOS 기술을 이용하면 ~4mm2의 다이 면적을 가질 것으로 추정되며, 패키징 되지 않은 다이의 비용은 다이당 ~$0.19일 것으로 예상된다. 이러한 4 바이어스&믹서의 패키징된 비용은 적게 잡아도 그 다이 비용의 5배 범위 이내일 것으로 추정되며, 따라서 4 바이어스&믹서 칩당 추정 비용은 ~$1일 것이다. 이러한 추정은 보수적인 측면에서 이루어진 것으로, 이것은, 도 8에 도시된 바와 같이, 특히 글랍-탑(glop-top)과 같은 저비용 패키징 기술을 이용하여, 핫 캐리어 태양 셀(700)의 후면상에 직접 4 바이어스&믹서를 집적화한다. 상기에서 설명한 고안 예시에 기초한 핫 캐리어 태양 셀(700) 4 서브-셀에 의해 생성된 추정 출력 파워를 고려해 볼때, 4 바이어스&믹서 칩의 추가는
Figure pct00037
=~$0.05/W의 와트당 비용 오프셋으로 결과하며, 이것이 의미하는 것은, 25개의 4 바이어스&믹서 칩은, ~$25/m2 의 추가 비용이 들며, Si-기반 핫 캐리어 태양 셀로부터의 추정된 순 생성 출력 파워(estimated net yielded output power)는 ~475W/m2 이다는 것이다. Si 태양 셀에 대한 일반적인 와트 당 비용(Wp)이 ~3 - 5$/W의 범위 이내임을 고려해 볼 때, 종래의 Si 태양 셀을 Si 기반 핫 캐리어 태양 셀(700)로 변환하는 추정 비용 오프셋은 와트당 비용(Wp)의 현재 값의 1% 내지 1.6%의 범위 이내일 것으로 추정되며, 그것은 사실상 무시할 만 하다. 핫 캐리어 태양 셀(700)에 의해 실현될 수 있는 파워 출력의 증가를 고려해볼 때, 코어 소자(530)로서 Si 태양 셀을 합체한 핫 캐리어 태양 셀(700)의 추정된 와트당 비용(Wp)은 ~1 - 1.7$/W 범위 이내일 것이고, 이것은 3배 이상의 와트당 비용의 감소를 반영한다. 이러한 스케일의 와트당 비용 오프셋(
Figure pct00038
) 및 효율 증가에서는, 코어 태양 셀(530)로서 예를 들어 CdTe, CIGS 또는 박막 Si와 같은 박막형 태양 셀을 이용하는 본 발명의 핫 캐리어 태양 셀(700)은 3세대 태양 셀에 대해 설명한 범위 이내인, 1$/W 미만 및 가능하다면 ~0.3$/W의 범위 이내의 와트당 비용(Wp)을 달성할 수 있을 것으로 기대된다.
역 바이어스 핫 캐리어 태양 셀
이전에 설명하느 교류 바이어스 핫 캐리어 태양 셀(500)의 실시 예(700)는, 광 여기 캐리어의 운송 속도가 순시적으로 증가되도록 하기 위해 셀의 광 전압 출력을 순환적으로 낮추는 것을 필요로 한다. 다른 방식으로 그에 상당하는 효과를 달성하는 대안적인 방식은 충분히 짧은 시간 간격 동안 셀 콘택트에서 외부 역 바이어스를 간헐적으로 적용하는 것이다. 짧은 역 바이어스 펄스의 간헐적 적용은 셀 콘택트 양단에 추가적인 외부 전계(
Figure pct00039
)를 도입시키는데, 이것은 실질적으로 셀의 내부 전계를 작용시킬 것이다. 결과적으로, 이들 역 바이어스 펄스 간격으로 인해, 광 여기 캐리어의 운송 속도는 순간적으로 셀 물질의 포화 속도 보다 높게 증가하게 되고, 적용된 역 바이어스 펄스의 크기에 의거하여, 광 여기 캐리어 운송 속도는 탄도 오버슈트 레벨(ballistic overshoot level)에 도달할 수 있게 된다. 본 발명의 핫 캐리어 태양 셀(500)의 이러한 대안적인 실시 예는 셀 콘택트로의 광 여기 캐리어 운송 시간을 실질적으로 단축시키는 역 바이어스 펄스를 생성하기 위해 병렬 바이어스(520)를 이용한다. 또한, 본 발명의 핫 캐리어 태양 셀(500)의 이러한 대안적인 실시 예는 직렬 바이어스 회로(510)를 동시에 이용하지만, 이 경우는, 적용된 역 바이어스의 기간 동안의 운송 속도보다는 낮지만, 높은 운송 속도를 유지하고, 실시 예(500,700)의 문맥에서 이미 설명한 일시적인 선택적 추출 에너지 기법을 구현하기 위한 것이다. 본 발명의 핫 캐리어 태양 셀(500)의 이러한 대안적인 실시 예의 주요한 특성은, 본 발명의 핫 캐리어 태양 셀(500)의 캐리어 운송 및 캐리어 추출 에너지 양상의 디커플링(decoupling)이 가능하다는 것이다. 본 발명의 핫 캐리어 태양 셀의 이러한 2가지 양상의 디커플링 때문에, 적용된 역 바이어스 펄스의 단속 사이클을 적절히 선택하고, 광 여기 캐리어들이 냉각되기 전에 핫 캐리어 태양 셀(500,700)의 일시적 에너지 선택적 기법이 셀 콘택트에서 광 여기 캐리어를 제때에 추출할 수 있게 하는 적절한 값을, 셀 광 전압의 가변성의 사이클 동안, 독자적으로 선택할 수 있게 함으로써, 캐리어 운송 속도의 시간 연속적인 높은 값(time continuous high value)이 유지될 수 있게 된다.
도 9a에는 핫 캐리어 태양 셀(500)의 대안적인 실시 예(900)의 블럭도가 도시되는데, 그 실시 예는, 셀(900) 콘택트 양단의 저항 및 그에 따른 핫 캐리어 셀(9800)의 광 전압 출력 값이 상기에서 설명한 실시 예(700)와 실질적으로 유사한 방식으로 최소값(Vmin)과 최대값(Vmax) 사이에서 순환적으로 가변되도록 하는, 바이어스 회로(510)와 유사한 직렬 바이어스 회로(910)에 추가하여, 그 콘택트를 가로지르는 단기 역 바이어스 펄스(short durtion reverse bias pulse)의 스트림을 생성하기 위한 병렬 바이어스 회로(920)를 이용한다. 직렬 바이어스 회로(910)에 의해 도입되는 가변 바이어스의 효과는 핫 캐리어 태양 셀(900)이 넓은 범위의 추출 에너지(Eout) 및 그의 콘택트에서 핫 캐리어를 추출할 수 있게 하는 것이며, 그 에너지 범위는 그의 코어 태양 셀 소자(530)의 셀 대역 갭 에너지보다 약간 낮은 에너지에서부터 바이어스 회로(920)에 의해 가능하게 되는 광 전압의 최대값에 의해 가능하게 되는 최대의 원하는 에너지 레벨까지 연장될 수 있다. 본 발명의 핫 캐리어(900)의 경우, 광 전압의 파형은 상기에서 설명한 두개의 서브 간격 αTb 및 (1-α)Tb을 더 이상 포함하지 않으며, 그 대신에 셀 광 전압 출력의 단속적인 변화의 사이클 시간(Tb)만이 캐리어 냉각 시간(
Figure pct00040
)과 같거나 그보다 더 짧은 기간으로 될 필요가 있다.
도 9b에는, 핫 캐리어 태양 셀(900)의 광 전압의 파형이 도시되는데, 그 파형은, 예를 들어, 이전에 특정하게 선택된 최소값(Vmin)과 최대값(Vmax)을 가진 단순한 사인파형일 수 있음을 보여준다. 캐리어 운송 가속과 일시적인 선택적 에너지 캐리어 추출 양상의 디커플링에 의해, 핫 캐리어 태양 셀(900)의 셀 광 전압의 단속적인 변화의 사이클 시간(Tb)은 핫 캐리어 태양 셀(500,700)에 대한 것보다 더 짧을 수 있다. Tb가 ~1ns이므로, 핫 캐리어 태양 셀(900)의 추출 에너지(Eout)는 일부 태양 셀 물질 시스템에서의 캐리어 냉각 레이트보다 더 빠른 레이트로 변화할 수 있다. Tb= ~1ns를 실현하기 위해, 바이어스 회로(910)에 포함된 오실레이터의 주파수(fs)는 ~1GHz일 것이다.
직렬 바이어스 회로(910)에 의해 생성된 일시적 가변 광 전압이 상술한 캐리어 운송 가속 효과를 생성할 것이지만, 핫 캐리어 태양 셀(900)에 있어서의 캐리어 운송 가속 효과의 대부분은 병렬 바이어스 회로(920)에 의해 달성된다. 병렬 바이어스 회로(920)는 코어 태양 셀 소자(530)를 가로질러 매우 짧은 주기적 역 바이어스 펄스를 생성할 것이다. 도 9b에는, 코어 태양 셀 소자(530)의 양단에 적용되고 병렬 회로(910)에 의해 생성될 바이어스의 파형이 도시된다. 도 9b에 도시된 파형은, 기본적으로, 각각 시간 기간(tp), 펄스 반복 사이클(Tp) 및 크기(Vp)를 가진 역 바이어스의 짧은 펄스들의 주기적 스트림이다. 병렬 바이어스 회로(920)에 의해 생성된 펄스들의 각각이 코어 태양 셀(530)의 콘택트에서 적용되면, 코어 태양 셀(530)의 내부 전계(
Figure pct00041
)와 동일한 방향의 외부 전계(
Figure pct00042
)를 유발할 것이며, 그에 따라 셀 네거티브 콘택트로 전자를 운송하고 셀 포지티브 콘택트로 정공을 운송하는데 있어서 내부 전계(
Figure pct00043
)의 효과가 실질적으로 강화될 것이다. 종래의 태양 셀의 (I,V) 특성에 대한 Vp값의 가능한 범위가 도 4에 참조 번호 425로 도시된다.
