KR20130094319A - 스파이럴 홈 스러스트 베어링 - Google Patents
스파이럴 홈 스러스트 베어링 Download PDFInfo
- Publication number
- KR20130094319A KR20130094319A KR1020137009805A KR20137009805A KR20130094319A KR 20130094319 A KR20130094319 A KR 20130094319A KR 1020137009805 A KR1020137009805 A KR 1020137009805A KR 20137009805 A KR20137009805 A KR 20137009805A KR 20130094319 A KR20130094319 A KR 20130094319A
- Authority
- KR
- South Korea
- Prior art keywords
- groove
- helical
- groove group
- bearing
- pressure
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/18—Lubricating arrangements
- F01D25/22—Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/04—Sliding-contact bearings for exclusively rotary movement for axial load only
- F16C17/045—Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1025—Construction relative to lubrication with liquid, e.g. oil, as lubricant
- F16C33/106—Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
- F16C33/107—Grooves for generating pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
- F05D2240/52—Axial thrust bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/44—Centrifugal pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/10—Construction relative to lubrication
- F16C33/1005—Construction relative to lubrication with gas, e.g. air, as lubricant
- F16C33/101—Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
- F16C33/1015—Pressure generating grooves
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
회전축에 설치된 스러스트 컬러에 대향하여 배치되는 스러스트 베어링(1)이다. 베어링면(4b)에 홈부(5)가 형성되어 있다. 홈부(5)는 베어링면(4b)의 내주측에 형성된 복수의 제1 나선형 홈(6)으로 이루어지는 제1 홈군(6A)과, 제1 홈군(6A)보다 외주측에 형성되며 제1 나선형 홈(6)과 같은 방향으로 주회하는 복수의 제2 나선형 홈(7)으로 이루어지는 제2 홈군(7A)을 적어도 가진다. 제1 홈군(6A)보다 내주측과 제2 홈군(7A)보다 외주측 중에서, 유체가 끌어넣어지는 측에, 원환상의 랜드부(8)가 마련되어 있다. 제1 홈군(6A)에서의 일부의 제1 나선형 홈(6)과 제2 홈군(7A)에서의 일부의 제2 나선형 홈(7)은, 적어도 한쪽이 일부분에서 다른 쪽에 연통하여 이루어지는 부분 연통부(11)를 개재하여 연속되어 있다.
Description
본 발명은 스러스트 베어링에 관한 것이다. 본원은 2010년 10월 26일에 일본 출원된 특원 2010-239908호에 기초하여 우선권을 주장하고, 그 내용을 여기에 원용한다.
종래 고속 회전체용 베어링으로서 회전축에 설치된 스러스트 컬러에 대향하여 배치되는 스러스트 베어링이 알려져 있다. 스러스트 베어링 중에서 동압(動壓) 효과를 이용하는 스러스트 동압 베어링은, 예를 들면 베어링의 베어링면에 스파이럴 홈을 형성하고, 스러스트 컬러와 베어링면의 사이에 유체 윤활막을 형성함으로써 윤활막을 개재하여 회전축을 지지하고 있다.
스러스트 동압 베어링의 베어링면에 형성되는 스파이럴 홈으로서, 펌프인형, 펌프아웃형 또는 헤링본형이 알려져 있다. 스파이럴 홈은, 예를 들면 펌프인형이나 펌프아웃형에서는 다수의 나선형 홈(스파이럴 형상의 홈)이 동일 피치로 형성되어 있다. 또한, 스파이럴 홈은 모두 동일한 유입각을 갖고 형성되어 있다. 나선형 홈의 일단은 베어링면의 최내주 혹은 최외주에서 랜드부에 의해 폐지(閉止)되고, 타단은 개방되어 있다.
최내주에 랜드부를 갖는 타입은 펌프인형, 최외주에 랜드부를 갖는 타입은 펌프아웃형이라고 불린다. 이들을 고속 회전하는 스러스트 컬러와 조합하면, 스러스트 컬러의 회전에 따라 스러스트 컬러와 베어링의 사이에 개재된 윤활 유체는 자신의 점성에 의해 스러스트 컬러에 끌려간다. 그 결과, 윤활 유체는 홈을 따르도록 흐른다.
예를 들면, 펌프인형의 경우, 베어링면의 최외주에서 윤활 유체를 끌어넣는다. 끌어넣어진 윤활 유체는 베어링의 최외주로부터 홈을 따르도록 최내주 측으로 유도된다(끌어넣어진다). 그 후, 윤활 유체는 홈의 폐지단에서 최내주 랜드부에 올라탄다. 그 때, 급격하게 유로가 좁혀짐으로써 유체 윤활막의 압력(막압)이 높아진다.
그 결과, 펌프인형의 유체 윤활막의 막압은 최내주 랜드부와 홈의 경계부(홈의 폐지단)를 피크(정점)로 한 산형의 분포가 된다. 마찬가지로 펌프아웃형의 유체 윤활막의 막압은 최외주 랜드부와 홈의 경계부(홈의 폐지단)를 피크(정점)로 한 산형의 분포가 된다.
한편, 실제로는 모든 윤활 유체는 홈을 따라 흐르지 않는다. 윤활 유체의 일부는 원주 방향으로 흘러 홈 열 간에 마련된 스파이럴 형상의 랜드부를 타고 넘는다. 이 때문에, 펌프인형에서는 외주측의 나선형 홈과 랜드부의 사이에서도 막압이 발생하고, 펌프아웃형에서는 내주측의 나선형 홈과 랜드부의 사이에서도 막압이 발생한다.
또한, 펌프인형이나 펌프아웃형 이외에도 전술한 헤링본형이나 펌프인형 및 펌프아웃형 등을 조합한 스파이럴 홈을 구비한 베어링이 알려져 있다(예를 들면, 특허문헌 1, 특허문헌 2 참조).
