KR20130035637A - Carbon deoxide capturing method to reduce energy consumption - Google Patents

Carbon deoxide capturing method to reduce energy consumption Download PDF

Info

Publication number
KR20130035637A
KR20130035637A KR1020110100062A KR20110100062A KR20130035637A KR 20130035637 A KR20130035637 A KR 20130035637A KR 1020110100062 A KR1020110100062 A KR 1020110100062A KR 20110100062 A KR20110100062 A KR 20110100062A KR 20130035637 A KR20130035637 A KR 20130035637A
Authority
KR
South Korea
Prior art keywords
carbon dioxide
absorbent
reactor
dry
weight
Prior art date
Application number
KR1020110100062A
Other languages
Korean (ko)
Other versions
KR101863967B1 (en
Inventor
이지현
장경룡
심재구
이인영
김준한
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020110100062A priority Critical patent/KR101863967B1/en
Publication of KR20130035637A publication Critical patent/KR20130035637A/en
Application granted granted Critical
Publication of KR101863967B1 publication Critical patent/KR101863967B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0001Separation or purification processing
    • C01B2210/0009Physical processing
    • C01B2210/0014Physical processing by adsorption in solids
    • C01B2210/0015Physical processing by adsorption in solids characterised by the adsorbent
    • C01B2210/0017Carbon-based materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0045Oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: A carbon dioxide retrieving method is provided to supply partial energy necessary for a regeneration reactor by supplying the heat, generated during the formation of a carbon dioxide saturable absorbent at an absorption reactor, to a dry absorbent through a thermal medium, and thereby reducing the consumption of energy put into a process. CONSTITUTION: A carbon dioxide retrieving method includes the following steps: a step of putting a dry absorbent and a thermal medium into an absorption reactor(1) at the same time, yet carbon dioxide among mixed gases, which are supplied to the inside of the absorption reactor, is combined with the dry absorbent and transferred to a regeneration reactor(4), and the mixed gases from which the carbon dioxide is removed are discharged to the outside; and a step of separating the absorbent, combined with the carbon dioxide transferred to the regeneration reactor, into an absorbent and carbon dioxide with supplied steam. The thermal medium is sand or silicon. The dry absorbent and thermal medium are mixed and fed with a weight ratio of 80-95:20-5. The average particle diameter of the thermal medium is 50-150 Mm. The dry absorbent is a potassium carbonate-based compound or a sodium carbonate-based compound. The mixed gases include 5-20 weight% carbon dioxide, 5-20 weight% oxygen, and 60-80 weight% nitrogen.

Description

저에너지 소비형 이산화탄소의 회수방법{Carbon deoxide capturing method to reduce energy consumption}Carbon deoxide capturing method to reduce energy consumption

본 발명은 저에너지 소비형 이산화탄소의 회수방법에 관한 것이다.
The present invention relates to a method for recovering low energy consumption carbon dioxide.

종래의 이산화탄소를 회수하는 공정으로는 습식법에 의한 공정이었다. 즉, 아민류 계통의 용액을 통과하여 이산화탄소를 흡수하게 하고 재생탑에서 그 용액을 재생하는 방식인 것이다. 이러한 습식법의 경우 폐수가 생기는 문제점을 가지고 있다.The process of recovering the conventional carbon dioxide was a process by a wet method. In other words, the carbon dioxide is absorbed through the amine-based solution and regenerated in a regeneration tower. This wet method has a problem that waste water occurs.

이를 극복하기 위하여 건식법이 발명되었다. The dry method was invented to overcome this.

종래의 건식법은 2탑 반응기를 사용하여 이산화탄소를 분리 회수하는 방법으로, 배가스에 함유되어 있는 이산화탄소와 건식 고체 흡수제를 균일하게 접촉하도록 하여 이산화탄소만을 선택적으로 포집하여 회수한다[특허문헌 1, 특허문헌 2]The conventional dry method is a method of separating and recovering carbon dioxide by using a two- tower reactor, in which only carbon dioxide is selectively collected and recovered by bringing the carbon dioxide contained in the exhaust gas into uniform contact with the dry solid absorbent [Patent Document 1, Patent Document 2 ]

이러한 건식 흡수제를 이용한 이산화탄소 분리 회수법은 이산화탄소와 화학적으로 결합된 건식 흡수제가 재생반응기에서 재생 시 재생반응기에 투입되는 스팀의 양이 많아 에너지 사용량이 증가함으로써 경제적이지 못한 문제가 있다.The carbon dioxide separation recovery method using the dry absorbent has a problem that it is not economical because the dry absorbent chemically bonded to carbon dioxide is increased in the amount of steam that is input to the regeneration reactor during regeneration in the regeneration reactor.

현재 건식 흡수 기술의 개발 규모가 계속 증대되고 있으며, 이에 따라 건식 흡수공정의 에너지 사용량 저감이 필요한 실정이다.
Currently, the scale of development of dry absorption technology is continuously increasing, and thus, it is necessary to reduce energy consumption of the dry absorption process.

국내 등록 특허 제912250호,Domestic Patent No.912250, 국내 등록 특허 제620546호Domestic Patent No. 620546

이에, 본 발명자들은 상기와 같이 종래 기술의 문제점을 해결하기 위하여 연구한 결과, 흡수반응기 내에 건식 흡수제를 투입 시 열매체를 함께 투입시킴으로써 재생반응기에서 투입되는 스팀의 양을 현저히 줄일 수 있어 에너지 절감 효과를 갖는 이산화탄소의 회수방법을 개발함으로써 본 발명을 완성하였다.Thus, the present inventors have studied in order to solve the problems of the prior art as described above, by adding a heat medium when the dry absorbent is added to the absorption reactor, it is possible to significantly reduce the amount of steam introduced from the regeneration reactor to reduce the energy saving effect The present invention has been completed by developing a recovery method of carbon dioxide having.

따라서, 본 발명의 목적은 저에너지 소비형 이산화탄소의 회수방법을 제공하는 것이다.
Accordingly, an object of the present invention is to provide a method for recovering low energy consumption carbon dioxide.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object,

건식 흡수제와 열매체를 동시에 흡수반응기에 투입하되, 흡수반응기 내부로 공급된 혼합가스 중 이산화탄소는 상기 건식 흡수제와 결합하여 재생반응기로 이송하고, 이산화가스가 제거된 혼합가스는 외부로 배출하는 단계; 및Putting a dry absorbent and a heat medium into an absorption reactor at the same time, wherein carbon dioxide in the mixed gas supplied into the absorption reactor is combined with the dry absorbent and transferred to a regeneration reactor, and the mixed gas from which dioxide gas is removed is discharged to the outside; And

상기 재생반응기로 이송된 이산화탄소가 결합된 흡수제를 공급되는 스팀에 의해 흡수제와 이산화탄소로 분리하는 단계;Separating the absorbent combined with carbon dioxide transferred to the regeneration reactor into an absorbent and carbon dioxide by steam supplied;

를 포함하는 이산화탄소의 회수방법을 제공한다.
It provides a method for recovering carbon dioxide comprising a.

본 발명에 따른 혼합가스 중 이산화탄소 분리 회수 공정은 흡수반응기와 재생반응기로 구성된 건식 흡수 공정에서 이산화탄소와의 반응을 위한 건식 흡수제 외에 공정상에 열매체 역할을 하는 열매체를 순환시킴으로써 흡수반응기에서 이산화탄소 포화 흡수제 생성 시 발생된 열을 열매체를 통해 건식 흡수제에 공급하여 재생반응기에서 필요한 일부 에너지를 공급하도록 함으로써 공정에 투입되는 에너지 사용량이 저감이 가능하다.
The carbon dioxide separation recovery process in the mixed gas according to the present invention generates a saturated carbon dioxide absorbent in the absorption reactor by circulating a heating medium that acts as a heating medium in addition to the dry absorbent for the reaction with carbon dioxide in the dry absorption process consisting of the absorption reactor and the regeneration reactor. The amount of energy used in the process can be reduced by supplying the heat generated during the heating to the dry absorbent through the heat medium to supply some of the energy required by the regeneration reactor.

도 1은 본 발명에 따라 저에너지 소비형 건식 흡수 공정의 개략도이다.1 is a schematic diagram of a low energy consumption dry absorption process according to the present invention.

본 발명은The present invention

건식 흡수제와 열매체를 동시에 흡수반응기에 투입하되, 흡수반응기 내부로 공급된 혼합가스 중 이산화탄소는 상기 건식 흡수제와 결합하여 재생반응기로 이송하고, 이산화가스가 제거된 혼합가스는 외부로 배출하는 단계; 및Putting a dry absorbent and a heat medium into an absorption reactor at the same time, wherein carbon dioxide in the mixed gas supplied into the absorption reactor is combined with the dry absorbent and transferred to a regeneration reactor, and the mixed gas from which dioxide gas is removed is discharged to the outside; And

상기 재생반응기로 이송된 이산화탄소가 결합된 흡수제를 공급되는 스팀에 의해 흡수제와 이산화탄소로 분리하는 단계;Separating the absorbent combined with carbon dioxide transferred to the regeneration reactor into an absorbent and carbon dioxide by steam supplied;

를 포함하는 이산화탄소의 회수방법에 관한 것이다.It relates to a method of recovering carbon dioxide comprising a.

상기 혼합가스는 이산화탄소 5 내지 20 중량%, 산소 5 내지 20 중량% 및 질소 60 내지 80 중량%를 포함한다.
The mixed gas includes 5 to 20% by weight of carbon dioxide, 5 to 20% by weight of oxygen and 60 to 80% by weight of nitrogen.

이하, 첨부도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 이산화탄소 분리 회수공정을 도시한 것으로, 본 발명에 따른 이산화탄소 회수장치는 크게 이산화탄소의 흡수 제거가 흡수반응기(1), 흡수제 이송과 이산화탄소를 배출하는 회수사이클론(2) 및 흡수제의 재생이 이루어지는 재생반응기(4)로 구성된다.Figure 1 illustrates a carbon dioxide separation recovery process according to the present invention, the carbon dioxide recovery apparatus according to the present invention is largely absorbent removal of carbon dioxide is the absorption reactor (1), absorbent transport and carbon dioxide recovery cyclone (2) and absorbent It consists of a regeneration reactor (4) in which the regeneration of.

혼합가스 공급라인(6)은 이산화탄소를 포함하는 혼합가스가 냉각 장치를 통해 1차 냉각 후 가스블로워(7)을 통해 흡수반응기 하부로 공급된다.In the mixed gas supply line 6, the mixed gas including carbon dioxide is supplied to the lower portion of the absorption reactor through the gas blower 7 after the primary cooling through the cooling device.

흡수 반응기 가스분산판(8)은 흡수반응기(1)의 하부에 설치되어 있어 혼합가스를 흡수반응기 내부로 공급시킨다. 가스 분산판은 판상의 복수의 구멍이 형성된 다공판을 사용할 수 있다.Absorption reactor gas distribution plate 8 is installed in the lower portion of the absorption reactor (1) to supply the mixed gas into the absorption reactor. The gas dispersion plate can use a porous plate in which a plurality of plate-shaped holes are formed.

흡수반응기(1)는 열매체와 건식 흡수제를 동시에 투입시켜 흡수반응기 내에서 건식 흡수제를 혼합가스와 접촉시킴으로써 혼합가스 내 이산화탄소와 흡수제가 화학적으로 결합한 이산화탄소 포화 흡수제를 생성시킨다. Absorption reactor (1) is a simultaneous input of the heat medium and the dry absorbent to contact the dry absorbent with the mixed gas in the absorption reactor to produce a carbon dioxide saturated absorbent chemically bonded carbon dioxide and the absorbent in the mixed gas.

상기 이산화탄소 포화 흡수제와 열매체는 회수사이클론(2)을 통해 재생반응기(3)로 이송된다. The carbon dioxide saturated absorbent and the heat medium are transferred to the regeneration reactor 3 through the recovery cyclone (2).

이산화탄소가 제거된 가스 배출라인(3)은 흡수반응기에서 흡수제에결합된 이산화탄소 외에 나머지 가스를 회수사이이클론(2)을 통해 외부로 배출시킨다.The gas discharge line 3 from which carbon dioxide is removed discharges the remaining gas to the outside through the recovery cyclone 2 in addition to the carbon dioxide bound to the absorbent in the absorption reactor.

재생반응기(4)는 흡수반응기에서 생성된 이산화탄소 포화 흡수제를 스팀을 통해 이산화탄소와 고체 건식 흡수제를 분리시킨다. The regeneration reactor 4 separates carbon dioxide and the solid dry absorbent through steam from the carbon dioxide saturated absorbent produced in the absorption reactor.

재생반응기 가스 분산판(9)은 유동화 가스가 재생반응기로 공급되도록 하여 재생반응기로 이송된 이산화탄소 포화 흡수제의 유동화를 유도한다.The regeneration reactor gas dispersion plate 9 allows the fluidizing gas to be supplied to the regeneration reactor to induce fluidization of the carbon dioxide saturated absorbent transferred to the regeneration reactor.

스팀 공급라인(5)은 흡수제 재생 및 이산화탄소 분리를 위해 열에너지의 한 형태로 스팀을 재생반응기 하부에 공급한다.The steam supply line 5 supplies steam to the bottom of the regeneration reactor as a form of thermal energy for absorbent regeneration and carbon dioxide separation.

이때, 열매체가 흡수반응기에서 이산화탄소 포화 흡수제 생성 시 발생한 열을 그대로 유지한 채 이산화탄소 포화 흡수제와 같이 재생반응기로 이송되어 이산화탄소와 흡수제 분리에 필요한 열에너지를 일부 공급함으로써 스팀 사용량을 줄일 수 있다. At this time, the heat medium is transferred to the regeneration reactor, such as carbon dioxide saturated absorbent while maintaining the heat generated when the carbon dioxide saturated absorbent is produced in the absorption reactor can supply some of the thermal energy required to separate the carbon dioxide and the absorbent to reduce the steam consumption.

재생 흡수제 재순환 라인(10)은 이산화탄소가 분리된 재생 건식 흡수제를 흡수반응기로 재순환한다.The regenerated absorbent recycle line 10 recycles the regenerated dry absorbent from which carbon dioxide has been separated to the absorption reactor.

본 발명에서 사용되는 건식 흡수제는 건식 이산화탄소 분리 공정에 적용이 가능한 흡수제로서, 바람직하게는 포타슘 카보네이트계 화합물 또는 소듐 카보네이트계 화합물, 예를 들면 국내 등록 번호 제892044호를 사용할 수 있다. The dry absorbent used in the present invention is an absorbent applicable to a dry carbon dioxide separation process, and preferably a potassium carbonate-based compound or a sodium carbonate-based compound such as National Registration No. 892044.

본 발명의 회수공정은 크게 두 단계로 구분하여 나누어 볼 수 있으며, 단계별 상세 설명은 다음과 같다.The recovery process of the present invention can be divided and divided into two stages, and detailed description of each step is as follows.

1 단계: 흡수반응기Stage 1: Absorption Reactor

이산화탄소가 포함된 혼합가스가 냉각장치에 의해 일차 냉각된 후, 흡수반응기에서 발생되는 압력강하를 극복하기 위하여 가스 블로워를 통해 흡수반응기 하부로 이송된다. 가스 블로워를 통해 이송되는 혼합 가스는 가스 투입 라인을 통해 흡수반응기로 투입된다.After the mixed gas containing carbon dioxide is first cooled by the cooling device, the mixed gas is transferred to the lower part of the absorption reactor through a gas blower to overcome the pressure drop generated in the absorption reactor. The mixed gas delivered through the gas blower is introduced into the absorption reactor through the gas input line.

흡수반응기의 운전온도는 60 내지 80 ℃가 바람직하며, 60 ℃ 미만일 경우에는 흡수반응기 온도 조절을 위해 반응기 내부에 냉각라인 등이 설치되어야 하고, 80 ℃를 초과하면 이산화탄소가 탈거될 가능성이 있어 제거효율이 떨어지는 문제가 있다.The operating temperature of the absorption reactor is preferably 60 to 80 ℃, if the temperature is less than 60 ℃, the cooling line, etc. must be installed inside the reactor to control the temperature of the absorption reactor, and if it exceeds 80 ℃, there is a possibility that carbon dioxide is removed, the removal efficiency There is a problem with this falling.

상기 공급된 혼합가스는 흡수반응기 하부에 설치된 가스 분산판을 통해 흡수반응기 내부로 공급된다. 그리고 상기 흡수반응기 안에서 건식 고체 흡수제와 접촉하여 혼합가스 중의 이산화탄소는 화학적으로 결합하게 된다. 상기 공정에는 건식 흡수제와 함께 열매체가 투입된다. The supplied mixed gas is supplied into the absorption reactor through a gas distribution plate installed under the absorption reactor. The carbon dioxide in the mixed gas is chemically bound in contact with the dry solid absorbent in the absorption reactor. In this process, the heat medium is added together with the dry absorbent.

상기 열매체로는 열전도도가 낮고 유동층 공정에서 강도를 유지할 수 있는 것이라면 사용 가능하며, 바람직하게는 모래를 사용할 수 있는데, 모래의 주성분인 이산화규소의 열전도율이 대단히 낮아 공정상에서 초기에 가해진 열을 큰 손실 없이 유지하는 특징이 있기 때문이다. 모래 외에 규소 등을 사용할 수 있다.The heat medium can be used as long as the thermal conductivity is low and can maintain the strength in the fluidized bed process. Preferably, sand can be used. The heat conductivity of silicon dioxide, which is the main component of sand, is very low, so that a large loss of heat initially applied in the process is large. Because there is a characteristic to keep without. Silicon and the like can be used in addition to sand.

공정 상에 건식 흡수제와 열매체는 80 ~ 95 : 20 ~ 5의 중량비로 혼합 투입되는 것이 바람직하며, 열매체 투입량이 너무 적으면 열매체로서의 효과가 미미하고, 투입량이 너무 많으면 공정상의 유동 물질의 양이 증가함에 따라 유동화에 필요한 동력비가 증가하는 문제가 있다. 또한, 열매체의 평균 입경은 50 내지 150 마이크로미터(㎛)가 바람직하다. 이는 열매체와 함께 투입되는 건식 흡수제의 유동화를 위해 필요한 입경 크기(50 ~ 150 ㎛)와 유사한 입경으로 사용하지 않을 경우, 서로 다른 유동 물질(건식 흡수제 및 열매체)의 비중 차이로 인해 유동화 시 공정상의 불균일도가 증가하여 흡수 및 재생 효율이 떨어지기 때문이다. 이후 공정상에 투입되는 유동화 매체인 모래는 고체상의 건식 흡수제와 함께 흡수반응기로 이송이 된다.In the process, the dry absorbent and the heat medium are preferably mixed at a weight ratio of 80 to 95: 20 to 5, and when the amount of the heat medium is too small, the effect as a heat medium is insignificant. As a result, there is a problem that the power cost required for fluidization increases. Moreover, as for the average particle diameter of a heat medium, 50-150 micrometers (micrometer) are preferable. This is due to the process unevenness during fluidization due to the difference in specific gravity of different flow materials (dry absorbent and heating medium) when not used with a particle size similar to the particle size size (50 to 150 μm) required for fluidization of the dry absorbent introduced with the heat medium. This is because the degree is increased and the absorption and regeneration efficiency is lowered. The sand, which is the fluidizing medium introduced into the process, is then transferred to the absorption reactor together with the solid dry absorbent.

흡수반응기의 외부로는 회수사이클론이 연결되고 여기에서는 고체 입자인 건식 흡수제만 통과되고 이산화탄소가 제거된 가스는 외부로 배출된다. 상기 회수 사이클론을 통과한 이산화탄소를 흡수한 건식 고체흡수제는 이후 이송라인을 통해 재생반응기로 주입된다. 이때, 열매체는 이산화탄소 포화 흡수제와 함께 재생반응기로 이송된다.A recovery cyclone is connected to the outside of the absorption reactor, where only dry absorbents, which are solid particles, are passed, and carbon dioxide removed gas is discharged to the outside. The dry solid absorbent absorbing the carbon dioxide passed through the recovery cyclone is then injected into the regeneration reactor through a transfer line. At this time, the heat medium is transferred to the regeneration reactor together with the carbon dioxide saturated absorbent.

2 단계: 재생반응기Stage 2: Regenerator

재생 반응기에서는 화학적으로 결합되어 있는 이산화탄소와 고체상의 건식 흡수제가 스팀 형태로 투입되는 열에너지에 의해 분리되어 고 순도의 이산화탄소가 생성됨과 동시에 흡수제는 재생되어 다시 흡수반응기로 이송된다. 재생반응기의 운전 온도는 흡수제의 활성물질에 따라 달라질 수 있는데, 일반적으로 120 내지 250 ℃ 범위에서 운전이 이루어진다. 만일 120 ℃ 미만으로 운전하는 경우에는 이산화탄소의 재생이 안되어 전체 이산화탄소 제거율이 떨어지는 문제가 있고, 250 ℃을 초과하면 흡수제의 마모도가 급격하게 떨어질 수 있다.In the regeneration reactor, the chemically bonded carbon dioxide and the solid dry absorbent are separated by thermal energy introduced in the form of steam to generate high purity carbon dioxide, and at the same time, the absorbent is regenerated and transferred back to the absorption reactor. The operating temperature of the regeneration reactor may vary depending on the active material of the absorbent, and is generally operated in the range of 120 to 250 ° C. If the temperature is lower than 120 ° C., carbon dioxide may not be regenerated and the total carbon dioxide removal rate may be lowered. If the temperature is higher than 250 ° C., the wear rate of the absorbent may be drastically reduced.

재생반응기의 하부에는 유동화 가스 공급관이 설치되어서, 유동화 가스가 하부의 가스 분산판을 거쳐 공급되도록 하여 재생반응기에서 건식 흡수제의 유동화를 유도한다. 상기 재생반응기에 투입되는 고온(200 내지 250 ℃)의 스팀으로 인해 유동화된 고체 입자와 화학적으로 결합된 이산화탄소로 분리된다. 이때, 상기 흡수 반응기에서 사용된 열매체로 인해 스팀의 사용량이 열매체를 사용하지 않은 기존 공정에 비해 10 내지 25% 줄어듦으로써 에너지 사용을 줄일 수 있다. 상기 스팀 사용량은 제거되는 이산화탄소 1 중량부에 대하여 2 중량부 내지 4 중량부인 것이 바람직하다.The lower part of the regeneration reactor is provided with a fluidization gas supply pipe, so that the fluidization gas is supplied through the lower gas distribution plate to induce fluidization of the dry absorbent in the regeneration reactor. Due to the high temperature (200 to 250 ℃) steam introduced into the regeneration reactor is separated into carbon dioxide chemically bonded to the fluidized solid particles. At this time, due to the heat medium used in the absorption reactor, the amount of steam is reduced by 10 to 25% compared to the existing process that does not use the heat medium can reduce energy use. The amount of steam used is preferably 2 parts by weight to 4 parts by weight based on 1 part by weight of carbon dioxide to be removed.

이산화탄소가 분리된 건식 흡수제는 이후 흡수반응기로 다시 주입되고 고순도(97% 이상)의 이산화탄소는 외부로 배출되게 된다. 이때, 열매체도 흡수반응기로 다시 주입되어 재순환된다.The dry sorbent from which carbon dioxide is separated is then injected back into the absorption reactor and carbon dioxide of high purity (more than 97%) is discharged to the outside. At this time, the heat medium is also injected into the absorption reactor and recycled.

공정 상에 건식 흡수제와 함께 투입되는 열매체는 낮은 열전도도로 인해 흡수반응기에서 생성된 열 에너지를 재생 반응기에서도 그대로 유지하고 있어서 건식 흡수제의 재생을 위해 스팀 형태로 투입되는 에너지 사용량을 크게 줄일 수 있는 장점이 있고 이러한 에너지 사용량 저감을 통해 전체 공정의 효율이 크게 향상된다.
The thermal medium added together with the dry absorbent in the process maintains the heat energy generated in the absorption reactor in the regeneration reactor due to the low thermal conductivity, which greatly reduces the amount of energy input in the form of steam for the recovery of the dry absorbent. In addition, the reduction of the energy usage greatly improves the efficiency of the entire process.

이하, 실시예와 비교예를 통하여 본 발명을 상세히 설명한다. 이들 예는 본 발명을 예시하기 위한 것일 뿐, 이로 인해 발명의 범위가 제한되지 않는다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. These examples are only for illustrating the present invention, which does not limit the scope of the invention.

실시예Example 1 One

흡수반응기 하단의 가스 라인을 통해 버너에서 연소된 혼합가스를 시간당 10m3 유량으로 흡수반응기에 투입하였다. 혼합가스의 조성은 이산화탄소 15중량%, 산소 10 중량%, 질소 75 중량%였다(혼합가스 10 m3 /hr에서 CO2 농도 15%이면 대략 1 kg/hr 정도 나옴).The mixed gas combusted in the burner was introduced into the absorption reactor at a flow rate of 10 m 3 per hour through the gas line at the bottom of the absorption reactor. The composition of the mixed gas was 15% by weight of carbon dioxide, 10% by weight of oxygen, and 75% by weight of nitrogen (approximately 1 kg / hr when the concentration of CO 2 was 15% at 10m 3 / hr of mixed gas).

흡수반응기의 온도는 70 ℃로 유지하고 재생반응기의 온도는 200℃로 유지하고, 흡수반응기에서의 이산화탄소 제거율이 80% 수준이 될 수 있도록 스팀밸브의 개도를 조정하였다. 공정상에 사용된 흡수제는 포타슘 카보네이트 계열의 고체 흡수제[국내 특허 등록 제892044호]를 사용하였고 열매체로 평균 입경이 100 ㎛인 모래를 투입하였다. 흡수제와 모래의 투입량은 각각 16.6kg, 1.4kg이며, 흡수제와 모래의 혼합비는 약 92:8 중량비로 조절하였다. 이후 연속 운전을 통해 재생반응기에서의 스팀사용량을 측정하였으며 그 결과를 하기 표 1에 나타내었다. 재생반응기의 온도는 대략 200℃ 부근에서 이산화탄소의 제거율이 80% 수준이 될 수 있도록 하였다.
The temperature of the absorption reactor was maintained at 70 ° C., the temperature of the regeneration reactor was maintained at 200 ° C., and the opening degree of the steam valve was adjusted so that the carbon dioxide removal rate in the absorption reactor was 80%. The absorbent used in the process was a potassium carbonate-based solid absorbent (Domestic Patent Registration No. 892044), and sand with an average particle diameter of 100 µm was added as a heat medium. The amount of absorbent and sand was 16.6 kg and 1.4 kg, respectively, and the mixing ratio of absorbent and sand was adjusted to about 92: 8 weight ratio. Since steam consumption in the regeneration reactor was measured through continuous operation and the results are shown in Table 1 below. The temperature of the regeneration reactor allowed the removal rate of carbon dioxide to be around 80% at around 200 ° C.

실시예Example 2 2

모래 투입량을 하기 표 1과 같이 조절한 것을 제외하고는, 상기 실시예 1과 동일하다.
It is the same as Example 1 except that sand injection amount was adjusted as Table 1 below.

비교예Comparative example 1 ~ 3 1 to 3

모래 투입량을 하기 표 1과 같이 조절한 것을 제외하고는, 상기 실시예 1과 동일하다.
It is the same as Example 1 except that sand injection amount was adjusted as Table 1 below.

시험예Test Example

상기 방법을 통해 실험을 실시하고 재생반응기에 연결된 스팀 유량계를 통해 주입되는 스팀의 양을 측정하고, 흡수반응기 입/출구에 설치된 이산화탄소 분석기를 통해 흡수 반응기에서의 이산화탄소 제거율을 5시간 동안 측정한 뒤 평균하였다. 하기 표 1은 열매체 투입량에 따른 스팀 사용량 및 이산화탄소 회수율을 비교한 것이다.Conduct the experiment through the above method, measure the amount of steam injected through the steam flowmeter connected to the regeneration reactor, and measure the carbon dioxide removal rate in the absorption reactor for 5 hours using a carbon dioxide analyzer installed at the inlet / outlet of the absorption reactor. It was. Table 1 below compares the steam consumption and carbon dioxide recovery according to the thermal medium input.

하기 표 1은 열매체 투입량에 따른 스팀 사용량 및 흡수반응기에서의 이산화탄소 제거율(재생반응기에서의 이산화탄소 회수율)을 비교한 것이다.Table 1 below compares the amount of steam used according to the heat medium input and the carbon dioxide removal rate (carbon dioxide recovery rate in the regeneration reactor) in the absorption reactor.

구분division 모래 : 흡수제 투입량 (중량%)Sand: Absorbent input (% by weight) 스팀 사용량
(kg steam/hr)
Steam usage
(kg steam / hr)
흡수반응기 이산화탄소 제거율(%)Absorption Reactor CO2 Removal Rate (%) 회수된 이산화탄소 순도(%)CO2 Purity Recovered (%)
비교예 1Comparative Example 1 0 : 1000: 100 3.03.0 8080 96.596.5 비교예 2Comparative Example 2 3 : 973: 97 2.92.9 7979 97.097.0 실시예 1Example 1 8 : 928: 92 2.52.5 8181 97.297.2 실시예 2Example 2 15 : 8515: 85 2.72.7 8080 97.597.5 비교예 3Comparative Example 3 23 : 7723: 77 3.23.2 8181 96.196.1

상기 표 1에서와 같이, 실시예 1 및 2의 경우 비교예 1, 2와 비교하여 재생반응기에서 사용되는 스팀의 양이 현저히 줄어든 것을 확인할 수 있다. 또한, 열매체를 과량 사용한 비교예 3의 경우에는 실시예 1 및 실시예 2에 비해 흡수반응기 이산화탄소 제거율을 80% 수준으로 맞추기 위한 스팀의 사용량이 증가된 것을 확인할 수 있는데 이는 흡수제 대비 열매체인 모래의 투입량 증가로 흡수 반응이 원활히 일어나지 않았기 때문으로 사료된다.As shown in Table 1, in the case of Examples 1 and 2 it can be seen that the amount of steam used in the regeneration reactor is significantly reduced compared to Comparative Examples 1 and 2. In addition, in the case of Comparative Example 3 using an excessive amount of heat medium, it can be seen that the amount of steam used to adjust the absorption reactor carbon dioxide removal rate to 80% level was increased compared to Examples 1 and 2, which is the amount of sand that is heat medium compared to the absorbent. This is because the absorption reaction did not occur smoothly due to the increase.

본 발명은 이를 위해 흡수반응기와 재생반응기로 구성된 건식 흡수 공정에서, 혼합 가스 중의 이산화탄소 포집을 위한 고체상의 건식 흡수제 외에 공정 상에 열매체를 순환시킴으로써 재생반응기에서 공급된 열을 열매체를 통해 건식 흡수제에 공급하여 기존보다 적은 스팀 사용으로도 재생반응기에서 건식 흡수제의 재생이 가능하도록 하였다. 이러한 공정 구성을 통해 이산화탄소와 화학적으로 결합이 된 건식 흡수제가 재생반응기에서 재생 시 재생반응기에 투입되는 스팀의 양을 줄임으로써 공정에 투입되는 에너지 사용량이 저감이 가능하다.
In the dry absorption process consisting of an absorption reactor and a regeneration reactor, the present invention supplies heat to the dry absorber through the heating medium by circulating the heat medium in the process in addition to the solid dry absorber for capturing carbon dioxide in the mixed gas. Therefore, it is possible to regenerate the dry absorbent in the regeneration reactor with less steam than before. Through such a process configuration, the amount of energy used in the process can be reduced by reducing the amount of steam introduced into the regeneration reactor when the dry absorbent chemically combined with carbon dioxide is regenerated in the regeneration reactor.

1. 흡수반응기
2. 회수사이클론
3. 이산화탄소가 제거된 가스
4. 재생반응기
5. 스팀 공급라인
6. 혼합가스 공급라인
7. 가스 블로워
8. 흡수반응기 가스 분산판
9. 재생반응기 가스 분산판
10. 재생 흡수제 재순환 라인
1. Absorption Reactor
2. Recovery cyclone
3. Gas with CO2 removed
4. Regeneration reactor
5. Steam supply line
6. Mixed Gas Supply Line
7. Gas blower
8. Absorption Reactor Gas Dispersion Plate
9. Regenerator Gas Dispersion Plate
10. Regeneration Absorbent Recirculation Line

Claims (10)

건식 흡수제와 열매체를 동시에 흡수반응기에 투입하되, 흡수반응기 내부로 공급된 혼합가스 중 이산화탄소는 상기 건식 흡수제와 결합하여 재생반응기로 이송하고, 이산화가스가 제거된 혼합가스는 외부로 배출하는 단계; 및
상기 재생반응기로 이송된 이산화탄소가 결합된 흡수제를 공급되는 스팀에 의해 흡수제와 이산화탄소로 분리하는 단계;
를 포함하는 이산화탄소의 회수방법.
Putting a dry absorbent and a heat medium into an absorption reactor at the same time, wherein carbon dioxide in the mixed gas supplied into the absorption reactor is combined with the dry absorbent and transferred to a regeneration reactor, and the mixed gas from which dioxide gas is removed is discharged to the outside; And
Separating the absorbent combined with carbon dioxide transferred to the regeneration reactor into an absorbent and carbon dioxide by steam supplied;
Carbon dioxide recovery method comprising a.
제 1 항에 있어서,
상기 열매체는 모래 또는 규소인 이산화탄소의 회수방법.
The method of claim 1,
The heat medium is a method of recovering carbon dioxide is sand or silicon.
제 1 항에 있어서,
건식 흡수제와 열매체는 80 ~ 95 : 20 ~ 5의 중량비로 혼합 투입되는 이산화탄소의 회수방법.
The method of claim 1,
Dry absorbent and heat medium is a method of recovering carbon dioxide mixed and added in a weight ratio of 80 ~ 95: 20 ~ 5.
제 1 항에 있어서,
상기 열매체는 평균 입경이 50 내지 150 마이크로미터(㎛)인 이산화탄소의 회수방법.
The method of claim 1,
The heat medium has a mean particle size of 50 to 150 micrometers (㎛) recovery method of carbon dioxide.
제 1 항에 있어서,
상기 건식 흡수제로는 포타슘 카보네이트계 화합물 또는 소듐 카보네이트계 화합물인 이산화탄소의 회수방법.
The method of claim 1,
The dry absorbent is a method of recovering carbon dioxide that is a potassium carbonate compound or a sodium carbonate compound.
제 1 항에 있어서,
상기 혼합가스는 이산화탄소 5 내지 20 중량%, 산소 5 내지 20 중량% 및 질소 60 내지 80 중량%를 포함하는 이산화탄소의 회수방법.
The method of claim 1,
The mixed gas is 5 to 20% by weight of carbon dioxide, 5 to 20% by weight of oxygen and 60 to 80% by weight nitrogen recovery method.
제 1 항에 있어서,
상기 재생반응기에서 재생된 흡수제는 흡수반응기로 재순환하는 단계를 추가로 포함하는 이산화탄소의 회수방법.
The method of claim 1,
The absorbent regenerated in the regeneration reactor further comprises the step of recycling to the absorption reactor carbon dioxide recovery method.
제 1 항에 있어서,
상기 스팀은 흡수반응기에서 제거되는 이산화탄소 1 중량부에 대하여 2 중량부 내지 4 중량부가 투입되는 이산화탄소의 회수방법.
The method of claim 1,
Wherein the steam is 2 to 4 parts by weight based on 1 part by weight of carbon dioxide removed from the absorption reactor to recover the carbon dioxide.
제 1 항에 있어서,
상기 재생반응기의 운전온도는 120 내지 250 ℃인 이산화탄소의 회수방법.
The method of claim 1,
The operation temperature of the regeneration reactor is 120 to 250 ℃ method of recovering carbon dioxide.
제 1 항에 있어서,
상기 재생반응기에서 분리된 이산화탄소는 97% 이상의 순도를 갖는 이산화탄소의 회수방법.
The method of claim 1,
Carbon dioxide separated in the regeneration reactor has a purity of 97% or more carbon dioxide recovery method.
KR1020110100062A 2011-09-30 2011-09-30 Carbon deoxide capturing method to reduce energy consumption KR101863967B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110100062A KR101863967B1 (en) 2011-09-30 2011-09-30 Carbon deoxide capturing method to reduce energy consumption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110100062A KR101863967B1 (en) 2011-09-30 2011-09-30 Carbon deoxide capturing method to reduce energy consumption

Publications (2)

Publication Number Publication Date
KR20130035637A true KR20130035637A (en) 2013-04-09
KR101863967B1 KR101863967B1 (en) 2018-06-04

Family

ID=48437419

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110100062A KR101863967B1 (en) 2011-09-30 2011-09-30 Carbon deoxide capturing method to reduce energy consumption

Country Status (1)

Country Link
KR (1) KR101863967B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550070B1 (en) 2022-11-29 2023-06-30 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including plate heat exchanger
KR102578218B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including suction line accumulator
KR102578216B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through multiple processes from blue hydrogen production
KR102578221B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Swlwctively removable co2 capture and reuse system through blue hydrogen production
KR102578213B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including air cooled type cooler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520678A (en) * 2002-03-22 2005-07-14 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Combustion method with integrated separation of CO2 by carbonation
KR100620546B1 (en) 2005-01-03 2006-09-13 한국전력공사 highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20080095069A (en) * 2007-04-23 2008-10-28 한국에너지기술연구원 Method and apparatus for solid conveying and circulation between fluidized beds
KR100912250B1 (en) 2007-11-09 2009-08-14 한국에너지기술연구원 Cyclone Expander Of CO2 Capture System using Dry-sorbent
JP2011067792A (en) * 2009-09-28 2011-04-07 Energy Products Co Ltd Separating and recovering system
KR20110054948A (en) * 2009-11-19 2011-05-25 한국에너지기술연구원 Carbon dioxide capture apparatus with multi-stage fluidized bed heat exchanger type regenerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005520678A (en) * 2002-03-22 2005-07-14 コンセホ・スペリオール・デ・インベスティガシオネス・シエンティフィカス Combustion method with integrated separation of CO2 by carbonation
KR100620546B1 (en) 2005-01-03 2006-09-13 한국전력공사 highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20080095069A (en) * 2007-04-23 2008-10-28 한국에너지기술연구원 Method and apparatus for solid conveying and circulation between fluidized beds
KR100912250B1 (en) 2007-11-09 2009-08-14 한국에너지기술연구원 Cyclone Expander Of CO2 Capture System using Dry-sorbent
JP2011067792A (en) * 2009-09-28 2011-04-07 Energy Products Co Ltd Separating and recovering system
KR20110054948A (en) * 2009-11-19 2011-05-25 한국에너지기술연구원 Carbon dioxide capture apparatus with multi-stage fluidized bed heat exchanger type regenerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102550070B1 (en) 2022-11-29 2023-06-30 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including plate heat exchanger
KR102578218B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including suction line accumulator
KR102578216B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through multiple processes from blue hydrogen production
KR102578221B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Swlwctively removable co2 capture and reuse system through blue hydrogen production
KR102578213B1 (en) 2022-11-29 2023-09-13 (주)빅텍스 Co2 capture and reuse system through blue hydrogen production including air cooled type cooler

Also Published As

Publication number Publication date
KR101863967B1 (en) 2018-06-04

Similar Documents

Publication Publication Date Title
EP2269713B1 (en) CO2 recovering method
KR100898816B1 (en) Carbon deoxide capturing device including water vapor pretreatment apparatus
WO2018000857A1 (en) Flue gas desulfurization and denitrification method and device
KR20130035637A (en) Carbon deoxide capturing method to reduce energy consumption
US8303696B2 (en) Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
KR101347551B1 (en) Dry sorbent CO2 capturing device with multistaged supplying
JP5881617B2 (en) Flushing method and system for carbon dioxide capture process
US20050060985A1 (en) Combustion method with integrated CO2 separation by means of carbonation
EP2604326B1 (en) Device for capturing carbon dioxide using two different dry sorbents
CA2795028A1 (en) Carbon dioxide gas recovery device
CN105688873B (en) Activated carbon Thermal desorption method and its device
CN103721557A (en) Desulfurization in a regenerative calcium cycle system
KR102055975B1 (en) A multi-compression system and process for capturing carbon dioxide
CN104583148A (en) Method and system for producing cement clinker from raw cement mixture
CN103933854A (en) Fluidized bed adsorption and desorption apparatus and method of organic exhaust gas
KR20130039185A (en) Dry sorbent co2 capturing device with improving energy efficiency
US20130186272A1 (en) Ammonia capturing by co2 product liquid in water wash liquid
CN101569819B (en) Flue gas desulfurization process for comprehensively utilizing sintering flue gas
CN109173591A (en) A kind of recirculating fluidized bed VOCs adsorption and regeneration device and its operation method
RU2716772C1 (en) System for extracting co2 and method of extracting co2
KR102055976B1 (en) A single compression system and process for capturing carbon dioxide
CN102580707B (en) Simple heat exchange type active carbon coke purifying and regenerating process system and active carbon coke purifying and regenerating process method
KR20050003767A (en) CO2 capturing process
CN108704464B (en) Comprehensive treatment system and process for desulfurization and denitrification of sintering flue gas and whitening of flue gas
KR101746224B1 (en) Apparatus for absorbing and regenerating carbon dioxide including three-stage fluidized bed

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant