KR20130041202A - 액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법 - Google Patents

액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법 Download PDF

Info

Publication number
KR20130041202A
KR20130041202A KR20137003568A KR20137003568A KR20130041202A KR 20130041202 A KR20130041202 A KR 20130041202A KR 20137003568 A KR20137003568 A KR 20137003568A KR 20137003568 A KR20137003568 A KR 20137003568A KR 20130041202 A KR20130041202 A KR 20130041202A
Authority
KR
South Korea
Prior art keywords
magnetic field
forming member
moving
droplet
moving surface
Prior art date
Application number
KR20137003568A
Other languages
English (en)
Inventor
아키타케 타무라
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20130041202A publication Critical patent/KR20130041202A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fluid Mechanics (AREA)
  • Biophysics (AREA)
  • Ecology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

간이한 방법으로 액적을 이동면 형성 부재의 표면을 따라 이동시킨다. 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재(1)의 양면에, 각각 상기 이동면 형성 부재(1)의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재(4A, 4B)를 설치한다. 그리고, 상기 이동면 형성 부재(1)와 자장 형성 부재(4A, 4B)를 상대적으로 상기 표면을 따라 이동시킴으로써, 상기 액적을 자장 구배를 따라 이동시킨다.

Description

액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법{DROPLET TRANSFER DEVICE, DROPLET TRANSFER METHOD, PLASMA SEPARATION DEVICE AND PLASMA SEPARATION METHOD}
본 발명은 자장 형성 부재와 이동면 형성 부재를 상대적으로 이동시켜, 이동면 형성 부재의 표면에서 액적(液滴)을 이동시키는 기술에 관한 것이다. 또한, 다른 발명은 이동면 형성 부재의 표면에서 혈액으로부터 혈장을 분리하는 기술에 관한 것이다.
생화학 분석의 일련의 조작을 1 매의 기판 상에서 행하는 microTAS(Micro Total Analysis Systems)라 불리는 기술이 있다. 이 방법은, 기판 상에 반응부 또는 혼합부를 설치하고, 1 매의 기판에서 혈액 등을 분석하는 화학 분석 시스템이며, 마이크로 유로를 이용하는 방법과, 액적을 기판 상에서 조작하는 방법이 알려져 있다. 상기 액적을 기판 상에서 조작하는 방법은 Dropulet - based microTAS라 불리고, 검사액 또는 시약이 수 nl 정도로 미소량인 점이 뛰어나다.
상기 액적을 이동시키는 방법으로서, EWOD(electro wetting on dielectric)를 응용한 디지털 마이크로 플루이딕스 회로에서 액적의 생성, 절단, 합체, 수송하는 기술이 검토되고 있다. 그러나, 이들 전기적으로 액적을 이동시키는 방법에서는 미세한 회로를 형성할 필요가 있기 때문에, 구성이 복잡화되고, 제조 코스트 및 운전 코스트가 높아질 염려가 있다. 또한 특허 문헌 1에는, 도포제에 초전도 자석에 의한 자계를 인가시켜 도포액을 확산시키는 기술이 제안되고 있다. 그러나, 초전도 자석은 고가로, 역시 코스트적으로 불리하다.
한편, 항원 항체 반응을 이용한 특정 단백질의 측정법으로서, ELISA법(Enzyme Linked Immunosolvent Assay : 효소 면역 측정법)이 알려져 있다. 이 방법은, 일차 항체와 측정 대상의 특정 단백질과의 사이에서 항원 항체 반응을 일으키게 한 후, 상기 일차 항체와 특이적으로 반응하는 효소로 표지된 이차 항체를 작용시킨다. 이 후, 효소 용액, 효소 기질 용액을 첨가하여 발색시킨 후, 흡광도 등을 측정함으로써 특정 단백질량의 검출을 행하는 것이다. 이 방법은, 다수의 웰이 형성된 플레이트에 대하여, 일차 항체 용액 및 측정 용액, 세정액, 이차 항체 용액, 효소 용액, 효소 기질 용액을 작업자가 수작업에 의해 분주(分注)함으로써 행해지고 있어, 매우 수고와 시간을 요하는 작업이 되고 있다. 따라서, 이 ELISA법을 상기 액적을 조작하는 방법을 이용하여 실행할 수 있으면 수고와 시간이 삭감되는데, 이 때 간이한 방법으로 저코스트로 실행할 수 있는 것이 바람직하다.
또한 혈액의 생화학 검사에서도, 혈액량이 미량으로 해결되고, 여러 종류의 검사 항목을 단시간에 실시하는 것을 기대할 수 있다는 점에서, 마이크로 화학칩을 이용하는 시도가 이루어지고 있다. 여기서, 검사 항목에 따라서는 혈액 중의 혈장을 이용하고 있고, 혈액으로부터 혈장을 분리하는 조작이 필요하지만, 마이크로 화학칩 상에서 상기 분리 조작을 행할 수는 없고, 이 조작은 원심 분리기를 이용하여 행해지고 있다. 그러나, 이 원심 분리기에 의한 조작에서는 어느 정도의 혈액량이 필요해지기 때문에, 마이크로 화학칩을 이용하는 요청에 부합하지 않는다.
또한, 유전 영동을 이용하여 혈액 중의 혈장과 혈구를 분리하는 연구가 이루어지고 있다. 이 방법에 의하면 플레이트 상에 전극을 설치하고, 교류 전압을 인가하여 유전 영동 작용을 발생시킴으로써 혈액으로부터 혈장을 분리할 수 있다. 따라서, 마이크로 화학칩에 응용할 경우, 칩 상에서 혈장을 분리할 수는 있지만, 그 후의 액적의 이동에 기술한 전기적으로 액적을 이동시키는 방법을 행하고자 해도, 이들은 모두 전장을 이용하는 방법이기 때문에, 양자를 조합할 수는 없다.
또한 특허 문헌 2에는, 혈청(혈장)을 통과시키고, 혈병의 통과를 저지하는 여과부를 채혈관에 삽입하고, 이 여과부를 자력에 의해 혈청 - 혈병의 경계부로 이동시킴으로써 혈청을 분리하는 방법이 기재되어 있다. 그러나, 이 방법을 적용해도 마이크로칩 상에서 혈액으로부터 혈장은 분리할 수 없어, 본 발명의 과제의 해결을 도모할 수 없다.
일본특허공개공보 평10-137666호
본 발명은 이러한 사정하에 이루어진 것이며, 간이한 방법으로 액적을 이동면 형성 부재의 표면을 따라 이동시킬 수 있는 기술을 제공하는 것에 있다. 또한, 이동면 형성 부재의 표면에서 혈액으로부터 혈장을 분리할 수 있는 기술을 제공하는 것에 있다.
이 때문에, 본 발명의 액적 이동 장치는, 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재와, 상기 이동면 형성 부재의 표면으로 액적을 공급하기 위한 액적 공급부와, 상기 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재와, 상기 액적을 자장 구배를 따라 이동시키기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키기 위한 이동 기구를 구비한 것을 특징으로 한다.
또한 본 발명의 혈장 분리 장치는, 혈액의 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재와, 상기 이동면 형성 부재에 설치되고, 상기 혈액으로부터 혈장을 분리하기 위하여 유전 영동 작용을 발생시키는 전극과, 상기 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재와, 상기 액적을 자장 구배를 따라 상기 전극 상을 통과시켜 상기 혈액으로부터 혈장을 분리하기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 이동 기구를 구비하고 있는 것을 특징으로 한다.
또한 본 발명의 액적 이동 방법은, 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재의 표면으로 액적을 공급하는 공정과, 자장 형성 부재에 의해, 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면에 자장 구배를 따라 이동시키기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 공정을 포함하는 것을 특징으로 한다.
또한 본 발명의 혈장 분리 방법은, 혈액의 액적의 이동면을 형성하는 비자성체로 이루어지고, 상기 혈액으로부터 혈장을 분리하기 위하여 유전 영동 작용을 발생시키는 전극을 구비한 이동면 형성 부재의 표면으로 혈액의 액적을 공급하는 공정과, 자장 형성 부재에 의해, 이동면 형성 부재의 표면 상에서의 상기 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 공정과, 상기 액적을 자장 구배를 따라 상기 전극 상을 통과시켜 상기 혈액으로부터 혈장을 분리하기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 공정을 포함하는 것을 특징으로 한다.
본 발명에 따르면, 이동면 형성 부재의 표면에서 액적을 이동시킴에 있어서, 자장 형성 부재에 의해, 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하고, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시킴으로써, 상기 액적을 상기 자장 구배를 따라 이동시키고 있다. 이와 같이, 자장 형성 부재의 이동에 수반하여, 이동면 형성 부재의 표면에서 액적을 이동시킴으로써, 간이한 방법으로 액적을 이동시킬 수 있다.
또한 다른 발명에 따르면, 이동면 형성 부재에 유전 영동 작용을 발생시키는 전극을 설치하고, 혈액을 상기 전극 상을 통과하도록 이동시키고 있으므로, 혈액 중의 혈구가 상기 유전 영동 작용에 의해 전극으로 끌어당겨진다. 한편, 혈액 중의 혈장은 자장 형성 부재의 이동에 수반하여 이동하기 때문에, 상기 이동면 형성 부재의 표면에서 상기 혈액으로부터 혈장을 분리할 수 있다.
도 1은 본 발명에 따른 액적 이동 장치의 개략을 도시한 사시도이다.
도 2는 상기 액적 이동 장치에 이용되는 이동면 형성 부재를 도시한 사시도이다.
도 3은 상기 액적 이동 장치를 도시한 측면도이다.
도 4는 상기 액적 이동 장치에 이용되는 자장 형성 부재를 도시한 사시도이다.
도 5는 상기 자장 형성 부재를 도시한 단면도이다.
도 6은 상기 자장 형성 부재에 의해 형성된 자장을 모식적으로 도시한 평면도이다.
도 7은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 단면도이다.
도 8은 이동면 형성 부재에 형성된 유로를 따라 액적이 이동하는 상태를 도시한 사시도이다.
도 9는 시료액을 저류하는 시료액 저류부로부터 자장 형성 부재에 의해 시료액이 당겨져, 액적이 유로로 공급되는 상태를 도시한 단면도이다.
도 10은 상기 시료액 저류부로부터 자장 형성 부재에 의해 시료액이 당겨져, 액적이 유로로 공급되는 상태를 도시한 평면도이다.
도 11은 이동면 형성 부재에서 행해지는, ELISE법에 따른 시료액의 분석 방법을 설명하는 평면도이다.
도 12는 본 발명의 액적 이동 장치의 다른 예를 도시한 사시도이다.
도 13은 본 발명의 액적 이동 장치의 또 다른 예를 도시한 측면도이다.
도 14는 본 발명의 혈장 분리 장치의 일실시예를 도시한 측면도이다.
도 15는 상기 혈장 분리 장치의 주요부를 도시한 개략 사시도이다.
도 16은 상기 혈장 분리 장치에 이용되는 검사 플레이트의 일례를 도시한 평면도이다.
도 17은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 단면도이다.
도 18은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 단면도이다.
도 19는 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 단면도이다.
도 20은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 평면도이다.
도 21은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 평면도이다.
도 22는 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 평면도이다.
도 23은 이동면 형성 부재에 형성된 유로를 따라 자장 형성 부재에 의해 액적이 이동하는 상태를 도시한 평면도이다.
도 24는 자장 형성 부재에 의한 액적의 이동 실험에서 이용된 실험 장치를 도시한 측면도이다.
도 25는 자장 형성 부재에 의한 액적의 이동 실험에서, 자장 형성 부재끼리의 갭과 액적량의 관계를 나타낸 특성도이다.
도 1은, 본 발명의 액적 이동 장치의 일실시예를 도시한 개략 사시도이다. 본 발명의 액적 이동 장치는, 액적의 이동면을 형성하는 이동면 형성 부재(1)를 구비하고 있다. 이 이동면 형성 부재(1)는, 도 1 및 도 2에 도시한 바와 같이, 예를 들면 판상체(板狀體)로서 구성되고, 예를 들면 글라스 또는 수지 등의 비자성체 재료에 의해 구성되어 있다.
이 예의 이동면 형성 부재(1)는, ELISE법을 실시하도록 구성되어 있고, 당해 이동면 형성 부재(1)의 일례에 대하여 도 2에 기초하여 설명한다. 이 이동면 형성 부재(1)의 표면에는, 액 저류를 이루는 다수의 오목부가 형성되어 있다. 이들 오목부는, 분석 대상이 되는 시료액을 저류하는 오목부, 또는 시료액을 분석하기 위한 약액을 저류하는 오목부로서 할당되어 있다.
상기 이동면 형성 부재(1)의 길이 방향(도 2 중 X 방향)의 일단측을 상류측으로서 설명하면, 상기 일단측에는, 분석 대상이 되는 시료액을 저류하는 복수개 예를 들면 3 개의 오목부가 시료액 저류부(11A ~ 11C)로서 서로 간격을 두고 나란하도록 형성되어 있다. 한편, 상기 이동면 형성 부재(1)의 길이 방향의 타단측에는, 시료액 저류부(11A ~ 11C)와 대응하여 반응부(12A ~ 12C)를 이루는 3 개의 오목부가 각각 형성되어 있다. 이들 반응부(12A ~ 12C)는, 상기 시료액의 액적과 상기 약액의 액적을 반응시키기 위한 반응 구역에 상당한다.
또한 이들 반응부(12A ~ 12C)의 하류측에는, 공통의 배액부(13)를 이루는 오목부가, 이동면 형성 부재(1)의 폭 방향(도 2 중 Y 방향)으로 연장되도록 형성되어 있다. 이들 시료액 저류부(11A ~ 11C)와 반응부(12A ~ 12C), 배액부(13)는, 각각 상기 이동면 형성 부재(1)의 길이 방향을 따라 형성된 유로(21A, 21B, 21C)에 의해 접속되어 있다.
이렇게 하여, 시료액 저류부(11A ~ 11C)에 저류된 시료액은, 후술하는 바와 같이, 액적으로서 각각 유로(21A ~ 21C)로 공급되고, 이들 유로(21A ~ 21C)를 각각 반응부(12A ~ 12C)를 향해 이동하고, 또한 반응부(12A ~ 12C)를 거쳐 배액부(13)로 이동하도록 구성되어 있다.
한편, 이동면 형성 부재(1)의 폭 방향에는, 상기 약액을 저류하는 다수의 오목부(14 ~ 18)가 상류측으로부터 차례로, 세정액을 저류하는 세정액 저류부(14), 항체 용액을 저류하는 항체 용액 저류부(15), 효소 용액을 저류하는 효소 용액 저류부(16), 발광제를 저류하는 발광제 저류부(17), 반응 정지액을 저류하는 반응 정지액 저류부(18)로서 형성되어 있다. 이들 약액용의 오목부(14 ~ 18)는, 각각 상기 이동면 형성 부재(1)의 폭 방향을 따라 형성된 유로(22 ~ 26)에 의해 상기 유로(21A ~ 21C)와 접속되어 있다.
그리고, 각 약액용의 오목부(14 ~ 18)에 저류된 약액 및 세정액은, 후술하는 바와 같이, 액적으로서 각각 유로(22 ~ 26)로 공급되고, 이들 유로(22 ~ 26)를 거쳐 유로(21A ~ 21C)까지 이동하고, 이어서 각각 반응부(12A ~ 12C), 또한 배액부(13)로 이동하도록 구성되어 있다.
상기 유로(21A ~ 21C)의 깊이는 시료액 저류부(11A ~ 11C)의 깊이보다 작게 구성되어 있고, 이 때문에 시료액 저류부(11A ~ 11C)측에서 보면, 유로(21A ~ 21C)의 저부(底部)는 시료액 저류부(11A ~ 11C)의 저부보다 한단계 높은 위치에 형성되어 있게 된다. 또한, 약액용의 오목부(14 ~ 18)와 유로(22 ~ 26)의 사이에서도, 유로(22 ~ 26)의 저부는 오목부(14 ~ 18)의 저부보다 한단계 높은 위치에 형성되어 있다.
여기서, 이동면 형성 부재(1)의 크기의 일례에 대하여 설명하면, 상기 액적의 크기가 예를 들면 직경이 5 mm ~ 10 mm의 경우에는, 시료 저류부(11A ~ 11C)의 크기는 예를 들면 세로 15 mm, 가로 15 mm, 깊이 0.5 mm로 각각 설정되고, 반응부(12A ~ 12C) 또는 세정액 또는 약액을 저류하는 오목부(14 ~ 18)의 크기도 동일하게 설정되어 있다. 또한 유로(21A ~ 21C, 22 ~ 26)의 크기는, 예를 들면 폭 5 ~ 10 mm, 깊이 0.2 mm로 각각 설정된다.
상기 이동면 형성 부재(1)는 보지(保持) 부재(3)에 보지되어 있고, 이 보지 부재(3)는, 예를 들면 비자성체 예를 들면 글라스 또는 수지 등에 의해 구성된 판상체에 의해 구성되어 있다. 또한 당해 보지 부재(3)는, 지지부(31)를 개재하여 이동 부재(32)에 장착되어 있다. 이 이동 부재(32)는, Y 축 구동 기구(33)에 의해 Y 축 방향(이동면 형성 부재(1)의 폭 방향)으로 이동 가능하게 구성되고, 또한 이 Y 축 구동 기구(33)는, X 축 구동 기구(34)에 의해 X 축 방향(이동면 형성 부재(1) 길이 방향)으로 이동 가능하게 구성되어 있다. 이들 Y 축 구동 기구(33) 및 X 축 구동 기구(34)로서는, 예를 들면 볼 나사를 이용한 구동 기구가 이용되고, 각각 구동부를 이루는 모터(M1, M2)에 의해 볼 나사가 회전하도록 구성되어 있다.
이들 모터(M1, M2)에는 도시하지 않은 엔코더가 접속되어 있고, 후술하는 제어부(100)가 엔코더의 펄스수의 카운트값에 기초하여 모터(M1, M2)를 개재하여, 이동면 형성 부재(1)의 이동, 정지 제어를 행하고 있다. 이렇게 하여, 이동면 형성 부재(1)는 그 길이 방향(X 방향) 및 폭 방향(Y 방향)으로 이동 가능하게 구성된다. 이 예에서는, 보지 부재(3), 지지 부재(31), 이동 부재(32), X 방향 구동 기구(34), Y 방향 구동 기구(33)에 의해 이동 기구가 구성되어 있다.
또한 당해 액적 이동 장치는, 상기 이동면 형성 부재(1)의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재(4)를 구비하고 있다. 이 예에서는, 자장 형성 부재(4)는, 상기 보지 부재(3)에 보지된 이동면 형성 부재(1)의 양면측에, 당해 이동면 형성 부재(1)를 개재하여 대향하는 한 쌍의 자장 형성 부재(4A, 4B)에 의해 구성되어 있다.
이들 자장 형성 부재(4A, 4B)로서는, 예를 들면 영구 자석을 할바흐형으로 배열한 자석이 이용된다. 구체적으로 상기 자장 형성 부재(4A, 4B)의 구조에 대하여, 자장 형성 부재(4A)를 예로 하여 도 4에 기초하여 설명한다. 당해 자장 형성 부재(4A)는 복수의 영구 자석(41A ~ 41D)을 환상(環狀)으로 배열하고, 또한 그 중앙에 포화 자속 밀도가 높은 부재로 구성된 심 부재(42)를 설치하여 구성된다. 이 예에서는, 자장 형성 부재(4A) 및 심 부재(42)는, 각각 평면 형상이 정방형 형상의 사각 기둥 형상으로 구성되고, 그 저면이 이동면 형성 부재(1)의 표면과 평행이 되도록 배치되어 있다.
상기 포화 자속 밀도가 높은 부재로서 예를 들면 철 등의 금속이 이용되고, 영구 자석(41A ~ 41D)의 재질로서는 네오디늄 등이 이용된다. 그리고, 상기 심 부재(42)의 주위에, 평면 형상이 사다리꼴 형상인 4 개의 영구 자석(41A ~ 41D)을, 예를 들면 외측이 N 극이 되도록 배열하여 구성되어 있다. 도 4 중 화살표는, 자력선의 방향을 나타내고 있다.
또한 이 자장 형성 부재(4A)는, 자장이 국소적으로 작은 영역을 형성하도록 구성되어 있다. 이 때문에, 이동면 형성 부재(1)의 표면을 따른 방향에서 봤을 때 투자율이 국소적으로 작아지는 부분을 구비하고 있고, 이 부분은, 자장 형성 부재(4B)의 두께 방향(Z 방향) 전체에 형성된 공극(43)으로서 구성되어 있다. 상기 공극(43)은 평면 형상이 장방형으로서, 자장 형성 부재(4A)의 심 부재(42)와 영구 자석(41D)의 사이에 걸쳐지도록, 자장 형성 부재(4A)의 중심 근방으로부터 외측을 향해, 이동면 형성 부재(41)의 길이 방향으로 연장되는 장방형 형상으로 구성되어 있다.
한편, 자장 형성 부재(4B)도 자장 형성 부재(4A)와 마찬가지로, 중앙에 포화 자속 밀도가 높은 부재로 이루어지는 심 부재(45)를 설치하고, 또한 이 심 부재(45)의 외측에 4 개의 영구 자석(44A ~ 44D)을 배열하여 구성되고, 자장 형성 부재(4B)의 상면이 이동면 형성 부재(1)와 평행이 되도록 배치되어 있다. 또한 자장 형성 부재(4B)의, 4 개의 영구 자석(44A ~ 44D)은 외측이 S 극이 되도록 배열되고, 자장 형성 부재(4A)의 공극(43)과 대응하는 위치에, 동일한 형상의 공극(46)이 자장 형성 부재(4B)의 두께 방향(Z 방향) 전체에 형성되어 있다.
이와 같이, 각각의 자장 형성 부재(4A, 4B)에서는, 그 내부에 포화 자속 밀도가 높은 심 부재(42, 45)를 설치하고, 또한 이 심 부재(42, 45)의 외측에 외부 자계의 방향과 동일하게 되도록 영구 자석을 배열하여 구성되어 있다. 이 때문에, 심 부재(42, 45)의 하방측에서 자장이 크고, 심 부재(42, 45)로부터 외방을 향함에 따라 자장이 작아지는 자장 구배가 형성된다. 한편, 심 부재(42, 45)의 하방측에서의, 공극(43, 46)을 둘러싸는 영역은 자장이 국소적으로 작은 영역으로서 구성된다.
또한, 이러한 자장 형성 부재(4A, 4B)를 영구 자석(41, 44)의 자극이 서로 상이하도록 구성하고, 상하로 조합하고 있으므로, 자장 형성 부재(4A, 4B)의 심 부재(42, 45)가 설치된 영역 간의 공간에는, 자장 형성 부재(4A, 4B)를 단독으로 배치할 경우보다 큰 자장이 형성된다. 한편, 공극(43, 46)을 둘러싸는 영역은 자장이 국소적으로 작은 영역으로서 구성되어 있으므로, 공극(43, 46)을 둘러싸는 영역과 공극(43, 46)의 외측의 영역 간에는 큰 자장 구배가 형성되게 된다. 이러한 자장 형성 부재(4A, 4B)는, 서로 소정 간격을 두고 대향하도록 공통의 지지 프레임(47)에 고정되어 있다.
여기서, 자장 형성 부재(4A, 4B)의 크기의 일례에 대하여 설명하면, 예를 들면 정방형을 구성하는 한 변이 50 mm로 설정되고, 심 부재(42, 45)는 정방형을 구성하는 한 변이 예를 들면 10 mm로 설정되고, 공극(43, 46)은 예를 들면 세로 5 mm, 가로 5 mm로 각각 설정된다. 또한, 이동면 형성 부재(1)와 보지 부재(3)의 적층체의 두께는 예를 들면 2 mm로 설정되고, 자장 형성 부재(4A)의 저면과 이동면 형성 부재(1)의 표면과의 거리는 예를 들면 1 mm, 보지 부재(3)의 이면과 자장 형성 부재(4B)의 상면과의 거리는 예를 들면 0.5 mm로 각각 설정된다.
또한, 이 액적 이동 장치는 제어부(100)를 구비하고 있다. 이 제어부(100)는 예를 들면 컴퓨터로 이루어지고, 프로그램, 메모리, CPU로 이루어지는 데이터 처리부를 구비하고 있고, 상기 프로그램에는 제어부(100)로부터 액적 이동 장치의 모터(M1, M2)로 제어 신호를 보내고, 액적을 미리 설정한 이동 궤적을 따라 이동시키도록 하는 일련의 동작을 자동으로 실시하도록 명령(각 단계)이 탑재되어 있다. 이 프로그램은 컴퓨터 기억 매체, 예를 들면 플렉서블 디스크, 콤팩트 디스크, 하드 디스크, MO(광자기 디스크) 등의 기억부에 저장되어 제어부(100)에 인스톨된다.
이어서, 이 액적 이동 장치의 작용에 대하여 설명한다. 이 액적 이동 장치에서는, 이동면 형성 부재(1)의 표면에서 액적이 모세 효과에 의해, 자장 형성 부재(4)에 의해 형성된 자장 구배를 따라 이동한다. 즉, 이동면 형성 부재(1)의 표면은, 2개의 자장 형성 부재(4A, 4B)의 사이에 존재하기 때문에, 기술한 바와 같이 강력한 자장이 형성되어 있다. 한편, 당해 실시예에서 이용되는 액적은 약한 반자성체이기 때문에, 당해 액적은, 자장 형성 부재(4A, 4B)의 사이에 형성되는 강력한 자장으로부터 멀어지고자 하여, 자장이 약한 에어리어로 이동한다. 이렇게 하여, 자장 형성 부재(4)에 대하여 이동면 형성 부재(1)를 이동시키면, 액적은 이동면 형성 부재(1)에 형성된 유로(2(21 A ~ 21C, 22 ~ 26)) 내를 자장 형성 부재(4)에 의해 형성된 자장이 작은 쪽으로 이동하게 된다. 이 때, 자장 구배가 클수록, 자장이 강한 에어리어로부터 약한 에어리어로 향하는 힘이 커져, 액적이 순조롭게 이동한다.
여기서, 도 6에 자장의 이미지를 도시한다. 자장 형성 부재(4A, 4B)에 의해 형성된 자장(400)에서, 심 부재(42, 45)에 대응하는 영역(401)이 가장 크고, 이로부터 외방을 향함에 따라 자장이 작아진다. 도 6 중, 자장의 크기는 4 단계로 나타내고 있고, 자장의 크기는 자장(401) > 자장(402) > 자장(403) > 자장(404)이지만, 실제로는 무단계로 작아진다.
또한 기술한 바와 같이, 상기 자장 형성 부재(4A, 4B)에는, 공극(43, 46)이 이동면 형성 부재(1)의 길이 방향으로 연장되도록 형성되어 있으므로, 도 6에 도시한 바와 같이, 공극(43, 46)에 대응하는 영역에는, 자장이 작은 국소 영역(404)이 형성된다. 이 국소 영역(404)은 심 부재(42, 45)의 중앙측에 정점이 있고, 이로부터 이동면 형성 부재(1)의 길이 방향을 향해 확장되는 이등변 삼각형 형상으로 형성된다고 추측된다. 이 때문에, 액적은 강한 자장으로부터 멀어지고자 하여, 결과적으로 2개의 등변의 사이에 수용되어, 상기 국소 영역에 갇히는 상태가 된다.
그리고 도 7 및 도 8에 도시한 바와 같이, 자장 형성 부재(4A, 4B)에 의해 형성되는 자장의 국소 영역이 액적의 이동 방향의 전방측에 위치하도록, 이동면 형성 부재(1)를 이동시킴으로써, 액적(L)이 유로(2(21 A ~ 21C, 22 ~ 26)) 내를 상기 자장의 국소 영역에 트랩된 상태로 이동하게 된다.
따라서, 액적을 이동면 형성 부재(1)의 길이 방향(X 방향)으로 연장되는 유로(21A ~ 21C)를 따라 하류측으로 이동시킬 때에는, 이동면 형성 부재(1)를 상류측으로 이동시켜 자장 형성 부재(4)를 상대적으로 하류측으로 이동시키면, 액적은 유로(21A ~ 21C) 내를 자장 형성 부재(4A, 4B)와 함께 자장 구배가 작은 상기 하류측을 향해 이동한다.
또한, 액적을 이동면 형성 부재(1)의 폭 방향(Y 방향)으로 연장되는 유로(22 ~ 26)를 따라 이동시킬 때에는, 이동면 형성 부재(1)를 액적의 이동 방향과 반대 방향으로 이동시켜 자장 형성 부재(4)를 상대적으로 액적의 이동 방향으로 이동시키면, 액적은 유로(22 ~ 26) 내를 자장 형성 부재(4A, 4B)와 함께 자장이 작은 이동 방향의 전방측을 향해 이동한다.
이 때, 후술하는 실험예로부터도 명백한 바와 같이, 기술한 바와 같이, 영구 자석을 할바흐형으로 배열한 자장 형성 부재(4A, 4B)를 상하로 조합함으로써, 이들 자장 형성 부재(4A, 4B)의 사이에서는, 3.2 테스라 정도의 자장을 형성할 수 있고, 직경이 5 mm ~ 10 mm 정도의 액적을 이동시킬 수 있는 것이 인정되고 있다.
이어서 도 9 ~ 도 11을 참조하여, 상기 액적 이동 장치에서, 시료액 중에 포함되는 특정의 단백질인 알레르기 물질의 양을 ELISE법을 이용하여 분석하는 방법에 대하여 설명한다. 여기서는, 시료액 저류부(11B) 내에 저류된 시료액에 대한 측정을 행할 경우를 예로 한다.
우선, 미리 반응부(12B)로, 분석 대상이 되는 알레르기 물질과 결합하는 일차 항체 용액을 공급하여, 당해 반응부(12)의 표면에 일차 항체를 고상화(固相化)한다. 그리고 이동면 형성 부재(1)를, 자장 형성 부재(4)에 의해 형성되는 자장의 국소 영역이 유로(21B)의 상류측 근방에 대향하는 위치로 이동시키고, 이어서 상기 국소 영역이 시료액 저류부(11B)로부터 유로(21B)를 향해 이동하도록, 이동면 형성 부재(1)를 이동시킨다. 이에 의해, 도 9 및 도 10에 도시한 바와 같이, 시료액 저류부(11B) 내에 저류되어 있는 시료액은, 상기 자장 형성 부재(4)의 자장에 의해 당겨져, 상기 이동면 형성 부재(1)의 표면에 형성된 유로(21B) 내로 액적으로서 공급된다. 이 액적은 직경이 5 mm ~ 10 mm 정도이다. 이와 같이 당해 실시예에서는, 시료액 저류부(11A ~ 11C)를 이루는 오목부와 자장 형성 부재(4)에 의해 액적 공급부가 구성된다.
이어서 도 11에 도시한 바와 같이, 이동면 형성 부재(1)를 이동시킴으로써, 자장 형성 부재(4A, 4B)를 상대적으로 유로(21B)의 하류측으로 이동시키고, 이렇게 하여 유로(21B) 내로 공급된 액적(L)을 반응부(12B)까지 이동시킨다(공정 1). 그리고, 시료액의 액적을 반응부(12B)에서 일차 항체와 반응시킨다(일차 반응). 이 일차 반응에서는, 일차 항체에 대하여 분석 대상인 특정의 알레르기 물질만이 결합하여 복합체를 형성한다.
이어서, 이동면 형성 부재(1)를 이동시킴으로써, 자장 형성 부재(4A, 4B)를 상대적으로 이동시켜, 마찬가지로 세정액 저류부(14)로부터 세정액의 액적을 유로(22) 내로 공급하고, 이렇게 하여 세정액의 액적을 유로(22), 유로(21B)를 거쳐 반응부(12B)까지 이동시킨다(공정 2). 반응부(12B)에서는, 세정액에 의한 불필요한 성분의 세정 제거가 행해지고, 세정액으로서는 예를 들면 인산 완충 생리 식염수 등이 이용된다. 이 세정 처리는, 세정액을 반응부(12B)로 이동시키고 또한 통과시켜 배액부(13)로 배액함으로써, 세정액으로 세정함으로써 행해진다.
이 후, 마찬가지로 항체 용액 저류부(15)로부터 이차 항체 용액인 예를 들면 비오틴 결합 항체 용액을 유로(23) 내로 공급하고, 당해 액적을 유로(23), 유로(21B)를 거쳐 반응부(12B)까지 이동시킨다(공정 3). 반응부(12B)에서는, 일차 반응에 의해 형성된 복합체에, 비오틴이 표지된 항체가 결합하는 이차 반응이 진행된다. 이어서, 세정액 저류부(14)로부터 세정액의 액적을 유로(22), 유로(21B)를 거쳐 반응부(12B)까지 이동시키고, 불필요한 성분의 세정 제거가 행해진다(공정 4).
이러한 후, 마찬가지로 효소 용액 저류부(16)로부터 효소 용액인 예를 들면 효소 - 스트렙타아비딘 결합물 용액을 유로(24) 내로 공급하고, 당해 액적을 유로(24), 유로(21B)를 거쳐 반응부(12B)까지 이동시킨다(공정 5). 반응부(12B)에서는, 비오틴과 스트렙타아비딘이 결합하는 효소·기질 반응이 진행된다. 이어서, 세정액 저류부(14)로부터 세정액의 액적을 유로(22), 유로(21B)를 거쳐 반응부(12B)까지 이동시키고, 불필요한 성분의 세정 제거가 행해진다(공정 6).
이어서, 마찬가지로 발색제 저류부(17)로부터 발색제 용액인 예를 들면 o - 페닐렌디아민 용액을 유로(25) 내로 공급하고, 당해 액적을 유로(25), 유로(21B)를 거쳐 반응부(12B)까지 이동시킨다(공정 7). 반응부(12B)에서는, 스트렙타아비딘에 결합한 효소가 반응하여 용액이 발색한다.
이어서, 마찬가지로 반응 정지액 저류부(18)로부터 반응 정지액인 예를 들면 0.1 n 희황산 용액을 유로(26) 내로 공급하고, 당해 액적을 유로(26), 유로(21B)를 거쳐 반응부(12B)까지 이동시킨다(공정 8). 그리고, 흡광도 계측 장치에 의해 흡광도를 측정한다. 이 측정은, 예를 들면 반응부(12B)의 상방측으로부터 광을 조사하여, 이면으로부터 흡광도를 계측함으로써 행해진다. 따라서, 이동면 형성 부재(1)는 광을 투과하는 재료에 의해 형성된다. 이 때, 알레르기 물질의 함유량이 많을수록 흡광도가 커지기 때문에, 미리 측정한 표준 물질의 흡광도와 비교함으로써, 알레르기 물질의 항원량을 검출할 수 있다. 검출된 항원량은, 예를 들면 제어부(100)의 입출력 화면(도시하지 않음)에 표시된다. 이 때, 시료액 또는 세정액, 그 외의 약액의 액적은, 정해진 순서로 반응부(12B)로 이동되고, 필요한 시간동안 반응부(12B)에 두고, 그 후 배액부(13)로 이동되도록 되어 있다.
상술한 실시예에 따르면, 자장 형성 부재(4)에 의해 이동면 형성 부재(1)의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하고, 상기 이동면 형성 부재(1)와 자장 형성 부재(4)를 상대적으로 상기 표면을 따라 이동시키고 있으므로, 자장 형성 부재(4)의 상대적 이동에 수반하여, 상기 액적을 이동면 형성 부재(1)의 표면에서 상기 자장 구배를 따라 이동시킬 수 있다.
이 때, 자장 형성 부재(4)는 영구 자석을 이용하고 있으므로, 자장을 형성하기 위하여 전력 공급이 불필요하다. 이 때문에, 전계를 이용하여 액적을 이동시키는 방식과 같은 복잡한 회로 패턴 또는 전자석을 이용할 경우에 비해, 간이한 구성으로 항상 안정된 자장을 형성할 수 있다. 따라서, 전계를 이용하여 액적을 이동시키는 방식 또는 전자석을 이용하는 구성에 비해 제조 코스트가 염가가 된다. 또한, 자장의 형성을 위한 전력 공급이 불필요하고, 구동 기구도 이동면 형성 부재(1)의 모터(M1, M2)이므로, 메인터넌스도 용이하다는 점에서 운전 코스트가 저감된다.
또한 상술한 액적의 이동 방법에서는, 예를 들면 10 μl의 미소한 액적을 이동시킬 수 있으므로, ELISE법 등의 시료액 중의 특정 성분의 분석 방법에 이용할 수 있다. 이에 의해 종래에는, 작업자가 수작업으로 행하고 있던 플레이트 표면의 웰에의 시료액 또는 약액, 세정액의 분주 작업이 불필요해져, 상기 시료액의 성분의 분석 작업을 간이하게 행할 수 있다.
이상에서, 자장 형성 부재(4)는 공극(43, 46)이 형성되어 있지 않은 구성이어도 된다. 그 경우라도, 자장 형성 부재(4)에 의해 상기 이동면 형성 부재(1)의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배가 형성되므로, 상기 이동면 형성 부재(1)와 자장 형성 부재(4)를 상대적으로 상기 표면을 따라 이동시킴으로써, 상기 액적을 자장 구배를 따라 이동시킬 수 있다.
또한 자장 형성 부재(4A, 4B)는, 이동면 형성 부재(1)의 양면측에 설치함으로써 이들 자장 형성 부재(4A, 4B)의 사이에 고자장이 형성되지만, 액적과 상기 이동면 형성 부재(1)의 상성(相性)에 의해 액적 주사성이 변화하기 때문에, 자장 형성 부재(4)는 이동면 형성 부재(1)의 일방측에 설치하도록 해도 된다.
또한, 이동면 형성 부재(1)와 자장 형성 부재(4)는 상대적으로 이동하는 구성이면 되고, 도 12에 도시한 바와 같이, 자장 형성 부재(4)측을 이동시키도록 해도 된다. 도 13 중 30은 이동면 형성 부재(1)의 보지 부재(3)의 지지대이다. 또한, 자장 형성 부재(4)의 지지 프레임(47)은 지지 부재(51), 이동 부재(52)를 거쳐 X 방향 구동 기구(54), Y 방향 구동 기구(53)에 의해, 이동면 형성 부재(1)의 길이 방향(X 방향) 및 폭 방향(Y 방향)으로 이동 가능하게 구성되어 있다. X 방향 이동 기구(54), Y 방향 이동 기구(53)로서는, 예를 들면 볼 나사를 이용한 기구가 이용되고, 도면 중 M3, M4는 볼 나사의 모터이다.
또한, 액적 공급부는 상술한 구성에 한정되지 않고, 예를 들면 이동면 형성 부재(1)의 상방측에 스포이드 형상으로 구성된 액적 공급부를 설치하고, 이로부터 이동면 형성 부재(1)의 표면으로 액적을 공급하도록 해도 된다.
또한 본 발명에서는, 도 13에 도시한 바와 같이, 이동면 형성 부재(1)의 양면에 각각 설치된 자장 형성 부재(4A, 4B)의 갭을 가변으로 하도록 구성해도 된다. 이 예에서는, 승강 기구(55)에 의해 자장 형성 부재(4A)가 이동면 형성 부재(1)에 대하여 승강할 수 있도록 구성되어 있다. 그리고, 예를 들면 자장 형성 부재(4A, 4B)를 이동면 형성 부재(1)에 대하여 상대적으로 이동시켜, 약액의 액적을 반응부로 이동시킨 후, 자장 형성 부재(4A)를 상승시켜, 자장 형성 부재(4A, 4B)의 갭을 크게 한 다음, 자장 형성 부재(4A, 4B)를 다른 약액용의 오목부에 대응하는 위치로 상대적으로 이동시킨다. 이러한 구성에서는, 자장 형성 부재(4A, 4B)를 반응부로부터 다음의 약액의 오목부로 상대적으로 이동시킬 시, 자장 형성 부재(4A, 4B)끼리의 갭을 크게 하여, 이들 사이에 형성되는 자장을 약하게 하고 있다. 이 때문에, 반응부의 깊이가 작을 경우, 또는 반응부 내의 액량이 많을 경우라도, 반응부로부터 액적을 인출할 우려가 없다.
또한 본 발명에서는, 이동면 형성 부재(1)의 표면에 액적의 유로를 반드시 형성할 필요는 없다. 이동면 형성 부재(1)와 자장 형성 부재(4)를 상대적으로 이동시킴으로써, 상기 액적을 자장 구배가 작은 쪽으로 이동시킬 수 있기 때문이다. 특히 상술한 실시예와 같이, 상기 자장 형성 부재를, 국소 영역에 액적을 가두는 작용을 크게 하기 위하여, 자장이 국소적으로 작은 영역을 형성하도록 구성하면, 액적이 상기 국소 영역에 트랩된 상태로 이동하기 때문에, 이동면 형성 부재(1)에 유로가 형성되어 있지 않아도 액적을 안정적으로 이동시킬 수 있다.
또한 본 발명의 액적 이동 방법은, ELISA법 외에 PCR법 또는 면역크로마토법에도 적용할 수 있다.
이어서, 본 발명의 혈장 분리 장치에 대하여 도 14 ~ 도 23을 참조하여 설명한다. 도 14는, 본 발명의 혈장 분리 장치의 일실시예를 도시한 측면도, 도 15는 그 주요부의 개략 사시도, 도 16은 그 주요부의 평면도이다. 상기 혈장 분리 장치(7)는 처리실(70) 내에, 이동면 형성 부재를 이루는 검사 플레이트(8)와, 이 검사 플레이트(8)를 보지하는 보지 부재(3)와, 이 보지 부재(3)를 이동시키는 이동 기구와, 자장 형성 부재(4A, 4B)를 구비하고 있다. 이후, 도 14 중 처리실(70)의 길이 방향을 X 방향, 처리실(70)의 폭 방향을 Y 방향으로서 설명한다. 또한, 상술한 실시예와 동일하게 구성되어 있는 부분에는 동일한 부호를 부여하고 있다.
상기 검사 플레이트(8)는, 예를 들면 실리콘, 글라스 또는 수지 등의 비자성재로 형성된 예를 들면 3 cm × 8 cm 정도의 크기의 판상체이다. 이 검사 플레이트(8)의 표면에는 액 저류를 이루는 다수의 오목부가 형성되어 있다. 예를 들면, 상기 검사 플레이트(8)의 길이 방향(도 15 중 X 방향)의 일단측을 상류측으로서 설명하면, 상기 일단측에는 약액을 저류하는 오목부가 약액 저류부(81A)로서, 이 하류측에는 검사 대상의 혈액을 저류하는 오목부가 시료액 저류부(82)로서, 또한 상기 검사 플레이트(8)의 길이 방향의 타단측에는 반응부(83)를 이루는 오목부가 각각 형성되어 있다. 이 반응부(83)는, 후술하는 혈장과 생화학 검사용의 약액의 액적을 반응시키기 위한 반응 구역에 상당한다.
이들 약액 저류부(81A)와 시료액 저류부(82)와 반응부(83)는, 상기 검사 플레이트(8)의 길이 방향을 따라 형성된 유로(84)에 의해 접속되어 있다. 한편, 검사 플레이트(8)의 폭 방향(도 15 중 Y 방향)에는, 후술하는 혈액의 생화학 검사용의 약액을 저류하는 복수개, 이 예에서는 2 개의 오목부가 약액 저류부(81B, 81C)로서 상류측으로부터 차례로 형성되어 있다. 이들 약액 저류부(81B, 81C)는, 각각 검사 플레이트(8)의 폭 방향을 따라 형성된 유로(85A, 85B)에 의해 상기 유로(84)와 접속되어 있다.
또한 상기 검사 플레이트(8)의 표면에는, 상기 유로(84)에서의 상기 시료액 저류부(82)의 하류측으로서, 유로(85A)의 상류측의 영역에 유전 영동 작용을 발생시키기 위한 전극 유닛(9)이 설치되어 있다. 이 전극 유닛(9)은 상기 유로(84)에 교차하도록, 서로 이간하여 대향하도록 설치된 한 쌍의 전극(91, 92)을 구비하고 있다. 이들 전극(91, 92)은, 교류 전압을 인가하는 전원부(93)와 스위치부(94)를 개재하여 접속되어 있다.
여기서 유전 영동이란, 불균일한 전장 내에서, 전장 및 당해 전장에 의해 유도된 전기 쌍극자 모멘트에 의해 힘을 받은 물질이 이동하는 현상이며, 유전 영동에 의해 물질이 이동하는 방향은, 물질 및 용액의 유전 특성에 의해 결정된다. 따라서, 상기 전극(91) 및 전극(92)은 불균일한 전장을 형성하도록 구성된다. 또한 혈액에서는, 혈구가 전극(91)측으로 끌어당겨지도록 이동하는 점에서, 당해 전극(91)이 유로(84)의 상류측에 형성되고, 또한 혈구가 트랩되기 쉬운 형상으로 형성된다. 또한 전극 유닛(9)을 형성하는 위치는, 상기 유로(84)에서의 상기 시료액 저류부(82)의 하류측으로서, 유로(85A)의 상류측이면 되지만, 후술하는 바와 같이 혈액이 전극 유닛(9)을 통과함으로써 혈구와 혈장으로 분리되기 때문에, 보다 상기 시료액 저류부(82)에 가까운 것이 바람직하다.
이러한 전극 유닛(9)은, 예를 들면 검사 플레이트(8)의 소정 위치에 오목부(81A ~ 81C, 82, 83) 등 및 유로(84, 85A, 85B) 등을 형성한 후, 당해 검사 플레이트(8)의 표면에서의 소정 위치에, 예를 들면 금 등의 도전성의 박막을 예를 들면 증착에 의해 형성하고, 이어서 소정의 전극 패턴 형상으로 에칭함으로써 구성된다. 이 때 도 14 ~ 도 19에서는, 도시의 편의상 전극 유닛(9)을 크게 도시하고 있고, 실제로는 전극 유닛(9)은, 예를 들면 전극의 패턴 폭이 25 μm, 전극(91)과 전극(92) 간의 거리가 200 ~ 300 μm 정도로 형성된다. 또한 도 16에서는, 전극(91) 및 전극(92)은 유로(84)의 폭을 초과하여 크게 도시하고 있지만, 실제로는 유로와 대략 동일하거나 또는 약간 크게 형성하면 된다. 또한 전극 유닛(9)은, 검사 플레이트(8)의 이면측에 형성하도록 해도 된다.
또한 검사 플레이트(8)의 표면에서의 유로(84)는, 전극 유닛(9)의 하류측에서 국소적으로 폭이 좁아지는 부위(84A)를 구비하고 있다. 이 예에서는, 당해 부위(84A)는 전극 유닛(9)의 하류측 근방에 형성되어 있지만, 후술하는 바와 같이, 혈장의 액적의 분리는 혈장이 이 부위(84A)를 통과함으로써 행해지기 때문에, 이 부위(84A)를 형성하는 위치는, 상기 유로(84)에서의 상기 시료액 저류부(82)의 하류측으로서 유로(85A)의 상류측이면 된다. 예를 들면, 유로(84)는 폭이 3 mm 정도, 상기 부위(84A)의 폭은 2 mm 정도로 각각 설정된다.
상기 보지부(3)는, 예를 들면 검사 플레이트(8)의 일부를 보지하도록 상기 X 방향으로 긴 장방형 형상의 판상체에 의해 구성되어 있다. 이 예의 보지부(3), 지지부(31), 이동 부재(32), X 축 구동 기구(33), Y 축 구동 기구(34), 모터(M1, M2)는, 상술한 실시예와 동일하게 구성되어 있으므로 설명을 생략한다. 여기서 도 14에 도시한 보지부(3)의 위치는, 후술하는 바와 같이 당해 보지부(3)에 대하여 검사 플레이트(8)의 전달을 행하는 전달 위치이며, 검사 플레이트(8)는 당해 위치에서 보지부(3)에 재치(載置)된 후, X 방향의 일단측(도 14 중 좌측)을 향해 이동한다. 따라서 이후의 설명에서는, 상기 일단측을 이동 방향의 전방측, X 방향의 타단측(도 14 중 우측)을 이동 방향의 후방측으로서 설명한다.
또한 상기 자장 형성 부재(4A, 4B)는, 상기 보지부(3)에 보지된 검사 플레이트(8)의 양면측에, 당해 검사 플레이트(8)를 개재하여 대향하도록 설치되어 있다. 이 예에서는, 상기 자장 형성 부재(4A, 4B)는, 상기 전달 위치에 있는 보지부(3) 상의 검사 플레이트(8)에 대하여 이동 방향의 전방측으로서, 상기 검사 플레이트(8)의 Y 방향의 대략 중앙에, 당해 검사 플레이트(8)와 간섭하지 않도록 설치되어 있다. 이들 자장 형성 부재(4A, 4B)는, 상술한 실시예의 자장 형성 부재(4A, 4B)와 동일하게 구성되어 있으므로 설명은 생략하지만, 상기 공극(43)이 X 방향으로 연장되도록 배치되어 있다.
상기 자장 형성 부재(4A, 4B)는, 서로 소정 간격을 두고 대향하도록 각각 처리실(70)의 천장부(70A) 및 저부(70B)에 지지 부재(71A, 71B)를 개재하여 장착되어 있다. 또한, 예를 들면 상측의 자장 형성 부재(4A)의 지지 부재(71A)는, 자장 형성 부재(4A, 4B)끼리가 가장 접근하는 액적 이동 위치와, 액적 이동 위치보다 상방측의 대기 위치와의 사이에서, 승강 기구(72)에 의해 승강 가능하게 구성되고, 자장 형성 부재(4A, 4B)끼리의 간격을 변경할 수 있도록 되어 있다. 또한, 상기 자장 형성 부재(4A)가 액적 이동 위치에 있을 때, 자장 형성 부재(4A, 4B)끼리의 사이를, 보지부(3)에 보지된 검사 플레이트(8)가 통과할 수 있도록, 자장 형성 부재(4A, 4B)끼리의 간격이 설정되어 있다.
또한 상술한 혈액 분리 장치(7)는, 상기 전달 위치에 있는 보지부(3) 상의 검사 플레이트(8)의 소정 위치에 대하여 약액을 공급하는 제 1 ~ 제 3 공급 노즐(73A ~ 73C)을 구비하고 있다. 제 1의 공급 노즐(73A)은, 상기 전달 위치에 있는 검사 플레이트(8)의 약액 저류부(81A)로 응고 방지제 예를 들면 구연산 나트륨수를 공급하고, 제 2 공급 노즐(73B) 및 제 3 공급 노즐(73C)은, 상기 전달 위치에 있는 검사 플레이트(8)의 약액 저류부(81B, 81C)로 각각 혈액의 생화학 검사용의 약액(A, B)을 각각 공급하도록 설치되어 있다. 이 예에서는 이들 공급 노즐(73A ~ 73C)은, 예를 들면 처리실(70)의 천장부(70A)에 장착된 승강 기구(74A ~ 74C)에 의해, 상기 보지부(3) 상의 검사 플레이트(8)에 대하여 약액을 공급하는 공급 위치와, 이 공급 위치보다 상방측의 전달 위치와의 사이에서 승강 가능하게 구성되어 있다. 상기 전달 위치란, 보지부(3)에 대하여 검사 플레이트(8)의 전달을 행할 때 당해 작업을 방해하지 않는 위치이다.
이들 공급 노즐(73A ~ 73C)은, 각각 펌프(P1 ~ P3)를 구비한 공급로(75A ~ 75C)에 의해 각각 구연산 나트륨수 저류부(76A), 약액(A) 저류부(76B), 약액(B) 저류부(76C)에 각각 접속되어 있다. 그리고, 상기 펌프(P1 ~ P3)의 작동에 의해, 상기 전달 위치에 있는 검사 플레이트(8)의 약액 저류부(81A ~ 81C)로, 소정량 예를 들면 100 μl의 구연산 나트륨수, 예를 들면 100 μl의 약액(A), 예를 들면 100 μl의 약액(B)을 각각 공급하도록 구성되어 있다. 또한, 펌프(P1 ~ P3) 대신에 밸브의 개폐에 의해 구연산 나트륨수 등을 검사 플레이트(8)로 공급하도록 해도 된다. 이 예에서는, 공급 노즐(73A ~ 73C), 펌프(P1 ~ P3), 공급로(75A ~ 75C), 약액의 저류부(76A ~ 76C)에 의해 액적 공급부가 구성되어 있다. 도 14 중 77은 보지부(3)와의 사이에서 검사 플레이트(8)의 전달을 행하기 위한 개구부이며, 77A는 당해 개구부(77)의 개폐 부재이다.
또한, 이 혈장 분리 장치(7)는 제어부(110)를 구비하고 있다. 이 제어부(100)는 예를 들면 컴퓨터로 이루어지고, 프로그램, 메모리, CPU로 이루어지는 데이터 처리부를 구비하고 있고, 상기 프로그램에는 제어부(110)로부터 혈장 분리 장치(7)의 모터(M1, M2), 펌프(P1 ~ P3), 스위치부(94), 승강 기구(71A, 73A ~ 73C)의 각 부로 제어 신호를 보내고, 혈액이 적하(滴下)된 검사 플레이트(8) 상으로 소정의 약액을 공급하고, 상기 혈액을 미리 설정한 이동 궤적을 따라 이동시키고, 반응부에서 소정의 검사를 행한다고 하는 일련의 동작을 자동으로 실시하도록 명령(각 단계)이 탑재되어 있다. 이 프로그램은 컴퓨터 기억 매체, 예를 들면 플렉서블 디스크, 콤팩트 디스크, 하드 디스크, MO(광자기 디스크) 등의 기억부에 저장되어 제어부(110)에 인스톨된다.
이어서, 이 혈장 분리 장치(7)에서 실시되는 혈장 분리 방법에 대하여 설명한다. 검사 플레이트(8)의 시료액 저류부(82)에, 100 μl 정도의 검사 대상이 되는 혈액(95)을 예를 들면 스포이드 등에 의해 적하한 후, 당해 검사 플레이트(8)를 개구부(77)를 거쳐 혈장 분리 장치(7) 내부로 반입하고, 전달 위치에 있는 보지부(3) 상에 재치한다. 이어서, 개폐 부재(77A)에 의해 상기 개구부(77)를 닫은 후, 펌프(P1, P2)를 작동시켜 공급 노즐(73A, 73B)로부터 1000 μl 정도의 구연산 나트륨수 및 100 μl 정도의 약액(A)을 각각 검사 플레이트(8)의 약액 저류부(81A, 81B)로 각각 공급한다.
이어서, 스위치부(94)를 ON으로 하여 전극 유닛(9)에 예를 들면 1 MHz, 10 V의 교류 전압을 인가하고, 모터(M1, M2)를 작동시켜 검사 플레이트(8)를 소정의 계로(系路)로 이동시킨다. 즉, 검사 플레이트(8)를, 자장 형성 부재(4)에 의해 형성되는 자장의 국소 영역이, 약액 저류부(81A)에 대향하는 위치로 이동한 다음, 상기 국소 영역이 약액 저류부(81A)로부터 유로(84)를 향해 이동하도록, 검사 플레이트(8)를 이동시킨다. 이에 의해, 약액 저류부(81A) 내에 저류되어 있는 구연산 나트륨수는, 상기 자장 형성 부재(4)의 자장에 의해 당겨져, 상기 유로(84) 내로 액적으로서 공급된다. 이 액적은 직경이 5 mm ~ 10 mm 정도이다. 이와 같이 당해 실시예에서는, 약액 저류부(81A ~ 81C)를 이루는 오목부와 자장 형성 부재(4)에 의해서도 액적 공급부가 구성된다.
이어서, 검사 플레이트(8)를 이동시킴으로써, 자장 형성 부재(4)를 상대적으로 유로(84)의 하류측으로 이동시키고, 구연산 나트륨수의 액적을 시료액 저류부(82)까지 이동시켜 혈액(95)을 희석한다. 이 후, 마찬가지로 자장 형성 부재(4)를 상대적으로 이동시켜, 도 17에 도시한 바와 같이, 희석된 혈액(95)의 액적을 유로(84)의 하류측을 향해 이동시킨다. 여기서, 혈액(95)의 액적이 전극 유닛(9) 상을 이동하면 유전 영동 작용이 발생하고, 혈액(95) 중의 혈구(96)는 도 18 및 도 20에 도시한 바와 같이, 전극 유닛(9)으로부터 구체적으로 전극(91)측으로 끌어당겨지도록 이동한다. 한편, 혈액(95) 중의 혈장(97)은 전극 유닛(9)으로는 끌어당겨지지 않기 때문에, 자장 형성 부재(4)의 상대적 이동에 수반하여 이동한다. 또한 도 20, 도 21에서는, 전극 유닛(9)의 형성 영역을 각각 점선으로 표시하여 나타내고 있다.
따라서, 시료액 저류부(82)로부터 하류측을 향해 자장 형성 부재(4)를 상대적으로 이동시키면, 전극 유닛(9)의 형성 영역 근방에서는, 도 18, 도 20에 도시한 바와 같이 혈액(95)이 하류측을 향해 확산된 상태로 이동한다. 또한, 자장 형성 부재(4)를 유로(84)의 폭이 좁아지는 부위(84A)의 상류측 근방까지 상대적으로 이동시키면, 혈액(95)의 혈장(97)은, 자장 형성 부재(4)의 자장에 의해 압출되도록 상기 부위(84A)를 넘어 하류측으로 이동한다. 그리고, 자장 형성 부재(4)를 상기 부위(84A)보다 더 하류측으로 상대적으로 이동시키면, 상기 부위(84A)에서는 액량이 극단적으로 적어지기 때문에, 자장 형성 부재(4)의 상대적 이동에 수반하여, 혈액(95)으로부터 혈장(97)이 당겨져, 혈장(97)의 액적이 형성된다. (도 19, 도 21 참조)
이렇게 하여, 혈액(95)으로부터 혈장(97)을 분리하고, 또한 자장 형성 부재(4)를 상대적으로 이동시켜 당해 혈장(97)의 액적을 반응부(83)까지 이동시킨다. 이어서, 자장 형성 부재(4A, 4B)의 간격을 넓게 하여 약액 저류부(73B)의 근방까지 상대적으로 이동시킨 다음, 자장 형성 부재(4A, 4B)의 간격을 좁히고 나서 상대적으로 이동시키고, 이에 의해 약액(A)의 액적을 유로(85A) 내로 공급하고, 약액(A)의 액적을 유로(85A), 유로(84)를 거쳐 반응부(83)까지 이동시킨다. 이렇게 하여, 반응부(83)에서 약액(A)의 액적과 혈장을 반응시켜, 소정의 생화학 검사를 행한다. 약액(A)에 의한 생화학 검사 결과를 취득한 후, 당해 검사 플레이트(8)는 개구부(77)를 거쳐 장치(7)으로부터 취출하고, 파기한다. 상술한 예에서는, 약액(A)에 의한 생화학 검사를 행할 경우를 예로 하여 설명했지만, 약액(B)에 의한 경우도 마찬가지로 검사가 행해진다.
상술한 실시예에 따르면, 검사 플레이트(8) 상에서 유전 영동 작용을 발생시키고 있으므로, 당해 검사 플레이트(8) 상에서 혈액으로부터 혈장을 분리할 수 있다. 또한, 분리한 혈장은 자장 형성 부재(4)의 자장을 이용하여 검사 플레이트(8) 상을 이동시키고 있으므로, 유전 영동 작용을 저해하지 않고 혈장을 이동시킬 수 있다. 이 때문에, 검사 플레이트(8) 상에서, 혈액으로부터 혈장의 분리 및 혈장의 이동을 행할 수 있으므로, 검사 플레이트(8) 상에서 혈장의 생화학 검사를 행할 수 있어, 미량인 혈액을 이용한 소형인 장치로 다종의 생화학 검사를 단시간에 용이하게 행할 수 있다.
여기서, 혈액(95)의 액적으로부터의 혈장(97)의 분리는 다음과 같이 행하도록 해도 된다. 즉 도 22에 도시한 바와 같이, 자장 형성 부재(4A, 4B)를 유로(84)의 하류측을 향해 유로가 좁아지는 부위(84A)의 근방까지 상대적으로 이동시키고, 혈액(95)을 상기 부위(84A)의 하류측까지 확산시킨다. 이어서, 일단 자장 형성 부재(4A, 4B)끼리의 간격을 떨어뜨려, 도 23에 도시한 바와 같이 자장 형성 부재(4A, 4B)를 상기 부위(84A)의 측방으로 상대적으로 이동시킨다. 그리고, 자장 형성 부재(4A, 4B)를 도 23 중 화살표로 나타낸 바와 같이, 상기 부위(84A)를 향해 이동시킨다. 이에 의해, 상기 부위(84A) 내의 혈장(97)은 자장으로부터 피하고자 하여, 상기 부위(84A)의 양측을 향해 이동하기 때문에, 혈액(95)으로부터 혈장(97)이 용이하게 분리된다.
또한, 동일한 검사 플레이트(8)에서 다수의 약액을 이용하여 생화학 검사를 행할 경우에는, 다수의 약액 저류부(81) 및 반응부(83)용의 오목부를 형성해도 되고, 반응부(83)가 아닌 약액 저류부(81)로 혈장(97)을 이동시켜, 여기서 약액과 반응시키도록 해도 된다. 또한 반응부(83)의 하류측에 배액부를 설치하고, 반응부(83)에서 약액(A)과의 반응을 종료한 후, 당해 반응액을 배액부로 배액하고, 다음의 혈장(97)의 액적 및 약액(B)을 반응부(83)로 이동시켜 약액(B)에 의한 생화학 검사를 행하도록 해도 된다.
또한, 시료액 저류부(82)에 직접 구연산 나트륨수를 적하하여 혈액을 희석하도록 해도 되고, 반응부(83)에 직접 약액을 적하하여 혈장과 반응시키도록 해도 된다. 또한 검사 플레이트(8)에서는, 반드시 유로를 형성할 필요는 없고, 시료액 저류부(82) 또는 약액 저류부(81)용의 오목부도 반드시 필요하지는 않다. 또한 검사 플레이트(8)가 아닌, 자장 형성 부재(4)측을 이동시키도록 해도 된다.
또한, 검사 플레이트(8) 상에서 혈액(95)을 전극 유닛(9)을 통과하도록 이동시키고, 혈액(95)으로부터 혈장(97)의 액적을 분리한 후에는, 당해 혈장(97)의 액적을 전기적 방법을 이용하여 이동시키도록 해도 된다. 또한, 유로의 폭 또는 전극 유닛(9)에 의한 전장의 크기 또는 자장 형성 부재(4)의 자장의 크기 등에 따라, 자장 형성 부재(4)의 상대적 이동에 의해 혈액(95)으로부터 혈장(97)을 분리할 수 있는 구성이면, 유로(84)에는 반드시 국소적으로 폭이 좁아지는 부위(84A)를 설치할 필요는 없다.
<실험예>
이하에, 도 24에 도시한 실험 장치를 이용하여, 자장 형성 부재의 이동에 의해 액적이 이동하는지 여부를 확인하는 실험을 행했다. 도 24 중 61은 실리콘으로 구성된 두께 0.75 mm의 이동면 형성 부재이며, 4A, 4B는 이동면 형성 부재의 양면에 각각 배치된 자장 형성 부재이다. 자장 형성 부재(4A, 4B)는 상술한 구성의 것을 이용하고, 영구 자석의 재질은 네오디늄, 중간 부재의 재질은 철로 했다. 또한, 자장 형성 부재(4)의 크기는 기술한 바와 같다. 그리고, 자장 형성 부재(4A, 4B) 간의 갭(자석 간 갭)(G)과 액적량을 변경하여, 자장 형성 부재(4)의 이동에 수반하여 액적(62)이 이동하는지 여부에 대하여 목시(目視)에 의해 확인했다. 또한, 직경이 5 mm ~ 10 mm의 액적이란 액적량이 20 μl ~ 100 μl에 상당한다.
이 결과에 대하여, 도 25에 나타낸다. 도면 중 종축은 자석 간 갭, 횡축은 액적량을 각각 나타내고, ■는 자장 형성 부재의 이동에 의해 이동한 액적, □은 이동하지 않았던 액적을 각각 나타내고 있다. 이 결과, 자장 형성 부재의 이동에 수반하여, 이동면 형성 부재의 표면에서 액적이 이동하는 것이 인정되었다. 또한 액적량이 적을 때에는, 액적을 이동시키기 위해서는 자장 형성 부재끼리 간의 갭을 작게 하여, 자속 밀도를 높일 필요가 있는 것이 이해된다.
1 : 이동면 형성 부재
11A ~ 11C : 시료액 저류부
12A ~ 12C : 반응부
14 : 세정액 저류부
15 ~ 18 : 약액용의 오목부
21, 22 : 유로
33 : Y 방향 이동 기구
34 : X 방향 이동 기구
4(4A, 4B) : 자장 형성 부재
41, 44 : 영구 자석
42, 45 : 심 부재
43, 46 : 공극
8 : 검사 플레이트
95 : 혈액
96 : 혈구
97 : 혈장

Claims (17)

  1. 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재와,
    상기 이동면 형성 부재의 표면으로 액적을 공급하기 위한 액적 공급부와,
    상기 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재와,
    상기 액적을 자장 구배를 따라 이동시키기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키기 위한 이동 기구를 구비한 것을 특징으로 하는 액적 이동 장치.
  2. 제 1 항에 있어서,
    상기 이동면 형성 부재는 판상체이며,
    상기 자장 형성 부재는, 이동면 형성 부재의 양면측에 당해 이동면 형성 부재를 개재하여 대향하고 있는 것을 특징으로 하는 액적 이동 장치.
  3. 제 1 항에 있어서,
    액적을 미리 설정한 이동 궤적을 따라 이동시키도록 상기 이동 기구를 제어하는 제어부를 구비하고 있는 것을 특징으로 하는 액적 이동 장치.
  4. 제 1 항에 있어서,
    상기 자장 형성 부재는, 국소 영역에 액적을 가두는 작용을 크게 하기 위하여, 상기 표면을 따라 그 전체 둘레를 둘러싸는 영역보다 자장이 국소적으로 작은 영역을 형성하도록 구성되어 있는 것을 특징으로 하는 액적 이동 장치.
  5. 제 4 항에 있어서,
    상기 자장 형성 부재는, 상기 자장이 국소적으로 작은 영역을 형성하기 위하여, 상기 표면을 따른 방향에서 봤을 때 투자율이 국소적으로 작아지는 부분을 구비하고 있는 것을 특징으로 하는 액적 이동 장치.
  6. 제 5 항에 있어서,
    상기 투자율이 국소적으로 주위보다 작아지는 부분은, 공극으로서 구성되어 있는 것을 특징으로 하는 액적 이동 장치.
  7. 제 1 항에 있어서,
    상기 이동면 형성 부재에 형성된 액 저류를 이루는 오목부를 구비하고, 이 오목부 내에 저류되어 있는 액은 상기 자장 형성 부재의 자장에 의해 당겨져 상기 이동면 형성 부재의 표면으로 액적으로서 공급되는 것이며,
    상기 액적 공급부는, 상기 오목부와 상기 자장 형성 부재에 의해 구성되는 것을 특징으로 하는 액적 이동 장치.
  8. 제 1 항에 있어서,
    상기 액적 공급부는, 분석 대상이 되는 시료액의 액적을 공급하는 액적 공급부, 상기 시료액을 분석하기 위한 약액의 액적을 공급하는 액적 공급부 및 세정액을 공급하는 액적 공급부를 포함하고,
    상기 이동면 형성 부재는, 분석 대상이 되는 시료액의 액적과 상기 약액을 반응시키는 반응 구역을 구비하고 있는 것을 특징으로 하는 액적 이동 장치.
  9. 혈액의 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재와,
    상기 이동면 형성 부재에 설치되고, 상기 혈액으로부터 혈장을 분리하기 위하여 유전 영동 작용을 발생시키는 전극과,
    상기 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 자장 형성 부재와,
    상기 액적을 자장 구배를 따라 상기 전극 상을 통과시켜 상기 혈액으로부터 혈장을 분리하기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 이동 기구를 구비하고 있는 것을 특징으로 하는 혈장 분리 장치.
  10. 제 9 항에 있어서,
    상기 이동면 형성 부재의 표면에는 상기 액적을 안내하는 유로가 형성되어 있는 것을 특징으로 하는 혈장 분리 장치.
  11. 제 10 항에 있어서,
    상기 유로는, 상기 이동면 형성 부재에 설치된 전극의 하류측에서 국소적으로 좁아지는 부위를 구비하고,
    상기 이동 기구는, 상기 액적을 상기 유로에서 상기 전극의 상류측으로부터 상기 좁아지는 부위의 하류측까지 이동시키고, 상기 액적을 이 부위를 통과시킴으로써 상기 혈액으로부터 혈장을 분리하는 것을 특징으로 하는 혈장 분리 장치.
  12. 제 9 항에 있어서,
    상기 이동면 형성 부재는, 상기 전극의 하류측에 분석 대상이 되는 혈장의 액적과 상기 약액을 반응시키는 반응 구역을 구비하고,
    상기 이동 기구는, 상기 분리된 혈장을 상기 반응 구역으로 이동시키는 것을 특징으로 하는 혈장 분리 장치.
  13. 액적의 이동면을 형성하는 비자성체로 이루어지는 이동면 형성 부재의 표면으로 액적을 공급하는 공정과,
    자장 형성 부재에 의해, 이동면 형성 부재의 표면 상에서의 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 공정과,
    상기 액적을 자장 구배를 따라 이동시키기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 공정을 포함하는 것을 특징으로 하는 액적 이동 방법.
  14. 제 13 항에 있어서,
    상기 이동면 형성 부재는 판상체이며,
    상기 자장 형성 부재는, 이동면 형성 부재의 양면측에 당해 이동면 형성 부재를 개재하여 대향하고 있는 것을 특징으로 하는 액적 이동 방법.
  15. 혈액의 액적의 이동면을 형성하는 비자성체로 이루어지고, 상기 혈액으로부터 혈장을 분리하기 위하여 유전 영동 작용을 발생시키는 전극을 구비한 이동면 형성 부재의 표면으로 혈액의 액적을 공급하는 공정과,
    자장 형성 부재에 의해, 이동면 형성 부재의 표면 상에서의 상기 액적이 위치하는 영역으로부터 상기 표면을 따라 멀어짐에 따라 자장이 작아지는 자장 구배를 형성하는 공정과,
    상기 액적을 자장 구배를 따라 상기 전극 상을 통과시켜 상기 혈액으로부터 혈장을 분리하기 위하여, 상기 이동면 형성 부재와 자장 형성 부재를 상대적으로 상기 표면을 따라 이동시키는 공정을 포함하는 것을 특징으로 하는 혈장 분리 방법.
  16. 제 15 항에 있어서,
    상기 액적을 상기 이동면 형성 부재의 상기 표면을 따라 이동시키는 공정은, 상기 이동면 형성 부재의 표면에 형성된 유로 내의 액적을 이동시키는 것을 특징으로 하는 혈장 분리 방법.
  17. 제 15 항에 있어서,
    상기 유로는, 상기 이동면 형성 부재에 설치된 전극의 하류측에서 국소적으로 좁아지는 부위를 구비하고,
    상기 액적을 상기 이동면 형성 부재의 상기 표면을 따라 이동시키는 공정은, 상기 액적을 상기 유로에서 상기 전극의 상류측으로부터 상기 좁아지는 부위의 하류측까지 이동시키고, 상기 액적을 이 부위를 통과시킴으로써 상기 혈액으로부터 혈장을 분리하는 것을 특징으로 하는 혈장 분리 방법.
KR20137003568A 2010-07-22 2011-07-06 액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법 KR20130041202A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2010-165106 2010-07-22
JP2010165106 2010-07-22
JP2010248972A JP2012042443A (ja) 2010-07-22 2010-11-05 液滴移動装置、液滴移動方法及び血漿分離装置並びに血漿分離方法
JPJP-P-2010-248972 2010-11-05
PCT/JP2011/003852 WO2012011234A1 (ja) 2010-07-22 2011-07-06 液滴移動装置、液滴移動方法及び血漿分離装置並びに血漿分離方法

Publications (1)

Publication Number Publication Date
KR20130041202A true KR20130041202A (ko) 2013-04-24

Family

ID=45496671

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20137003568A KR20130041202A (ko) 2010-07-22 2011-07-06 액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법

Country Status (5)

Country Link
US (1) US20130134041A1 (ko)
JP (1) JP2012042443A (ko)
KR (1) KR20130041202A (ko)
CN (1) CN103026240A (ko)
WO (1) WO2012011234A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047381A (ko) 2017-10-27 2019-05-08 연세대학교 산학협력단 다중검지 바이오센서 시스템 및 그 동작 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016335374A1 (en) 2015-10-09 2018-04-26 Sysmex Corporation Specimen treatment chip, specimen treatment device, and specimen treatment method
WO2020023443A1 (en) * 2018-07-23 2020-01-30 The Brigham And Women's Hospital, Inc. Magnetic levitation techniques to separate and analyze molecular entities
CN114870916B (zh) * 2022-05-06 2023-12-05 中新国际联合研究院 一种微流体液滴移动、剥离和分离剥离结构及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2829948B1 (fr) * 2001-09-21 2004-07-09 Commissariat Energie Atomique Procede de deplacement d'un fluide d'interet dans un capillaire et microsysteme fluidique
JP4691689B2 (ja) * 2003-09-30 2011-06-01 独立行政法人産業技術総合研究所 磁気重力クロマトグラフィー
JP4692200B2 (ja) * 2005-10-06 2011-06-01 横河電機株式会社 化学処理用カートリッジおよびその使用方法
JP5030110B2 (ja) * 2005-12-21 2012-09-19 サムスン エレクトロニクス カンパニー リミテッド バイオメモリディスクドライブ装置及びそれを用いた分析方法
CN101472940B (zh) * 2006-04-18 2012-11-28 先进液体逻辑公司 基于小滴的生物化学
JP2009162580A (ja) * 2007-12-28 2009-07-23 Shimadzu Corp 液滴操作装置および液滴操作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190047381A (ko) 2017-10-27 2019-05-08 연세대학교 산학협력단 다중검지 바이오센서 시스템 및 그 동작 방법

Also Published As

Publication number Publication date
US20130134041A1 (en) 2013-05-30
JP2012042443A (ja) 2012-03-01
CN103026240A (zh) 2013-04-03
WO2012011234A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
CN108290166B (zh) 用于处理流体的电磁组合件
US8093064B2 (en) Method for using magnetic particles in droplet microfluidics
Choi et al. Sheathless focusing of microbeads and blood cells based on hydrophoresis
CN109416312B (zh) 利用表面附着结构的流动池,以及相关的系统和方法
US8940147B1 (en) Microfluidic hubs, systems, and methods for interface fluidic modules
Serra et al. The power of solid supports in multiphase and droplet-based microfluidics: towards clinical applications
CN102764607B (zh) 一种用于处理和混合液体介质中的磁性颗粒的设备和方法
CA2712863C (en) Droplet actuator devices and methods employing magnetic beads
Afshar et al. Magnetic particle dosing and size separation in a microfluidic channel
Teste et al. Selective handling of droplets in a microfluidic device using magnetic rails
US8999732B2 (en) Method for manipulating magnetic particles in a liquid medium
Gourikutty et al. Microfluidic immunomagnetic cell separation from whole blood
WO2009005680A1 (en) Methods and apparatus for manipulation of fluidic species
US20120122731A1 (en) Screening molecular libraries using microfluidic devices
JP2017517725A (ja) デジタルマイクロ流体デバイスからの流体移送
WO2015128725A1 (en) Magnetic elements for processing fluids
Yang et al. Automatic magnetic manipulation of droplets on an open surface using a superhydrophobic electromagnet needle
US20120006681A1 (en) Controlled Dispensing of Ultrafine, Variable Volume, Emulsion Droplets
KR100907213B1 (ko) 등자기영동 기술을 이용한 미세입자 분리 장치 및등자기영동 기술을 이용한 미세입자 분리 방법
KR20130041202A (ko) 액적 이동 장치, 액적 이동 방법 및 혈장 분리 장치 그리고 혈장 분리 방법
JP2018505403A (ja) スペーサによって分離された液体体積の配列を処理するためのマイクロ流体プローブ・ヘッド
Mats et al. “Particle-Free” magnetic actuation of droplets on superhydrophobic surfaces using dissolved paramagnetic salts
US20240189821A1 (en) Method and Device for Trapping at Least One Nucleated Cell Using at Least One Electrode for a Microfluidic Device
US20230356226A1 (en) Microfluidic chip-based droplet processor
Hesam et al. Simultaneous separation of different magnetic particles by sputtering magnetic wires at the bottom of a microchip: Novel geometry in magnetophoresis

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid