KR20110054948A - Carbon dioxide capture apparatus with multi-stage fluidized bed heat exchanger type regenerator - Google Patents

Carbon dioxide capture apparatus with multi-stage fluidized bed heat exchanger type regenerator Download PDF

Info

Publication number
KR20110054948A
KR20110054948A KR1020090111779A KR20090111779A KR20110054948A KR 20110054948 A KR20110054948 A KR 20110054948A KR 1020090111779 A KR1020090111779 A KR 1020090111779A KR 20090111779 A KR20090111779 A KR 20090111779A KR 20110054948 A KR20110054948 A KR 20110054948A
Authority
KR
South Korea
Prior art keywords
regeneration
reactor
solid
solid absorbent
cell
Prior art date
Application number
KR1020090111779A
Other languages
Korean (ko)
Other versions
KR101045061B1 (en
Inventor
이창근
진경태
선도원
조성호
박재현
배달희
류호정
박영철
이승용
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090111779A priority Critical patent/KR101045061B1/en
Publication of KR20110054948A publication Critical patent/KR20110054948A/en
Application granted granted Critical
Publication of KR101045061B1 publication Critical patent/KR101045061B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/10Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents
    • B01D53/12Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds with dispersed adsorbents according to the "fluidised technique"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PURPOSE: A carbon dioxide collecting apparatus with a regenerator in a multi-stepped fluidized bed-based heat exchanger shape is provided to activate a regeneration reaction by uniformly transferring heat to solid absorber introduced in the regenerator. CONSTITUTION: A carbon dioxide collecting apparatus with a regenerator includes a collection reactor(20), a cyclone(40), a regenerator(30), a supplying pipe(50), and an outlet(60). The collection reactor contacts carbon dioxide contained gas with solid absorber in order to selectively absorb carbon dioxide. The cyclone separates the solid absorber absorbed carbon dioxide and gas. The regenerator receives the solid absorber from the cyclone and supplies hot regenerating gas in order to separated absorbed carbon dioxide from the solid absorber. The supplying pipe transfers the solid absorber from the regenerator to the collection reactor. The outlet transfers the regenerated solid absorber from the regenerator and the collection reactor.

Description

다단유동층 열교환기 형태의 재생반응기를 갖는 CO₂회수장치{Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator}Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator}

본 발명은 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치에 관한 것으로, 더 상세하게는 재생반응기를 다층으로 구획하고 상기 구획된 각각의 층에는 스팀을 포함하는 재생가스로 가열이 이루어지도록 하여 고체흡수제의 열전달면적을 증가시킨 것이다. 따라서, 재생반응기에 투입된 고체흡수제 전체량에 대해 고른 열전달이 가능하게 됨으로 재생반응을 활성화시켜 재생율을 증가시킴은 물론 재생반응기의 상부층도 반응면적으로 사용할 수 있어 재생반응기 작업성을 향상시킬 수 있는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치에 관한 것이다.The present invention relates to a CO 2 recovery apparatus having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger, and more particularly, the regeneration reactor is partitioned into multiple layers, and each of the partitioned layers is heated with a regeneration gas containing steam. To increase the heat transfer area of the solid absorbent. Therefore, even heat transfer is possible for the total amount of the solid absorbent added to the regeneration reactor, thereby activating the regeneration reaction to increase the regeneration rate, and the upper layer of the regeneration reactor can be used as the reaction area, thereby improving the workability of the regeneration reactor. A CO 2 recovery apparatus having a regeneration reactor in the form of a fluidized bed heat exchanger.

종래에 CO2회수 공정으로는 습식법에 의한 공정이 사용되었다. 즉, CO2를 포 함하는 가스를 아민류 계통의 용액을 통과시켜 CO2를 흡수하게 하고 재생탑에서 그 용액을 재생하여 사용하는 방법이며, 이러한 습식법은 공정과정에 폐수가 추가로 발생되는 단점이 있다.Conventionally, a wet process has been used as a CO 2 recovery process. That is, a gas containing CO 2 is passed through an amine-based solution to absorb CO 2 and regenerated in a regeneration tower. This wet method has a disadvantage in that additional waste water is generated during the process. .

따라서 상기 습식법의 단점을 해소하기 위한 대안으로 건식법에 의한 CO2의 회수방법이 제안되었다. 상기 건식법을 이용한 시스템은 두개의 반응기를 이용하여 CO2를 회수하는 것으로, 회수반응기에 공급된 CO2를 고체흡수제(건식흡수제)에 흡착제거하고, 상기 고체흡수제는 재생반응기로 유입되어 흡착된 CO2를 제거하여 다시 회수반응기에 공급하는 과정으로 이루어진다.Therefore, a method of recovering CO 2 by the dry method has been proposed as an alternative to solve the disadvantage of the wet method. The system using the dry method recovers CO 2 using two reactors. The CO 2 supplied to the recovery reactor is adsorbed and removed from the solid absorbent (dry absorbent), and the solid absorbent is introduced into the regeneration reactor and adsorbed CO. 2 is removed and fed back to the recovery reactor.

예컨대, 상기 구성을 갖는 CO2 회수장치(1)는 도 5를 참조한 바와같이 유동되는 고체흡수제에 CO2 가 포함된 혼합가스를 공급하여 CO2 가 고체흡수제에 흡수되는 반응이 이루어지는 회수반응기(2)와, 상기 회수반응기에서 CO2를 흡착한 고체흡수제와 가스성분을 분리하는 사이클론(3)과, 상기 고체흡수제를 공급받아 CO2를 분리한 후 고체흡수제를 다시 회수반응기로 공급하는 하는 재생반응기(4)로 구성된다.For example, the CO 2 recovery apparatus 1 having the above-described configuration supplies a mixed gas containing CO 2 to the solid absorbent that flows as shown in FIG. 5, and a recovery reactor 2 in which CO 2 is absorbed into the solid absorbent is performed. ), A cyclone (3) separating the solid absorbent and gas components adsorbed by CO 2 in the recovery reactor, and a regenerated reactor for separating the CO 2 after receiving the solid absorbent and feeding the solid absorbent back to the recovery reactor. It consists of (4).

여기서 상기 재생반응기는 하나의 반응기에 고체흡수제를 충전시키고 이에 열을 가하면서 재생가스 또는 스팀을 공급해 흡수된 CO2 의 분리가 이루어지도록 하고 있다. 이러한 재생반응기는 유입된 고체흡수제를 고온으로 가열하는 시간이 필요함에 따라 회수반응기보다는 반응시간이 길다. 따라서, 원활한 고체흡수제의 순 환반응이 이루어지도록 하기 위해서는 재생반응기의 직경을 크게 형성하여 다량의 고체흡수제가 충전되도록 하고 있다. Here, the regeneration reactor charges a solid absorbent in one reactor and heats it to supply regeneration gas or steam to separate the absorbed CO 2 . Such a regeneration reactor has a longer reaction time than a recovery reactor because it requires a time for heating the introduced solid absorbent to a high temperature. Accordingly, in order to achieve a smooth circulation of the solid absorbent, a large diameter of the regeneration reactor is formed to fill a large amount of the solid absorbent.

이와같은 구조에서의 고체흡수제로의 열전달은 고온의 재생가스 또는 스팀을 공급하여 버블링 방식으로 이루어진다. 이러한 버블링 방식에 의해 열을 전달하면 충전된 고체흡수제의 일부분 특히 재생가스가 처음 유입되는 재생반응기의 하부측의 고체흡수제에만 고열이 전달되고 상측에는 상대적으로 낮은 열이 전달된다. The heat transfer to the solid absorbent in such a structure is made by bubbling by supplying a high temperature regeneration gas or steam. When the heat is transferred by the bubbling method, high heat is transmitted only to the solid absorbent on the lower side of the regenerated reactor in which a part of the solid absorbent, especially the regenerated gas, is first introduced, and relatively low heat is transmitted to the upper side.

따라서, CO2 분리반응은 재생반응기의 하부에서만 활발히 이루어지고 상부는 CO2 분리반응보다는 예열이 이루어지는 공간으로 활용되고 있어 그 고체흡수제의 재생율이 저하됨으로 이를 해소하기 위해 새로운 재생반응기에 대한 연구가 필요하다.Thus, CO 2 separation reaction is performed only in the lower portion of the regeneration reactor actively being upper part there being used as a space comprising a warm-up than the CO 2 separation reaction have to search for new playback reactor to address them as the refresh rate is degraded in the solid sorbent Do.

이에 본 발명에 따른 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치는,The CO 2 recovery apparatus having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger according to the present invention,

재생반응기를 다층으로 구성하고 상기 각층에는 재생가스를 개별적으로 공급하여 각층에 유입된 고체흡수제에 고르게 열을 전달하게 함으로써 고체흡수제의 재생반응을 촉진시켜 재생율을 증대시킬 수 있는 장치의 제공을 목적으로 한다.The purpose of the present invention is to provide a device capable of increasing the regeneration rate by promoting a regeneration reaction of the solid absorbent by constructing a multi-layered regeneration reactor and supplying regeneration gas to each layer to evenly transfer heat to the solid absorbents introduced into each layer. do.

상기 과제를 달성하기 위한 본 발명의 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치는,CO 2 recovery apparatus having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger of the present invention for achieving the above object,

외부로부터 공급된 CO2함유가스를 고체흡수제와 접촉시켜 CO2 를 선택적으로 흡수시키는 회수반응기와, 상기 회수반응기의 CO2가 흡수된 고체흡수제와 기체를 분리시키는 사이클론과, 상기 사이클론으로부터 고체흡수제를 공급받고 이에 고온의 재생가스를 공급하여 가열되게 하여 흡수된 CO2 를 분리하는 재생반응기를 포함하는 CO2 회수장치에 있어서, 상기 재생반응기는, 수직설치된 통체에 다수의 격벽을 설치하여 내부공간을 다층의 재생셀로 구획 형성하고, 상기 각 재생셀에는 분산판을 설치해 하부의 도입실과 상부의 반응실로 형성하고, 상기 각 재생셀의 하부도입실과 상부반응실에는 재생가스 유입구와 재생가스 배출구를 형성하고, 상기 각 재생셀의 상부 반응실에는 회수반응기에서 흡수반응이 이루어진 고체흡수제가 유입되는 고체흡수제 유입구와 고체흡수제 배출구가 형성되도록 한다. A recovery reactor for selectively absorbing CO 2 by contacting a CO 2 containing gas supplied from the outside with a solid absorbent, a cyclone separating the solid absorber absorbed by the CO 2 of the recovery reactor and a gas, and a solid absorbent from the cyclone. A CO 2 recovery apparatus comprising a regeneration reactor for supplying and supplying a high temperature regeneration gas to be heated to separate the absorbed CO 2 , wherein the regeneration reactor includes a plurality of partitions in vertically installed cylinders to form an internal space. A multi-layered regeneration cell is formed, and each regeneration cell is provided with a dispersion plate to form a lower introduction chamber and an upper reaction chamber, and a regeneration gas inlet and a regeneration gas outlet are formed in the lower introduction chamber and the upper reaction chamber of each regeneration cell. In the upper reaction chamber of each regenerated cell, the solid absorbent into which the solid absorbent having undergone the absorption reaction in the recovery reactor is introduced. And such that the inlet and outlet to form a solid absorbent.

이상에서 상세히 기술한 바와 같이 본 발명의 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치는,As described in detail above, the CO 2 recovery apparatus having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger of the present invention,

재생반응기를 다층으로 구획하고 상기 구획된 각각의 층에는 스팀을 포함하 는 재생가스로 가열이 이루어지도록 하여 고체흡수제의 열전달면적을 증가시킨 것이다. 따라서, 재생반응기에 투입된 고체흡수제 전체량에 대해 고른 열전달이 가능하게 됨으로 재생반응을 활성화시켜 재생율을 증가시킴은 물론 재생반응기의 상부층도 반응면적으로 사용할 수 있어 재생반응기 작업성을 향상시킬 수 있는 것이다.The regeneration reactor was partitioned into multiple layers, and each of the partitioned layers was heated with a regeneration gas containing steam, thereby increasing the heat transfer area of the solid absorbent. Therefore, even heat transfer is possible with respect to the total amount of the solid absorbent added to the regeneration reactor, thereby activating the regeneration reaction to increase the regeneration rate, and the upper layer of the regeneration reactor can be used as the reaction area, thereby improving the workability of the regeneration reactor. .

이하, 본 발명을 첨부된 도면을 참조하여 설명하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 1a와 도 1b에 도시된 바와같이 본 발명에 따른 다단유동층 열교환기 형태의 재생반응기를 갖는 이산화탄소 회수장치는 회수반응기와(20)와 재생반응기(30)를 포함하여 구성된다.As shown in FIGS. 1A and 1B, a carbon dioxide recovery apparatus having a regeneration reactor in the form of a multistage fluidized bed heat exchanger according to the present invention includes a recovery reactor 20 and a regeneration reactor 30.

상기 회수반응기(20)는 도시된 바와같이 상승관으로 형성되거나 이외에 공지된 다양한 형태의 것을 사용할 수 있는 것으로, CO2 를 포함하는 혼합가스를 유입하여 유동되는 고체흡수제에 CO2 를 흡수시켜 제거하는 반응이 이루어진다. 즉, 상기 회수반응기의 하부로부터 고압의 스팀을 공급하여 충전된 고체흡수제를 고속으로 유동화시키면서 고체흡수제에 고르게 수분을 공급한다. 상기 과정에서 일측으로부터 CO2 를 포함하는 혼합가스를 공급하면 유동되는 고체흡수제에 유입된 혼합가스가 접촉되면서 CO2 를 흡수하는 반응이 이루어진다. 따라서, 혼합가스에 포함된 CO2 는 고체흡수제에 흡수되어 혼합가스로부터의 분리가 이루어지는 것이다.The recovery reactor 20 is found to be acceptable to the various known forms in addition to or formed in the riser, as shown, to remove absorbed the CO 2 to the solid sorbent is fluidized by flowing a mixed gas containing CO 2 The reaction takes place. That is, while supplying high-pressure steam from the lower part of the recovery reactor to fluidize the solid absorbent filled at high speed evenly supplies the moisture to the solid absorbent. When the mixed gas containing CO 2 is supplied from one side in the above process, the mixed gas introduced into the flowing solid absorbent is contacted to absorb the CO 2 . Therefore, CO 2 contained in the mixed gas is absorbed by the solid absorbent to separate from the mixed gas.

상기 회수반응기(20)에서 반응이 완료된 고체흡수제는 회수반응기의 상층부에서 배출되며, 고체흡수제를 포함하는 배출물질은 사이클론(40)으로 공급되어 CO2 가 제거된 기체성분과 CO2 를 흡수한 고체흡수제를 분리하게 된다. The solid absorbent in which the reaction is completed in the recovery reactor 20 is discharged from the upper portion of the recovery reactor, and the discharge material including the solid absorber is supplied to the cyclone 40 to absorb the gas component and CO 2 from which CO 2 has been removed. It will separate the absorbent.

상기 사이클론(40)에 의해 분리된 고체흡수제는 재생반응기(30)로 공급되어 가열이 이루어지며 가열되는 고체흡수제는 흡수된 CO2 를 분리하는 반응이 이루어진다.The solid absorbent separated by the cyclone 40 is supplied to the regeneration reactor 30 to be heated, and the solid absorbent to be heated reacts to separate the absorbed CO 2 .

상기 재생반응기(30)는 도시된 바와같이 수직설치된 통체로 내부에 다수의 격벽(31)을 설치해 내부공간을 다수개로 구획하고, 상기 구획된 각 공간을 재생셀(32)로 하여 각 재생셀마다 재상반응이 이루어지도록 한다. The regeneration reactor 30 partitions the interior space into a plurality of partitions 31 by installing a plurality of partitions 31 therein as a vertically installed cylinder, and each of the partitioned spaces as regeneration cells 32 for each regeneration cell. Allow for a rejuvenation reaction.

상기 재생반응이 이루어지는 재생셀(32)은 내부에 분산판(35)이 설치되어 내부공간을 하부의 도입실(33)과 상부의 반응실(34)로 구획한다. 상기 상부 반응실(34)에는 회수반응기에서 반응이 이루어진 고체흡수제가 적재되는 공간이고, 하부 도입실(33)은 일측으로부터 고온의 재생가스(스팀)가 유입되는 공간이다. 이와같은 하부도입실(33)에는 재생가스유입구(331)가 형성되고, 상부반응실(34)에는 재생가스배출구(341)가 형성되어 하부 도입실로 유입된 고온의 재생가스가 분산판을 통과하여 상부 반응실로 균일하게 공급된다. 이와같이 공급된 고온의 재생가스는 적재된 고체흡수제에 열을 고르게 전달하여 가열이 이루어지게 함으로써 CO2 분리반 응을 촉진시켜 재생반응이 활발하게 이루어지도록하고, 분리된 CO2 와 재생가스는 재생가스배출구(341)를 통해 배출이 이루어진다. 이러한 구성에서 상기 재생가스배출구(341)는 상부반응실(34)의 상부에 위치하도록 하여 적재된 고체흡수제가 유입되어 재생가스배출구를 막아 가스 배출이 차단되는 것을 방지하도록 하는 것이 바람직하다. 또한, 배출되는 유로는 하나로 합류하여 가스배출이 이루어지도록 하고, 합류된 유로상에는 사이클론(미부호)을 더 설치하여 순수 가스만 배출되고 고체성분은 다시 재생반응기로 투입되도록 할 수 있다.The regeneration cell 32 in which the regeneration reaction is performed is provided with a distribution plate 35 therein to partition the internal space into a lower introduction chamber 33 and an upper reaction chamber 34. The upper reaction chamber 34 is a space in which the solid absorbent reacted in the recovery reactor is loaded, and the lower introduction chamber 33 is a space in which hot regeneration gas (steam) is introduced from one side. The regeneration gas inlet 331 is formed in the lower introduction chamber 33, and the regeneration gas outlet 341 is formed in the upper reaction chamber 34 so that the high temperature regeneration gas introduced into the lower introduction chamber passes through the distribution plate. It is supplied uniformly to the upper reaction chamber. The high temperature regenerated gas supplied in this way transfers heat evenly to the loaded solid absorbent so that the heating is performed to promote the CO 2 separation reaction so that the regeneration reaction is actively performed, and the separated CO 2 and the regenerated gas are regeneration gas. Discharge is made through the outlet 341. In this configuration, the regeneration gas outlet 341 may be positioned at the upper portion of the upper reaction chamber 34 so that the loaded solid absorbent is introduced to block the regeneration gas outlet so as to prevent gas discharge. In addition, the discharged flow path may be combined into one to discharge the gas, and the cyclone (unsigned) may be further installed on the combined flow path so that only pure gas is discharged and the solid component may be introduced into the regeneration reactor.

