KR20130071055A - Preparation method of cztse thin film and cztse thin film prepared the same - Google Patents

Preparation method of cztse thin film and cztse thin film prepared the same Download PDF

Info

Publication number
KR20130071055A
KR20130071055A KR1020110138361A KR20110138361A KR20130071055A KR 20130071055 A KR20130071055 A KR 20130071055A KR 1020110138361 A KR1020110138361 A KR 1020110138361A KR 20110138361 A KR20110138361 A KR 20110138361A KR 20130071055 A KR20130071055 A KR 20130071055A
Authority
KR
South Korea
Prior art keywords
thin film
cztse
deposited
substrate
temperature
Prior art date
Application number
KR1020110138361A
Other languages
Korean (ko)
Other versions
KR101358055B1 (en
Inventor
곽지혜
윤재호
안세진
윤경훈
정성훈
신기식
안승규
조아라
박상현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020110138361A priority Critical patent/KR101358055B1/en
Publication of KR20130071055A publication Critical patent/KR20130071055A/en
Application granted granted Critical
Publication of KR101358055B1 publication Critical patent/KR101358055B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE: CZTSe group thin film manufactured by manufacturing method of a CZTSe group and method thereof for a solar cell are provided to uniform element distribution by minimizing loss and phase separation of Sn. CONSTITUTION: Cu, Zn, Sn and Se are deposited on a substrate according to a co-evaporation process. Cu and Se are additionally deposited on the thin film. The additional deposition of Cu and Se is performed at substrate temperature of 150 to 320°C. Se is additionally deposited on the thin film at high temperature condition. The additional deposition of Se is performed at substrate temperature of 400 to 600°C.

Description

태양전지용 CZTSe계 박막의 제조방법 및 그 방법에 의해 제조된 CZTSe계 박막{PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME}FIELD OF THE INVENTION A method for manufacturing a CSTE thin film for a solar cell and a CST thin film manufactured by the method {PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME}

본 발명은 동시진공증발을 이용한 태양전지용 CZTSe계 박막의 제조방법 및 그 방법에 의해 제조된 CZTSe계 박막에 관한 것으로, 보다 상세하게는, Cu-Se 인캡슐레이션(encapsulation) 단계를 도입하여 동시진공증발공정 중 고온에서 발생하는 Sn 손실을 최소화하고, 박막 내 원소분포를 균일화하는 방법에 관한 것이다. The present invention relates to a method for manufacturing a CZTSe-based thin film for solar cells using co-vacuum evaporation, and to a CZTSe-based thin film manufactured by the method, and more particularly, to introducing co-vacuum by introducing a Cu-Se encapsulation step. The present invention relates to a method for minimizing Sn loss generated at high temperature during the evaporation process and uniformizing element distribution in the thin film.

최근 심각한 환경오염 문제와 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환시키는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적인 수명을 가지고 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, serious environmental pollution problem and depletion of fossil energy are increasing importance for next generation clean energy development. Among them, solar cells are devices that convert solar energy directly into electrical energy, and are expected to be an energy source that can solve future energy problems because it has fewer pollution, has endless resources, and has a semi-permanent lifetime.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS계(CuInSe2, CuIn1 - xGaxSe2, CuIn1 - xGaxS2 등)에 대한 연구가 활발하게 진행되고 있다.Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon. However, as prices have soared recently due to a shortage of silicon, interest in thin-film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter, so the application range is wide. Such thin film solar cell materials include amorphous silicon, CdTe, and CIS (CuInSe 2 , CuIn 1 - x Ga x Se 2 , CuIn 1 - x Ga x S 2). Etc.) is being actively researched.

CIS계 박막은 Ⅰ-Ⅲ-Ⅳ 화합물 반도체 중의 하나이며, 이중 CIGS 태양전지는 실험실적으로 만든 박막 태양전지 중에서 가장 높은 변환효율(약 20.3%)을 기록하고 있다. 특히 10 마이크론 이하의 두께로 제작이 가능하고, 장시간 사용시에도 안정적인 특성이 있어, 실리콘을 대체할 수 있는 저가의 고효율 태양전지로 기대되고 있다.CIS-based thin film is one of the I-III-IV compound semiconductors, and the CIGS solar cell has the highest conversion efficiency (about 20.3%) among laboratory thin film solar cells. In particular, it can be manufactured with a thickness of less than 10 microns, and has a stable characteristic even when used for a long time, and is expected to be a low-cost high-efficiency solar cell that can replace silicon.

또한, CIS계 박막은 직접 천이형 반도체로서 박막화가 가능하고 비교적 광변환에 적합한 밴드갭을 가질 뿐 아니라, 알려진 태양전지 재료 중 큰 광흡수계수 값을 나타내는 재료로 각광받고 있다.In addition, the CIS-based thin film is a direct transition semiconductor that can be thinned and has a bandgap that is relatively suitable for light conversion, and has been spotlighted as a material showing a large light absorption coefficient value among known solar cell materials.

그러나 이에 사용되는 In은 상대적 매장량이 적은 희소원소로 디스플레이 산업에 이용되는 ITO 소재의 수요에 의해 그 가격도 상승 추세에 있어 양산화에 하나의 걸림돌로 작용할 수 있다. 이를 극복하고 저가 태양전지 개발에 이용하기 위해 희소원소인 In과 Ga을 범용원소인 Zn 및 Sn으로 대체하는 Cu2ZnSnSe4 (CZTSe) 및 Cu2ZnSnS4 (CZTS)와 같은 화합물 반도체가 CIGS계 박막 재료의 대안으로써 활발히 연구되고 있는데, 이들은 0.8 eV (CZTSe)부터 1.5 eV (CZTS)까지의 에너지 밴드갭을 갖는 것으로 알려져 있다. 이는 태양광 스펙트럼에 적합한 고효율 태양전지 제조에 유리할 뿐만 아니라 pn 접합을 위해 저독성 버퍼인 ZnS층 적용도 용이하여 CIGS계 태양전지가 가지는 여타 약점을 동시에 극복할 수 있을 것으로 기대된다.However, In is a rare element with a relatively small reserve, and its price is also on the rise due to the demand of ITO materials used in the display industry, which may act as an obstacle to mass production. Cu 2 ZnSnSe 4 replacing scarcity elements In and Ga with universal elements Zn and Sn to overcome this problem and use them in developing low-cost solar cells Compound semiconductors such as (CZTSe) and Cu 2 ZnSnS 4 (CZTS) are being actively studied as alternatives to CIGS-based thin film materials, which are known to have energy bandgaps from 0.8 eV (CZTSe) to 1.5 eV (CZTS). . This is not only advantageous for manufacturing a high efficiency solar cell suitable for the solar spectrum, but also easy to apply a low toxicity buffer ZnS layer for pn junction is expected to overcome other weaknesses of CIGS-based solar cell at the same time.

CZTSe계 박막은 동시진공증발공정이나 스퍼터링 및 셀렌화 열처리 방법, 혹은 비진공 방식 등을 이용하여 제조할 수 있는데, 이 중 동시진공증발공정은 조성조절이 용이한 장점을 가짐에도 다른 방법들에 비해 상대적으로 연구의 결과가 적다. 이는 동시진공증발 공정 중 Sn이 Se와 만나 증발되고 증착되지 못하여 박막 내 Sn 손실을 발생시켜 박막 성장에 요구되는 고온의 기판온도를 공정에 적용하는데 어려움이 있기 때문이다. CZTSe-based thin films can be manufactured using a co-vacuum evaporation process, sputtering and selenization heat treatment methods, or a non-vacuum method. Among them, the co-vacuum evaporation process has an advantage of easy composition control, compared to other methods. Relatively few studies are available. This is because it is difficult to apply the high temperature substrate temperature required for thin film growth in the process by generating Sn loss in the thin film because Sn cannot be evaporated and deposited during the simultaneous vacuum evaporation process.

본 발명의 목적은 태양전지용 CZTSe계 박막의 제조방법에 있어서, 동시진공증발공정을 이용하면서, Cu-Se 인캡슐레이션 단계를 도입하여 높은 기판온도에서의 진공증발공정에 의해 Sn이 손실되는 것을 최소화하고, 박막 내 원소 분포를 균일하게 하여 궁극적으로 에너지 변환효율이 높은 태양전지용 CZTSe계 박막을 제공하는 데 있다.An object of the present invention is to minimize the loss of Sn by the vacuum evaporation process at a high substrate temperature by introducing a Cu-Se encapsulation step in the method of manufacturing a CZTSe-based thin film for solar cells, using a simultaneous vacuum evaporation process In addition, it is to provide a CZTSe-based thin film for solar cells which has a high energy conversion efficiency by uniformly distributing the elements in the thin film.

상기 목적을 달성하기 위한 본 발명의 태양전지용 CZTSe계 박막의 제조방법은, 기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하는 단계(단계 a); 상기 박막상에 Cu와 Se을 추가로 증착시키는 Cu-Se 인캡슐레이션 단계(단계 b); 및 Method for producing a CZTSe-based thin film for solar cells of the present invention for achieving the above object, the step of depositing Cu, Zn, Sn and Se on the substrate by a co-vacuum evaporation method (step a); Cu-Se encapsulation step (step b) to further deposit Cu and Se on the thin film; And

상기 단계들을 거친 박막에 Se을 상기 단계들보다 높은 온도조건에서 추가 증착하는 단계(단계 c);를 포함한다.And further depositing Se on the thin film having undergone the above steps at a higher temperature than the above steps (step c).

상기 단계 a의 증착은, 150 내지 320℃의 기판온도에서 수행할 수 있다.The deposition of step a may be performed at a substrate temperature of 150 to 320 ℃.

상기 단계 b의 증착은, 150 내지 320℃의 기판온도에서 수행할 수 있다.The deposition of step b may be performed at a substrate temperature of 150 to 320 ℃.

상기 단계 c는, 기판온도 400 내지 600℃ 범위에서 수행할 수 있다.The step c may be performed at a substrate temperature of 400 to 600 ℃ range.

상기 목적을 달성하기 위한 본 발명의 태양전지용 CZTSe계 박막은, 기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하여 박막을 형성하고, 상기 박막상에 Cu와 Se을 추가 증착한 후, Se을 상기 증착보다 높은 온도조건에서 추가 증착하여 제조된다.CZTSe-based thin film for solar cells of the present invention for achieving the above object, by depositing Cu, Zn, Sn and Se on the substrate by a co-vacuum evaporation method to form a thin film, and further deposited Cu and Se on the thin film After that, Se is prepared by further deposition at a higher temperature than the deposition.

상기 목적을 달성하기 위한 본 발명의 태양전지는, 기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하여 박막을 형성하고, 상기 박막상에 Cu와 Se을 추가 증착한 후, Se을 상기 증착보다 높은 온도조건에서 추가 증착하여 제조된 태양전지용 CZTSe계 박막을 포함한다.In the solar cell of the present invention for achieving the above object, by depositing Cu, Zn, Sn and Se on the substrate by a co-vacuum evaporation method to form a thin film, after further depositing Cu and Se on the thin film, It includes a CZTSe-based thin film for solar cells prepared by further depositing Se at a higher temperature than the deposition.

본 발명의 CZTSe계 박막의 제조는 동시진공증발공정에 Cu-Se 인캡슐레이션 단계를 도입함으로써 박막 내 Sn의 손실 및 상분리를 최소화하여 원소 분포를 균일하게 하고, 궁극적으로 이를 포함한 태양전지의 에너지 변환효율을 높일 수 있다.In the production of the CZTSe-based thin film of the present invention, by introducing a Cu-Se encapsulation step in a co-vacuum evaporation process, the loss and phase separation of Sn in the thin film are minimized to uniform the element distribution, and ultimately, the energy conversion of the solar cell including the same. The efficiency can be improved.

도 1은 본 발명의 실시예에 따른 공정상 온도 및 시간 프로파일 곡선이다.
도 2는 본 발명의 비교예에 따른 공정상 온도 및 시간 프로파일 곡선이다.
도 3은 본 발명의 실시예에 따라 제조된 CZTSe계 박막의 AES 곡선이다.
도 4는 본 발명의 비교예에 따라 제조된 CZTSe계 박막의 AES 곡선이다.
도 5는 본 발명의 실시예에 따라 제조된 CZTSe계 박막의 XRD 분석 그래프이다.
도 6은 본 발명의 비교예에 따라 제조된 CZTSe계 박막의 XRD 분석 그래프이다.
1 is a process temperature and time profile curve in accordance with an embodiment of the present invention.
2 is a process temperature and time profile curve according to a comparative example of the present invention.
3 is an AES curve of a CZTSe-based thin film prepared according to an embodiment of the present invention.
4 is an AES curve of a CZTSe-based thin film prepared according to a comparative example of the present invention.
5 is an XRD analysis graph of a CZTSe-based thin film prepared according to an embodiment of the present invention.
6 is an XRD analysis graph of a CZTSe-based thin film prepared according to a comparative example of the present invention.

이하 본 발명의 태양전지용 CZTSe계 박막의 제조방법을 설명한다.Hereinafter, a method of manufacturing the CZTSe-based thin film for solar cells of the present invention will be described.

본 발명의 태양전지용 CZTSe계 박막의 제조방법은 총 세단계로 나누어 볼 수 있다.The manufacturing method of the CZTSe-based thin film for solar cells of the present invention can be divided into three steps.

먼저, 동시진공증발공정을 이용하여 기판상에 Cu, Zn, Sn 및 Se를 증착한다 (단계 a).First, Cu, Zn, Sn and Se are deposited on the substrate using a co-vacuum evaporation process (step a).

상기 증착은 상대적으로 저온인 기판 온도 150 내지 320℃에서 수행하며, 증착되는 Cu, Zn, Sn 및 Se 각각의 양은 원하는 조성에 따라 에퓨젼 셀(effusion cell)의 온도 변화를 통한 증착율 및 증착시간 조절로써 가능하다.The deposition is performed at a relatively low substrate temperature of 150 to 320 ℃, the amount of each of Cu, Zn, Sn and Se to be deposited is controlled by the deposition rate and deposition time through the temperature change of the fusion cell (effusion cell) according to the desired composition Is possible.

다음으로, 상기 박막상에 Cu와 Se을 추가로 증착한다(단계 b).Next, Cu and Se are further deposited on the thin film (step b).

이때, 증착시 온도는 상기 단계 a와 동일한 범위로 유지하는 것이 바람직하다.At this time, the deposition temperature is preferably maintained in the same range as the step a.

마지막으로, 상기 단계에 의해 증착된 박막에 Se을 추가 증착한다(단계 c).Finally, Se is further deposited on the thin film deposited by the above step (step c).

이때, 셀레늄 셀 온도는 상온에서 증착율 5 내지 60/s가 되도록 조절하는 것이 바람직하며, 기판 온도는 상대적으로 상기 단계들에 비해 고온인 400 내지 600℃ 범위로 유지하는 것이 바람직하다.
At this time, the selenium cell temperature is preferably adjusted to a deposition rate of 5 to 60 / s at room temperature, and the substrate temperature is preferably maintained in the range of 400 to 600 ℃ relatively high temperature compared to the above steps.

본 발명은 상기 제조방법에 따라 제조된 CZTSe계 박막을 제공한다.
The present invention provides a CZTSe-based thin film prepared according to the above production method.

또한, 본 발명은 상기 제조방법에 따라 제조된 CZTSe계 박막을 광흡수층으로 이용하는 태양전지를 제공한다.
In addition, the present invention provides a solar cell using the CZTSe-based thin film prepared according to the manufacturing method as a light absorption layer.

먼저, 소다라임 유리기판에 DC 스퍼터링 방법으로 몰리브덴 후면 전극을 약 1㎛의 두께로 증착하였다. 상기 유리기판상에 Cu, Zn, Sn, Se을 동시진공증발법으로 320°C의 기판온도에서 45분간 증착한 후, Cu, Se을 15분간 더 증착하였다. 동일 장비 내에서 연속 공정으로 기판온도를 500℃ 까지 상승시킨 후 Se을 20분간 추가로 증착하였다. 이때 각각의 에퓨젼 셀의 온도는 Cu 1380℃, Zn 335℃, Sn 1480℃, Se 210℃로 하였다.First, a molybdenum back electrode was deposited on a soda-lime glass substrate with a thickness of about 1 μm by DC sputtering. Cu, Zn, Sn, Se on the glass substrate was deposited for 45 minutes at a substrate temperature of 320 ° C by co-evaporation, and then, Cu, Se was further deposited for 15 minutes. After increasing the substrate temperature to 500 ℃ in a continuous process in the same equipment, Se was further deposited for 20 minutes. At this time, the temperature of each fusion cell was Cu 1380 ° C, Zn 335 ° C, Sn 1480 ° C, Se 210 ° C.

실시예 1에 따른 CZTSe계 박막의 제조공정상 온도 및 시간 프로파일 곡선은 도 1에 나타낸 바와 같다.
Temperature and time profile curves of the CZTSe-based thin film according to Example 1 during the manufacturing process are shown in FIG. 1.

[비교예 1]Comparative Example 1

상기 실시예 1과 동일한 기판을 준비하여, Cu, Zn, Sn, Se을 동시진공증발법으로 500℃의 기판에서 60분간 증착하였다. 에퓨젼 셀의 온도 조절을 통해 각 원소의 비율을 조절하고 최적화하였으며, 이때 각각의 에퓨젼 셀의 온도는 Cu 1480℃, Zn 335℃, Sn 1480℃, Se 210℃로 하였다.The same substrate as in Example 1 was prepared, and Cu, Zn, Sn, and Se were deposited on a substrate at 500 ° C. for 60 minutes by a co-vacuum evaporation method. The ratio of each element was adjusted and optimized through temperature control of the fusion cell, and the temperature of each fusion cell was set to Cu 1480 ° C, Zn 335 ° C, Sn 1480 ° C, and Se 210 ° C.

비교예 1에 따른 CZTSe계 박막의 제조공정상 온도 및 시간 프로파일 곡선은 도 2에 나타낸 바와 같다.
Temperature and time profile curves during the manufacturing process of the CZTSe-based thin film according to Comparative Example 1 are as shown in FIG. 2.

시험예Test Example 1:  One: CZTSeCZTSe 계 박막 조성의 Of thin film composition EDSEDS  And AESAES 분석 analysis

상기 실시예 1 및 비교예 2에 따라 제조된 CZTSe계 박막의 조성을 EDS(Energy Dispersive Spectroscopy) 및 AES(Auger Electron Spectroscopy)에 의해 분석하였다. 이에 따른 EDS 분석결과를 하기 표 1에 나타내었으며, AES 분석 곡선을 도 3 및 도 4에 나타내었다. 이때, AES 곡선에서의 스퍼터링 시간은 박막 표면으로부터의 거리에 비례한다.
Compositions of the CZTSe-based thin films prepared according to Example 1 and Comparative Example 2 were analyzed by EDS (Energy Dispersive Spectroscopy) and AES (Auger Electron Spectroscopy). The results of the EDS analysis are shown in Table 1 below, and the AES analysis curves are shown in FIGS. 3 and 4. At this time, the sputtering time in the AES curve is proportional to the distance from the thin film surface.

At.%At.% CuCu ZnZn SnSn SeSe 실시예 1Example 1 21.2521.25 26.7026.70 9.069.06 42.9942.99 비교예 1Comparative Example 1 42.1842.18 21.5421.54 00 36.2936.29

상기 표 1, 도 3 및 도 4에 따르면, 비교예 1에서는 상분리에 의해 원소의 조성이 박막 내에서 균일하지 못할 뿐 아니라, Sn이 손실된 것을 확인할 수 있었다. 이에 반해, 실시예 1에서는 박막 내 원소의 조성이 표면거리에 관계없이 비교적 균일하게 나타났으며, Sn 또한 박막 내 남아서 비교적 균일한 조성을 갖는 것을 확인할 수 있었다.
According to Table 1, FIG. 3 and FIG. 4, in Comparative Example 1, the composition of the element was not uniform in the thin film due to phase separation, and it was confirmed that Sn was lost. On the contrary, in Example 1, the composition of the elements in the thin film appeared relatively uniform regardless of the surface distance, and it was confirmed that Sn also remained in the thin film and had a relatively uniform composition.

시험예Test Example 2:  2: CZTSeCZTSe 계 박막의 Thin film XRDXRD 에 의한 결정구조 분석Crystal structure analysis

상기 실시예 1 및 비교예 1에 따라 제조된 CZTSe계 박막을 XRD(X-Ray Diffraction)분석하여 도 5 및 도 6에 각각 나타내었다.X-ray diffraction (XRD) analysis of the CZTSe-based thin films prepared according to Example 1 and Comparative Example 1 is shown in FIGS. 5 and 6, respectively.

도 5 및 도 6에 따르면, 실시예 1에 따라 제조된 박막은 CZTSe 구조의 패턴으로 나타났으나, 비교예 1에 따라 제조된 박막은 Sn이 손실되었을 뿐 아니라, CuxSe 및 ZnSe으로 상분리가 일어난 것을 확인할 수 있었다.
5 and 6, the thin film prepared according to Example 1 was shown as a pattern of the CZTSe structure, the thin film prepared according to Comparative Example 1 is not only Sn is lost, but also phase separation into Cu x Se and ZnSe It could be confirmed that it happened.

상기 시험예 1 및 시험예 2에 따르면, 본 발명의 CZTSe계 박막의 제조방법은 결정성장이 충분히 이루어지도록 고온에서 공정을 수행하면서도, 이에 의해 Sn이 손실되는 것을 최소화할 수 있고, 박막 내 상분리가 일어나는 것을 방지하여 균일한 박막 내 조성을 구현할 수 있는 것을 알 수 있었다.
According to Test Example 1 and Test Example 2, the CZTSe-based thin film manufacturing method of the present invention can perform a process at a high temperature so that the crystal growth is sufficient, thereby minimizing the loss of Sn, phase separation in the thin film It was found that the composition can be realized by preventing the occurrence of a uniform thin film.

이상 본 발명의 바람직한 실시예에 대해서 설명하였으나, 본 발명은 상술한 특정 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 그 기술적 사상을 벗어나지 않고 다양하게 변형 실시할 수 있을 것이다. 따라서 본 발명의 권리범위는 특정 실시예가 아니라, 첨부된 특허청구범위에 의해 정해지는 것으로 해석되어야 한다.
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described specific embodiments, and those skilled in the art to which the present invention pertains can perform various modifications without departing from the technical spirit. You can do it. Therefore, the scope of the present invention should be construed as defined by the appended claims rather than the specific embodiments.

Claims (6)

기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하는 단계(단계 a);
상기 박막상에 Cu와 Se을 추가로 증착시키는 Cu-Se 인캡슐레이션 단계(단계 b); 및
상기 단계들을 거친 박막에 Se을 상기 단계들보다 높은 온도조건에서 추가 증착하는 단계(단계 c);를 포함하는 태양전지용 CZTSe계 박막의 제조방법.
Depositing Cu, Zn, Sn and Se on a substrate by a co-vacuum evaporation method (step a);
Cu-Se encapsulation step (step b) to further deposit Cu and Se on the thin film; And
And depositing Se on the thin film having passed through the above steps at a higher temperature than the above steps (step c).
청구항 1에 있어서,
상기 단계 a의 증착은,
150 내지 320℃의 기판온도에서 수행하는 것을 특징으로 하는 태양전지용 CZTSe계 박막의 제조방법.
The method according to claim 1,
Deposition of the step a,
Method for producing a solar cell CZTSe-based thin film, characterized in that carried out at a substrate temperature of 150 to 320 ℃.
청구항 1에 있어서,
상기 단계 b의 증착은,
150 내지 320℃의 기판온도에서 수행하는 것을 특징으로 하는 태양전지용 CZTSe계 박막의 제조방법.
The method according to claim 1,
Deposition of step b,
Method for producing a solar cell CZTSe-based thin film, characterized in that carried out at a substrate temperature of 150 to 320 ℃.
청구항 1에 있어서,
상기 단계 c는,
기판온도 400 내지 600℃ 범위에서 수행하는 것을 특징으로 하는 태양전지용 CZTSe계 박막의 제조방법.
The method according to claim 1,
Step c,
Method for producing a CZTSe-based thin film for solar cells, characterized in that carried out in the substrate temperature 400 to 600 ℃ range.
기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하여 박막을 형성하고, 상기 박막상에 Cu와 Se을 추가 증착한 후, Se을 상기 증착보다 높은 온도조건에서 추가 증착하여 제조된 태양전지용 CZTSe계 박막.
Cu, Zn, Sn and Se are deposited on the substrate by a co-evaporation method to form a thin film, Cu and Se are further deposited on the thin film, and Se is further deposited at a higher temperature than the deposition. CZTSe based thin film for solar cells.
기판상에 Cu, Zn, Sn 및 Se을 동시진공증발법에 따라 증착하여 박막을 형성하고, 상기 박막상에 Cu와 Se을 추가 증착한 후, Se을 상기 증착보다 높은 온도조건에서 추가 증착하여 제조된 태양전지용 CZTSe계 박막을 포함하는 태양전지. Cu, Zn, Sn and Se are deposited on the substrate by a co-evaporation method to form a thin film, Cu and Se are further deposited on the thin film, and Se is further deposited at a higher temperature than the deposition. Solar cell comprising a CZTSe-based thin film for solar cells.
KR1020110138361A 2011-12-20 2011-12-20 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME KR101358055B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110138361A KR101358055B1 (en) 2011-12-20 2011-12-20 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110138361A KR101358055B1 (en) 2011-12-20 2011-12-20 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME

Publications (2)

Publication Number Publication Date
KR20130071055A true KR20130071055A (en) 2013-06-28
KR101358055B1 KR101358055B1 (en) 2014-02-06

Family

ID=48865657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110138361A KR101358055B1 (en) 2011-12-20 2011-12-20 PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME

Country Status (1)

Country Link
KR (1) KR101358055B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102025091B1 (en) 2018-05-28 2019-09-25 한국에너지기술연구원 CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156517A (en) * 1998-09-10 2000-06-06 Matsushita Electric Ind Co Ltd Manufacture of compound semiconductor thin film and solar battery using the same

Also Published As

Publication number Publication date
KR101358055B1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
Naghavi et al. Buffer layers and transparent conducting oxides for chalcopyrite Cu (In, Ga)(S, Se) 2 based thin film photovoltaics: present status and current developments
US7842534B2 (en) Method for forming a compound semi-conductor thin-film
Niki et al. CIGS absorbers and processes
Merdes et al. 12.6% efficient CdS/Cu (In, Ga) S2-based solar cell with an open circuit voltage of 879 mV prepared by a rapid thermal process
US20110083743A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
CN102652368B (en) Cu-In-Zn-Sn-(Se,S)-based thin film for solar cell and preparation method thereof
US20120180870A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
WO2013173770A1 (en) Method of fabricating high efficiency cigs solar cells
CN102751388B (en) Preparation method of Cu-In-Ga-Se thin-film solar cell
KR20130016528A (en) Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
WO2013089872A2 (en) Band structure engineering for improved efficiency of cdte based photovoltaics
Seike et al. Development of high-efficiency CIGS integrated submodules using in-line deposition technology
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
US9112095B2 (en) CIGS absorber formed by co-sputtered indium
KR20120133342A (en) Preparation method for thin film having uniform distribution
KR101358055B1 (en) PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME
Liang et al. Thermal induced structural evolution and performance of Cu2ZnSnSe4 thin films prepared by a simple route of ion-beam sputtering deposition
US9601642B1 (en) CZTSe-based thin film and method for preparing the same, and solar cell using the same
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
Tiwari et al. Recent Advances in the Kesterite-Based Thin Film Solar Cell Technology: Role of Ge
KR101406704B1 (en) FABRICATION METHOD OF CZTSe ABSORBER LAYERS BY CO-EVAPORATION PROCESS
CN105164820A (en) Method for manufacturing light absorption layer
KR101279370B1 (en) PREPARATION METHOD OF CZTSe-BASED THIN FILM USING CO-EVAPORATION AND CZTSe-BASED THIN FILM PREPARED BY THE SAME
KR102025091B1 (en) CZT(S,Se) FILM, FORMING METHOD FOR CZT(S,Se) FILM, CZT(S,Se) SOLAR CELL AND MANUFACTURING METHOD FOR CZT(S,Se) SOLAR CELL

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 7