병렬 바이어스 회로(920)에 의해 생성된 역 바이어스의 시간 기간(tp)동안, 핫 캐리어 태양 셀(900)의 포지티브 콘택트를 향해 정공을 운송하고 네거티브 콘택트를 향해 전자를 운송하기 위해 동일한 방향으로 작용하는 2개의 전계(
Figure pct00044
,
Figure pct00045
)의 조합된 협력 효과하에서, 코어 태양 셀(530)의 콘택트를 향해 캐리어가 운송될 것이다. 코어 태양 셀(530)의 내부 전계(
Figure pct00046
)와, 병렬 바이어스 회로(920)에 의해 생성된, 적용된 역 바이어스 펄스에 의해 유발된 외부 전계(
Figure pct00047
)간의 첫번째 주요한 차이점은, 이 외부 전계(
Figure pct00048
)가 코어 태양 셀(530) 공핍 영역 두께내에 주로 존재하기 보다는, 콘택트에서 콘택트까지의 셀의 전체 두께를 가로질러 연장될 것이라는 점이다. 코어 태양 셀(530)의 내부 전계(
Figure pct00049
)와, 병렬 바이어스 회로(920)에 의해 생성된 적용 역 바이어스 펄스에 의해 유발된 외부 전계(
Figure pct00050
)간의 두번째 차이점은, 외부 전계(
Figure pct00051
)의 세기가 원하는 캐리어 가속 효과를 생성하는데 필요한 적절한 레벨로 설정될 수 있다는 점이다. 또한, 외부 전계(
Figure pct00052
)가 짧은 시간 간격 동안에 주기적으로 적용되기 때문에, 병렬 바이어스 회로(920)를 생성한 회로에 의해 소모되는 파워의 양은 매우 작다.
역 바이어스 펄스 기간(tp)동안, 내부 전계(
Figure pct00053
) 및 외부 전계(
Figure pct00054
)는 동일한 방향으로 작용할 것이며, 코어 태양 셀(530)의 콘택트를 향해 광 여기 캐리어를 운송하는데 기여할 것이다. 적용된 역 바이어스 펄스의 크기(Vp)를 적절하게 선택함으로써, 내부 전계(
Figure pct00055
) 및 외부 전계(
Figure pct00056
)의 조합된 세기에 의해, 캐리어 운송 속도는 펄스 기간(tp) 동안 107cm/s보다 훨씬 빠른 탄도 오버슈트 속도에 도달할 수 있게 되지만, ~107cm/s의 포화 속도로 빠르게 감쇄할 것이다. 역 바이어스 펄스 크기(Vp), 기간(tp) 및 반복 사이클(Tp)이 적절하게 선택되면(예를 들어, Vp = ~-1V, Tp = ~1ns, tp = ~0.1Tp ), 코어 태양 셀(530)을 가로지르는 캐리어 운송 속도는 계속적으로 ~107cm/s의 포화 속도에 매우 근접하게 유지될 수 있다. 이것이 의미하는 것은, 코어 태양 셀(530)의 콘택트를 향하는 광 여기 캐리어 운송이 100㎛/1ns에 근접하게 계속 유지될 수 있으며, 콘택트간 두께가 ~5㎛인 얇은 코어 태양 셀(530)(예를 들어, CdTe, CIGS 또는 얇은 Si)내에 생성된 광 여기 캐리어가, 대부분의 태양 셀 물질의 핫 캐리어 냉각 시간(
Figure pct00057
)보다 상당히 짧은 25ps내에 셀 콘택트에 도달할 수 있게 된다는 것이다. 핫 캐리어 태양 셀(900)의 이러한 조합된 특성은 전형적인 콘택트간 두께가 ~300 ㎛이고, 본 경우에 실현된 캐리어 운송 시간이 Si 물질의 핫 캐리어 냉각 시간(
Figure pct00058
)보다 훨씬 짧은 ~1.5ns인, 종래의 Si 태양 셀에 적용 가능하다.
직렬 및 병렬 바이어스 회로(910,920)에 의해 생성된 공통 바이어스에 의해, 핫 캐리어 태양 셀(900)은 캐리어의 냉각 전에 코어 태양 셀(530)의 콘택트로 광 여기 캐리어를 운송할 수 있으며, 그들이 셀 콘택트에서 냉각되기 전에 일시적으로 가변하는 선택적 추출 에너지에서 이들 캐리어가 추출될 수 있게 된다. 핫 캐리어 태양 셀(900)에 이용된 직렬 바이어스 회로(510) 블럭도는 실질적으로 도 5c에 참조된 직렬 바이어스 회로(510)의 그것과 유사하다. 도 9d에는, 본 발명의 핫 캐리어 태양 셀(500)의 실시 예와 함께 이용될 수 있는 병렬 바이어스 회로(520)의 전형적인 블럭도가 도시된다. 도 9d에 도시된 회로의 유형은 초 광대역 무선 애플리케이션에 전형적으로 이용되는 것과 유사하며, 1나노초보다 더 짧은 반복 간격의 기간에 수 피코초보다 더 짧은 펄스를 생성하도록 고안될 수 있다. 그러한 고안 파라메타는 도 9c에 도시된 역 바이어스 파형을 생성하는데 쉽게 적용될 수 있다. 당업자라면 결과가 유사한, 도 9c에 도시된 역 바이어스 파형을 생성하는데 이용될 수 있는, 도 9d에 도시된 것과는 다른 많은 대안적인 회로 고안이 있음을 알 것이다.
도 9a에 도시된 바와 같이, 핫 캐리어 태양 셀(500)과 유사하게, 핫 캐리어 태양 셀(900)의 최종 출력은 부하 저항(RL) 양단의 셀 출력과 직렬 바이어스 회로(910)의 출력을 혼합함에 의해 DC 또는 AC 포맷으로 다운 변환되지만, 실시 예(900)의 경우에는, 믹서 회로(540)에 의해 달성되는 다운 변환전에, 셀(900)의 출력으로부터 역 바이어스의 적용된 광대역 스펙트럼을 제거하기 위해 저역 통과 필터(950)가 추가되어야 한다는 점이 다르다. 비록 도 9a는 AC 출력을 제공하는 핫 캐리어 태양 셀(900) 구성을 도시하고 있지만, 핫 캐리어 태양 셀(900)의 구성은 도 9a의 블럭도로부터 60Hz 오실레이터(745)와 믹서(750)을 제거함에 의해 DC 출력을 제공하도록 쉽게 실현될 수 있다.
태양 셀에 있어서의 손실 메카니즘에 대한 상술한 설명을 참조하면, 본 발명의 핫 캐리어 태양 셀(500,700,900)은 2가지 주요한 손실 메카니즘, 즉, 손실 메카니즘
Figure pct00059
인 핫 캐리어 냉각과 손실 메카니즘
Figure pct00060
인 콘택트 추출 효율을 회피함에 의해 생성되는 순 효율 증가를 달성할 수 있다. 이하에서의 설명이 보여주고자 하는 것은, 본 발명의 교류 바이어스 기법이 QW 또는 QD와 같은 양자 감금 구조를 합체한 코어 태양 셀과 함께 구현되는 경우에, 손실 메카니즘
Figure pct00061
의 Ep<Eg인 광자의 손실 및 손실 메카니즘
Figure pct00062
의 방사 재조합에 기인한 광 여기 캐리어의 손실과 같은, 다른 주요한 손실 메카니즘을 회피함에 의해 결과하는 핫 캐리어 태양 셀이 훨씬 높게 생성된 순 효율 증가를 달성할 수 있다는 것이다. 이하에서 설명하겠지만, 광학적 및 양자 감금 구조를 합체한 코어 태양 셀(530)을 이용하는 핫 캐리어 태양 셀(500,700,900)은 멀티-접합 태양 셀에 의해 달성된 것을 능가하는 생성 순 효율을 달성할 수 있을 것이며, 그에 따라 손실 메카니즘
Figure pct00063
의 주요한 요인(main instigator)과 전적으로 연관되는 격자 부정합 이슈 및 모놀리식 멀티 접합 스테이킹(monolithic multi-junction staking)에 대한 필요성을 회피함에 의해 손실 메카니즘
Figure pct00064
를 간접적으로 회피할 수 있게 된다.
연장된 커버리지 교류 바이어스 핫 캐리어 태양 셀
코어 태양 셀(530)로서 Si, GaAs, CdTe 및 CIGS와 같은 p-n 접합 태양 셀을 이용하는 본 발명의 교류 바이어스 핫 캐리어 태양 셀의 다수의 실시 예에 대해 이전에 설명하였으며, 이번 섹션에서는 셀 대역 갭(Eg) 미만의 에너지(Ep)를 가진 입사 태양 광자의 에너지를 획득하기 위해 본 발명의 교류 바이어스 태양 셀의 기능을 확장하는데 초점을 둘 것이다. 이러한 목적을 달성하기 위한 길은 QW 및 QD와 같은 양자 감금 구조를 합체한 Ⅲ-Ⅴ 물질 태양 셀과 함께 본 발명의 교류 바이어스 태양 셀을 적용하는 것이다. 이것은 본 발명의 교류 바이어스 태양 셀의 매력적인 애플리케이션인데, 그 이유는, Ⅲ-Ⅴ 합금의 범용성 물질 대역 갭 선택 및 그들의 직접 대역 갭을 합한 것과, 높은 캐리어 이동도를 본 발명의 교류 바이어스 기법과 조합하면, 단일 접합 태양 셀이 태양 스펙트럼의 연장된 커버리지를 가지며 극히 높은 생성 순 효율을 제공할 수 있게 되기 때문이다. 비록 이하의 설명이 MQW 기반 태양 셀에 제한될 것이지만, 양자 감금의 여분 차원의 효과와는 다르게, QD 기반 교류 바이어스 핫 캐리어 태양 셀의 근본적인 개념은 실질적으로 유사하다.
QW 및 QD와 같은 양자 감금 구조를 이용하는 광기전(PV) 태양 셀에 대해 광범위하게 설명하였으며, 그들이 진성 셀 대역 갭 아래로 태양 광자 흡수를 연장함에 따라 효율성 개선을 달성할 것으로 예측되지만("Quantum Well Solar Cells", K.W.J. Barnham et al, Physica E14 (2002) 27-36), 그들은 벌크 물질 태양 셀에 비해 폭 넓게 이용되는데, 그 이유는 대부분 셀 비용에 있어서의 증가와 그들의 예측된 효율 개선간의 불균형 때문이다. 이러한 불균형은, 양자 감금 기반 태양 셀 대역 갭 연장이 대부분 대역 갭의 낮은 에너지 측에서 이루어지고, 그에 따라 긴 파장을 향하는 셀 광자 흡수 기능만을 증가시킨다는 사실에 기인한 것이다. 또한, 달성된 셀 대역 갭 연장의 폭은 합체된 양자 구조의 대역 갭 구조와, 이용된 물질 시스템에 크게 의존한다. 그러나, 상술한 바와 같이, 태양 셀내에 양자 구조를 합체시키면, Ⅲ-Ⅴ 물질 합금 시스템에서 핫 캐리어의 냉각을 늦출 수 있게 된다(냉각 시간(τc)의 연장). 양자 구조를 합체한 태양 셀에 있어서의 결과하는 연장된 캐리어 냉각 시간(τc)은 본 발명의 교류 바이어스 기법을 Ⅲ-Ⅴ 물질 기반 태양 셀에 적용할 수 있게 하는데, 이것은 그러한 물질에 있어서의 캐리어 냉각 시간이 전형적으로 Si, CdTe 또는 CIGS 물질 시스템에서의 그것보다 더 짧기 때문이다. 셀 물질 대역 갭(Eg)을 벗어나서 연장되는 에너지를 가진 광 여기 캐리어의 추출이 가능한 본 발명의 교류 바이어스 핫 캐리어 추출 기법을 적용하는 이점은, 양자 구조를 합체한 Ⅲ-Ⅴ 물질 기반 태양 셀에 동일하게 적용될 것이다. 셀 물질 대역 갭(Eg) 아래로 광 여기 캐리어 에너지 추출을 연장하는 합체된 양자 구조와, 셀 물질 대역 갭(Eg) 위로 광 여기 캐리어 에너지 추출을 연장하는 본 발명의 교류 바이어스를 조합하면, 태양 셀이 태양 스펙트럼의 실질적인 부분을 포괄할 수 있는 연장된 커버리지를 갖게 된다. 예를 들어, 본 발명의 교류 바이어스 기법이 QW 또는 QD와 같은 양자 감금 구조를 합체한 GaAs 기반 태양 셀과 함께 적용되면, 본 발명의 결과하는 핫 캐리어 태양 셀의 광 여기 캐리어 추출은 GaAs의 Eg=1.42eV의 대역 갭 에너지 값의 위 아래로 연장된다.
상기에서 설명한 본 발명의 교류 바이어스 기법은, 코어 태양 셀(530)이 QW 또는 QD와 같은 양자 감금 구조를 합체한 Ⅲ-Ⅴ 물질 기반 태양 셀인, 실시 예(500,700 또는 900)와 아주 동일한 방식으로 MQW-기반 태양 셀과 함께 적용될 수 있다. 그러한 코어 태양 셀(540)의 에너지 대역 구조는 도 10a에 도시되며, 거기에는, p-i-n 접합 코어 태양 셀의 진성 영역내에 합체되는 MQW를 보여준다("Quantum Well Solar Cells", K.W.J. Barnham et al, Physica E14 (2002) 27-36). 이러한 합체된 MQW는 셀 물질 대역 갭 에너지(Eg) 아래로 셀 에너지 추출 기능을 연장하도록 고안된다. 이것은 셀 대역 갭(Eg) 아래의 넓은 에너지 대역 커버리지를 제공하도록 MQW의 갭 에너지를 테이퍼링(tapering)(즉, 그레이딩(grading))함에 의해 달성된다. 그레이딩된 MQW가 의미하는 것은 도 10a에 도시되며, 거기에는 Ea 내지 Eb에 걸쳐있는 서로 다른 값을 가진 합체된 QW의 각각과 연관된 대역 갭이 도시되는데, Ea와 Eb는 셀 물질 대역 갭(Eg) 보다 아래이다. Ea에서 Eb까지의 에너지 레벨 범위는 진성 대역 갭 에너지(Eg) 아래의 셀의 광자 에너지 흡수 기능의 연장으로 볼 수 있다. 이것이 의미하는 것은, 셀 대역 갭 에너지(Eg) 아래의 Ea 내지 Eb 범위내의 에너지를 가진 입사 태양 광자에 의해 캐리어의 광 여기가 가능하게 된다는 것이다. 사실상, 이러한 방식은 이전에 설명한 셀 효율 손실 메카니즘
Figure pct00065
을 실질적으로 극복하는데, 이는 셀이 셀 대역 갭(Eg) 또는 그 아래에서 입사 태양 광자의 에너지를 변환할 수 있기 때문이다.
조사(illumination)중인 MQW 기반 교류 바이어스 핫 캐리어 셀의 에너지 대역 구조가 도 10b에 도시된다. 조사중인 MQW 기반 교류 바이어스 핫 캐리어 셀의 대역 구조는 적어도 3개의 쿼시-페르미 레벨(QFL)에 의해 설명될 수 있다("Detailed Balance Efficiency Limits with Quasi-Fermi Level Variations", S.P. Bremner, R. Corkish and C.B. Honsberg, IEEE Trans. Electron Devices, vol.46, No.10, Oct 1999; A Luque and A.Marti, Ultra-high efficiency solar cells: the path for mas penetration of solar electricity, Electronics Letter, vol.44.No.16,July 2008):
● QFLV: 셀 균형 대역(VB)의 홀의 개체군을 설명
● QFLI: 그레이딩된 MQW에 의해 형성된 중간 대역(IB)의 전자 및 홀(캐리어 쌍)의 개체군을 설명
● QFLC: 셀의 전도 대역(CB)의 전자의 개체군을 설명
P1, P2 및 P3로 표시된 셀 물질 대역 갭(Eg) 또는 그 아래의 에너지를 가진 다수의 태양 광자 흡수에 의해, 도 10b에 도시된 바와 같이, 그레이딩된 MQW에 의해 생성된 다수의 QFL 분리들 간에, 다수의 캐리어 천이가 가능해진다:
VB
Figure pct00066
CB VB
Figure pct00067
IB IB
Figure pct00068
CB
교류 바이어스가 양자 감금 기반 코어 태양 셀(530)을 합체한 핫 캐리어 태양 셀(500,700 또는 900)과 함께 이용되면, 도 10a에 도시된 그레이딩된 MQW에 의해 흡수된 "여분(extra)"의 낮은 에너지 광자(P2 및 P3)에 의해 생성된 캐리어가 추출되어 "여분" 전류를 유발시킨다. 이러한 여분 전류는, 그레이딩된, MQW에 있어서의 양자 감금 효과로 인한, (셀 대역 갭에 비해) 낮은 에너지의 연장된 광자의 흡수 및 증가된 캐리어 개체군으로부터 비롯된 것이다(("Quantum Well Solar Cells", K.W.J. Barnham et al, Physica E14 (2002) 27-36). 이 경우에 있어서의 주요한 차이는, 본 발명의 핫 캐리어 태양 셀(500,700,900)의 일시적 가변 광 전압이 그의 Vmin 에서 연장되어, 코어 셀(530) 물질 대역 갭 에너지(Eg) 아래의 에너지를 가지는 광 여기 캐리어를 추출하는데 필요한 낮은 추출 에너지를 콘택트에서 제공한다는 것이다. 본 발명의 교류 바이어스 핫 캐리어 태양 셀의 본 실시 예의 추가적인 장점은, 셀 물질 대역 갭(Eg)보다 낮은 에너지를 가진 광 여기 캐리어를 추출하는데 필요한 낮은 값까지의 태양 셀 광 전압의 교호에 의해, 셀이 낮은 광 전압값에서 주기적으로 동작할 수 있게 되며, 그에 따라, 셀의 캐리어 운송 기능을 향상시키는 캐리어 운송 전계값이 주기적으로 증가하게 된다는 것이다. 이것이 의미하는 것은, 본 발명의 핫 캐리어 태양 셀(500,700,900)의 캐리어 운송 기능을 향상시키기 위해 셀 광 전압을 낮추는 시간 기간 동안에, 낮아진 광 전압 값이 레버리지(leverage)되어, 본 발명의 핫 캐리어 태양 셀의 코어 태양 셀내에 합체된 양자 구조에 의해 이루어질 수 있는 셀 물질 대역 갭 에너지 아래의 에너지를 가진 광 여기 캐리어를 추출하는데 필요한 낮은 추출 에너지값을 그 셀 콘택트에서 제공한다는 것이다.
광학적 감금 교류 바이어스 핫 캐리어 태양 셀
상술한 바와 같이, 핫 캐리어 태양 셀 실시 예(500,700,900)에 이용된 코어 태양 셀(530)의 콘택트간 두께는 캐리어 운송 시간에 크게 영향을 미치며, 결과적으로 본 발명의 교류 바이어스 핫 캐리어 태양 셀의 성능에 영향을 미친다. 예를 들어, Si에 있어서의 캐리어 수명 특성은 전형적으로 Ⅲ-Ⅴ 물질보다 훨씬 길 것이지만, 상술한 바와 같이, 실리콘 기반 코어 태양 셀(530)의 경우, 핫 캐리어 태양 셀(900,500)에 의해 ~1.5ns 내지 ~15ns 범위의 캐리어 운송 시간이 달성될 수 있다. 이들 값들은 도 2에 도시된 캐리어 수명의 캐리어 냉각 단계의 하이 엔드(high-end)이다. 결과적으로, 본 발명의 교류 바이어스 핫 캐리어 추출 기법의 장점은 종래의 Si 태양 셀과 같이, 콘택트간 두께가 큰 태양 셀에서는 전적으로 실현되지 않을 수 있다. 그러나, 비용 감소 때문에, Si 기반 태양 셀 두께를 감소시키기 위한 집중적인 움직임이 진행중이며, 본 발명의 교류 바이어스 핫 캐리어 추출 기법의 장점이 그러한 셀에서 전적으로 실현될 수 있는 추세에 있다. 예를 들어, Si 기반 태양 셀의 후면에 있는 반사 표면의 배치와 함께 셀의 최상위 표면의 텍스처링(texturing)에 의해, 셀 흡수기에 입력되는 광의 다중 반사가 유발되고, 그에 이어, 셀 상에 입사되는 태양 광자가 훨씬 얇은 셀 흡수기에 의해 흡수될 수 있게 된다. 이러한 간단한 광 포획 수단에 의해 20㎛ 두께의 Si 태양 셀은 400㎛ Si 태양 셀보다 양호한 광 흡수율을 갖게 된다("Physics of Solar Cells", P. Wurfel, pp. 173-177).
매립형 콘택트 및 이전에 참조한 것과 유사한 광 포획 양상을 레버리지한 광 감금 태양 구조가 도 11a에 도시된다("Physics of Solar Cells", J. Nelson, pp. 188-191). 도 11a에 도시된 바와 같이, 그러한 셀 구조는 전체 셀을, 전형적으로 대략 수십 미크론의 폭(Lc)를 각각 가진 다수의 서브 셀로 분할한, 반사 수직 측벽을 합체한다. 이러한 측벽은 여러 목적을 달성시킨다. 우선, 그 측벽은 전체 셀에 걸쳐 다수의 광학적 마이크로 공동(optical micro cavities)을 제공한다. 이들 마이크로 공동은, 광 여기 캐리어의 방사 재조합으로 인해 셀 구조내에 생성된 광자 및 입사 태양 광자의 첫번째 통과 동안에 캐리어의 광 여기를 유발하지 못한 입사 태양 광자의 광학적 감금을 제공한다. 두번째, 도 11a에 도시된 바와 같이, 그 측벽은 셀의 최상위 표면에서 마이크로 메쉬(micro mesh)에 상호 접속되는 매립형 콘택트 레일(buried contact rail)로서 작용한다. 도 11a에 도시된 바와 같이, 마이크로 메쉬는 대략 수 미크론의 직교 피치(orthogonal pitch)를 가지며, 서브 셀의 전체 최상측 표면에 걸쳐 있어서, 셀 최상위 표면에 입사하는 광의 상당한 차단없이 셀 파워 출력의 추출을 위한 균일한 콘택트 및 적용된 바이어스의 균일한 분산을 제공한다.
도 11a에 도시된 마이크로 공동의 반사 마이크로 공동 서브셀 측벽, 후면측 및 텍스처 최상위측에 의해 달성되는 광학적 감금에 의해, 마이크로 공동 서브 셀 측벽 및 후면측의 흡수율로 인한 감쇄 전에 서브 셀로 들어가는 광이 4-6배 더 많이 반사된다. 마이크로 공동 서브 셀 측벽들간의 거리(Lc)가 ~50㎛ 이면, 도 11a에 도시된 마이크로 공동 서브 셀 구조의 생성된 광 감금 기능에 의해 도 11a에 도시된 광학적 감금 마이크로 공동을 합체한 Si 기반 태양 셀에 대한 콘택트간 두께가 ~5㎛로 될 수 있다. 상술한 바와 같이, 이러한 콘택트간 두께로 인해, 캐리어 추출 시간은 ~0.25가 될 수 있을 것이며, 이는 실리콘 셀에 대한 기대 캐리어 냉각 시간 이내이다. 도 11a에 도시된 광 감금 셀 구조가 본 발명의 핫 캐리어 태양 셀의 구성(500,700,900)에 있어서 코어 셀(530)의 구조로서 이용되면, 이들 셀들은 보다 짧은 캐리어 운송 시간으로 동작할 수 있게 된다. 또한, 그것은, 광 여기 캐리어의 방사 재조합에 의해 생성된 광자(전형적인 태양 셀에 있어서, 이러한 광자는 상술한 효율 손실 메카니즘
Figure pct00069
으로 인해 손실되는데, 그 이유는 그들이 그러한 셀 구조내에 감금되지 않기 때문이다)에 의해 캐리어 광 여기를 촉진시킨다.
교류 바이어스 태양 셀(500,700,900)의 코어 태양 셀(530)에 대한 맥락내에서, 도 11b에 도시된 바와 같이 총괄적으로 이용되는 경우에, 도 10a의 셀 물질 구조에 의해 제공된 캐리어 양자 감금과 도 11a의 광학적 감금 마이크로 공동을 합체한 셀 구조에 의해 제공된 광학적 감금의 조합은 첫번째 통과에서 캐리어 여기를 유발하지 않았던 광자에 의해 캐리어 여기의 확률을 증가시킬 수 있게 한다는 것을 알아야 한다.
방사 재조합에 의해 생성된 광자가 후속하는 캐리어의 여기를 유발할 수 있게 할 가능성은 MQW의 캐리어 감금 효과와 서브 셀 마이크로 공동의 광학적 감금으로 인해 생성된 광자의 연장된 수명에 의해 크게 개선될 수 있다. 따라서, 도 11b의 광자 및 캐리어 감금 양상의 조합은 사실상, 하나의 태양 광자가 다수의 캐리어의 여기를 유발시킬 기회를 향상시키고, 상술한 SQ-모델에 의해 수립된 효율 제한의 핵심 가정들 중 하나(즉, 태양 입사 광자는 단지 하나의 전자-홀 쌍만을 생성한다고 하는 가정)를 피할 수 있는 효과가 있다.
태양 셀에 있어서 손실 메카니즘에 관하여 상기에서 설명한 것을 참조하면, 본 발명의 핫 캐리어 태양 셀은 손실 메카니즘,
Figure pct00070
Ep<Eg를 가진 광자의 손실,
Figure pct00071
핫 캐리어 이완에 기인한 손실,
Figure pct00072
방사 재 조합에 기인한 광 여기 캐리어의 손실,
Figure pct00073
콘택트 추출 효율로 인한 손실을 회피함에 의해 생성된 순 효율 증가를 달성할 수 있다. 또한, 본 발명의 핫 캐리어 태양 셀은 손실 메카니즘
Figure pct00074
를 피할 수 있는데, 그 이유는, 단일 접합 셀 구조를 가진 모놀리식 멀티-접합 셀에 필적하는 효율을 달성할 수 있으며, 그에 따라 그 손실 메카니즘을 유발하는 격자 정합 이슈를 피할 수 있기 때문이다.
상술한 설명에 기초하여, 광자 마이크로 공동 서브 셀 및 QW 또는 QD와 같은 양자 감금 구조의 합체가 가능한 본 발명의 교류 바이어스 핫 캐리어 태양 셀은 다음과 같은 것을 할 수 있다.
1. 셀 물질 대역 갭(Eg) 보다 위 아래의 에너지를 가진 입사 태양 광자의 에너지를 파워로 변환;
2. 방출 광자를 재 순환시킴에 의해 광 여기 캐리어의 방사 재 조합으로 인해 유발되는 내부 광 방출과 연관된 에너지의 활용(그렇지 않으면 손실됨);
3. 단일 입사 태양 광자에 의해 다수의 캐리어 쌍 여기의 달성;
4. 다수의 QFL 분리를 합체한 셀 구조로부터 광 여기 캐리어의 여기를 가능하게 함;
5. AC/DC 인버터 손실을 제거하는 교류 출력 모드에서의 동작.
후보 물질 시스템
상술한 바와 같이, 본 발명의 교류 바이어스 핫 캐리어 태양 셀은 종래의 Si, CdTe, CIGS와 같은 종래의 벌크 물질 태양 셀 물질, 벌크 GaAs와 같은 Ⅲ-Ⅴ 물질, 및 QW와 QD와 같은 양자 감금을 합체한 태양 셀과 함께 구현될 수 있다. 도 12("Third Generation Photovoltaics", Gregory F. Brown and Junqiao Wu, Laser & Photon Rev., 1-12 (2009), published online: 2 February 2009, 참조)는 태양 스펙트럼의 에너지 분포를 참조하여 본 발명의 교류 바이어스 핫 캐리어 태양 셀과 함께 이용될 수 있는 여러 후보 태양 셀 물질 시스템의 대역 갭 에너지를 나타낸다. 도 12에 도시된 바와 같이, 오늘날의 가장 효율적인 단일 접합 태양 셀은, Si, InP 및 GaAs에 기반한 것을 포함하고, 1.1eV와 1.4eV 사이의 대역 갭 에너지를 가지며, 태양 에너지 스펙트럼을 가로지르는 비교적 좁은 태양 광자 대역만을 에너지로 변환할 수 있다. 이러한 좁은 태양 에너지 스펙트럼 커버리지는 기본적으로, 1-sun하에서 30% 미만으로 오늘날의 단일 접합 광 전압 태양 셀 효율을 제한한다. 실제에 있어서는, 생성된 순 효율은 더 낮게 되는데, 이는 상당 부분이 25%의 DC/AC 인버터의 손실인 구현상의 손실로 인해, 전형적인 단일 접합 태양 셀 모듈의 생성된 순 효율이 20% 미만으로 되기 때문이다. 실제에 있어서, DC/AC 인버터 손실을 계산하지 않으면, 단일 접합 Si-셀의 최고 효율은 24% 미만이고, 그것을 고려할 때, 셀로부터의 생성된 순 효율은 18%가 된다. 이에 비해, 본 발명의 교류 바이어스 핫 캐리어 태양 셀은 0.65eV에서 3.15eV로 연장되는 태양 광자 에너지 커버리지를 가질 수 있으며, 그에 따라 태양 스펙트럼의 상당 부분을 커버할 수 있고 18%보다 상당히 높은 순 효율 레벨을 생성할 수 있다.
2개의 후보 교류 바이어스 핫 캐리어 태양 셀의 태양 에너지 스펙트럼 커버리지가 도 12에 도시된다. 첫 번째 후보는 도 12에 Si-ABC로서 표시된 S- 기반형으로서, 광학적 감금 마이크로 공동을 합체한 도 11a에 도시된 얇은 Si 태양 셀 또는 종래의 Si 태양 셀을 이용한다. 두번째 후보는 도 12에 InGaN MQW-ABC로 표시된 그레이딩된 MQW를 합체한 InXGa1 - XN 물질 시스템을 이용한 것에 기반한다. 본 발명의 교류 바이어스 핫 캐리어 추출 기법에 의해, Si 기반 태양 셀 스펙트럼 커버리지가 1.1eV 내지 거의 3eV까지에 걸쳐 있는 Si 대역 갭 에너지를 가질 수 있으며, 그에 따라, 전체적인 파워 변환 효율이 종래의 Si-셀보다 2.5배 더 높아지게 된다. 오늘날의 높은 효율의 Si 기반 태양 셀("Solar Photovoltaics: Expanding Electric Generation Options", Electric Power Research Institute(EPRL), December 2007)의 0.35$/kWh의 전형적인 생성된 파워 소매가에 의해 및 본 발명의 교류 바이어스 기법을 구현하기 위해 추가되는 부품으로 인한 비용 증가를 고려할 때, Si 기반 교류 바이어스 태양 셀에 의해 달성될 수 있는 효율 증가는 0.15$/kWh 미만의 태양 파워의 소매가를 생성하는데, 그것은 오늘날의 Si-셀에 의해 달성되는 파워의 소매가의 절반 미만이며, 오늘날의 일반적인 파워 소매가의 범위 이내이다.
InXGa1 - XN 물질 시스템은 0.65eV 내지 3.4eV 범위의 대역 갭 에너지를 가지며, 그에 의해 태양 스펙트럼에 거의 완벽하게 정합된다. 이러한 물질 시스템의 전체 전위 태양 커버리지는 상술한 MQW 기반 InXGa1 - XN 교류 바이어스 핫 캐리어 태양 셀에 의해 달성될 수 있다. 도 10a의 그레이딩된 MQW는 InXGa1 - XN 물질의 사용과 함께 실현될 수 있는데, 이것은, GaN의 대역 갭을 가로질러 걸쳐 있는 대역 갭을 가진 다수의 양자 우물을 생성하기 위해 낮은 값에서 높은 값까지, 다수의 양자 우물을 가로질러 인듐 유입의 값 "x"를 가변시킴에 의해 이루어진다. MQW-기반 InXGa1 - XN 물질의 중간 대역의 적절한 고안에 의해, InXGa1 - XN 물질은 거의 0.65eV 내지 3.4eV 범위의 대역 갭을 실현할 수 있게 된다. 이러한 유형의 물질 시스템은, 본 발명의 교류 바이어스 기법과 함께 이용될 경우, 태양 스펙트럼의 거의 모든 커버리지를 달성할 수 있으며, 그에 따라 특히 태양 집광기와 함께 사용될 때, 단일 접합 태양 셀로부터 아주 높은 효율을 달성할 수 있게 한다. 상술한 바와 같이, 교류 전류인 그러한 셀 출력 파워에 의해, 다른 구현상의 손실을 고려한 이후에도 70% 초과의 생성 순 효율을 달성하기 위한 전위를 제공하는데, 달성된 효율의 대부분이 이용될 수 있다. 이러한 레벨의 생성된 순 효율 및 2.25$/W의 추정 비용(Wp)에서, 100×태양 집광기와 함께 동작하는 InXGa1 - XN MQW 교류 바이어스 핫 캐리어 태양 셀은 0.10$/kWh 미만의 태양 파워의 소매가를 달성하는 전위를 가질 것인데, 이것은 오늘날의 가장 효율적인 일반적인 태양 셀에 의해 달성되는 파워의 소매가의 1/3 미만이며, 오늘날의 일반적인 파워 소매가 범위내이다.
상술한 바와 같이, 본 명세서에서 설명한 벌크 S-셀 및 MQW 기반 Ⅲ-Ⅴ 태양 셀에 있어서의 교류 바이어스 기법의 2개의 예시적인 애플리케이션은 그 셀에 의해 생성된 파워의 소매가에 있어서 상당한 예측된 감소를 보여주며, 이것은, 본 발명의 교류 전류 핫 캐리어 태양 셀이 3G 태양 셀 비용 목표를 달성할 수 있음을 나타낸 것이라 할 수 있다.
성능 비교
테이블 1은 상술한 교류 바이어스 핫 캐리어 태양 셀의 2개의 예시적인 애플리케이션, 즉, 1-sun하에서 동작하는 Si기반 셀과, 100×태양 집광기(100-sun)와 함께 동작하는 InXGa1 - XN MQW 기반 셀의 예측된 생성 순 효율(또는 PAE)과 함께 현재 가장 많이 이용되는 태양 셀의 달성된 효율의 표이다. 테이블 1의 비교를 폭 넓게 보기 위해, 현재의 태양 셀의 목록화된 달성 효율은 그들의 출력에서 필요한 DC/AC 컨버터에 의해 유발되는 추정된 25% 손실을 반영하지 않음을 알아야 한다. 한편, 교류 바이어스 핫 캐리어 셀 파워 출력이 AC 이기 때문에, 테이블 1에 목록화된 2개의 교류 셀의 예측된 효율 성능은 구현상의 손실을 고려한 이후의 시스템 레벨에서의 생성 순 효율이다. 그러므로, 의미있는 일대일 비교를 위해, 현재의 태양 셀의 효율 성능값은 25% 감소되어야 한다.
표 1에는, 본 발명의 상술한 교류 바이어스 기법을 이용하여 구현된 태양 셀이 현재의 단일 접합 셀에 의해 달성되는 효율에 있어서 상당한 증가를 달성 할 수 있는 본 명세서의 전반에 걸쳐 행해진 주제가 강조되어 있다. 또한, 테이블1은 선택된 물질 시스템에 의거하여, 양자 감금 구조 기반 QW 또는 QD가 멀티 접합 태양 셀에 필적하거나 그보다 높은 생성 순 효율을 달성하는 전위를 가짐을 보여준다. 실현될 경우, 이러한 레벨의 생성 순 효율을 달성하는 비용/효율 장점은 나름대로 설정된 3G 목적을 향해 태양 셀 산업을 착수시킬 가능성이 매우 높다.
근사 이론적 효율 제한
실험 & 예측 성능
열역학(최대 집중) 87% ---
단일-접합(100 suns) 33% 65+% MQW-기반 Ⅲ-Ⅴ교류 바이어스 핫 캐리어 셀(2)
열역학(1sun) 68% ---
6-접합 59% ---
단일 접합(1sun) 33% 45+% 교류 바이어스 핫 캐리어 셀(2)
3중 접합 집광기 64% 44% Ⅲ-Ⅴ 합금, 모놀리식 스택(1)
이중 접합 집광기 56% 30% Ⅲ-Ⅴ 합금, 모놀리식 스택(1)
3중 접합(1sun) 51% 15% 박막 비정질 실리콘 합금(1)
이중 접합(1sun) 45% 12% 박막 비정질 실리콘 합금(1)
쇼클리-퀘이서
단일 접합(1sun)
33% 24%
20%
12%
6%
결정 실리콘
얇은 멀티 결정 실리콘
다이 감광 셀
유기 셀
(본 발명의 교류 핫 캐리어 셀과 종래의 태양 셀의 효율 예측 비교)
(1)은 DC/AC 인버터 손실이 포함되지 않음
(2)는 DC/AC 인버터가 필요치 않음
결론
본 명세서에서는 태양 셀의 아주 높은 효율을 달성하는 신규한 고안 방식이 설명된다. 우선, 핫 캐리어의 추출이 할 수 있게 됨으로써 셀 대역 갭보다 높은 광기전 파워 추출 기능을 개선하는 신규한 교류 바이어스 기법이 설명되었다. 벌크 물질 단일 접합 태양 셀과 함께 적용될 경우, 상술한 교류 바이어스 핫 캐리어 셀은 그의 코어 셀 생성 순 효율의 2배 초과의 전위를 가진다. 두번째, 교류 바이어스 기법이 양자 우물(QW) 또는 양자 도트(QD) 기반 태양 셀과 함께 적용되면, 본 발명의 교류 바이어스 핫 캐리어 태양 셀은 그들의 코어 태양 셀 파워 추출 커버리지가 전체 태양 스펙트럼을 가로질러 연장되는 전위를 가지며, 그에 따라 전례없는 레벨의 태양 파워 추출 효율이 달성된다. 세번째, 교류 바이어스 기법이 양자 및 광자 감금을 합체한 코어 태양 셀과 함께 적용되면, 결과하는 태양 셀은 오늘날의 태양 셀의 효율을 제한하는 모든 손실 메카니즘의 대부분을 잠재적으로 회피할 수 있다. 이것은, 캐리어 방사 재조합을 이용하고 단일 흡수 광자당 다수의 캐리어를 생성하기 위한 서브 셀 광자 감금 마이크로 공동과 셀 대역 갭 아래로 셀 광기전 파워 추출 기능을 연장하기 위한 그레이딩된 MQW를 합체한 신규한 셀 고안과, 상술한 교류 바이어스 기법의 핫 캐리어 추출 기능을 조합함에 의해 달성되며, 그에 따라 셀 효율이 개선된다.
따라서, 본 발명은 다수의 양상을 가지며, 그 양상들은 원하는 바에 따라 단독으로, 여러 조합으로, 또는 여러 서브 조합으로 실시될 수 있다. 본 발명의 바람직한 실시 예는 제한을 위한 것이 아닌 예시를 위해 본 명세서에서 개시되고 설명되었지만, 당업자라면, 본 발명의 사상이나 범주를 벗어나지 않고서, 형태나 세부 사항에 있어서 여러 변형이 있을 수 있음을 알 것이다.
상술한 설명에 있어서, 본 발명은 특정 실시 예를 참조하여 설명되었다. 그러나, 본 발명의 보다 넓은 사상 및 범주를 벗어나지 않고서, 여러 수정 및 변경이 있을 수 있음을 알 것이다. 따라서, 고안상의 세부 사항 및 도면은 제한을 위한 것이 아니라 예시적인 것으로 간주되어야 한다. 당업자라면, 본 발명의 일 부분이 상술한 바람직한 실시 예에 대한 구현과는 다르게 구현될 수 있음을 알 것이다. 예를 들어, 당업자라면 본 발명의 교류 바이어스 핫 캐리어 태양 셀의 직렬 및 교류 바이어스 회로가 여러 변형과 함께 구현될 수 있고, 이들 바이어스 회로의 특정의 고안 파라메타가 교류 바이어스의 특성을 실질적으로 가변시키며 그에 따라 결과하는 태양 셀의 성능을 가변시킬 수 있음을 알 것이다. 당업자라면 주요한 원리 및 교시를 벗어나지 않고서 본 발명의 상술한 실시 예의 세부 사항을 많이 변경할 수 있음을 알 것이다. 따라서, 본 발명의 범주는 이하의 청구범위에 의해서만 결정되어야 한다.
510: 직렬 바이어스 회로
520: 병렬 바이어스 회로
540: 믹서 회로
730: 전압 제어
740: 스위칭 레귤레이터

Claims (51)

  1. 태양 셀을 동작시키는 방법으로서:
    단일 접합과 제 1 콘택트 및 제 2 콘택트를 가진 태양 셀에 대하여,
    상기 제 1 콘택트와 제 2 콘택트 양단의 바이어스가 최대 바이어스 값과 최소 바이어스 값 사이에서 주기적으로 교호하도록 하되,
    상기 최대 바이어스 값과 상기 최소 바이어스 값 사이에서의 상기 바이어스의 교호의 주기는, 상기 태양 셀로부터 에너지 레벨 범위를 가로지르는 광 여기 캐리어를 추출하기 위한 태양 셀의 핫 캐리어 냉각 시간보다 더 짧은
    태양 셀 동작 방법.
  2. 제 1 항에 있어서,
    상기 태양 셀은 벌크 물질 태양 셀인
    태양 셀 동작 방법.
  3. 제 1 항에 있어서,
    상기 태양 셀은 양자 감금을 합체한
    태양 셀 동작 방법.
  4. 제 1 항에 있어서,
    상기 최소 바이어스 값은, 상기 태양 셀내에서 광 여기된 전자 및 정공(캐리어)이, 그의 최대값에 근접하거나 그와 동일한 운송 속도로, 상기 태양 셀의 제 1 콘택트 및 제 2 콘택트를 향해 가속되도록 하기에 충분히 높은 태양 셀 내부 전위를 가진 바이어스 값이고,
    상기 최대 바이어스 값은, 상기 태양 셀내에서 생성된 광 여기 캐리어(핫 캐리어)의 전기 화학적 전위의 최대값과 실질적으로 동일한
    태양 셀 동작 방법.
  5. 제 4 항에 있어서,
    상기 태양 셀은 처음에 고정된 바이어스로 동작하여, 상기 제 1 콘택트와 제 2 콘택트 양단의 바이어스가 상기 최소 바이어스 값과 상기 최대 바이어스 값 사이에서 주기적으로 교효하도록 하는 회로에 파워를 제공하는
    태양 셀 동작 방법.
  6. 제 4 항에 있어서,
    태양 셀 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는, 상기 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값 또는 그에 근접한 값으로 유지되도록, 충분히 짧게 선택되는
    태양 셀 동작 방법.
  7. 제 4 항에 있어서,
    태양 셀 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는, 핫 캐리어 냉각 시간 이내에 상기 태양 셀의 제 1 콘택트 및 제 2 콘택트로 상기 태양 셀내의 광 여기 캐리어의 모두를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되는
    태양 셀 동작 방법.
  8. 제 7 항에 있어서,
    최소 바이어스 값과 최대 바이어스 값 사이에서 주기적으로 교호하는 주기와, 그 교호 주기에 대한 서브 주기 기간의 비율은 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되는
    태양 셀 동작 방법.
  9. 제 4 항에 있어서,
    상기 최대 바이어스 값과 최소 바이어스 값은 상기 태양 셀의 순방향 바이어스 범위 이내인
    태양 셀 동작 방법.
  10. 제 9 항에 있어서,
    상기 순방향 바이어스의 교호는 상기 교호의 주기보다 짧은 적어도 1회 간격을 포함하고, 그 간격 동안에, 상기 태양 셀 바이어스는, 상기 핫 캐리어 냉각 시간 이내에 제 1 콘택트 및 제 2 콘택트로 상기 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하기에 충분한 평균 캐리어 운송 속도를 유지하기 위한, 반복 주기 및 기간(a duration and period of repetiton)의 역 바이어스 값에 도달하는
    태양 셀 동작 방법.
  11. 제 10 항에 있어서,
    상기 태양 셀 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는 상기 핫 캐리어 냉각 시간 이내에 상기 태양 셀의 제 1 및 제 2 콘택트에 상기 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되고,
    상기 태양 셀 바이어스 값이 상기 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는, 상기 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값으로 유지되도록, 충분히 짧게 선택되며,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서 주기적으로 교호하는 주기와, 그 교호 주기에 대한 서브 주기 기간의 비율은 상기 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되며,
    그에 따라, 상기 태양 셀내의 광 여기 캐리어의 전기 화학적 전위의 프로파일과 실질적으로 정합되는 추출 에너지 범위를 일시적으로 스위핑하도록 태양 셀 콘택트들간에 추출 에너지 분리가 이루어지고, 단일 접합 태양 셀이 멀티-접합 태양 셀의 에너지 추출 효율 장점을 가질 수 있게 되는
    태양 셀 동작 방법.
  12. 제 10 항에 있어서,
    태양 셀 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는 상기 핫 캐리어 냉각 시간 이내에 상기 태양 셀의 제 1 및 제 2 콘택트에 상기 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되고,
    상기 태양 셀 바이어스 값이 상기 최소 바이어스 값에 근접하거나 그와 동일하게 되는 서브 주기는, 상기 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값으로 유지되도록, 충분히 짧게 선택되며,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서 주기적으로 교호하는 주기와, 그 교호 주기에 대한 서브 주기 기간의 비율은 상기 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되며,
    그에 의해, 상기 핫 캐리어 냉각 레이트에 필적하거나 그 보다 빠른 레이트로 넓은 추출 에너지 영역을 일시적으로 스위핑하도록 상기 태양 셀 콘택트들 간의 추출 에너지 분리를 제공하며,
    상기 태양 셀 콘택트에 도달하는 광 여기 캐리어는, 상기 태양 셀내의 광 여기 캐리어들간의 에너지 분리와 실질적으로 동일한 콘택트들간의 순시 에너지 분리와 함께 각 콘택트에 있는 일시적인 이산의 좁은 추출 에너지 대역(temporally discrete narrow extraction energy band)을 통해 태양 셀 부하에 전달될 수 있게 되는
    태양 셀 동작 방법.
  13. 제 12 항에 있어서,
    상기 태양 셀 물질은 Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되고,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서의, 상기 태양 셀의 제 1 콘택트와 제 2 콘택트간의 바이어스 값의 교호는 상기 핫 캐리어 냉각 시간과 동일하거나 그보다 짧은 교호 주기를 가지며, 그에 따라 일시적 이산의 좁은 추출 에너지에 의해, 태양 셀 물질 또는 태양 셀 콘택트내에서 냉각되기 전에 태양 셀로부터 핫 캐리어가 추출될 수 있게 되는
    태양 셀 동작 방법.
  14. 제 10 항에 있어서,
    상기 태양 셀 물질은 Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되는
    태양 셀 동작 방법.
  15. 제 14 항에 있어서,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서의 상기 태양 셀의 바이어스 값의 교호는 추출 에너지 범위에 걸쳐서 태양 셀내의 광 여기 캐리어를 추출하되, 상기 추출 에너지 범위는, 상기 태양 셀 물질의 대역 갭 에너지에서부터, 상기 태양 셀로부터 추출된 핫 캐리어의 전기 화학적 전위의 최대 값과 실질적으로 동일한 에너지까지의 범위에 있는 상기 태양 셀 내에 생성된 광 여기 캐리어의 에너지 프로파일과 실질적으로 매칭되는
    태양 셀 동작 방법.
  16. 제 14 항에 있어서,
    상기 태양 셀은 양자 감금 구조 또는 광학적 감금 구조를 포함하거나, 또는 그 둘 모두를 포함하는
    태양 셀 동작 방법.
  17. 제 16 항에 있어서,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서의 상기 태양 셀의 바이어스 값의 교호는, 상기 태양 셀 물질의 대역 갭 에너지에서부터 상기 태양 셀로부터 추출된 핫 캐리어의 전기 화학적 전위의 최대값과 실질적으로 동일한 에너지까지 연장되는 에너지 범위에 걸쳐 연장되는 에너지를 가진, 태양 광자에 의해 광 여기되었던 태양 셀 내의 캐리어를 추출하는
    태양 셀 동작 방법.
  18. 제 16 항에 있어서,
    상기 태양 셀의 바이어스 값의 교호는, 상기 태양 셀 물질의 대역 갭 에너지보다 실질적으로 낮은 에너지에서부터 상기 태양 셀로부터 추출될 핫 캐리어의 전기 화학적 전위의 최대 값과 실질적으로 동일한 에너지까지의 범위에 있는, 상기 태양 셀 내에 생성된 광 여기 캐리어의 에너지 프로파일과 실질적으로 매칭되는, 추출 에너지 범위에 걸쳐서 상기 태양 셀 내의 광 여기 캐리어의 추출을 제공하는
    태양 셀 동작 방법.
  19. 제 16 항에 있어서,
    상기 태양 셀의 바이어스 값의 교호에 의해, 상기 태양 셀 물질의 대역 갭 에너지보다 실질적으로 낮은 에너지에서부터 상기 태양 셀로부터 추출될 핫 캐리어의 전기 화학적 전위의 최대값과 실질적으로 동일한 에너지까지의 범위에 있는 에너지를 가진 태양 광자에 의해 광 여기된 태양 셀내의 캐리어가 추출될 수 있는
    태양 셀 동작 방법.
  20. 제 16 항에 있어서,
    상기 태양 셀은 양자 우물 또는 양자 도트(dot)를 포함하는 양자 감금 구조를 포함하는
    태양 셀 동작 방법.
  21. 제 20 항에 있어서,
    상기 양자 감금 구조는 다수의 양자 우물을 포함하고, 상기 다수의 양자 우물의 대역 갭은 상기 양자 우물에 대해 서로 다른 대역 갭 값들의 범위를 제공하도록 그레이드(grade)되고, 상기 서로 다른 대역 갭 값들의 범위는 태양 셀 물질 대역 갭 값 미만인
    태양 셀 동작 방법.
  22. 태양 셀에 있어서,
    코어 태양 셀과;
    상기 코어 태양 셀에 접속되어, 상기 코어 태양 셀에 대해 시간 가변 바이어스(time varying bias)를 제공하고, 상기 코어 태양 셀의 출력으로부터 수신한 전기 에너지를 출력 부하에 결합시키는 바이어스 회로를 포함하되,
    상기 코어 태양 셀의 출력에 대한 시간 가변 바이어스는 최소 바이어스 값과 최대 바이어스 값 사이에서 교호하고,
    상기 최소 바이어스 값과 상기 최대 바이어스 값 사이에서의 바이어스의 교호의 주기는 상기 코어 태양 셀에 대한 핫 캐리어 냉각 시간보다 더 짧아서, 상기 코어 태양 셀로부터 에너지 레벨 범위에 걸쳐 있는 광 여기 캐리어를 추출할 수 있게 되는
    태양 셀.
  23. 재 22 항에 있어서,
    상기 코어 태양 셀은 제 1 콘택트와 제 2 콘택트를 구비하며,
    상기 바이어스 회로는 상기 제 1 콘택트와 제 2 콘택트들 사이의 바이어스 값이 상기 최소 바이어스 값과 최소 바이어스 값 사이에서 주기적으로 교호하도록 결합되고,
    상기 최소 바이어스 값은, 상기 코어 태양 셀 내부 전계가 충분히 높아서, 상기 코어 태양 셀내에 생성된(광 여기된) 전자 및 정공(캐리어)이 상기 제 1 콘택트와 제 2 콘택트로 운송될 수 있게 하는 값이고,
    상기 최대 바이어스 값은 상기 코어 태양 셀내에 생성된 캐리어(핫 캐리어)의 전기 화학적 전위의 최대값과 실질적으로 동일한 값인
    태양 셀.
  24. 제 23 항에 있어서,
    상기 바이어스 값의 교호의 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는 핫 캐리어 냉각 시간 이내에 상기 제 1 및 제 2 콘택트에 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되는
    태양 셀.
  25. 제 23 항에 있어서,
    상기 바이어스 값의 교호의 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는 상기 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값 또는 그에 근접한 값으로 유지되도록, 충분히 짧게 선택되는
    태양 셀.
  26. 제 23 항에 있어서,
    상기 바이어스 값의 교호의 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는 핫 캐리어 냉각 시간 이내에 상기 코어 태양 셀의 상기 제 1 및 제 2 콘택트에 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되고,
    상기 교호 주기에 대한 서브 주기 기간의 비율은 상기 코어 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되는
    태양 셀.
  27. 제 23 항에 있어서,
    상기 코어 태양 셀은 자기 바이어스형이고, 그에 의해 초기화시에, 상기 코어 태양 셀은 고정된 바이어스에서 동작하고, 상기 바이어스 회로는 고정된 바이어스 코어 태양 셀에 의해 초기에 파워 인가되어 초기화되고, 후속적으로 코어 태양 셀의 안정 상태 동작을 위한 교류 바이어스 값이 생성되게 하는
    태양 셀.
  28. 제 23 항에 있어서,
    코어 태양 셀 바이어스의 최대값 및 최소값은 코어 태양 셀의 순방향 바이어스 범위 이내에 있는
    태양 셀.
  29. 제 28 항에 있어서,
    상기 코어 태양 셀은 Ⅲ-Ⅴ 삼원 합금 InxGa1 - xN으로 이루어지고, 아래 첨자 "x"는 삼원 합금 InGaN내의 인듐 유입 비율을 나타내며, 상기 코어 태양 셀은 다수의 양자 우물이 합체되며, 갈륨 질화물의 대역 갭에 걸쳐 있는 대역 갭을 가진 다수의 양자 우물을 생성하도록 낮은 값에서 높은 값까지 다수의 양자 우물을 가로질로 "x"를 가변시킴에 의해 다수의 양자 우물의 대역 갭이 그레이딩되어, 양자 우물에 대해 코어 태양 셀 대역 갭 값 미만인 서로 다른 대역 갭 값들의 범위를 제공하는
    태양 셀.
  30. 제 29 항에 있어서,
    상기 코어 태양 셀은 태양 방사의 에너지 스펙트럼의 대부분을 가로질러 연장되는 태양 스펙트럼을 가지는
    태양 셀.
  31. 제 23 항에 있어서,
    상기 바이어스 회로는 상기 최대 바이어스 값과 최소 바이어스 값이 상기 코어 태양 셀의 순방향 바이어스 범위내에 있도록 하고, 상기 코어 태양 셀 바이어스가 순시적으로 역 바이어스 값에 도달하는 적어도 하나의 짧은 시간 간격을 상기 바이어스 값의 교호의 주기가 포함하도록 하며, 반복 주기 및 기간(a duration and period of repetiton)의 상기 역 바이어스 값은 핫 캐리어 냉각 시간 이내에 제 1 콘택트 및 제 2 콘택트로 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하기에 충분한 평균 캐리어 운송 속도를 유지시키는,
    태양 셀.
  32. 제 31 항에 있어서,
    상기 코어 태양 셀 물질은, Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되는
    태양 셀.
  33. 제 31 항에 있어서,
    상기 코어 태양 셀 물질은, Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되고,
    상기 최소 바이어스 값과 최대 바이어스 값 사이에서의 상기 바이어스 값의 교호에 의해, 상기 코어 태양 셀 물질의 대역 갭 에너지에서부터 상기 코어 태양 셀로부터 추출될 핫 캐리어의 전기 화학적 전위의 최대 값과 실질적으로 동일한 에너지 값까지의 범위에 있는, 상기 코어 태양 셀 내에 생성된 광 여기 캐리어의 에너지 프로파일과 실질적으로 매칭되는, 추출 에너지 범위에 걸쳐서 상기 태양 셀 내의 광 여기 캐리어의 추출이 이루어질 수 있게 되는,
    태양 셀.
  34. 제 31 항에 있어서,
    상기 바이어스 값의 교호 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는 상기 코어 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값 또는 그에 근접한 값으로 유지되도록, 충분히 짧으며,
    상기 서브 주기는 핫 캐리어 냉각 시간 이내에 상기 코어 태양 셀의 상기 제 1 및 제 2 콘택트에 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길며,
    상기 교호 주기에 대한 서브 주기 기간의 비율은 상기 코어 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되고,
    그에 의해, 상기 코어 태양 셀내의 광 여기 캐리어의 전기 화학적 전위의 프로파일과 실질적으로 정합되는 넓은 추출 에너지 범위를 일시적으로 스위핑하도록 코어 태양 셀 콘택트들간에 추출 에너지 분리가 이루어지고, 그에 따라 단일 접합 코어 태양 셀은 기능적으로 멀티-접합 태양 셀과 유사하게 실행되는
    태양 셀.
  35. 제 31 항에 있어서,
    상기 바이어스 값의 교호 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는 상기 코어 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값 또는 그에 근접한 값으로 유지되도록, 충분히 짧으며,
    상기 서브 주기는 핫 캐리어 냉각 시간 이내에 상기 코어 태양 셀의 상기 제 1 및 제 2 콘택트에 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하도록 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길며,
    상기 교호 주기에 대한 서브 주기 기간의 비율은 상기 코어 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되고,
    그에 의해, 상기 코어 태양 셀내의 광 여기 캐리어의 전기 화학적 전위의 프로파일과 실질적으로 정합되는 넓은 추출 에너지 범위를 일시적으로 스위핑하도록 코어 태양 셀 콘택트들간에 추출 에너지 분리가 이루어지고, 그에 따라 코어 태양 셀은, 제 1 콘택트와 제 2 콘택트 사이에 고정 바이어스를 가진 코어 태양 셀을 이용하여 달성할 수 있는 것 보다 높은 광 전압 및 광 전류 값을 달성할 수 있게 되는
    태양 셀.
  36. 제 31 항에 있어서,
    상기 코어 태양 셀 바이어스의 최대값 및 최소값은 상기 코어 태양 셀의 순방향 바이어스 범위내에 있으며, 상기 바이어스 회로는 상기 코어 태양 셀에 대해 교류 바이어스 값을 유발하도록 상기 코어 태양 셀의 후면상에 실장되는 집적 회로 칩 또는 온 회로 보드(on circuit board)로서 구현되는
    태양 셀.
  37. 제 31 항에 있어서,
    상기 코어 태양 셀은 양자 감금 구조 또는 광학적 감금 구조를 포함하거나, 또는 그 둘 모두를 포함하는
    태양 셀.
  38. 제 37 항에 있어서,
    상기 코어 태양 셀은 양자 우물 또는 양자 도트를 구비하는 양자 감금 구조를 포함하는
    태양 셀.
  39. 제 38 항에 있어서,
    상기 양자 감금 구조는 다수의 양자 우물을 포함하고, 상기 다수의 양자 우물의 대역 갭은 상기 양자 우물에 대해 서로 다른 대역 갭 값들의 범위를 제공하도록 그레이드(grade)되고, 상기 서로 다른 대역 갭 값들의 범위는 코어 태양 셀 물질 대역 갭 값 미만인
    태양 셀.
  40. 제 38 항에 있어서,
    상기 코어 태양 셀 물질은, Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되고,
    상기 양자 감금 구조에 의해, 상기 코어 태양 셀 물질의 대역 갭 에너지보다 낮은 에너지에서부터 상기 코어 태양 셀로부터 추출될 핫 캐리어의 전기 화학적 전위의 최대 값과 실질적으로 동일한 에너지 값까지의 범위에 있는, 상기 코어 태양 셀 내에 생성된 광 여기 캐리어의 에너지 프로파일과 실질적으로 매칭되는, 추출 에너지 범위에 걸쳐서 상기 코어 태양 셀 내의 광 여기 캐리어의 추출이 이루어질 수 있게 되는,
    태양 셀.
  41. 제 39 항에 있어서,
    상기 코어 태양 셀 물질은, Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되고,
    상기 양자 감금 구조에 의해, 상기 코어 태양 셀 물질의 대역 갭 에너지보다 낮은 에너지에서부터 상기 코어 태양 셀로부터 추출될 핫 캐리어의 전기 화학적 전위의 최대 값과 실질적으로 동일한 에너지 값까지 연장되는 에너지 범위에 걸쳐 있는 에너지를 가진 상기 코어 태양 셀 내의 광 여기 캐리어의 추출이 이루어질 수 있게 되는,
    태양 셀.
  42. 제 31 항에 있어서,
    상기 바이어스 값의 교호 주기는 상기 바이어스 값이 최소 바이어스 값에 근접하거나 그와 동일하게 되도록 하는 서브 주기를 포함하며,
    상기 서브 주기는, 상기 핫 캐리어 냉각 시간 이내에 상기 제 1 및 제 2 콘택트에 상기 코어 태양 셀내의 모든 광 여기 캐리어를 실질적으로 운송하기에 충분한 평균 캐리어 운송 속도를 유지시키기 위해 충분히 길게 선택되고,
    상기 태양 서브 주기는, 상기 태양 셀에 의해 달성되는 평균 광 전압이 가장 높은 가능한 값 또는 그에 근접한 값으로 유지되도록, 충분히 짧게 선택되며,
    상기 교호 주기에 대한 서브 주기 기간의 비율은 상기 코어 태양 셀의 결정 격자 특성, 캐리어 이동도 및 대역 갭에 응답하여 선택되며,
    그에 따라, 상기 핫 캐리어 냉각 레이트에 필적하거나 그보다 빠른 레이트로 넓은 추출 에너지 영역을 일시적으로 스위핑하도록 상기 코어 태양 셀 콘택트들 간의 추출 에너지 분리를 제공하며,
    그에 의해, 상기 태양 셀 콘택트에 도달하는 광 여기 캐리어가, 상기 코어 태양 셀내의 광 여기 전자 및 정공(캐리어)들간의 에너지 분리와 실질적으로 동일한 콘택트들간의 순시 에너지 분리와 함께 각 콘택트에 있는 일시적인 이산의 좁은 추출 에너지 대역(temporally discrete narrow extraction energy band)을 통해 태양 셀 부하에 전달될 수 있게 되는
    태양 셀.
  43. 제 42 항에 있어서,
    상기 코어 태양 셀 물질은, Si(silicon), GaAs(gallium arsenide), CdTe(cadmium telluride), CIS(copper indium diselenide), CIGS(copper indium gallium diselenide) 및 Ⅲ-Ⅴ 물질의 합금으로 이루어진 그룹으로 부터 선택되고,
    그에 의해, 코어 태양 셀 물질내에서 냉각되기 전에 코어 태양 셀로부터 핫 캐리어가 추출되거나, 제 1 콘택트 및 제 2 콘택트로 부터 핫 캐리어가 추출될 수 있게 되는
    태양 셀.
  44. 제 31 항에 있어서,
    상기 코어 태양 셀의 최대값 및 최소값은 상기 코어 태양 셀의 순방향 바이어스 범위내에 있으며, 상기 코어 태양 셀은 반사 측벽, 반사 후면 및 텍스처 최상측면(textured topside)을 가진 마이크로 공동 형태의 광학적 감금 구조를 추가로 포함하고,
    광학적 감금 마이크로 공동의 반사 측벽은 상기 마이크로 공동의 최상측상의 전기 콘택트 메쉬를 상기 마이크로 공동의 후면에 있는 콘택트 패드에 상호 접속시키는데 이용되는
    태양 셀.
  45. 제 44 항에 있어서,
    상기 광학적 감금 마이크로 공동은, 상기 코어 태양 셀로부터 핫 캐리어가 추출될 수 있도록 충분히 짧은 상기 제 1 콘택트와 제 2 콘택트 간의 거리를 제공하는
    태양 셀.
  46. 제 44 항에 있어서,
    상기 마이크로 공동은 상기 코어 태양 셀의 효율을 개선하여, 상기 코어 태양 셀내에 생성된 광자(내부적으로 방출된 광자)의 감금 및 그 이후의 흡수와, 그 이후의 광 여기 캐리어의 추출이 상기 코어 태양 셀로부터 내부적으로 방출된 광자에 의해 이루어지도록 하는
    태양 셀.
  47. 제 22 항에 있어서,
    상기 바이어스 회로는 상기 코어 태양 셀상에 시간 가변 비-소산 부하를 제공하는
    태양 셀.
  48. 제 22 항에 있어서,
    상기 바이어스 회로는 스위칭 레귤레이터인
    태양 셀.
  49. 제 48 항에 있어서,
    상기 스위칭 레귤레이터의 스위칭은 상기 스위칭 레귤레이터의 입력에 결합된 전압 제어에 응답하여, 상기 최소 바이어스 값과 최대 바이어스 값을 달성하는
    태양 셀.
  50. 제 22 항에 있어서,
    상기 코어 태양 셀은 벌크 물질 태양 셀인
    태양 셀.
  51. 제 22 항에 있어서,
    상기 코어 태양 셀은 양자 감금을 합체한
    태양 셀.
KR1020137003499A 2010-07-09 2011-06-30 교류 바이어스 핫 캐리어 태양 셀 KR101867419B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US83366110A 2010-07-09 2010-07-09
US12/833,661 2010-07-09
US13/165,590 2011-06-21
US13/165,590 US8217258B2 (en) 2010-07-09 2011-06-21 Alternating bias hot carrier solar cells
PCT/US2011/042693 WO2012006223A2 (en) 2010-07-09 2011-06-30 Alternating bias hot carrier solar cells

Publications (2)

Publication Number Publication Date
KR20130100981A true KR20130100981A (ko) 2013-09-12
KR101867419B1 KR101867419B1 (ko) 2018-07-23

Family

ID=45437709

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137003499A KR101867419B1 (ko) 2010-07-09 2011-06-30 교류 바이어스 핫 캐리어 태양 셀

Country Status (7)

Country Link
US (5) US8217258B2 (ko)
EP (1) EP2591507A2 (ko)
JP (1) JP5795372B2 (ko)
KR (1) KR101867419B1 (ko)
CN (1) CN103098222B (ko)
TW (1) TWI581444B (ko)
WO (1) WO2012006223A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130638A (ko) * 2014-03-03 2017-11-28 솔라리틱스, 인크. 광전 변환 소자 관리 시스템 및 방법
US10069306B2 (en) 2014-02-21 2018-09-04 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US10103547B2 (en) 2014-02-21 2018-10-16 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9153645B2 (en) * 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US9246330B2 (en) 2011-05-06 2016-01-26 First Solar, Inc. Photovoltaic device
US9024367B2 (en) * 2012-02-24 2015-05-05 The Regents Of The University Of California Field-effect P-N junction
US9513328B2 (en) * 2012-04-23 2016-12-06 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for eliminating measurement artifacts of external quantum efficiency of multi-junction solar cells
KR101461602B1 (ko) * 2012-06-25 2014-11-20 청주대학교 산학협력단 양자우물 구조 태양전지 및 그 제조 방법
US20140332087A1 (en) * 2013-02-26 2014-11-13 Brillouin Energy Corp. Control of Low Energy Nuclear Reaction Hydrides, and Autonomously Controlled Heat
US11811360B2 (en) * 2014-03-28 2023-11-07 Maxeon Solar Pte. Ltd. High voltage solar modules
EA202092470A3 (ru) * 2014-07-08 2021-05-31 Соларлитикс, Инк. Система и способ управления выходной мощностью фотоэлектрического элемента
US9812867B2 (en) 2015-06-12 2017-11-07 Black Night Enterprises, Inc. Capacitor enhanced multi-element photovoltaic cell
CN105826426A (zh) * 2016-03-21 2016-08-03 赵骁 一种提高光伏电池组件光电转换效率的方法
KR102513080B1 (ko) 2016-04-04 2023-03-24 삼성전자주식회사 Led 광원 모듈 및 디스플레이 장치
US10370766B2 (en) 2016-10-27 2019-08-06 The Regents Of The University Of California Hybrid photo-electrochemical and photo-voltaic cells
CN106876487A (zh) * 2017-03-27 2017-06-20 新疆中兴能源有限公司 一种太阳能电池及太阳能电池组件
US11654635B2 (en) 2019-04-18 2023-05-23 The Research Foundation For Suny Enhanced non-destructive testing in directed energy material processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323738A (ja) * 1999-05-14 2000-11-24 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールの逆バイアス処理装置
US6365825B1 (en) * 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
KR20050099975A (ko) * 2005-07-21 2005-10-17 교세미 가부시키가이샤 발전 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577052A (en) 1982-09-23 1986-03-18 Eaton Corporation AC Solar cell
US4533783A (en) 1984-06-08 1985-08-06 Eaton Corporation AC solar cell with alternately generated pn junctions
US4791528A (en) * 1985-06-13 1988-12-13 Canon Kabushiki Kaisha Power supply device
US6081017A (en) * 1998-05-28 2000-06-27 Samsung Electronics Co., Ltd. Self-biased solar cell and module adopting the same
JP3143616B2 (ja) * 1999-08-12 2001-03-07 鐘淵化学工業株式会社 太陽電池の短絡部除去方法
WO2001047031A2 (en) * 1999-12-13 2001-06-28 Swales Aerospace Graded band gap multiple quantum well solar cell
JP4662616B2 (ja) * 2000-10-18 2011-03-30 パナソニック株式会社 太陽電池
US7465872B1 (en) * 2003-12-15 2008-12-16 General Electric Company Photovoltaic power converter system with a controller configured to actively compensate load harmonics
US7378827B2 (en) 2005-08-24 2008-05-27 Micrel, Incorporated Analog internal soft-start and clamp circuit for switching regulator
US7629532B2 (en) * 2006-12-29 2009-12-08 Sundiode, Inc. Solar cell having active region with nanostructures having energy wells
JP4324214B2 (ja) * 2007-08-31 2009-09-02 株式会社豊田中央研究所 光起電力素子
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
ATE509375T1 (de) * 2009-06-10 2011-05-15 Mikko Kalervo Vaeaenaenen Hochleistungs-solarzelle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323738A (ja) * 1999-05-14 2000-11-24 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュールの逆バイアス処理装置
US6365825B1 (en) * 1999-05-14 2002-04-02 Kaneka Corporation Reverse biasing apparatus for solar battery module
KR20050099975A (ko) * 2005-07-21 2005-10-17 교세미 가부시키가이샤 발전 시스템

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804705B2 (en) 2014-02-21 2020-10-13 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US10826296B2 (en) 2014-02-21 2020-11-03 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US10103547B2 (en) 2014-02-21 2018-10-16 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US11152790B2 (en) 2014-02-21 2021-10-19 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US11108240B2 (en) 2014-02-21 2021-08-31 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US10193345B2 (en) 2014-02-21 2019-01-29 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US10069306B2 (en) 2014-02-21 2018-09-04 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US10804706B2 (en) 2014-02-21 2020-10-13 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US10236689B2 (en) 2014-02-21 2019-03-19 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US11063439B2 (en) 2014-02-21 2021-07-13 Solarlytics, Inc. Method and system for applying electric fields to multiple solar panels
US10355489B2 (en) 2014-02-21 2019-07-16 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
US10978878B2 (en) 2014-02-21 2021-04-13 Solarlytics, Inc. System and method for managing the power output of a photovoltaic cell
KR20170130638A (ko) * 2014-03-03 2017-11-28 솔라리틱스, 인크. 광전 변환 소자 관리 시스템 및 방법
KR20190004385A (ko) * 2014-03-03 2019-01-11 솔라리틱스, 인크. 광전 변환 소자 관리 방법 및 시스템
KR20190004386A (ko) * 2014-03-03 2019-01-11 솔라리틱스, 인크. 광전 변환 소자 관리 방법 및 시스템

Also Published As

Publication number Publication date
KR101867419B1 (ko) 2018-07-23
US20150263202A1 (en) 2015-09-17
US20120006408A1 (en) 2012-01-12
US9722533B2 (en) 2017-08-01
US9882526B2 (en) 2018-01-30
US9171970B2 (en) 2015-10-27
CN103098222B (zh) 2016-08-31
JP5795372B2 (ja) 2015-10-14
JP2013531391A (ja) 2013-08-01
WO2012006223A3 (en) 2012-06-28
WO2012006223A2 (en) 2012-01-12
US8536444B2 (en) 2013-09-17
CN103098222A (zh) 2013-05-08
US20150340989A1 (en) 2015-11-26
EP2591507A2 (en) 2013-05-15
US8217258B2 (en) 2012-07-10
TW201218399A (en) 2012-05-01
TWI581444B (zh) 2017-05-01
US20140083492A1 (en) 2014-03-27
US20120073657A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US9722533B2 (en) Alternating bias hot carrier solar cells
JP2013531391A5 (ko)
Haque et al. On the prospect of CZTSSe-based thin film solar cells for indoor photovoltaic applications: A simulation study
CN106876487A (zh) 一种太阳能电池及太阳能电池组件
Zhang et al. Three-terminal heterojunction bipolar transistor solar cells with non-ideal effects: Efficiency limit and parametric optimum selection
Sahoo et al. Effect of impact ionization on the performance of quantum ratchet embedded intermediate band solar cell: An extensive simulation study
Khelifi et al. Analysis of intermediate band photovoltaic solar cell based on ZnTe: O
Kirk An analysis of quantum coherent solar photovoltaic cells
Wehrer et al. InGaAs series-connected, tandem, MIM TPV converters
Sarder et al. Numerical simulation of MoSe2 based solar cell by SCAPS-1D
Martinelli et al. Minority-carrier transport in InGaAsSb thermophotovoltaic diodes
Sabri et al. Enhancement efficiency of solar cells based on quantum dots: A theoretical study
Conibeer Third generation photovoltaics
Pal et al. Studies on the Performance of a GaInP/GaAs Tandem Solar Cell at Elevated Temperatures
Ishibashi et al. Spiral-heterostructure-based new high-efficiency solar cells
Kharel et al. Modeling of pin GaAsPN/GaP MQWs solar cell: towards lattice matched III-V/Si tandem
Royall et al. Simulation of dilute nitride GaInNAs doping superlattice solar cells
Chawla et al. Performance comparison of Si and InGaN pn junction Solar Cell
MUTLU SOLAR ENERGY AND SOLAR BATTERIES
Liou et al. Study and explore on the energy harvesting of the solar cell with DC/DC converter PWM system
Outes Castro et al. Numerical optimisation and recombination effects on the vertical-tunnel-junction (VTJ) GaAs solar cell up to 10,000 suns
Guesmi et al. Electrical Properties of Si Quantum Dot in GaAs 1-x P x Matrix for Solar Cell Applications
Varonides High Efficiency Multijunction Tandem Solar Cells with Embedded Short-Period Superlattices
Kharel et al. Wide Bandgap (1.7 eV-1.9 eV) Dilute Nitride Quantum Engineered Solar Cells for Tandem Application with Silicon
Axelevitch et al. Efficiency analysis for multijunction PV hetero-structures

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)