아울러 상기 상부반응실(34)에는 고체흡수제를 유입하는 고체흡수제유입구(342)와 고체흡수제배출구(343)가 형성되어 회수반응기(20)로부터 CO2 를 흡수한 고체흡수제를 유입하거나, 재생반응이 완료된 고체흡수제를 배출하도록 한다. 여기서 상기 고체흡수제유입구(342)는 재생셀(32)의 반응실(34) 저면에 연통설치하여 유입된 고체흡수제가 분산판(35)을 통과한 재생가스에 먼저 노출되게 하고, 고체흡수제배출구(343)는 분산판의 상면에서 이격된 상부에 위치하도록 하여 상부반응실의 하부로 유입된 고체흡수제가 재생가스에 의해 버블링방식으로 유동되면서 상부로 이동되어 고체흡수제배출구(343)를 통해 배출이 이루어지도록 하는 것이다.In addition, the upper reaction chamber 34 is provided with a solid absorbent inlet 342 and a solid absorbent outlet 343 for introducing a solid absorbent to introduce a solid absorbent absorbing CO 2 from the recovery reactor 20, or a regeneration reaction is performed. Drain the finished solid absorbent. Here, the solid absorbent inlet 342 communicates with the bottom of the reaction chamber 34 of the regeneration cell 32 so that the solid absorbent introduced therein is first exposed to the regeneration gas passing through the dispersion plate 35, and the solid absorbent outlet ( 343) is located at the upper spaced from the upper surface of the dispersion plate so that the solid absorbent flowing into the lower portion of the upper reaction chamber is moved to the upper portion while bubbling by the regeneration gas is discharged through the solid absorbent outlet (343) To make it happen.

상기 구조를 갖는 재생셀(32)이 다단으로 형성된 재생반응기(30)는 회수반응기(20)로부터 공급관(50)을 통해 CO2 가 흡수된 고체흡수제를 공급받는다.Regeneration reactor (30) having a multi-stage regeneration cell (32) having the above structure receives a solid absorbent in which CO 2 is absorbed through the supply pipe (50) from the recovery reactor (20).

상기 회수반응기(20)에서 재생반응기(30)로 고체흡수제를 공급하는 형태는 다단으로 형성된 재생셀(32) 각각에 고체흡수제를 직접 공급하거나, 최상층에만 공급하고 상부 재생셀(32)의 고체흡수제는 인접된 하부 재생셀로 공급하도록 할 수 있다.In the form of supplying the solid absorbent from the recovery reactor 20 to the regeneration reactor 30, the solid absorbent is directly supplied to each of the multi-stage regeneration cells 32, or only the uppermost layer and the solid absorbent of the upper regeneration cell 32 is supplied. May be supplied to an adjacent lower regeneration cell.

도 1a는 재생셀에 고체흡수제를 직접 공급하는 형태이다.1a is a form in which a solid absorbent is directly supplied to a regeneration cell.

도시된 바와같이 공급관(50)은 사이클론(40)에서 배출되는 고체흡수제를 이송하는 부분에서 다수개로 분기가 이루어지도록 하여, 분기된 이송관의 각 단부가 다수 재생셀(32)의 고체흡수제유입구(342)에 각각 연통되어 개별적으로 고체흡수제를 공급되도록 한다. 이 때 상기 고체흡수제유입구 부분에는 L-밸브 또는 루프실과 같은 보조수단을 더 장착하여 고체흡수제의 유입이 용이하게 이루어지도록 할 수 있다.As shown in the drawing, the supply pipe 50 has a plurality of branches at the portion for transporting the solid absorbent discharged from the cyclone 40, so that each end of the branched transfer pipe has a solid absorbent inlet of the plurality of regeneration cells 32 ( 342, respectively, to individually supply a solid absorbent. At this time, the solid absorbent inlet portion may be further equipped with an auxiliary means such as an L-valve or a roof chamber to facilitate the inflow of the solid absorbent.

또한 상기 재생셀(32)의 상부 반응실(34)에는 공급관(50)이 연통된 부분과 대향된 부분에 배출관(60)이 연통설치되어 재생이 완료된 고체흡수제를 재생반응기(30)로부터 배출하여 회수반응기(20)로 공급하게 한다. 상기 배출관(60)은 각 재생셀(32)의 고체흡수제배출구와 연통되고 이송과정에서 유로가 하나로 합류된 후 회수반응기로 공급되며, 회수반응기로 공급되기 이전에 루프실(61)을 형성하여 재생반응기(30)의 가스가 회수반응기(20)로 공급되는것을 차단하거나 고체흡수제의 공급량을 일정하게 조절하도록 할 수 있다. 또한, 상기 배출관에는 열교환기(62)를 더 장착하여 고체흡수제의 온도는 낮추도록 할 수 있다.In addition, in the upper reaction chamber 34 of the regeneration cell 32, the discharge pipe 60 is installed in communication with the portion in which the supply pipe 50 is in communication with each other, thereby discharging the solid absorbent having been regenerated from the regeneration reactor 30. Supply to the recovery reactor (20). The discharge pipe 60 communicates with the solid absorbent discharge ports of the respective regeneration cells 32 and is supplied to the recovery reactor after the flow paths are joined as one in the transfer process, and the loop chamber 61 is formed and regenerated before being supplied to the recovery reactor. The gas of the reactor 30 may be blocked from being supplied to the recovery reactor 20 or may be controlled to constantly adjust the supply amount of the solid absorbent. In addition, the exhaust pipe may be further equipped with a heat exchanger 62 to lower the temperature of the solid absorbent.

도 2는 최상층의 재생셀에만 이송관을 통해 고체흡수제를 공급하는 형태이 다.2 is a form in which the solid absorbent is supplied to the regeneration cell of the uppermost layer through the transfer pipe.

상기 회수반응기(20)에서 CO2 가 흡수된 고체흡수제를 이송하는 공급관(50)은 최상층 재생셀(32)의 고체흡수제유입구(342)에 연통되어 고체흡수제의 공급이 이루어지도록 한다. 또한 상기 최상층 재생셀(32)의 고체흡수제유입구(342) 부분에는 고체흡수제의 유입이 용이하게 이루어지도록 L-밸브 또는 루프실과 같은 보조수단이 설치될 수 있다.The supply pipe 50 for transporting the solid absorbent in which the CO 2 is absorbed in the recovery reactor 20 is communicated with the solid absorbent inlet 342 of the uppermost regeneration cell 32 to supply the solid absorbent. In addition, an auxiliary means such as an L-valve or a roof chamber may be installed at a portion of the solid absorbent inlet 342 of the uppermost regeneration cell 32 to facilitate the inflow of the solid absorbent.

상기 최상층 재생셀(32)에 충전된 고체흡수제는 고체하강관(36)을 통해 인접한 하부층의 재생셀로 공급하도록 한다. 즉, 상하층간의 재생셀(32)의 고체흡수제 이송은 상부 재생셀의 고체흡수제배출구(343)와 하부 재생셀의 고체흡수제유입구(342)를 연통시킨 고체하강관(36)에 의해 이루어진다. 상기 고체하강관(36)은 도 2에 도시된 바와같이 안식각 이상으로 경사각을 형성하여 고체흡수제가 고체하강관에 정체되는 것을 방지하도록 할 수 있다. 또한, 고체하강관(36)으로 이송된 고체흡수제는 재생셀(32)로 용이하게 공급되도록 하기 위해 도 3에 도시된 바와같이 고체흡수제유입구(342)와 연통된 고체하강관(36)의 하단을 수평으로 형성한 L-밸브로 형성하여 일측에서 분사되는 가스에 의해 고체흡수제가 재생셀로 용이하게 공급되도록 할 수 있다. 또한, 도시된 형태이외에 고체하강관의 하부에 저장공간을 형성하여 일정량의 고체흡수제가 저장되도록 하여 하부재생셀로의 공급이 원활하기 이루어지도록 할 수 있다.The solid absorbent filled in the top layer regeneration cell 32 is supplied to the regeneration cell of the adjacent lower layer through the solid down pipe 36. That is, the transfer of the solid absorbent of the regeneration cell 32 between the upper and lower layers is made by the solid down pipe 36 in which the solid absorbent discharge port 343 of the upper regeneration cell and the solid absorbent inlet 342 of the lower regeneration cell are communicated. The solid down pipe 36 may form an inclination angle greater than the angle of repose as shown in FIG. 2 to prevent the solid absorbent from stagnating in the solid down pipe. In addition, the solid absorbent transferred to the solid down pipe 36, the lower end of the solid down pipe 36 in communication with the solid absorbent inlet 342, as shown in Figure 3 to be easily supplied to the regeneration cell 32 By forming a horizontally formed L-valve can be easily supplied to the regeneration cell by the solid absorbent by the gas injected from one side. In addition, in addition to the illustrated form, a storage space may be formed at the bottom of the solid down pipe so that a predetermined amount of the solid absorbent may be stored to smoothly supply the regeneration cell.

아울러 최하층의 재생셀(32)에는 고체흡수제배출구(343)에 배출관(60)을 연 통설치하여 각 재생셀을 통과하면서 순차적으로 재생된 고체흡수제를 회수반응기(20)로 공급되게 한다. 상기 배출관(60)은 도 1a의 실시예에서 상술한 바와같이 루프실을 설치하거나 열교환기를 설치할 수 있다.In addition, the lowermost regeneration cell 32 is connected to the discharge pipe 60 in the solid absorbent discharge port (343) so as to pass through each regeneration cell to be sequentially supplied with the solid absorbent recovered to the recovery reactor (20). The discharge pipe 60 may be provided with a roof chamber or a heat exchanger as described above in the embodiment of FIG. 1A.

한편, 상기 다단유동층 열교환기 형태의 재생반응기(30)는 각 재생셀이 서로 분리된 독립객체로 형성될 수 있다.Meanwhile, the regeneration reactor 30 in the form of the multi-stage fluidized bed heat exchanger may be formed as an independent object in which each regeneration cell is separated from each other.

도 4를 참조한 바와같이 상기 재생셀(32)은 측면에 플랜지(37)가 형성되고 상하 재생셀(32)간에 체결수단에 의해 견고하게 체결하여 일체화시키고, 공급관(50)과 배출관(60)을 연통시킨 후 재생가스를 공급하여 재생반응이 이루어지도록 할 수 있다. 이와같이 각 재생셀(32)을 분리형태로 형성할 경우에는 처리량에 따라 원하는 만큼 추가장착이 용이하게 할 수 있는 장점이 있다.As shown in FIG. 4, the regeneration cell 32 has a flange 37 formed on a side thereof, and is firmly fastened and integrated between the upper and lower regeneration cells 32 by a fastening means, and the supply pipe 50 and the discharge pipe 60 are integrated. After communicating, the regeneration reaction may be performed by supplying regeneration gas. Thus, when each regeneration cell 32 is formed in a separate form, there is an advantage that the additional mounting can be easily made as desired depending on the throughput.

본 발명에 따른 다단유동층 열교환기 형태의 재생반응기(30)를 갖는 CO2 회수장치의 작동상태를 도 1a를 참조하여 간략하게 설명한다.The operating state of the CO 2 recovery apparatus having a regeneration reactor 30 in the form of a multi-stage fluidized bed heat exchanger according to the present invention will be briefly described with reference to FIG. 1A.

고체흡수제는 유동이 이루어지는 회수반응기(20)에 CO2 를 포함하는 혼합가스와 스팀을 공급하면 회수반응기에서는 고체흡수제에 CO2 가 흡수되는 반응이 이루어진다. 상기 CO2 의 흡수가 이루어진 고체흡수제는 회수반응기의 상부를 통해 사이클론(40)으로 공급되고, 상기 사이클론에서는 기체성분과 고체성분을 분리한다. 상기 분리된 고체성분인 고체흡수제는 공급관(50)을 통해 분기되어 재생반응기(30)의 각 재생셀(32)로 공급한다.When the solid absorbent is supplied with mixed gas and steam containing CO 2 to the recovery reactor 20 through which the flow is made, the recovery reaction takes place where the CO 2 is absorbed by the solid absorbent. The solid absorbent having the absorption of CO 2 is supplied to the cyclone 40 through the upper part of the recovery reactor, in which the gas component and the solid component are separated. The solid absorbent, which is the separated solid component, is branched through the supply pipe 50 and supplied to each regeneration cell 32 of the regeneration reactor 30.

상기 재생반응기(30)의 각 재생셀(32)에는 하부 도입실(33)로 재생가스를 유입시켜 분산판(35)을 통해 상부 반응실(34)로 공급되고, 공급된 재생가스는 상부반응실(34)의 고체흡수제를 가열시켜 CO2 를 분리하게 된다. 상기 각 재생셀(32)에는 적재되는 고체흡수제의 두께가 얇기 때문에 대부분 분산판(35) 가까이 위치하게 됨으로써 고온의 재생가스 공급시 전체 고체흡수제에 고르게 가열되기 때문에 CO2 분리가 전체적으로 이루어져 재생반응 시간을 단축시킬 수 있다. 또한 다수로 적층된 재생셀(32)은 외벽을 통해 인접 재생셀로의 열전달이 이루어짐으로 열손실을 최소화 할 수 있다.Each regeneration cell 32 of the regeneration reactor 30 is supplied with the regeneration gas into the lower introduction chamber 33 and supplied to the upper reaction chamber 34 through the distribution plate 35, and the supplied regeneration gas is the upper reaction. The solid absorbent in chamber 34 is heated to separate CO 2 . Since each of the regenerated cells 32 has a small thickness of the solid absorbents loaded thereon, it is located near the dispersion plate 35 so that the CO 2 separation is performed as a whole. Can be shortened. In addition, the plurality of regenerated cells 32 are stacked to transfer heat to adjacent regenerated cells through the outer wall, thereby minimizing heat loss.

상기 재생반응에 의해 분리된 CO2 와 재생가스는 재생가스배출구(341)를 통해 배출되고, 재생반응이 이루어진 고체흡수제는 고체흡수제배출구(343)를 통해 배출된다. 상기 배출된 고체흡수제를 이송하는 배출관(60)은 유로가 하나로 합류된 다음 회수반응기(20)로의 공급이 이루어지게 된다. 따라서, 고체흡수제는 회수반응기(20)와 재생반응기(30)를 연속적으로 순환하면서 반응이 이루어지는 것이다.The CO 2 and the regeneration gas separated by the regeneration reaction are discharged through the regeneration gas outlet 341, and the solid absorbent having the regeneration reaction is discharged through the solid absorbent discharge 343. The discharge pipe 60 for transporting the discharged solid absorbent is joined to one flow path and then supplied to the recovery reactor 20. Therefore, the solid absorbent reacts while continuously circulating the recovery reactor 20 and the regeneration reactor 30.

도 1a와 도 1b는 본 발명의 제1실시예에 따른 CO2 회수장치를 도시한 공정도 및 주요부 확대도.Figures 1a and 1b is an enlarged view of the process and main parts showing the CO 2 recovery apparatus according to a first embodiment of the present invention.

도 2는 본 발명의 제2실시예에 따른 재생반응기를 도시한 개략도.2 is a schematic view showing a regeneration reactor according to a second embodiment of the present invention.

도 3은 본 발명의 제3실시예에 따른 재생반응기를 도시한 개략도.Figure 3 is a schematic diagram showing a regeneration reactor according to a third embodiment of the present invention.

도 4는 본 발명의 제4실시예에 따른 재생반응기를 도시한 개략도.4 is a schematic view showing a regeneration reactor according to a fourth embodiment of the present invention.

도 5는 종래 CO2 회수장치를 도시한 공정도.Figure 5 is a process diagram showing a conventional CO 2 recovery apparatus.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : CO2 회수장치10: CO 2 recovery device

20 : 회수반응기20: recovery reactor

30 : 재생반응기30: regeneration reactor

31 : 격벽 32 : 재생셀 33 : 도입실31: bulkhead 32: regeneration cell 33: introduction chamber

34 : 반응실 35 : 분산판 36 : 고체하강관34 reaction chamber 35 dispersion plate 36 solid down pipe

37 : 플랜지37: flange

331 : 재생가스유입구 341 : 재생가스배출구331: regeneration gas inlet 341: regeneration gas outlet

342 : 고체흡수제유입구 343 : 고체흡수제배출구342: solid absorbent inlet 343: solid absorbent outlet

40 : 사이클론40: cyclone

50 : 공급관50 supply pipe

60 : 배출관60: discharge pipe

61 : 루프실 62 : 열교환기61 roof chamber 62 heat exchanger

Claims (6)

외부로부터 공급된 CO2함유가스를 고체흡수제와 접촉시켜 CO2를 선택적으로 흡수시키는 회수반응기(20)와, 상기 회수반응기의 CO2가 흡수된 고체흡수제와 기체를 분리시키는 사이클론(40)과, 상기 사이클론으로부터 고체흡수제를 공급받고 이에 고온의 재생가스를 공급하여 가열되게 하여 흡수된 CO2 를 분리하는 재생반응기(30)와, 상기 회수반응기의 고체흡수제를 재생반응기로 이송하는 공급관(50)과, 상기 재생반응기에서 재생된 고체흡수제를 회수반응기로 이송시키는 배출관(60)을 포함하는 CO2 회수장치에 있어서,A recovery reactor 20 for selectively absorbing CO 2 by contacting a CO 2 containing gas supplied from the outside with a solid absorbent, a cyclone 40 separating the solid absorber and gas absorbed by the CO 2 of the recovery reactor; A regeneration reactor 30 which receives the solid absorbent from the cyclone and supplies high temperature regeneration gas to be heated to separate the absorbed CO 2 , and a supply pipe 50 which transfers the solid absorber of the recovery reactor to the regeneration reactor; In the CO 2 recovery apparatus comprising a discharge pipe 60 for transferring the solid absorbent regenerated in the regeneration reactor to a recovery reactor, 상기 재생반응기(30)는,The regeneration reactor 30, 수직설치된 통체에 다수의 격벽(31)을 설치하여 내부공간을 다층의 재생셀(32)로 구획 형성하고, 상기 각 재생셀(32)에는 분산판(35)을 설치해 하부의 도입실(33)과 상부의 반응실(34)로 형성하고,A plurality of partition walls 31 are installed in vertically installed cylinders to form an inner space into a multi-layered regeneration cell 32, and each of the regenerated cells 32 is provided with a distribution plate 35 to form a lower introduction chamber 33. And the reaction chamber 34 at the top, 상기 각 재생셀의 하부도입실과 상부반응실에는 재생가스유입구(331)와 재생가스배출구(341)를 형성하고, In the lower introduction chamber and the upper reaction chamber of each regeneration cell, a regeneration gas inlet 331 and a regeneration gas outlet 341 are formed. 상기 각 재생셀의 상부 반응실에는 회수반응기에서 흡수반응이 이루어진 고체흡수제가 유입되는 고체흡수제유입구(342)와 고체흡수제배출구(343)가 형성되는 것을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.In the upper reaction chamber of each regeneration cell, a solid absorbent inlet 342 and a solid absorbent outlet 343 into which a solid absorbent in which the absorption reaction is made in the recovery reactor flows are formed. CO 2 recovery device having. 제1항에 있어서,The method of claim 1, 상기 재생셀(32)의 고체흡수제유입구(342)는 반응실의 저면에 연통설치되고, 고체흡수제배출구(343)는 분산판(35) 면으로부터 이격된 상부에 연통설치되도록 한 것을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.The solid absorbent inlet 342 of the regeneration cell 32 is installed in communication with the bottom of the reaction chamber, the solid absorbent outlet 343 is multistage characterized in that the communication is installed in the upper spaced apart from the surface of the distribution plate (35). CO 2 recovery apparatus having a regeneration reactor in the form of a fluidized bed heat exchanger. 제1항에 있어서,The method of claim 1, 상기 공급관(50)은 사이클론(40)에서 기체성분이 제거된 고체흡수제를 재생반응기(30)로 공급하는 부분을 다수로 분기하고, 상기 분기된 각 공급관은 다층을 형성된 각 재생셀(32)의 고체흡수제유입구(342)에 연통시켜 고체흡수제를 재생셀의 반응실(34)로 공급되고록 하고,The supply pipe 50 branches into a plurality of portions for supplying the solid absorbent from which gaseous components have been removed from the cyclone 40 to the regeneration reactor 30, and each of the branched supply pipes has a multi-layered structure of each regeneration cell 32. In communication with the solid absorbent inlet 342, the solid absorbent is supplied to the reaction chamber 34 of the regeneration cell, 상기 각 재생셀(32)에 재생된 고체흡수제는 각 고체흡수제배출구(343)에 연통된 배출관(60)으로 배출시키고, 상기 배출관(60)은 하나로 합류되어 재생된 고체흡수제를 회수반응기(20)로 공급되도록 구성된 것을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.The solid absorbents regenerated in each of the regenerated cells 32 are discharged into the discharge pipes 60 connected to each of the solid absorbents discharge ports 343, and the discharge pipes 60 are combined into one to recover the regenerated solid absorbers. CO 2 recovery apparatus having a regeneration reactor of the multi-stage fluidized bed heat exchanger type, characterized in that configured to be supplied to. 제1항에 있어서,The method of claim 1, 상기 재생반응기(30)에는 최상층의 재생셀(32)의 고체흡수제유입구(342)에는 공급관(50)을 연통설치하여 사이클론(40)에서 기체성분이 제거된 고체흡수제를 공 급받도록 하고, In the regeneration reactor 30, the solid absorbent inlet 342 of the regeneration cell 32 of the uppermost layer is connected to the supply pipe 50 so as to receive the solid absorbent from which the gas component is removed from the cyclone 40. 상기 상하 재생셀(32) 간에는 상부 재생셀의 고체흡수제배출구(343)와 하부 재생셀의 고체흡수제유입구(342)를 연통시키는 고체하강관(36)을 설치하여, 상부 재생셀의 고체흡수제를 인접한 하부 재생셀의 반응실로 공급하여 재생반응이 이루어지도록 하고,Between the upper and lower regeneration cell 32 is provided with a solid down pipe 36 for communicating the solid absorbent outlet 343 of the upper regeneration cell and the solid absorber inlet 342 of the lower regeneration cell, adjacent to the solid absorber of the upper regeneration cell Supply to the reaction chamber of the lower regeneration cell to perform the regeneration reaction, 최하층의 재생셀에는 고체흡수제배출구(343)에 배출관(60)을 연통설치하여 순차적으로 재생된 고체흡수제를 회수반응기로 공급되게 한 것을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.In the bottom regeneration cell, the discharge pipe 60 is connected to the solid absorbent outlet 343 so that the sequentially regenerated solid absorbent is supplied to the recovery reactor, thereby recovering CO 2 having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger. Device. 제4항에 있어서,The method of claim 4, wherein 상기 고체하강관(36)은 재생셀의 고체흡수제유입구(342) 부분을 L-밸브로 형성하여 고체흡수제의 유입이 용이하게 이루어지도록 한 것을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.The solid down pipe 36 is a CO having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger characterized in that the solid absorbent inlet 342 portion of the regeneration cell is formed as an L-valve to facilitate the inflow of the solid absorbent. 2 recovery unit. 제1항에 있어서,The method of claim 1, 상기 각 재생셀(32)은 서로 분리된 독립객체로 형성하고 됨을 특징으로 하는 다단유동층 열교환기 형태의 재생반응기를 갖는 CO2 회수장치.Each regeneration cell 32 is a CO 2 recovery apparatus having a regeneration reactor in the form of a multi-stage fluidized bed heat exchanger, characterized in that formed as separate objects separated from each other.
KR1020090111779A 2009-11-19 2009-11-19 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator KR101045061B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090111779A KR101045061B1 (en) 2009-11-19 2009-11-19 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090111779A KR101045061B1 (en) 2009-11-19 2009-11-19 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator

Publications (2)

Publication Number Publication Date
KR20110054948A true KR20110054948A (en) 2011-05-25
KR101045061B1 KR101045061B1 (en) 2011-06-29

Family

ID=44364051

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090111779A KR101045061B1 (en) 2009-11-19 2009-11-19 Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator

Country Status (1)

Country Link
KR (1) KR101045061B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130035637A (en) * 2011-09-30 2013-04-09 한국전력공사 Carbon deoxide capturing method to reduce energy consumption
KR101354482B1 (en) * 2012-05-23 2014-01-27 한국에너지기술연구원 Fluidized bed regeneration reactor being able to control amount of solid sorbent
WO2014051221A1 (en) 2012-09-26 2014-04-03 한국화학연구원 Carbon dioxide capturing apparatus
KR101397609B1 (en) * 2012-04-25 2014-05-27 한국에너지기술연구원 Fluidized bed regeneration reactor for a solid particle
WO2014142556A1 (en) 2013-03-13 2014-09-18 한국화학연구원 Carbon dioxide collection device
KR101435144B1 (en) * 2012-05-30 2014-11-04 현대제철 주식회사 Apparatus for collecting btx from cog
KR101460289B1 (en) * 2013-05-28 2014-11-13 한국에너지기술연구원 CO2 capturing system with drying materials
KR101586841B1 (en) * 2015-02-02 2016-01-19 대우조선해양 주식회사 Spiral tube type apparatus for diffusing regeneration gas into dehydration bed

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101866573B1 (en) * 2012-09-27 2018-06-14 한국전력공사 Carbon dioxide(CO2) capture facility and method for thereof
KR101480654B1 (en) * 2013-12-24 2015-01-13 연세대학교 산학협력단 Multiple-pipe type reactor for capturing of carbon dioxide
KR102165888B1 (en) 2019-01-25 2020-10-15 한국에너지기술연구원 Solid­Solid heat exchanger and Dry sorbent CO2 capturing device using the heat exchanger
KR102407543B1 (en) 2020-08-25 2022-06-13 한국에너지기술연구원 Regeneration Reactor with Inclinded Heater Plate and moving­bed CO2 capture system including the reactor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058374A (en) 1975-02-15 1977-11-15 Bergwerksverband Gmbh Method of regenerating particulate adsorption agents
KR100527420B1 (en) 2003-07-04 2005-11-09 한국에너지기술연구원 CO2 capturing process
KR100610337B1 (en) 2004-10-07 2006-08-10 한국에너지기술연구원 Solid transfer circulation apparatus between two reactors for dry regenerable CO2 capture processes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130035637A (en) * 2011-09-30 2013-04-09 한국전력공사 Carbon deoxide capturing method to reduce energy consumption
KR101397609B1 (en) * 2012-04-25 2014-05-27 한국에너지기술연구원 Fluidized bed regeneration reactor for a solid particle
KR101354482B1 (en) * 2012-05-23 2014-01-27 한국에너지기술연구원 Fluidized bed regeneration reactor being able to control amount of solid sorbent
KR101435144B1 (en) * 2012-05-30 2014-11-04 현대제철 주식회사 Apparatus for collecting btx from cog
WO2014051221A1 (en) 2012-09-26 2014-04-03 한국화학연구원 Carbon dioxide capturing apparatus
WO2014142556A1 (en) 2013-03-13 2014-09-18 한국화학연구원 Carbon dioxide collection device
US9694312B2 (en) 2013-03-13 2017-07-04 Korea Research Institute Of Chemical Technology Carbon dioxide capture apparatus
KR101460289B1 (en) * 2013-05-28 2014-11-13 한국에너지기술연구원 CO2 capturing system with drying materials
KR101586841B1 (en) * 2015-02-02 2016-01-19 대우조선해양 주식회사 Spiral tube type apparatus for diffusing regeneration gas into dehydration bed

Also Published As

Publication number Publication date
KR101045061B1 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
KR101045061B1 (en) Carbon Dioxide Capture Apparatus with Multi-stage Fluidized Bed Heat Exchanger Type Regenerator
EP2604326B1 (en) Device for capturing carbon dioxide using two different dry sorbents
JP4757343B2 (en) CO2 separation and recovery device including steam pretreatment machine
US8303696B2 (en) Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
KR101347551B1 (en) Dry sorbent CO2 capturing device with multistaged supplying
US8753437B2 (en) Dry carbon dioxide capturing device with improved energy efficiency
CA2795028A1 (en) Carbon dioxide gas recovery device
CN105228725A (en) Carbon dioxide separation recovery system and method
US8551232B2 (en) Dry carbon dioxide capture apparatus
JP2016521843A (en) Vent and radioactivity containment system for nuclear facilities
RU2716772C1 (en) System for extracting co2 and method of extracting co2
KR20140131341A (en) Heat exchanger, in particular for a vehicle comprising a heat engine
KR101294005B1 (en) A fluidized bed heat exchanger to produce high temperature water by recovering waste heat from flue gas
KR101069191B1 (en) Carbon dioxide Capturing Process with Transport Beds Reactor
KR101645975B1 (en) CO2 capturing device with optimizing energy consumption
CN104945211B (en) Heat extraction and catalyst circulation method in catalytic reaction for preparing hydrocarbons from methanol
KR20150021759A (en) Vertical type incorporated reactor
KR101982786B1 (en) Fluidized bed reactor
US8500888B2 (en) Regeneration tower and dry apparatus for exhaust-gas treatment
CN112439398A (en) Method and device for regenerating gas adsorption column and tail gas recovery system
KR101480056B1 (en) Closed capturing device for carbon dioxide
CN102019211B (en) Equipment and method for degassing regenerated catalyst
KR101354479B1 (en) Fluidized bed reactor being able to change gas velocity
KR20090084584A (en) Two way non-mechanical valve of co2 capture system using dry-sorbent
KR101354482B1 (en) Fluidized bed regeneration reactor being able to control amount of solid sorbent

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140609

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160610

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 10