종래의 일반적인 펌프인형이나 펌프아웃형에서는, 전술한 바와 같이 유체 윤활막의 압력(막압) 분포에서 막압이 높아지는 부위가 홈의 폐지단 부근에 집중된다. 즉, 홈의 폐지단 부근에 막압의 피크가 형성된다. 그러나, 계산상으로 유체 윤활막은 피크압을 형성하지만, 실제 피크압은 베어링면의 면 거칠기 등에 의해 이론값에서 벗어나 버린다. 이와 같이 피크압 발생 부위에서 이론상 피크압을 얻을 수 없게 되는 경우, 외란(disturbance) 등에 의해 큰 하중이 작용하면 피크압 발생 부위에서 유체 윤활막이 파단되기 쉬워진다. 그리고, 유체 윤활막이 파단되어 버리면, 베어링면과 스러스트 컬러의 접촉이 일어나 타서 눌어붙는 것이 발생할 가능성이 있다.
또한, 특허문헌 1에 개시된 베어링에서는, 개방단부터 폐지단까지의 사이에 나선형 홈이 연통하고 있고, 또한 내주측과 외주측에서 나선형 홈의 방향이 반대로 되어 있다. 그러나, 유체 윤활막의 압력(막압) 분포에서 막압이 높아지는 부위는 전술한 일반적인 펌프인형 등과 마찬가지로 홈의 폐지단 부근에 집중된다. 따라서, 특허문헌 1에 개시된 베어링에서는 전술한 바와 같이 막압이 높아지는 부위에서 유체 윤활막이 파단하기 쉬워지는 과제는 해소되지 않는다.
또한, 특허문헌 2에 개시된 베어링에서는, 나선형 홈(스파이럴 홈)의 도중에 원환상의 랜드를 마련하여 나선형 홈이 내주측과 외주측으로 2분할되어 있다. 그러나, 나선형 홈을 내주측과 외주측을 랜드에 따라 2분할하면, 유체 윤활막의 압력(막압) 분포에서 막압이 높아지는 부위는 2분할하기 위한 랜드의 부근(외주측의 나선형 홈의 폐지단)에 집중된다. 따라서, 특허문헌 2에 개시된 베어링에서도 전술한 바와 같이 막압이 높아지는 부위에서 유체 윤활막이 파단하기 쉬워지는 과제는 해소되지 않는다.
본 발명은 전술한 사정을 감안하여 이루어진 것으로, 본 발명의 목적은 막압이 높아지는 부위에서도 유체 윤활막이 파단하기 어려워지고, 베어링면과 스러스트 컬러의 접촉이 일어나기 어려워져 타서 눌어붙는 것이 억제된 스러스트 베어링을 제공하는 것에 있다.
본 발명의 스러스트 베어링은 회전축에 설치된 스러스트 컬러에 대향하여 배치되는 스러스트 베어링으로서, 상기 스러스트 컬러에 대향하여 배치되는 베어링면에 홈부가 형성되고, 상기 홈부는, 상기 베어링면의 내주측에 형성된 복수의 제1 나선형 홈으로 이루어지는 제1 홈군과, 상기 제1 홈군보다 상기 베어링면의 외주측에 형성되며 상기 제1 나선형 홈과 같은 방향으로 주회(周回)하는 복수의 제2 나선형 홈으로 이루어지는 제2 홈군을 적어도 가지며, 상기 제1 홈군보다 내주측과 상기 제2 홈군보다 외주측 중에서, 유체가 끌어넣어지는 측에, 원환상의 랜드부가 마련되고, 상기 제1 홈군에서의 일부의 제1 나선형 홈과 상기 제2 홈군에서의 일부의 제2 나선형 홈은, 적어도 한쪽이 일부분에서 다른 쪽에 연통하여 이루어지는 부분 연통부를 개재하여 연속되어 있다.
이 스러스트 베어링에 따르면, 제1 홈군에서의 일부의 제1 나선형 홈과 제2 홈군에서의 일부의 제2 나선형 홈이 부분 연통부를 개재하여 연속되어 있다. 따라서, 예를 들면 이 구조를 펌프인형에 적용한 경우에, 외주측의 제2 홈군에서의 상기 제2 나선형 홈의 일부를 따르도록 흘러온 윤활 유체는 그 일부가 부분 연통부에서 일단 흐름이 막히고, 이 부분 연통부에서 높은 막압을 발생한다. 또한, 그 잔부는 내주측의 제1 홈군에서의 제1 나선형 홈을 통과하여 윤활 유체가 끌어넣어지는 측이 되는 제1 홈군보다 내주측에 마련된 랜드부에 도달하고, 여기서도 높은 막압을 발생한다. 또, 나선형 홈에 따른 주류(主流)에서 벗어난 방류(傍流)는 원주 방향의 흐름이 되어 나선형 홈 간의 랜드를 타고 넘어 막압을 발생시킨다.
상기의 결과, 베어링면 상에 형성되는 윤활 유체로 이루어지는 윤활막의 압력(막압)은, 그 막압 분포가 종래와 같이 1개소에서 높은 막압(피크압)을 가지고 있던 것과 달리 전체적으로 막압이 분산된 압력 분포가 된다. 또한, 막압 분포에서의 최고 막압도 종래에 비해 낮아진다. 따라서, 막압이 높아지는 부위에서 유체 윤활막이 파단하기 어려워진다.
또한, 상기 스러스트 베어링에서는, 상기 제1 홈군에서의 다른 일부의 제1 나선형 홈과 상기 제2 홈군에서의 다른 일부의 제2 나선형 홈 중에서 적어도 한쪽은, 다른 쪽의 홈군의 나선형 홈과 연통하지 않고 독립하여 형성되어도 좋다.
특히, 윤활 유체를 끌어넣는 측이 되는 홈군의 일부의 나선형 홈을 독립되게 형성하면 좋다. 상기 나선형 홈을 따라 흘러온 윤활 유체는, 그 일부가 다른 홈군 측에 연통하지 않기 때문에, 상기 나선형 홈의 종단(폐색단)에서 보다 높은 막압을 발생한다. 따라서, 윤활 유체를 끌어넣는 측이 되는 홈군의 일부의 나선형 홈에 높은 막압을 발생하는 개소를 형성하므로, 막압 분포는 전체적으로 분산된 압력 분포가 된다.
또한, 상기 스러스트 베어링에서는, 상기 제1 홈군의 제1 나선형 홈의 개수와 상기 제2 홈군의 제2 나선형 홈의 개수가 달라도 된다. 상기 제1 홈군에서의 일부의 제1 나선형 홈과 상기 제2 홈군에서의 일부의 제2 나선형 홈의 사이에 부분 연통부가 형성되기 쉬워지고 홈부의 설계가 용이해진다.
본 발명의 스러스트 베어링에 따르면, 윤활 유체로 이루어지는 윤활막의 압력(막압)을 전체적으로 분산된 압력 분포로 하고, 압력 분포에서의 최고 막압도 종래에 비해 낮아진다. 그 결과, 종래의 스파이럴 홈을 형성한 스러스트 베어링과 동등한 베어링 부하 능력을 유지하면서 유체 윤활막을 파단하기 어렵게 할 수 있다. 따라서, 보다 높은 베어링 하중이 작용하더라도 사용할 수 있는 베어링을 얻을 수 있다. 또한, 외란 등에 의한 돌발적인 하중의 작용에 대해서도 충분히 대응할 수 있는 베어링을 얻을 수 있다.
도 1은 본 발명에 관한 스러스트 베어링의 일 실시형태를 도시한 측단면도이다.
도 2는 도 1에 도시된 스러스트 베어링의 베어링면의 평면도이다.
도 3은 나선형 홈의 유입각을 설명하기 위한 모식도이다.
도 4a는 베어링면에서의 홈부를 나선형으로 주회시키지 않고 모식적으로 도시한 도면이다.
도 4b는 베어링면에서의 홈부의 주요부를 모식적으로 도시한 도면이다.
도 5는 유체 윤활막의 압력(막압)의 분포를 도시한 그래프이다.
도 6은 종래의 일반적인 펌프인형 스파이럴 홈을 형성한 베어링면의 평면도이다.
도 2는 도 1에 도시된 스러스트 베어링의 베어링면의 평면도이다.
도 3은 나선형 홈의 유입각을 설명하기 위한 모식도이다.
도 4a는 베어링면에서의 홈부를 나선형으로 주회시키지 않고 모식적으로 도시한 도면이다.
도 4b는 베어링면에서의 홈부의 주요부를 모식적으로 도시한 도면이다.
도 5는 유체 윤활막의 압력(막압)의 분포를 도시한 그래프이다.
도 6은 종래의 일반적인 펌프인형 스파이럴 홈을 형성한 베어링면의 평면도이다.
이하, 도면을 참조하여 본 발명의 스러스트 베어링을 자세하게 설명한다. 또, 이하의 도면에서는 각 부재를 인식 가능한 크기로 하기 위해 각 부재의 축척을 적절히 변경하고 있다.
도 1은 본 발명의 스러스트 베어링의 일 실시형태를 도시한 측단면도이다. 또한, 도 2는 도 1에 도시된 스러스트 베어링의 베어링면의 평면도이다. 도 1 및 도 2에서, 부호 1은 스러스트 베어링이다.
도 1에 도시된 바와 같이, 스러스트 베어링(1)은 예를 들면 터보 차저나 터보 압축기의 회전축(2)의 외주에 삽입되어 배치되어 있다.
스러스트 베어링(1)은 원환상으로 형성되고, 회전축(2)에 고정된 원환상(원판상)의 스러스트 컬러(3)에 대향하여 배치된다. 도 1에서는 스러스트 컬러(3)의 한쪽에만 스러스트 베어링(1)을 나타내고 있지만, 스러스트 컬러(3)의 양쪽 모두에 각각 동일 구성의 스러스트 베어링(1)을 배치해도 된다.
스러스트 베어링(1)은, 본 실시형태에서는 스러스트 컬러(3)에 대향하여 배치되는 베어링판(4)으로 이루어져 있다. 베어링판(4)은 원환판상으로 형성되고, 회전축(2)을 삽입 통과시키기 위한 관통공(4a)을 가진다. 또한, 스러스트 컬러(3)에 대향하는 베어링판(4)의 면을 베어링면(4b)으로 한다. 베어링면(4b)에는, 도 2에 도시된 바와 같이 홈부(5)가 형성되어 있다.
홈부(5)는, 본 실시형태에서는 베어링면(4b)의 내주측에 형성된 복수의 제1 나선형 홈(6)으로 이루어지는 제1 홈군(6A)과, 제1 홈군(6A)보다 베어링면(4b)의 외주측에 형성된 복수의 제2 나선형 홈(7)으로 이루어지는 제2 홈군(7A)을 가지고 구성되어 있다. 제1 나선형 홈(6)과 제2 나선형 홈(7)은 동일한 방향으로 주회하여 형성되어 있다. 즉, 본 실시형태에서는 제1 나선형 홈(6) 및 제2 나선형 홈(7) 모두 베어링면(4b)의 외주측으로부터 내주측으로 향하여 스러스트 컬러(3)의 회전 방향에 따라 나선형상으로 주회하도록 형성되어 있다.
제1 나선형 홈(6) 및 제2 나선형 홈(7)은 모두 회전축(2)의 회전에 따른 스러스트 컬러(3)의 회전에 의해 베어링면(4b)의 외주측으로부터 윤활 유체를 끌어넣고, 끌어넣은 윤활 유체를 각각의 나선형 홈(6(7))을 따르도록 내주측으로 유도된다(끌어넣는다). 즉, 제1 나선형 홈(6) 및 제2 나선형 홈(7)은 모두 펌프인형의 스파이럴 홈으로서 기능하게 되어 있다.
내주측에 형성된 제1 나선형 홈(6)으로 이루어지는 제1 홈군(6A)의 더욱 내주측, 즉 윤활 유체가 끌어넣어지는 측에는, 종래의 펌프인형의 스파이럴 홈의 경우와 마찬가지로 관통공(4a)의 주위에 원환상의 랜드부(8)가 배치되어 있다. 즉, 제1 나선형 홈(6)은 베어링면(4b)의 반경 방향에서의 대략 중앙부부터 랜드부(8)까지 연장되어 형성되어 있다. 랜드부(8)는 제1 나선형 홈(6)의 바닥면에 대해 상대적으로 높은 위치(외측의 위치)에 외면을 갖고 있다.
제1 나선형 홈(6)과 이에 인접하는 제1 나선형 홈(6)의 사이도 나선형의 랜드부(제1 랜드(9))로 되어 있고, 마찬가지로 제2 나선형 홈(7)과 이에 인접하는 제2 나선형 홈(7)의 사이도 나선형의 랜드부(제2 랜드(10))로 되어 있다. 랜드부(8), 제1 랜드(랜드부)(9) 및 제2 랜드(랜드부)(10)는 모두 그 높이가 같아지도록 형성되어 있다. 즉, 최외면이 동일면 상에 위치하도록 형성되어 있다.
또한, 본 실시형태에서는, 모든 제1 나선형 홈(6)은 같은 유입각을 가지며 같은 피치로 형성되어 있다. 마찬가지로 모든 제2 나선형 홈(7)도 같은 유입각을 가지며 같은 피치로 형성되어 있다. 나선형 홈(6(7))의 유입각은, 도 3의 모식도에 도시된 바와 같이 베어링면(4b) 상에 축심을 중심으로 하는 동심원(Q1, Q2…)을 그렸을 때의 나선형 홈(6(7))(의 측벽)과 동심원(Q1, Q2)의 교점(P)에서의 각각의 접선에 기초하여 정의된다. 즉, 나선형 홈(6(7))의 유입각은, 나선형 홈(6(7))의 측벽(외형선)의 접선과 동심원(Q1(Q2))의 접선이 이루는 각(β)에 의해 정의된다. 유입각(β)은 동일한 나선형 홈(6(7))에서는 측벽의 모든 위치에서 일정하게 되어 있다. 다시 말하면, 나선형 홈(6(7))은 측벽의 모든 위치에서 유입각(β)이 일정해지는 형상의 홈으로 되어 있다.
단, 도 2에 도시된 본 실시형태에서는, 제1 나선형 홈(6)의 유입각(β)을 8.5도로 하고 제2 나선형 홈(6)의 유입각(β)을 17도로 하고 있다. 또한, 제1 홈군(6A)의 제1 나선형 홈(6)의 개수를 12개로 하고 제2 홈군(7A)의 제2 나선형 홈(7)의 개수를 24개로 하고 있다. 따라서, 제1 나선형 홈(6)과 제2 나선형 홈(7)은 피치가 다르다. 즉, 제1 나선형 홈(6)과 이에 인접하는 제1 나선형 홈(6)의 사이에 형성된 제1 랜드(9)와, 제2 나선형 홈(7)과 이에 인접하는 제2 나선형 홈(7)의 사이에 형성된 제2 랜드(10)는 위상이 어긋난 배치로 되어 있다(도 4b 참조).
홈부(5)에서는, 제1 홈군(6A)에서의 일부의 제1 나선형 홈(6)과 제2 홈군(7A)에서의 일부의 제2 나선형 홈(7) 중 적어도 한쪽은, 부분적으로 다른 쪽에 연통하는 부분 연통부(11)를 개재하여 연속하도록 형성되어 있다.
도 4a는 베어링면(4b)에서의 홈부(5)를 모식적으로 도시한 도면이다. 이 모식도에서는, 보기 쉽게 하여 이해를 용이하게 하기 위해 제1 나선 홈(6) 및 제2 나선 홈(7)을 나선형으로 주회시키지 않고 단지 방사상으로 배치된 홈(6a, 7a)으로서 나타내고 있다.
도 4a에 도시된 바와 같이, 제1 나선 홈(6)에 대응하는 홈(6a)은 그 양벽이 베어링면(4b)의 중심까지 연장되어 형성된 부채형을 가지고, 그 중심각(θ1)은 18도이다. 또한, 홈(6a)과 이에 인접하는 홈(6a)의 사이에 배치되는 랜드(9a)(제1 랜드(9)에 대응)도 그 양벽이 베어링면(4b)의 중심으로 향하여 연장되어 형성된 부채형을 가지고, 홈(6a)과 마찬가지로 하여 구한 그 중심각(θ3)은 12도이다.
한편, 제2 나선 홈(7)에 대응하는 홈(7a)은 그 양벽이 베어링면(4b)의 중심으로 향하여 연장되어 형성된 부채형을 가지며, 홈(6a)과 마찬가지로 하여 구한 그 중심각(θ2)이 9도이며, 홈(7a)과 이에 인접하는 홈(7a)의 사이에 배치되는 랜드(10a)(제2 랜드(10)에 대응)는 그 양벽이 베어링면(4b)의 중심으로 향하여 연장되어 형성된 부채형을 가지며, 홈(6a)과 마찬가지로 하여 구한 그 중심각(θ4)이 6도이다. 따라서, 베어링면(4b)에는 홈(6a)(제1 나선 홈(6)) 및 랜드(9a)(제1 랜드(9))가 각각 12개씩 형성되고, 홈(7a)(제2 나선 홈(7)) 및 랜드(10a)(제2 랜드(10))가 각각 24개씩 형성된다.
홈(7a)(제2 나선 홈(7))과 홈(6a)(제1 나선 홈(6))은, 그 일부에서 전술한 바와 같이 적어도 한쪽이 다른 쪽에 부분적으로 연통하는 부분 연통부(11)를 개재하여 연속되어 있다. 따라서, 도 4a에서 홈(7a´)은 그 폭 전체가 홈(6a´)의 폭의 일부에 대해서만 연통하고 있다. 즉, 홈(7a´)과 홈(6a´)은 홈(7a´)의 폭에 상당하는 부분 연통부(11)만을 개재하여 연속되어 있다.
단, 실제로 제1 나선 홈(6) 및 제2 나선 홈(7)은 나선형상으로 주회하고 있으며, 서로의 접속 개소가 어긋나 있다. 따라서, 도 4b에 도시된 바와 같이, 제1 나선 홈(6)과 제2 나선 홈(7)은, 그 일부의 제1 나선형 홈(6)과 일부의 제2 나선형 홈(7)이, 서로 일부분에서 다른 쪽에 연통하고, 서로 일부분에서 다른 쪽에 연통하지 않도록 구성된 부분 연통부(11)를 개재하여 연속한다.
또한, 도 4a에서 외주측의 홈(7a)의 일부의 홈(7a″)은 내주측의 홈(6a″)에 연통하지 않고 독립하여 형성되어 있다. 독립된 홈(7a″)은, 도 4b에 도시된 바와 같이 실제로도 독립된 홈(7″)으로서 존재하게 된다.
제1 홈군(6A)에서의 일부의 제1 나선 홈(6)과 제2 홈군(7A)에서의 일부의 제2 나선형 홈(7)은 부분 연통부(11)를 개재하여 연속되어 있다. 그러나, 부분 연통부(11)의 일부는 일부의 제1 나선형 홈(6)과 일부의 제2 나선형 홈(7)이 서로 연통하지 않도록 구성되어 있다. 따라서, 외주측의 제2 나선형 홈(7)을 따르도록 흘러온 윤활 유체는, 그 일부가 부분 연통부(11)(도 4b 참조)에서 일단 흐름이 막히고, 부분 연통부(11)에서 높은 막압이 발생한다.
즉, 일부의 외주측의 제2 나선형 홈(7´)은 내주측의 홈(6´)에 연통하고 있지만, 일부의 외주측의 제2 나선형 홈(7″)은 내주측의 홈(6)에 연통하지 않고 독립하여 형성되어 있다. 따라서, 나선형 홈(7″)을 따라 흘러온 윤활 유체는 나선형 홈(7″)의 종단(폐색단)에서 보다 높은 막압이 발생한다.
즉, 본 실시형태의 스러스트 베어링(1)에서는, 도 1에 도시된 회전축(2)이 회전하여 스러스트 컬러(3)가 회전하면, 베어링면(4b)은 그 외주측으로부터 제2 나선형 홈(7)을 따라 내주측으로 윤활 유체를 끌어넣는다. 그 결과, 스러스트 컬러(3)와 베어링면(4b)의 사이에 윤활 유체로 이루어진 유체 윤활막이 형성된다. 그 때, 전술한 바와 같이 일부의 제1 나선 홈(6(6´))과 일부의 제2 나선형 홈(7(7´))은 부분 연통부(11)를 개재하여 연통하고 있지만, 다른 일부의 제2 나선형 홈(7(7″))은 내주측의 홈(6)에 연통하지 않고 독립하여 형성되어 있다. 따라서, 유체 윤활막은 나선형 홈(7(7″))의 종단(폐색단)에서 보다 높은 막압이 발생한다.
즉, 본 실시형태에서는, 일부의 제1 홈군(6A)과 일부의 제2 홈군(7A)의 사이의 경계부(13)에 부분 연통부(11)를 형성하고, 또 다른 일부의 제2 나선형 홈(7(7″))을 독립된 상태로 형성하고 있다. 이 때문에, 경계부(13) 근방에서 높은 막압이 발생한다. 도 2에서는 경계부(13)를 알기 쉽게 하기 위해 실선으로 나타내고 있지만, 실제로는 제1 홈군(6A)과 제2 홈군(7A)의 사이에 경계선은 존재하지 않는다.
또한, 제2 나선형 홈(7)을 통과한 윤활 유체는 내주측의 제1 나선형 홈(6)을 통과하고, 윤활 유체가 끌어넣어지는 측이 되는 내주측에 마련된 랜드부(8)에 도달한다. 따라서, 여기서도 높은 막압이 발생한다.
또, 일부의 제2 나선형 홈(7(7´))이나 다른 일부의 제2 나선형 홈(7(7″))에 따른 주류에서 벗어난 방류는 원주 방향의 흐름이 되어 제2 랜드(10) 및 제1 랜드(9)를 넘어 막압을 발생시킨다. 또, 방류는 주류에 비해 양이 적다.
따라서, 본 실시형태의 스러스트 베어링(1)에서는, 베어링면(4b) 상에 형성되는 윤활 유체로 이루어진 윤활막의 압력(막압)의 막압 분포는 전체적으로 막압이 분산된 압력 분포가 된다.
도 5는 유체 윤활막의 압력(막압)의 분포를 도시한 그래프이다. 도 5의 그래프에서의 가로축은, 베어링면에서의, 중심으로부터의 반경 방향의 거리(직경방향 위치)를 나타내고 있다(우측으로 갈수록 중심으로부터 멀어진다). 도 5의 그래프에서의 세로축은, 유체 윤활막의 평균 압력(둘레방향 평균 막압)을 나타내고 있다(상측으로 갈수록 높아진다).
또한, 도 5의 그래프에서의 점선은 도 2에 도시된 베어링면(4b)을 갖는 스러스트 베어링(1)의 유체 윤활막의 압력(막압) 분포를 나타내고 있다. 도 5의 그래프에서의 실선은, 도 6에 도시된 종래의 일반적인 펌프인형 스파이럴 홈을 형성한 베어링면을 갖는 스러스트 베어링의, 유체 윤활막의 압력(막압) 분포를 비교를 위해 나타내고 있다.
도 5의 그래프에서의 점선의 (1)은 도 2 중의 랜드(8)의 내주연에서의 압력을 나타내고, 점선의 (2)는 마찬가지로 랜드(8)의 외주연에서의 압력을 나타내고 있다. 또한, 점선의 (3)은 제1 홈군(6A)과 제2 홈군(7A)의 사이의 경계부에서의 압력을 나타내고, 점선의 (4)는 베어링면(4b)의 외주연에서의 압력을 나타내고 있다.
또한, 도 5의 그래프에서의 실선의 (5)는 도 6 중의 랜드(12)의 내주연에서의 압력을 나타내고, 실선의 (6)은 마찬가지로 랜드(12)의 외주연에서의 압력을 나타내고 있다. 또한, 실선의 (7)은 베어링면의 외주연에서의 압력을 나타내고 있다.
도 5에서의 실선으로 도시한 바와 같이, 종래의 일반적인 펌프인형 스파이럴 홈을 형성한 스러스트 베어링에서는, 베어링면의 외주연(7)부터 랜드(12)의 외주연(6)까지의 범위 내에서 베어링면의 외주측으로부터 내주측으로 감에 따라 유체 윤활막의 압력(막압)이 연속적으로 높아지도록 변화하고 있다. 또한, 베어링면 전체에서 보아도 랜드(12)의 외주연(6), 즉 스파이럴 홈이 형성된 영역의 내주단에서 유체 윤활막의 압력(막압)이 가장 높게 되어 있다. 따라서, 종래에서는 랜드(12)의 외주연(6)이 되는 홈의 폐지단 부근에 막압의 피크가 형성된다.
그러나, 전술한 바와 같이 피크압 발생 부위에서는 이론상 피크압을 얻을 수 없게 되기 때문에, 종래에서는 이 부위에서 유체 윤활막이 파단하기 쉬워진다.
이에 대해, 도 5에서의 점선으로 도시한 바와 같이, 본 실시형태의 스러스트 베어링(1)에서는 제1 홈군(6A)과 제2 홈군(7A)의 사이의 경계부(3)부터 랜드(8)의 외주연(2)까지의 범위 내에서 유체 윤활막의 압력(막압)이 비교적 높은 압력을 나타내고, 막압의 압력 분포는 전체적으로 분산된 형상이 된다. 또한, 압력 분포에서의 막압의 피크압(최고 막압)도 종래에 비해 낮게 되어 있다.
본 실시형태의 스러스트 베어링(1)에 따르면, 종래의 막압의 압력 분포가 1개소에서 높은 막압(피크압)을 가지고 있던 것과 달리 본 실시형태의 막압의 압력 분포는 비교적 낮은 피크압이 넓은 범위에 분포한 압력 분포가 된다. 따라서, 종래의 스파이럴 홈을 형성한 스러스트 베어링과 동등한 베어링 부하 능력을 유지하면서 유체 윤활막을 파단하기 어렵게 할 수 있다. 이 때문에, 보다 높은 베어링 하중이 작용하더라도 타서 눌어붙는 것이 발생하지 않고 사용할 수 있는 베어링을 얻을 수 있다. 또한, 외란 등에 의한 돌발적인 하중의 작용에 대해서도 충분히 대응할 수 있는 베어링을 얻을 수 있다.
또한, 스러스트 베어링(1)에서는, 제1 홈군(6A)의 제1 나선형 홈(6)의 개수와 제2 홈군(7A)의 제2 나선형 홈(7)의 개수가 다르다. 따라서, 부분 연통부(11)의 형성이 용이해지고 홈군(6A, 7A)의 설계가 용이해진다.
또, 상기 실시형태에서는, 도 4a의 모식도에서 설명한 바와 같이 제1 홈군(6A)의 제1 나선형 홈(6)의 개수와 제2 홈군(7A)의 제2 나선형 홈(7)의 개수를 다르게 하고, 또 제1 나선형 홈(6)의 유입각(β)과 제2 홈군(7A)의 제2 나선형 홈(7)의 유입각(β)을 다르게 함으로써 부분 연통부(11)를 형성하였다. 또, 제1 나선형 홈(6)에 연통하지 않는, 독립된 제2 나선형 홈(7)을 형성하였다. 그러나, 본 발명은 이에 한정되지 않고, 예를 들면 제1 나선형 홈(6)과 제2 나선형 홈(7)의 사이에서 홈 폭을 다르게 하거나 홈의 깊이를 다르게 함으로써, 높은 막압을 발생하는 부분 연통부(11)를 형성하도록 해도 된다.
또한, 예를 들면 제1 나선형 홈(6)의 개수와 제2 나선형 홈(7)의 개수를 같게 하지만, 그 위상을 바꾸어 제1 나선형 홈(6)과 제2 나선형 홈(7)을 둘레방향을 따라 지그재그 형상으로 교대로 배치함으로써 부분 연통부(11)를 형성하도록 해도 된다. 또, 나선형 홈(6, 7)과 제1 랜드(9), 제2 랜드(10)의 폭 비를 바꿈으로써 부분 연통부(11)를 형성하도록 해도 된다. 물론 제1 나선형 홈(6)과 제2 나선형 홈(7)의 개수, 홈 폭, 깊이, 위상, 그리고, 유입각(β)이나 홈과 랜드의 폭 비를 복수 조합하여 다르게 함으로써 부분 연통부(11)를 형성하고, 또 윤활 유체를 끌어넣는 측이 되는 홈군의 일부에 독립된 나선형 홈을 형성하도록 해도 된다.
단, 제1 나선형 홈(6) 및 제2 나선형 홈(7)은 베어링으로서의 기능상, 원주 방향에서는 패턴이 일정한 규칙성을 갖고 이루어질 필요가 있는 것은 물론이다.
또한, 상기 실시형태에서는 제1 나선형 홈(6) 및 제2 나선형 홈(7)을 모두 펌프인형으로 하였지만, 본 발명은 이에 한정되지 않고, 예를 들면 제1 나선형 홈 및 제2 나선형 홈을 모두 펌프아웃형으로 해도 된다. 그 경우에는, 유체가 끌어넣어지는 측이 되는 외주측에 원환상의 랜드부를 형성한다.
또한, 본 발명은 펌프인형의 스파이럴 홈과 펌프아웃형의 스파이럴 홈을 모두 형성한 일반적인 헤링본에 대해 적용할 수도 있다. 구체적으로 일반적인 헤링본에 있어서, 그 펌프인형의 스파이럴 홈 부분을 본 발명의 제1 나선형 홈(6) 및 제2 나선형 홈(7)으로 이루어진 구조로 치환해도 된다. 마찬가지로 헤링본에서의 펌프아웃형의 스파이럴 홈을, 본 발명의 제1 나선형 홈 및 제2 나선형 홈으로 이루어진 구조로 치환해도 된다. 또, 헤링본에서의 펌프인형의 스파이럴 홈 및 펌프아웃형의 스파이럴 홈 모두를, 본 발명의 제1 나선형 홈 및 제2 나선형 홈으로 이루어진 구조로 치환해도 된다. 상기 구조로 이루어진 헤링본 타입의 스러스트 베어링에서도 종래에 비해 유체 윤활막을 파단하기 어렵게 할 수 있다.
또한, 상기 실시형태에서는 제1 홈군과 제2 홈군에 의해 홈부를 구성하였지만, 본 발명은 이에 한정되지 않고, 3개 이상의 홈군에 의해 홈부를 구성해도 된다.
또한, 상기 실시형태에서는 제1 홈군의 제1 나선형 홈과 제2 홈군의 제2 나선형 홈의 경계를, 베어링면의 반경 방향에서의 대략 중앙부, 즉 이 대략 중앙부에 위치하는 동심원 상으로 하였다. 그러나, 제1 나선형 홈과 제2 나선형 홈의 경계는, 모두가 상기 대략 중앙부에 위치하는 동심원 상에 있을 필요는 없다. 상기 경계는 복수의 동심원 상에 분산하여 위치되어 있어도 된다.
본 발명의 스러스트 베어링에 따르면, 윤활 유체로 이루어지는 윤활막의 압력(막압)을 전체적으로 분산한 압력 분포로 하고, 압력 분포에서의 최고 막압도 종래에 비해 낮아진다. 그 결과, 종래의 스파이럴 홈을 형성한 스러스트 베어링과 동등한 베어링 부하 능력을 유지하면서 유체 윤활막을 파단하기 어렵게 할 수 있다. 따라서, 보다 높은 베어링 하중이 작용해도 사용할 수 있는 베어링을 얻을 수 있다. 또한, 외란 등에 의한 돌발적인 하중의 작용에 대해서도 충분히 대응할 수 있는 베어링을 얻을 수 있다.
1…스러스트 베어링, 2…회전축, 3…스러스트 컬러, 4…베어링판, 4b…베어링면, 5…홈부, 6…제1 나선형 홈, 6A…제1 홈군, 6a, 6a´, 6a″…홈, 7…제2 나선형 홈, 7A…제2 홈군, 7a, 7a´, 7a″…홈, 8…랜드부, 9…제1 랜드, 10…제2 랜드, 11…부분 연통부
Claims (4)
- 회전축에 설치된 스러스트 컬러에 대향하여 배치되는 스러스트 베어링으로서,
상기 스러스트 컬러에 대향하여 배치되는 베어링면에 홈부가 형성되고,
상기 홈부는, 상기 베어링면의 내주측에 형성된 복수의 제1 나선형 홈으로 이루어지는 제1 홈군과, 상기 제1 홈군보다 상기 베어링면의 외주측에 형성되며 상기 제1 나선형 홈과 같은 방향으로 주회(周回)하는 복수의 제2 나선형 홈으로 이루어지는 제2 홈군을 적어도 가지며,
상기 제1 홈군보다 내주측과 상기 제2 홈군보다 외주측 중에서, 유체가 끌어넣어지는 측에, 원환상의 랜드부가 마련되고,
상기 제1 홈군에서의 일부의 제1 나선형 홈과 상기 제2 홈군에서의 일부의 제2 나선형 홈은, 적어도 한쪽이 일부분에서 다른 쪽에 연통하여 이루어지는 부분 연통부를 개재하여 연속되어 있는 스러스트 베어링. - 청구항 1에 있어서,
상기 제1 홈군에서의 다른 일부의 제1 나선형 홈과 상기 제2 홈군에서의 다른 일부의 제2 나선형 홈 중에서 적어도 한쪽은, 다른 쪽의 홈군의 나선형 홈과 연통하지 않고 독립하여 형성되어 있는 스러스트 베어링. - 청구항 1에 있어서,
상기 제1 홈군의 제1 나선형 홈의 개수와 상기 제2 홈군의 제2 나선형 홈의 개수가 다른 스러스트 베어링. - 청구항 2에 있어서,
상기 제1 홈군의 제1 나선형 홈의 개수와 상기 제2 홈군의 제2 나선형 홈의 개수가 다른 스러스트 베어링.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010239908 | 2010-10-26 | ||
JPJP-P-2010-239908 | 2010-10-26 | ||
PCT/JP2011/074011 WO2012056961A1 (ja) | 2010-10-26 | 2011-10-19 | スパイラル溝スラスト軸受 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130094319A true KR20130094319A (ko) | 2013-08-23 |
KR101440608B1 KR101440608B1 (ko) | 2014-09-15 |
Family
ID=45993674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137009805A KR101440608B1 (ko) | 2010-10-26 | 2011-10-19 | 스파이럴 홈 스러스트 베어링 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8764296B2 (ko) |
EP (1) | EP2634441A4 (ko) |
JP (1) | JP5516748B2 (ko) |
KR (1) | KR101440608B1 (ko) |
WO (1) | WO2012056961A1 (ko) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9650913B2 (en) | 2015-03-09 | 2017-05-16 | Caterpillar Inc. | Turbocharger turbine containment structure |
US9683520B2 (en) | 2015-03-09 | 2017-06-20 | Caterpillar Inc. | Turbocharger and method |
US9879594B2 (en) | 2015-03-09 | 2018-01-30 | Caterpillar Inc. | Turbocharger turbine nozzle and containment structure |
US9903225B2 (en) | 2015-03-09 | 2018-02-27 | Caterpillar Inc. | Turbocharger with low carbon steel shaft |
US9915172B2 (en) | 2015-03-09 | 2018-03-13 | Caterpillar Inc. | Turbocharger with bearing piloted compressor wheel |
US9822700B2 (en) | 2015-03-09 | 2017-11-21 | Caterpillar Inc. | Turbocharger with oil containment arrangement |
US9752536B2 (en) | 2015-03-09 | 2017-09-05 | Caterpillar Inc. | Turbocharger and method |
US9739238B2 (en) | 2015-03-09 | 2017-08-22 | Caterpillar Inc. | Turbocharger and method |
US10066639B2 (en) | 2015-03-09 | 2018-09-04 | Caterpillar Inc. | Compressor assembly having a vaneless space |
US9810238B2 (en) | 2015-03-09 | 2017-11-07 | Caterpillar Inc. | Turbocharger with turbine shroud |
US9890788B2 (en) | 2015-03-09 | 2018-02-13 | Caterpillar Inc. | Turbocharger and method |
US9732633B2 (en) | 2015-03-09 | 2017-08-15 | Caterpillar Inc. | Turbocharger turbine assembly |
US10006341B2 (en) | 2015-03-09 | 2018-06-26 | Caterpillar Inc. | Compressor assembly having a diffuser ring with tabs |
US9777747B2 (en) | 2015-03-09 | 2017-10-03 | Caterpillar Inc. | Turbocharger with dual-use mounting holes |
US9638138B2 (en) | 2015-03-09 | 2017-05-02 | Caterpillar Inc. | Turbocharger and method |
DE102015211042A1 (de) * | 2015-06-16 | 2016-12-22 | Robert Bosch Gmbh | Vorrichtung zum Komprimieren eines Fluids und Herstellungsverfahren für eine Vorrichtung zum Komprimieren eines Fluids |
CN106979227B (zh) * | 2017-05-17 | 2023-06-02 | 西安工业大学 | 多孔集成节流的整体式气体静压轴承 |
US11353057B2 (en) | 2019-12-03 | 2022-06-07 | Elliott Company | Journal and thrust gas bearing |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL143660B (nl) * | 1965-03-27 | 1974-10-15 | Philips Nv | Axiaal leger. |
JPS5114557A (ja) * | 1974-07-25 | 1976-02-05 | Koyo Seiko Co | Suiryokujikuke |
JPS61167714A (ja) * | 1985-01-21 | 1986-07-29 | Ebara Corp | スラスト軸受 |
US5328272A (en) | 1991-12-23 | 1994-07-12 | International Business Machines | Spindle system for a disk drive |
JPH06117432A (ja) * | 1992-09-30 | 1994-04-26 | Nippon John Kureen Kk | 双方向動圧流体軸受 |
JP3514958B2 (ja) * | 1996-12-13 | 2004-04-05 | 三星電子株式会社 | 流体ベアリング装置 |
US7160031B2 (en) * | 2003-11-20 | 2007-01-09 | Matsushita Electric Industrial Co., Ltd. | Thrust dynamic pressure bearing, spindle motor using the same, and information recording and reproducing apparatus using them |
CN100357620C (zh) * | 2004-08-14 | 2007-12-26 | 鸿富锦精密工业(深圳)有限公司 | 流体动压轴承 |
JP4418531B2 (ja) * | 2004-09-09 | 2010-02-17 | 日本電産株式会社 | 流体動圧軸受装置及びスピンドルモータ |
WO2006034120A2 (en) * | 2004-09-17 | 2006-03-30 | Massachusetts Institute Of Technology | Integrated bst microwave tunable devices using buffer layer transfer method |
KR100630709B1 (ko) * | 2004-11-03 | 2006-10-02 | 삼성전자주식회사 | 유체 동압 베어링 및 이를 채용한 하드 디스크 드라이브 |
JP4803733B2 (ja) | 2006-08-03 | 2011-10-26 | 学校法人東海大学 | 溝付き動圧スラスト気体軸受およびその製造方法 |
DE102007008860B4 (de) * | 2007-02-23 | 2013-10-31 | Minebea Co., Ltd. | Fluiddynamisches Lager mit Druck erzeugenden Oberflächenstrukturen |
US8743505B2 (en) * | 2008-05-26 | 2014-06-03 | Nidec Corporation | Fluid dynamic bearing apparatus with specific minute gap structure with spindle motor and disk drive apparatus including same |
US20110019303A1 (en) * | 2008-05-26 | 2011-01-27 | Nidec Corporation | Fluid dynamic bearing apparatus, spindle motor, and disk drive apparatus |
JP5401637B2 (ja) * | 2008-05-26 | 2014-01-29 | 日本電産株式会社 | 流体動圧軸受装置、スピンドルモータ、及びディスク駆動装置 |
DE102009022536A1 (de) * | 2009-05-25 | 2010-12-02 | Minebea Co., Ltd. | Fluiddynamisches Lagersystem |
-
2011
- 2011-10-19 WO PCT/JP2011/074011 patent/WO2012056961A1/ja active Application Filing
- 2011-10-19 KR KR1020137009805A patent/KR101440608B1/ko active IP Right Grant
- 2011-10-19 JP JP2012540798A patent/JP5516748B2/ja not_active Expired - Fee Related
- 2011-10-19 US US13/824,025 patent/US8764296B2/en not_active Expired - Fee Related
- 2011-10-19 EP EP11836097.3A patent/EP2634441A4/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
US8764296B2 (en) | 2014-07-01 |
WO2012056961A1 (ja) | 2012-05-03 |
EP2634441A1 (en) | 2013-09-04 |
JPWO2012056961A1 (ja) | 2014-05-12 |
KR101440608B1 (ko) | 2014-09-15 |
EP2634441A4 (en) | 2015-08-05 |
JP5516748B2 (ja) | 2014-06-11 |
US20130195631A1 (en) | 2013-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101440608B1 (ko) | 스파이럴 홈 스러스트 베어링 | |
CN105683633B (zh) | 密封圈 | |
US7775528B2 (en) | Bi-directional pattern for dynamic seals | |
EP2896853B1 (en) | Slide part | |
CN104334938A (zh) | 滑动部件 | |
CA2833569C (en) | Bearing assembly with inner ring | |
EP3543552B1 (en) | Sliding members | |
JP4638296B2 (ja) | 流体動圧軸受 | |
KR101262434B1 (ko) | 쌍방향 펌핑요소 패턴을 가진 동적 실 | |
CN104913066A (zh) | 似叠罗汉复合槽深型槽气体润滑端面机械密封结构 | |
JP2006052847A6 (ja) | 流体動圧軸受 | |
CN101614239B (zh) | 一种低温升的水润滑动静压轴承 | |
JP6798776B2 (ja) | シールリング | |
CN106286596A (zh) | 一种考虑热流固耦合含有渐变织构的液体静压推力轴承 | |
CN106050728A (zh) | 一种内壁仿龙卷风螺旋沟槽复合结构的密封腔体 | |
CN205350360U (zh) | 一种可双向旋转的液膜密封端面槽型结构 | |
CN102588601B (zh) | 仿花草流体型槽端面机械密封结构 | |
US20090161998A1 (en) | Method for optimizing a grooved bearing pattern on a bearing surface of a fluid dynamic bearing for the purpose of improving the bearing properties and an appropriate grooved bearing pattern | |
JP2014126139A (ja) | 非接触環状シール | |
CN100370159C (zh) | 流体轴承 | |
KR20200076740A (ko) | 가변 정익 및 압축기 | |
CN212251137U (zh) | 一种带有副堰区的机械密封端面结构 | |
CN105202190A (zh) | 一种浅槽机械密封 | |
US9057375B2 (en) | Compressor with low friction sealing | |
US20130149142A1 (en) | Sliding Bearing and Pump Device Using the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |