KR20120133342A - Preparation method for thin film having uniform distribution - Google Patents

Preparation method for thin film having uniform distribution Download PDF

Info

Publication number
KR20120133342A
KR20120133342A KR1020110051975A KR20110051975A KR20120133342A KR 20120133342 A KR20120133342 A KR 20120133342A KR 1020110051975 A KR1020110051975 A KR 1020110051975A KR 20110051975 A KR20110051975 A KR 20110051975A KR 20120133342 A KR20120133342 A KR 20120133342A
Authority
KR
South Korea
Prior art keywords
thin film
distribution
cigs thin
uniform
cigs
Prior art date
Application number
KR1020110051975A
Other languages
Korean (ko)
Inventor
안세진
윤경훈
윤재호
곽지혜
조아라
신기식
안승규
김경암
Original Assignee
한국에너지기술연구원
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원, 엘지이노텍 주식회사 filed Critical 한국에너지기술연구원
Priority to KR1020110051975A priority Critical patent/KR20120133342A/en
Priority to PCT/KR2012/004265 priority patent/WO2012165860A2/en
Priority to CN201280023367.4A priority patent/CN103548153B/en
Publication of KR20120133342A publication Critical patent/KR20120133342A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: A manufacturing method for a CIGS(copper indium gallium diselenide) thin film having an uniform Ga distribution are provided to improve efficiency of a solar cell by minimizing a segregation phenomenon in the CIGS thin film. CONSTITUTION: A Cu-In-Ga-Se precursor thin film including a selenide compound having a covalent bond structure is formed on a substrate. The precursor thin film is heat-treated in selenization. A formation method of the precursor thin film is a deposition method by a sputtering method or a thermal evaporation. The sputtering method is performed by containing a target including selenium.

Description

균일한 Ga 분포를 갖는 CIGS 박막 제조방법{PREPARATION METHOD FOR CIGS THIN FILM HAVING UNIFORM Ga DISTRIBUTION}Method for manufacturing CIS thin film with uniform BAA distribution {PREPARATION METHOD FOR CIS FIN THIN FILM HAVING UNIFORM BATH DISTRIBUTION}

본 발명은 CIGS 박막 제조방법에 관한 것이며, 보다 상세하게는 전구체 박막의 구조를 공유결합구조로 변경하여 CIGS 박막 내 Ga의 편석 현상을 최소화함으로써 균일한 Ga 분포를 갖는 CIGS 박막 제조방법에 관한 것이다.The present invention relates to a CIGS thin film manufacturing method, and more particularly to a CIGS thin film manufacturing method having a uniform Ga distribution by minimizing the segregation of Ga in the CIGS thin film by changing the structure of the precursor thin film to a covalent bond structure.

최근 화석 에너지 고갈로 차세대 청정에너지 개발에 대한 중요성이 증대되고 있다. 그 중에서도 태양전지는 태양 에너지를 직접 전기 에너지로 전환하는 장치로서, 공해가 적고, 자원이 무한적이며 반영구적으로 사용할 수 있어 미래 에너지 문제를 해결할 수 있는 에너지원으로 기대되고 있다.Recently, the importance of developing the next generation of clean energy is increasing due to the depletion of fossil energy. Among them, the solar cell is a device that directly converts solar energy into electrical energy, and is expected to be an energy source that can solve future energy problems due to its low pollution, infinite resources, and semi-permanent use.

태양전지는 광흡수층으로 사용되는 물질에 따라서 다양한 종류로 구분되며, 현재 가장 많이 사용되는 것은 실리콘을 이용한 실리콘 태양전지이다. 그러나 최근 실리콘의 공급부족으로 가격이 급등하면서 박막형 태양전지에 대한 관심이 증가하고 있다. 박막형 태양전지는 얇은 두께로 제작되므로 재료의 소모량이 적고, 무게가 가볍기 때문에 활용범위가 넓다. 이러한 박막형 태양전지의 재료로는 비정질 실리콘과 CdTe, CIS 또는 CIGS에 대한 연구가 활발하게 진행되고 있다.Solar cells are classified into various types according to materials used as light absorption layers, and at present, the most commonly used are silicon solar cells using silicon. However, as prices have soared recently due to a shortage of silicon, interest in thin-film solar cells is increasing. Thin-film solar cells are manufactured with a thin thickness, so the materials are consumed less and the weight is lighter, so the application range is wide. Research into amorphous silicon, CdTe, CIS, or CIGS is actively conducted as a material for such thin film solar cells.

CIS 박막 또는 CIGS 박막은 Ⅰ-Ⅲ-Ⅵ 화합물 반도체 중의 하나이며, 실험실적으로 만든 박막 태양전지 중에서 가장 높은 변환효율을 기록하고 있다. 특히 10 마이크론 이하의 두께로 제작이 가능하고, 장시간 사용 시에도 안정적이어서, 실리콘을 대체할 수 있는 저가의 고효율 태양전지로 기대되고 있다.The CIS thin film or CIGS thin film is one of the I-III-VI compound semiconductors and has the highest conversion efficiency among laboratory thin film solar cells. In particular, it can be manufactured to a thickness of less than 10 microns, and is stable even when used for a long time, and is expected to be a low-cost, high-efficiency solar cell that can replace silicon.

특히 CIS 박막은 직접 천이형 반도체로서 박막화가 가능하고 밴드갭이 1.04 eV로 광변환에 적합하며, 광흡수 계수가 큰 값을 나타내는 재료이다. CIGS 박막은 CIS 박막의 낮은 개방전압을 개선하기 위하여 In의 일부를 Ga으로 대체하거나 Se를 S로 대체하여 개발된 재료이다.In particular, the CIS thin film is a direct transition semiconductor that can be thinned and has a bandgap of 1.04 eV, which is suitable for light conversion, and has a large light absorption coefficient. CIGS thin film is developed by replacing part of In with Ga or Se by S to improve low open voltage of CIS thin film.

CIGS 박막을 제조하는 방법으로는 크게 진공에서 증착하는 방법과, 비진공 코팅법으로 나눌 수 있다. 특히, 진공 증착방법은 동시증발법(co-evaporation), 인라인증발법(in-line evaporation), 2단계 공정(two-step process; precursor-reaction) 등을 들 수 있다. 이 중, 전통적으로 고효율 CIGS 박막 태양전지는 동시증발법으로 제조되고 있으나, 공정이 복잡하고 대면적화의 어려움이 있어 상용화에 걸림돌이 되고 있다. 이를 해결하기 위한 방법으로 대량생산이 용이한 증착/셀렌화의 2단계 공정이 개발되었다.Methods for producing a CIGS thin film can be broadly classified into vacuum deposition and non-vacuum coating. In particular, the vacuum deposition method may include co-evaporation, in-line evaporation, two-step process (precursor-reaction), and the like. Among these, traditionally, high efficiency CIGS thin film solar cells have been manufactured by the simultaneous evaporation method, but the process is complicated and the difficulty of large area has been an obstacle to commercialization. In order to solve this problem, a two-step process of deposition / selenization, which is easy to mass-produce, has been developed.

그러나 Cu, In, Ga 금속 또는 합금을 스퍼터링 후, H2Se 기체 또는 Se 증기의 Se 분위기에서 열처리 시 In, Se간의 반응속도와 Ga, Se간의 반응속도의 차이로 인해 조성의 불균일이 생길 수 있었다. 다시 말해, In은 CIGS 박막 표면으로, Ga은 CIGS과 Mo 계면으로의 편석이 일어남으로써, Ga 첨가에 의한 밴드갭 증가 및 개방전압 효과를 볼 수 없고, 오히려 Ga을 첨가할수록 태양전지의 효율이 떨어지는 문제점이 있었다.However, after sputtering Cu, In, Ga metals or alloys, when the heat treatment was performed in the Se atmosphere of H 2 Se gas or Se vapor, the compositional unevenness could occur due to the difference in the reaction rate between In and Se and the reaction rate between Ga and Se. . In other words, In is the surface of the CIGS thin film, and Ga is segregated to the interface between CIGS and Mo, so that the band gap increase and the open voltage effect by the addition of Ga are not seen. There was a problem.

본 발명의 목적은 금속결합구조를 갖는 금속이나 합금 내에서 Ga의 이동속도보다 공유결합구조를 갖는 셀레나이드(selenide) 내에서의 Ga 이동속도가 매우 느려짐에 착안하여, 스퍼터링 전구체를 순수 금속 또는 합금이 아닌 셀레나이드 계열의 화합물로 변경하여 Ga의 편석을 억제하여, CIGS 박막 내 Ga 분포의 균일화를 유도함으로써 궁극적으로 이를 이용한 태양전지의 효율을 높이는 데 있다.It is an object of the present invention to focus on the fact that the movement speed of Ga in a selenide having a covalent bond structure is much slower than the movement speed of Ga in a metal or alloy having a metal bonding structure. In addition, by changing to selenide-based compounds to suppress the segregation of Ga, inducing the uniformity of Ga distribution in CIGS thin film ultimately increases the efficiency of the solar cell using the same.

상기 목적을 달성하기 위한 본 발명의 균일한 Ga 분포를 갖는 태양전지용 CIGS 박막이 제조방법은, 공유결합구조를 갖는 셀레나이드계 화합물을 포함하는 Cu-In-Ga-Se 전구체 박막을 형성하는 단계(a); 및 상기 (a) 단계에서 형성된 전구체 박막을 셀렌화 열처리하는 단계(b)를 포함한다.CIGS thin film for a solar cell having a uniform Ga distribution of the present invention for achieving the above object comprises the steps of forming a Cu-In-Ga-Se precursor thin film comprising a selenide compound having a covalent structure ( a); And (b) subjecting the precursor thin film formed in step (a) to selenization heat treatment.

본 발명의 바람직한 실시예에 있어서, 상기 전구체 박막 형성은, 스퍼터링법 또는 열증발(thermal evaporation)에 의해 이루어질 수 있다.In a preferred embodiment of the present invention, the precursor thin film may be formed by sputtering or thermal evaporation.

스퍼터링법에서는 셀레늄이 포함되는 타겟을 적어도 하나 포함되도록 타겟 조합하여 수행할 수 있다. 타겟 조합은, Cu-Se, In-Se, Ga-Se 타겟 조합, Cu-Se, In-Se, Cu-Ga 타겟 조합, Cu, In-Se, Ga-Se 타겟 조합, Cu-Se, In, Cu-Ga 타겟 조합 및 Cu-In-Se, Cu-Ga 타겟 조합 중 어느 하나일 수 있다. 또는 Cu, In, Ga, Se을 각각 타겟으로 하여 수행할 수 있다.In the sputtering method, the target combination may be performed to include at least one target containing selenium. Target combinations include Cu-Se, In-Se, Ga-Se target combinations, Cu-Se, In-Se, Cu-Ga target combinations, Cu, In-Se, Ga-Se target combinations, Cu-Se, In, Cu-Ga target combination, Cu-In-Se, Cu-Ga target combination may be any one. Alternatively, Cu, In, Ga, and Se may be performed as targets.

스퍼터링은 각 타겟을 동시 스퍼터링하거나 시간차를 두고 차례로 수행할 수 있다.Sputtering may be performed by sputtering each target simultaneously or sequentially.

셀렌화 열처리는, Se 증기 또는 H2Se 기체의 Se 분위기에서 이루어질 수 있다. 셀렌화 열처리는, 상기 기판의 온도가 400 내지 530 ℃ 를 유지하는 상태에서, 10분 내지 60분 동안 수행하는 것이 바람직하다.The selenization heat treatment may be performed in a Se atmosphere of Se vapor or H 2 Se gas. The selenization heat treatment is preferably performed for 10 to 60 minutes while the substrate temperature is maintained at 400 to 530 ° C.

본 발명은 증착/셀렌화의 2단계 공정의 스퍼터링 전구체를 순수 금속 또는 합금이 아닌 공유결합 구조의 셀레나이드 계열의 화합물로 변경함으로써, Se 분위기 열처리 시 Ga의 이동속도를 현저히 낮추어 Ga의 편석을 억제하고, CIGS 박막 내 Ga 분포를 균일화하며, 따라서 이를 이용한 태양전지의 효율을 높이는 효과가 있다.The present invention is to change the sputtering precursor of the two-step process of deposition / selenization to a selenide-based compound having a covalent structure, not pure metal or alloy, thereby significantly reducing the movement speed of Ga during Se atmosphere heat treatment to suppress Ga segregation In addition, the Ga distribution in the CIGS thin film is uniform, thus increasing the efficiency of the solar cell using the same.

도 1은 본 발명의 실시예 1에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM 이미지이다.
도 2는 본 발명의 실시예 1에 따라 형성된 CIGS 박막의 AES 깊이 프로파일(AES depth profile)을 나타낸 그래프이다.
도 3은 본 발명의 실시예 1에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다.
도 4는 본 발명의 실시예 2에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM 이미지이다.
도 5는 본 발명의 실시예 2에 따라 형성된 CIGS 박막의 AES 깊이 프로파일(AES depth profile)을 나타낸 그래프이다.
도 6은 본 발명의 실시예 2에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다.
도 7은 본 발명의 비교예에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM 이미지이다.
도 8은 본 발명의 비교예에 따라 형성된 CIGS 박막의 AES 깊이 프로파일(AES depth profile)을 나타낸 그래프이다.
도 9는 본 발명의 비교예에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다.
1 is a SEM image showing a side cross-sectional structure of the CIGS thin film formed according to Example 1 of the present invention.
FIG. 2 is a graph showing an AES depth profile of a CIGS thin film formed according to Example 1 of the present invention.
3 is a graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to Example 1 of the present invention.
4 is a SEM image showing a side cross-sectional structure of the CIGS thin film formed according to Example 2 of the present invention.
5 is a graph showing an AES depth profile of a CIGS thin film formed according to Example 2 of the present invention.
6 is a graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to Example 2 of the present invention.
7 is a SEM image showing a side cross-sectional structure of the CIGS thin film formed according to the comparative example of the present invention.
8 is a graph illustrating an AES depth profile of a CIGS thin film formed according to a comparative example of the present invention.
9 is a graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to a comparative example of the present invention.

이하에 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명할 것이다. 다음에서 설명되는 실시예들은 여러 가지 다양한 형태로 변형할 수 있으며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아니다. 본 발명의 실시예는 당 분야의 통상의 지식을 가진 자에게 완전한 설명을 하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below can be modified in various ways, and the scope of the present invention is not limited to the following embodiments. Embodiments of the present invention are provided to provide a thorough explanation to those skilled in the art.

먼저, 균일한 Ga 분포를 갖는 CIGS 박막 제조방법 및 그 방법을 이용한 태양전지의 제조방법에 대해 설명한 후, 바람직한 실시예들에 의한 제조방법을 제시하고, Ga 분포 균일화가 이루어지지 않은 비교예를 들어 본 발명의 CIGS박막과의 차이점을 비교해 보도록 한다.First, a CIGS thin film manufacturing method having a uniform Ga distribution and a manufacturing method of a solar cell using the method are described, and then a manufacturing method according to preferred embodiments is presented, and a comparative example in which Ga distribution is not uniformized is given. Let's compare the difference with the CIGS thin film of the present invention.

본 발명의 균일한 Ga 분포를 갖는 CIGS 박막 제조방법은, 전구체 박막 제조단계 및 셀렌화 단계를 포함하는 2단계 공정을 기본으로 한다.CIGS thin film manufacturing method having a uniform Ga distribution of the present invention is based on a two-step process comprising a precursor thin film manufacturing step and selenization step.

제1단계는, 셀레늄(Se)을 포함하여 공유결합구조를 이루는 셀레나이드(selenide)계 전구체 박막을 형성하는 단계이다.The first step is to form a selenide precursor thin film including selenium (Se) to form a covalent bond structure.

셀레늄을 포함하는 전구체 박막을 형성하는 방법은 스퍼터링에 의할 수 있다. 또는 열증발에 의한 증착법을 이용하여 전구체 박막을 형성할 수도 있다. 이때 Cu, In, Ga, Se의 열증발원을 이용하여 동시에 증발시켜 증착하거나, Cu, In, Ga, Se의 선형 증발원 위에서 기판을 인라인 수평 이동시킴으로써 전구체 박막을 형성할 수도 있다. The method of forming the precursor thin film containing selenium may be by sputtering. Alternatively, the precursor thin film may be formed using a vapor deposition method by thermal evaporation. In this case, the precursor thin film may be formed by evaporating at the same time using a thermal evaporation source of Cu, In, Ga, Se, or by horizontally moving the substrate on a linear evaporation source of Cu, In, Ga, Se.

그러나 본 발명의 범위가 여기에 한정되지 않으며, 셀레늄을 포함하는 공유결합구조의 전구체 박막을 형성할 수 있는 가능한 모든 방법을 적용할 수 있으며, 상기 스퍼터링을 위한 타겟 조합 또한 본 발명의 기술적 범주 내에서 다양하게 적용할 수 있다.However, the scope of the present invention is not limited thereto, and all possible methods of forming a precursor thin film having a covalent bond structure including selenium may be applied, and the target combination for sputtering may also be applied within the technical scope of the present invention. It can be applied in various ways.

제2단계는, 상기 제1단계에서 형성된 전구체 박막을 셀렌화 열처리하는 단계이다.The second step is a step of selenization heat treatment of the precursor thin film formed in the first step.

이하, 본 발명의 바람직한 실시예들을 들어 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail.

소다 라임 유리기판 상에 몰리브덴(Mo) 후면전극을 DC 스퍼터링을 사용하여, 약 1㎛의 두께로 증착하였다. A molybdenum (Mo) back electrode was deposited on a soda lime glass substrate to a thickness of about 1 μm using DC sputtering.

이후, CuSe, In 및 CuGa로 구성된 세 개의 타겟을 준비하여, 상기 기판 상에 전구체 박막을 동시 스퍼터링하였다. 이때, Cu/(In + Ga) = 0.75 ~ 0.9 범위, Ga/(In + Ga) = 0.3 ~ 0.4 범위에 속하도록 스퍼터링 파워를 조절하였다.Thereafter, three targets consisting of CuSe, In, and CuGa were prepared, and the precursor thin film was simultaneously sputtered on the substrate. At this time, the sputtering power was adjusted to fall in the range Cu / (In + Ga) = 0.75 to 0.9, and the range Ga / (In + Ga) = 0.3 to 0.4.

이에 따라, 전구체 박막에서 Se의 원자비, 즉 Se/(Cu + In + Ga)의 값은 0.3이 되도록 하였다.Accordingly, the atomic ratio of Se in the precursor thin film, that is, the value of Se / (Cu + In + Ga) was set to 0.3.

다음으로, Se 증기를 이용하여 45분간 상기 기판의 온도는 530℃로 하여 셀렌화 열처리하였다.Subsequently, selenization heat treatment was performed at a temperature of 530 ° C. for 45 minutes using Se steam.

실시예 1에 따라 제조된 박막 및 그 박막을 이용한 태양전지의 특성을 나타내는 결과를 도 1 내지 도 3에 나타내었다.1 to 3 show the characteristics of the thin film manufactured according to Example 1 and the solar cell using the thin film.

도 1은 본 발명의 실시예 1에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM상 이미지이고, 도 2는 본 발명의 실시예 1에 따라 형성된 CIGS 박막의 AES 깊이 프로파일을 나타낸 그래프이며, 도 3은 본 발명의 실시예 1에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다. 여기서, Voc는 개방전압, Isc는 단락전류, FF는 충전율(fill factor), Eff는 태양전지의 효율을 나타낸다.1 is a SEM image showing a side cross-sectional structure of the CIGS thin film formed according to Example 1 of the present invention, Figure 2 is a graph showing the AES depth profile of the CIGS thin film formed according to Example 1 of the present invention, Figure 3 Is a graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to Example 1 of the present invention. Here, Voc is an open voltage, Isc is a short circuit current, FF is a fill factor, and Eff is a solar cell efficiency.

도 1 내지 도 3을 참조하면, 본 발명의 실시예 1에 따라 제조된 CIGS 박막은 Mo 후면전극의 두께가 1.22㎛, CIGS 박막의 두께는 1.42㎛로 형성되었다. 1 to 3, the CIGS thin film manufactured according to Example 1 of the present invention was formed with a Mo rear electrode having a thickness of 1.22 μm and a CIGS thin film having a thickness of 1.42 μm.

이와 같이 형성된 CIGS 박막의 표면으로부터 깊이에 따른 각 원소의 분포는 도 2의 그래프에 나타난 바와 같다. 또한, 본 발명의 실시예 1에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성은 도 3에서 나타낸 바와 같으며, 특히, 태양전지의 효율은 8.36%였다. Distribution of each element according to depth from the surface of the CIGS thin film thus formed is as shown in the graph of FIG. In addition, the output characteristics of the solar cell using the CIGS thin film prepared according to Example 1 of the present invention is as shown in Figure 3, in particular, the efficiency of the solar cell was 8.36%.

실시예 1에 따른 CIGS 박막의 특성 및 이를 이용한 태양전지의 출력특성에 관해서는 전구체 박막을 셀레나이드 계열이 아닌 순수 금속 또는 합금으로 구성한 CIGS 박막에 관한 비교예를 제시한 이후, 이를 비교하여 살펴본다.
The characteristics of the CIGS thin film according to Example 1 and the output characteristics of the solar cell using the same are described after comparing the CIGS thin film having a precursor thin film composed of pure metal or alloy instead of selenide series, and comparing them. .

소다 라임 유리기판 상에 몰리브덴(Mo) 후면전극을 DC 스퍼터링을 사용하여, 약 1㎛의 두께로 증착하였다. A molybdenum (Mo) back electrode was deposited on a soda lime glass substrate to a thickness of about 1 μm using DC sputtering.

이후, CuSe, In2Se3 및 CuGa으로 구성된 세 개의 타겟을 준비하여, 기판 상에 전구체 박막을 동시 스퍼터링하였다. 이때, Cu/(In + Ga) = 0.75 ~ 0.9 범위, Ga/(In + Ga) = 0.3 ~ 0.4 범위에 속하도록 스퍼터링 파워를 조절하였다.Thereafter, three targets consisting of CuSe, In 2 Se 3, and CuGa were prepared to simultaneously sputter the precursor thin film on the substrate. At this time, the sputtering power was adjusted to fall in the range Cu / (In + Ga) = 0.75 to 0.9, and the range Ga / (In + Ga) = 0.3 to 0.4.

이에 따라, 전구체 박막에서 Se의 원자비, 즉, Se/(Cu + In + Ga)의 값은 0.8이 되도록 하였다.Accordingly, the atomic ratio of Se in the precursor thin film, that is, the value of Se / (Cu + In + Ga) was set to 0.8.

다음으로, Se 증기를 이용하여 45분간, 기판의 온도는 530℃로 하여 셀렌화 열처리하였다.Subsequently, selenization heat treatment was performed for 45 minutes using Se vapor at a temperature of the substrate of 530 ° C.

실시예 2에 따라 제조된 박막 및 그 박막을 이용한 태양전지의 특성을 나타내는 결과를 도 4 내지 도 6에 나타내었다.4 to 6 show the characteristics of the thin film manufactured according to Example 2 and the solar cell using the thin film.

도 4는 본 발명의 실시예 2에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM상 이미지이고, 도 5는 본 발명의 실시예 2에 따라 형성된 CIGS 박막의 AES 깊이 프로파일을 나타낸 그래프이며, 도 6은 본 발명의 실시예 2에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다.4 is a SEM image showing a side cross-sectional structure of the CIGS thin film formed according to Example 2 of the present invention, Figure 5 is a graph showing the AES depth profile of the CIGS thin film formed according to Example 2 of the present invention, Figure 6 Is a graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to Example 2 of the present invention.

도 4 내지 도 6을 참조하면, 본 발명의 실시예 2에 따라 제조된 CIGS 박막은 Mo 후면전극의 두께가 1.15㎛, CIGS 박막의 두께는 1.35㎛로 형성되었다. 4 to 6, the CIGS thin film prepared according to Example 2 of the present invention was formed with a Mo rear electrode having a thickness of 1.15 μm and a CIGS thin film having a thickness of 1.35 μm.

이와 같이 형성된 CIGS 박막의 표면으로부터 깊이에 따른 각 원소의 분포는 도 5의 그래프에 나타난 바와 같다. 또한, 본 발명의 실시예 2에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성은 도 6에서 나타낸 바와 같으며, 특히, 태양전지의 효율은 11.7%였다. Distribution of each element according to the depth from the surface of the CIGS thin film thus formed is as shown in the graph of FIG. In addition, the output characteristics of the solar cell using the CIGS thin film prepared according to Example 2 of the present invention is as shown in Figure 6, in particular, the efficiency of the solar cell was 11.7%.

실시예 2에 따른 CIGS 박막의 특성 및 이를 이용한 태양전지의 출력특성에 관해서는 전구체 박막을 셀레나이드 계열이 아닌 순수 금속 또는 합금으로 구성한 CIGS 박막에 관한 비교예를 제시한 이후, 이를 비교하여 실시예 1의 경우와 함께 살펴보도록 한다.
As for the characteristics of the CIGS thin film according to Example 2 and the output characteristics of the solar cell using the same, the comparative example of the CIGS thin film in which the precursor thin film is composed of a pure metal or an alloy instead of the selenide series is presented and then compared. Let's look at the case with 1.

[비교예][Comparative Example]

소다 라임 유리기판 상에 몰리브덴 후면전극을 DC 스퍼터링을 사용하여, 약 1㎛의 두께로 증착하였다. A molybdenum back electrode was deposited on a soda lime glass substrate to a thickness of about 1 μm using DC sputtering.

이후, CuGa, CuIn 및 Cu로 구성된, Se이 포함되지 않은 세 개의 타겟을 준비하여, 상기 기판 상에 전구체 박막을 동시 스퍼터링하였다. 이때, Cu/(In + Ga) = 0.75 ~ 0.9 범위, Ga/(In + Ga) = 0.3 ~ 0.4 범위에 속하도록 스퍼터링 파워를 조절하였다.Subsequently, three targets containing no Se, including CuGa, CuIn, and Cu, were prepared to simultaneously sputter the precursor thin film on the substrate. At this time, the sputtering power was adjusted to fall in the range Cu / (In + Ga) = 0.75 to 0.9, and the range Ga / (In + Ga) = 0.3 to 0.4.

다음으로, Se 증기를 이용하여 45분간, 상기 기판의 온도는 530℃로 하여 셀렌화 열처리하였다.Next, selenization heat treatment was performed for 45 minutes using Se vapor at a temperature of 530 ° C.

비교예에 따라 제조된 박막 및 그 박막을 이용한 태양전지의 특성을 나타내는 결과를 도 7 내지 도 9에 나타내었다.7 to 9 show results of characteristics of a thin film manufactured according to a comparative example and a solar cell using the thin film.

도 7은 본 발명의 비교예에 따라 형성된 CIGS 박막의 측단면 구조를 나타낸 SEM상 이미지이고, 도 8은 본 발명의 비교예에 따라 형성된 CIGS 박막의 AES 깊이 프로파일을 나타낸 그래프이며, 도 9는 본 발명의 비교예에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성을 나타낸 그래프이다. 7 is a SEM image showing the side cross-sectional structure of the CIGS thin film formed according to the comparative example of the present invention, Figure 8 is a graph showing the AES depth profile of the CIGS thin film formed according to the comparative example of the present invention, Figure 9 Graph showing the output characteristics of the solar cell using a CIGS thin film prepared according to the comparative example of the invention.

도 7 내지 도 9를 참조하면, 본 발명의 비교예에 따라 제조된 CIGS 박막은 Mo 후면전극의 두께가 1.24㎛, CIGS 박막의 두께는 2.22㎛로 형성되었다.7 to 9, the CIGS thin film manufactured according to the comparative example of the present invention was formed with a Mo rear electrode having a thickness of 1.24 μm and a CIGS thin film having a thickness of 2.22 μm.

이와 같이 형성된 CIGS 박막의 표면으로부터 깊이에 따른 각 원소의 분포는 도 8의 그래프에 나타난 바와 같다. 또한, 본 발명의 비교예에 따라 제조된 CIGS 박막을 이용한 태양전지의 출력특성은 도 9에서 나타낸 바와 같으며, 특히, 태양전지의 효율은 4.46%에 그쳤다.
Distribution of each element according to depth from the surface of the CIGS thin film thus formed is as shown in the graph of FIG. In addition, the output characteristics of the solar cell using the CIGS thin film prepared according to the comparative example of the present invention is shown in Figure 9, in particular, the efficiency of the solar cell was only 4.46%.

CIGS 박막 표면으로부터 깊이에 따른 원소 분포 특성 비교Comparison of Element Distribution with Depth from CIGS Thin Film Surface

도 2, 도 5 및 도 8을 참조하면, 도 8에 나타난 비교예에서 도 2의 실시예 1이나 도 5의 실시예 2에 비하여 Mo 후면전극 계면에 근접할수록 Ga 비율이 확연히 높아져, 편석현상이 두드러지는 것을 확인할 수 있다.Referring to FIGS. 2, 5, and 8, in the comparative example shown in FIG. 8, the Ga ratio becomes significantly higher as it approaches the Mo back electrode interface as compared with Example 1 of FIG. 2 or Example 2 of FIG. 5, and segregation phenomenon is increased. You can see that it stands out.

이에 반해, 실시예 1에서는 비교예에 비해 Ga의 Mo 후면전극 계면으로의 편석현상이 약간 줄어들었으며, 실시예 2에서는 Ga 편석현상이 거의 사라져 CIGS 박막의 깊이에 관계 없이 균일하게 분포됨을 알 수 있었다.On the contrary, in Example 1, the segregation of Ga to the Mo back electrode interface was slightly reduced compared to the comparative example, and in Example 2, the Ga segregation was almost disappeared and it was found to be uniformly distributed regardless of the depth of the CIGS thin film. .

나아가, Ga의 분포뿐 아니라, In의 경우에도 비교예에서는 표면으로의 편석이 두드러졌으나, 실시예 1에서 편석의 정도가 줄어들었으며, 실시예 2에서는 CIGS 박막 전체에 균일하게 분포된 것을 확인할 수 있다.Furthermore, in addition to Ga distribution, even in In, the segregation to the surface was prominent in the comparative example, but the degree of segregation was reduced in Example 1, and in Example 2, it was confirmed that it was uniformly distributed throughout the CIGS thin film. .

이와 같은 결과는, 전구체 박막을 금속결합구조의 순수 합금으로 하였을 때, 셀렌화 열처리 단계에서 Ga의 이동이 용이하였으나, 본 발명의 실시예 1 및 2에서와 같이 전구체 박막을 셀레나이드 계열의 공유결합구조로 하였을 때, 상대적으로 Ga의 이동 속도가 느려지거나 거의 움직이지 않은 것으로 생각할 수 있다.These results indicate that when the precursor thin film was a pure alloy of a metal bond structure, Ga was easily moved in the selenization heat treatment step, but the precursor thin film was covalently bonded to the selenide series as in Examples 1 and 2 of the present invention. In terms of the structure, it can be considered that the movement speed of Ga is relatively slow or hardly moved.

나아가, 실시예 2에서 실시예 1에 비해 Ga의 편석 억제, 즉 균일화가 더욱 효과적으로 이루어진 것으로 보아, 전구체 박막 내에 Se의 비율이 높을수록 Ga의 균일화가 정도가 더 높아지는 것으로 판단된다.
Further, in Example 2, it is considered that the segregation suppression, that is, uniformity, of Ga is more effective than that of Example 1, so that the higher the proportion of Se in the precursor thin film, the higher the degree of Ga uniformity.

CIGS 박막을 이용한 태양전지 출력특성 비교Comparison of Solar Cell Output Characteristics Using CIGS Thin Films

도 3, 도 6 및 도 9를 참조하면, 실시예 1과 실시예 2에 따라 제조된 CIGS 박막을 이용한 태양전지는 비교예에 따라 제조된 CIGS 박막을 이용한 태양전지에 비하여, 출력이 크고, 이에 따라 에너지 변환효율도 높은 것을 볼 수 있다.3, 6 and 9, the solar cell using the CIGS thin film prepared according to Example 1 and Example 2, the output is larger than the solar cell using the CIGS thin film prepared according to the comparative example, Therefore, it can be seen that the energy conversion efficiency is also high.

이와 같은 결과는 Ga이 CIGS 박막 내 깊이에 따른 편석 없이 균일하게 분포할수록 태양전지의 에너지 변환 효율이 높아짐을 확인시켜 준다.This result confirms that the energy conversion efficiency of the solar cell increases as Ga is uniformly distributed without segregation due to depth in the CIGS thin film.

또한, 실시예 1에 비해 실시예 2에서 에너지 효율이 11.7%로 크게 상승한 것을 볼 수 있는데, 이는 셀렌화 열처리에 의해 CIGS 박막 완성하기 전 전구체 박막에 Se의 비율이 높아 공유결합 비율이 높아질수록 Ga의 이동성이 둔화하고, 이로 인하여 Ga이 더욱 균일하게 분포하게 됨으로써 결과적으로 이를 적용한 태양전지의 에너지 효율을 상승시킬 수 있다는 것을 입증하는 것이다.In addition, it can be seen that the energy efficiency in Example 2 is significantly increased compared to Example 1 to 11.7%, which means that the ratio of Se to the precursor thin film before the completion of the CIGS thin film by selenization heat treatment is increased. The mobility of is slowed down, which makes Ga more evenly distributed, and consequently, it is possible to increase the energy efficiency of the solar cell to which it is applied.

이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although the preferred embodiment of the present invention has been described in detail, the present invention is not limited to the above embodiment, and various modifications may be made by those skilled in the art within the scope of the technical idea of the present invention. It is possible.

Claims (13)

기판 상에 공유결합구조를 갖는 셀레나이드(selenide)계 화합물을 포함하는 Cu-In-Ga-Se 전구체 박막을 형성하는 단계(a); 및
상기 단계(a)에서 형성된 전구체 박막을 셀렌화(selenization) 열처리하는 단계(b)를 포함하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
(A) forming a Cu—In—Ga—Se precursor thin film including a selenide compound having a covalent bond structure on the substrate; And
And (b) subjecting the precursor thin film formed in step (a) to selenization heat treatment.
청구항 1에 있어서,
상기 전구체 박막의 형성 방법이 스퍼터링법 또는 열증발에 의한 증착인 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 1,
Forming method of the precursor thin film is a CIGS thin film manufacturing method having a uniform Ga distribution, characterized in that the deposition by sputtering or thermal evaporation.
청구항 2에 있어서,
상기 스퍼터링법이 셀레늄이 포함되는 타겟을 적어도 하나 포함되도록 조합하여 수행하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 2,
The sputtering method is a CIGS thin film manufacturing method having a uniform Ga distribution, characterized in that performed by combining so as to include at least one target containing selenium.
청구항 3에 있어서,
상기 타겟 조합이 Cu-Se, In-Se, Ga-Se 타겟 조합, Cu-Se, In-Se, Cu-Ga 타겟 조합, Cu, In-Se, Ga-Se 타겟 조합, Cu-Se, In, Cu-Ga 타겟 조합 및 Cu-In-Se, Cu-Ga 타겟 조합 중 어느 하나인 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 3,
The target combination is Cu-Se, In-Se, Ga-Se target combination, Cu-Se, In-Se, Cu-Ga target combination, Cu, In-Se, Ga-Se target combination, Cu-Se, In, CI-Gas thin film manufacturing method having a uniform Ga distribution, characterized in that any one of a Cu-Ga target combination, Cu-In-Se, Cu-Ga target combination.
청구항 3에 있어서,
상기 스퍼터링법은, 각 조합의 타겟을 동시 스퍼터링(co-sputtering) 또는 시간차를 두고 차례로 수행하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 3,
The sputtering method, a method for producing a CIGS thin film having a uniform Ga distribution, characterized in that the target of each combination is performed in sequence by sputtering (co-sputtering) or a time difference.
청구항 2에 있어서,
상기 스퍼터링법이 Cu, In, Ga, Se을 각각 타겟으로 하여 수행하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 2,
The sputtering method is a CIGS thin film manufacturing method having a uniform Ga distribution, characterized in that carried out by targeting each of Cu, In, Ga, Se.
청구항 1에 있어서,
상기 셀렌화 열처리가 Se 증기 또는 H2Se 기체의 Se 분위기에서 이루어지는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 1,
The selenization heat treatment is a CIGS thin film manufacturing method having a uniform Ga distribution, characterized in that in the Se atmosphere of Se vapor or H 2 Se gas.
청구항 7에 있어서,
상기 셀렌화 열처리는, 상기 기판의 온도가 400 내지 530 ℃ 인 상태에서 수행되는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method of claim 7,
The selenization heat treatment, CIGS thin film manufacturing method having a uniform Ga distribution, characterized in that carried out in a state that the temperature of the substrate is 400 to 530 ℃.
청구항 7에 있어서,
상기 셀렌화 열처리가 10분 내지 60분 동안 수행되는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method of claim 7,
Said selenization heat treatment is performed for 10 minutes to 60 minutes CIGS thin film manufacturing method having a uniform Ga distribution.
청구항 1에 있어서,
상기 전구체 박막의 Se의 원자비(Se/(Cu + In + Ga))가 0.3~0.8인 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 1,
A method of manufacturing a CIGS thin film having a uniform Ga distribution, characterized in that the atomic ratio (Se / (Cu + In + Ga)) of Se of the precursor thin film is 0.3 ~ 0.8.
청구항 3에 있어서,
상기 타겟으로서 CuSe, In, CuGa 타겟을 사용하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 3,
CuSe, In, CuGa target is used as the target CIGS thin film manufacturing method having a uniform Ga distribution.
청구항 3에 있어서,
상기 타겟으로서 CuSe, In2Se3, CuGa 타겟을 사용하는 것을 특징으로 하는 균일한 Ga 분포를 갖는 CIGS 박막 제조방법.
The method according to claim 3,
CuSe, In 2 Se 3 , CuGa target using the CIGS thin film manufacturing method having a uniform distribution, characterized in that the target.
청구항 1 내지 청구항 12 중 어느 한 항의 방법으로 제조된 균일한 Ga 분포를 갖는 CIGS 박막.A CIGS thin film having a uniform Ga distribution prepared by the method of claim 1.
KR1020110051975A 2011-05-31 2011-05-31 Preparation method for thin film having uniform distribution KR20120133342A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020110051975A KR20120133342A (en) 2011-05-31 2011-05-31 Preparation method for thin film having uniform distribution
PCT/KR2012/004265 WO2012165860A2 (en) 2011-05-31 2012-05-30 METHOD OF MANUFACTURING CIGS THIN FILM WITH UNIFORM Ga DISTRIBUTION
CN201280023367.4A CN103548153B (en) 2011-05-31 2012-05-30 There is the manufacture method of the CIGS thin film of uniform Ga distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110051975A KR20120133342A (en) 2011-05-31 2011-05-31 Preparation method for thin film having uniform distribution

Publications (1)

Publication Number Publication Date
KR20120133342A true KR20120133342A (en) 2012-12-10

Family

ID=47260076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110051975A KR20120133342A (en) 2011-05-31 2011-05-31 Preparation method for thin film having uniform distribution

Country Status (3)

Country Link
KR (1) KR20120133342A (en)
CN (1) CN103548153B (en)
WO (1) WO2012165860A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014643A (en) * 2012-12-11 2013-04-03 中国科学院电工研究所 Method for preparing light absorption layer of CIGS (Copper, Indium, Gallium and Selenium) thin film solar cell
CN104051569B (en) * 2013-03-12 2017-09-26 台湾积体电路制造股份有限公司 Thin-film solar cells and its manufacture method
EP3021367B1 (en) * 2013-07-12 2020-06-03 Solar Frontier K.K. Thin-film solar cell
JP6586238B2 (en) * 2016-01-13 2019-10-02 メカロ カンパニー リミテッドMecaro Co.,Ltd. Solar cell including CIGS light absorption layer and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249408B2 (en) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
WO2001037324A1 (en) * 1999-11-16 2001-05-25 Midwest Research Institute A NOVEL PROCESSING APPROACH TOWARDS THE FORMATION OF THIN-FILM Cu(In,Ga)Se¿2?
KR100922890B1 (en) * 2007-10-29 2009-10-22 한국과학기술원 CIGS absorber layer fabrication method and solar cell including CIGS absorber layer
CN101299446A (en) * 2008-05-30 2008-11-05 南开大学 Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment
KR101060180B1 (en) * 2008-11-25 2011-08-29 한국광기술원 Method of manufacturing absorbing layer of solar cell

Also Published As

Publication number Publication date
WO2012165860A8 (en) 2013-01-31
CN103548153A (en) 2014-01-29
CN103548153B (en) 2016-08-31
WO2012165860A2 (en) 2012-12-06
WO2012165860A3 (en) 2013-03-28

Similar Documents

Publication Publication Date Title
Islam et al. A review of CZTS thin film solar cell technology
KR101094326B1 (en) Cu-In-Zn-Sn-Se,S THIN FILM FOR SOLAR CELL AND PREPARATION METHOD THEREOF
Seike et al. Development of high-efficiency CIGS integrated submodules using in-line deposition technology
KR20130050304A (en) Thin-film solar battery
Hsu et al. Improvement of Ga distribution and enhancement of grain growth of CuInGaSe2 by incorporating a thin CuGa layer on the single CuInGa precursor
KR20130016528A (en) Preparation method for czt(s,se) thin film and czt(s,se) thin film prepared the same
WO2012118771A2 (en) Improved thin-film photovoltaic devices and methods of manufacture
KR20120133342A (en) Preparation method for thin film having uniform distribution
JP2014123720A (en) Photoelectric conversion element, method of manufacturing the same, and solar cell
KR101734362B1 (en) Forming method for acigs film at low temperature and manufacturing method for solar cell by using the forming method
Zhang et al. Investigation on Sb-doped induced Cu (InGa) Se2 films grain growth by sputtering process with Se-free annealing
KR101388458B1 (en) Preparation method for cigs thin film using rapid thermal processing
Liang et al. Thermal induced structural evolution and performance of Cu2ZnSnSe4 thin films prepared by a simple route of ion-beam sputtering deposition
JP5512219B2 (en) Solar cell
CN114203842A (en) Wide-bandgap copper-gallium-selenium light absorption layer, preparation method thereof and solar cell
Wei et al. Improvement in efficiency of solar cell by removing Cu2− xSe from CIGS film surface
KR102057234B1 (en) Preparation of CIGS thin film solar cell and CIGS thin film solar cell using the same
WO2012091170A1 (en) Solar cell and solar cell production method
JP2015504611A (en) Method for improving the conductivity of molybdenum thin films using electron beam irradiation
US9472708B2 (en) Method of fabricating copper indium gallium selenide (CIGS) thin film for solar cell using simplified co-vacuum evaporation and copper indium gallium selenide (CIGS) thin film for solar cell fabricated by the same
Nagaich et al. Wide band-gap CuIn 1− X Ga X Se 2 based chalcopyrite absorbers for tandem cell applications
US20140261651A1 (en) PV Device with Graded Grain Size and S:Se Ratio
Bosio et al. Polycrystalline Cu (InGa) Se2/CdS thin film solar cells made by new precursors
Nakashima et al. Fabrication of Cu2ZnSnSe4 thin films by selenization of precursor using Cu2ZnSnSe4 compound for photovoltaic applications
KR101358055B1 (en) PREPARATION METHOD OF CZTSe THIN FILM AND CZTSe THIN FILM PREPARED THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application