KR20130026056A - Battery module - Google Patents

Battery module Download PDF

Info

Publication number
KR20130026056A
KR20130026056A KR1020110089411A KR20110089411A KR20130026056A KR 20130026056 A KR20130026056 A KR 20130026056A KR 1020110089411 A KR1020110089411 A KR 1020110089411A KR 20110089411 A KR20110089411 A KR 20110089411A KR 20130026056 A KR20130026056 A KR 20130026056A
Authority
KR
South Korea
Prior art keywords
lithium
battery module
battery
iron
manganese
Prior art date
Application number
KR1020110089411A
Other languages
Korean (ko)
Inventor
한-첸 첸
룬-치에 호
팡-후이 차오
Original Assignee
엑사 에너지 테크놀로지 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to TW100113112A priority Critical patent/TW201242155A/en
Priority to CN2011100952059A priority patent/CN102738497A/en
Application filed by 엑사 에너지 테크놀로지 컴퍼니 리미티드 filed Critical 엑사 에너지 테크놀로지 컴퍼니 리미티드
Priority to KR1020110089411A priority patent/KR20130026056A/en
Priority to JP2011192235A priority patent/JP2013054903A/en
Priority to EP11180981A priority patent/EP2568527A1/en
Publication of KR20130026056A publication Critical patent/KR20130026056A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: An integrated power battery module is provided to have a high electrical capacity, be lightweight and have a small volume, and have a low production cost than a single lithium-iron battery module. CONSTITUTION: An integrated power battery module comprises a lithium-iron battery module(10) and a lithium-manganese battery module(20). The battery module has one or more lithium-iron batteries which are electrically connected in series. The lithium-iron battery comprises a positive electrode and a negative electrode. The lithium-iron battery module and the lithium-manganese module are electrically connected to each other in parallel.

Description

복합식 동력전지 모듈{Battery Module}Hybrid Power Cell Module {Battery Module}

본 발명은 전지 모듈에 관한 것으로, 더욱 자세하게는 엔진에 사용되는 복합식 동력전지 모듈에 관한 것이다.The present invention relates to a battery module, and more particularly to a combined power battery module used in the engine.

아연전지는 오랫동안 자동차나 기차 등 차량에 동력전지의 표준장비로 사용되었는데, 기전력이 크고, 조작온도의 범위가 넓으며, 구조가 간단하고, 제작 기술이 발달하였으며, 가격이 저렴하다는 등의 장점이 있으나, 이와 동시에 부피가 크고, 중량이 비교적 무거워 운반이 어렵고, 전압 하강이 크고, 납이 포함되어 환경에 친화적이지 못하는 등의 단점을 가지고 있다.Zinc batteries have long been used as standard equipment for power batteries in vehicles such as cars and trains.They have a large electromotive force, a wide range of operating temperatures, a simple structure, advanced manufacturing techniques, and low prices. However, at the same time, there are disadvantages such as large volume, relatively heavy weight, difficult to transport, large voltage drop, and lead that are not environmentally friendly.

이로 인해, 일부 업자들은 방전배율이 비교적 우수하고, 전기용량이 높으며, 부피가 작고 중량이 가벼운 인산철리튬 전지(lithium iron phosphate battery)를 사용함으로써, 아연전지를 대체하여 차량의 전지 모듈로 사용하고 있는데, 인산철리튬 전지는 현재 안전성이 가장 우수한 전지로 인식되고 있다. 그러나, 인산철리튬 전지는 제작이 어렵고, 소결(sintering) 가공을 걸쳐 완성되는 완성품률이 비교적 낮으며, 제작비용이 과도하게 높아서, 인산철리튬 전지의 가격이 비싸게 되었고 이로 인해 일반 소비자들이 쉽게 선택하기 어렵다는 문제가 있다.As a result, some manufacturers use lithium iron phosphate batteries with relatively high discharge magnification, high capacitance, and small volume and light weight, thereby replacing zinc batteries as vehicle battery modules. Lithium iron phosphate batteries are currently recognized as the most stable batteries. However, lithium iron phosphate batteries are difficult to manufacture, have a relatively low finished product rate through sintering processing, and excessively high production costs, making lithium iron phosphate batteries expensive and thus easily selected by ordinary consumers. There is a problem that is difficult to do.

이에, 일부 업자들은 리튬-망간 전지로 인산철리튬 전지를 대체하고 있는데, 망간금속이 원료가 풍부하고 가격이 저렴하며, 리튬-망간 전지 역시 인산철리튬 전지에 비해 제작이 쉽기 때문에, 리튬-망간 전지의 가격은 인산철리튬 전지의 그것에 비해 많이 저렴하고, 리튬-망간 전지의 충전속도 역시 인산철리튬 전지의 그것에 비해 빠르다. 그 밖에, 리튬-망간 전지는 인산철리튬 전지와 대등하게 방전배율이 우수하고, 전기용량이 높으며, 부피가 작고 중량이 가벼운 등의 특성을 구비한다. 그러나, 리튬-망간 전지는 심도(深度) 충방전 과정에서 결정격자가 불안정하게 변하게 되고(특히 고온 하에서), 망간과 산소 사이의 분자결합이 해체되면서 산소가 방출되어 폭발할 수 있으며, 이와 동시에 비교적 높은 작업 온도 하에서 리튬-망간 결정이 서서히 용해되어 전해질 용액이 되는 문제가 생길 수 있기 때문에, 리튬-망간 전지는 각종 안전장치를 사용해서 안전성을 높여야 할 필요가 있다. Therefore, some manufacturers are replacing lithium iron phosphate batteries with lithium-manganese batteries. Manganese metal is rich in raw materials and inexpensive, and lithium-manganese batteries are also easier to manufacture than lithium iron phosphate batteries. The price of the battery is much lower than that of the lithium iron phosphate battery, and the charging speed of the lithium-manganese battery is also faster than that of the lithium iron phosphate battery. In addition, lithium-manganese batteries have characteristics such as excellent discharge magnification, high electric capacity, small volume and light weight, and the like as lithium iron phosphate batteries. However, lithium-manganese batteries may unstable in their crystal lattice during deep charge and discharge (especially at high temperatures), release oxygen and explode as the molecular bonds between manganese and oxygen are broken, and at the same time relatively Lithium-manganese batteries need to be improved in safety by using various safety devices, because lithium-manganese crystals may be gradually dissolved under high working temperatures to become an electrolyte solution.

본 발명의 주요목적은 가격이 저렴하며, 방전배율이 우수하고, 부피가 작으면서도 안전성이 우수한 복합식 동력전지 모듈을 제공하는 것이다.The main object of the present invention is to provide a composite power battery module having a low price, excellent discharge magnification, small volume and excellent safety.

전술한 목적을 달성하기 위하여, 본 고안이 제공하는 복합식 전동전지 모듈은, 리튬-철 전지(lithium-ion battery) 모듈과 리튬-망간 전지(lithium-mangan battery) 모듈을 포함하여 구성되되, 상기 리튬-철 전지 모듈은 적어도 하나 이상의 리튬-철 전지가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지는 양극과 음극을 구비한 것이고, 상기 리튬-망간 전지 모듈은 적어도 하나 이상의 리튬-망간 전지가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지는 양극과 음극을 구비한 것인데, 상기 리튬-철 전지 모듈과 상기 리튬-망간 전지 모듈은 병렬형식으로 전기적으로 연결되어 있다. In order to achieve the above object, the composite electric battery module provided by the present invention, a lithium-ion battery (lithium-ion battery) module and a lithium-mangan battery (lithium-mangan battery) module comprises a, The iron battery module has at least one lithium-iron battery electrically connected in series, the lithium iron battery having a positive electrode and a negative electrode, and the lithium manganese battery module has at least one lithium-manganese battery. Is electrically connected in series, and the lithium-iron battery has a positive electrode and a negative electrode, and the lithium-iron battery module and the lithium-manganese battery module are electrically connected in parallel.

전술한 바와 같이 본 발명의 복합식 전동전지 모듈은, 리튬-철 전지 모듈과 리튬-망간 전지 모듈을 병력적으로 연결시키는 구조를 통하여 아연 전지 모듈, 단일의 리튬-철 전지 모듈 또는 단일의 리튬-망간 전지 모듈을 대체한 것인데, 본 발명에 따른 복합식 동력전지 모듈은 방전배율이 우수하고, 전기용량이 높으며, 부피가 작고 가볍다는 등의 장점이 있을 뿐만 아니라, 동시에 단일의 리튬-철 전지 모듈에 비하여 제작비용이 적게 들고, 단일의 리튬-망간 전지 모듈에 비하여 안전성이 높은 각종 특성을 구비한다.As described above, the composite electric battery module of the present invention is a zinc battery module, a single lithium-iron battery module or a single lithium-manganese through a structure in which a lithium-iron battery module and a lithium-manganese battery module are connected in history. The replacement of the battery module, the composite power battery module according to the present invention has the advantages of excellent discharge ratio, high capacitance, small volume and light weight, and at the same time compared to a single lithium-iron battery module The manufacturing cost is low, and it has various characteristics with high safety compared with a single lithium-manganese battery module.

도 1은 본 발명에 따른 복합식 동력전지 모듈의 회로 설명도이다.1 is a circuit explanatory diagram of a hybrid power battery module according to the present invention.

본 발명의 구조적인 특징 및 이로부터 달성되는 효과를, 바람직한 실시예를 통해서 설명하자면 다음과 같다. 여기서 주의할 것은 후술하는 실시예는 단순히 본 발명의 설명을 위해 사용되는 것으로 본 발명의 보호범위를 제한하기 위해 사용되어서는 아니된다는 것이다.Structural features of the present invention and the effects achieved therefrom are described through the following preferred embodiments. It should be noted here that the embodiments described below are merely used to explain the present invention and should not be used to limit the protection scope of the present invention.

본 발명에 따른 복합식 전동전지 모듈은 종래의 차량 발전기의 엔진, 일반적인 대형설비 발전기의 엔진 또는 무정전 전원공급장치(UPS) 등에 구비되어 사용되거나 또는 새로 개발된 전동차의 엔진에 사용될 수 있다. 도 1을 참조하여 보면, 상기 복합식 전동전지 모듈은 하나의 리튬-철 전지 모듈과 하나의 리튬-망간 전지 모듈을 포함하여 구성된다. 상기 리튬-철 전지 모듈은 적어도 하나 이상의 리튬-철 전지(10)가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지(10)는 양극과 음극을 구비한다. 상기 리튬-망간 전지 모듈은 적어도 하나 이상의 리튬-망간 전지(20)가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지(20)는 양극과 음극을 구비한다. 상기 리튬-철 전지 모듈과 상기 리튬-망간 전지 모듈은 병렬형식으로 전기적으로 연결되어 있다. 도 1에 도시된 리튬-철 전지의 수량과 리튬-망간 전지의 수량은 예시적인 설명을 위한 것으로 본 발명의 보호범위가 이에 제한되지 않는다. The composite electric battery module according to the present invention may be used in an engine of a conventional vehicle generator, an engine of a general large equipment generator or an uninterruptible power supply (UPS), or may be used in an engine of a newly developed electric vehicle. Referring to FIG. 1, the hybrid electric battery module includes one lithium-iron battery module and one lithium-manganese battery module. The lithium-iron battery module has at least one lithium-iron battery 10 electrically connected in series, and the lithium-iron battery 10 includes a positive electrode and a negative electrode. The lithium-manganese battery module has at least one lithium-manganese battery 20 electrically connected in series, and the lithium-iron battery 20 includes a positive electrode and a negative electrode. The lithium iron battery module and the lithium manganese battery module are electrically connected in parallel. The quantity of lithium-iron batteries and the quantity of lithium-manganese batteries shown in FIG. 1 are for illustrative purposes only and the scope of protection of the present invention is not limited thereto.

더욱 명확하게 본 발명을 설명하자면, 상기 리튬-철 전지의 양극 재료는 리튬-철 화합물이고, 상기 리튬-철 화합물은 바람직스럽게는 인산철리튬이다. 상기 리튬-망간 전지의 양극 재료는 리튬-망간 화합물이고, 상기 리튬-망간 전지의 음극 재료는 리튬 티탄 산화물(LITHIUM TITANIUM OXIDE) 또는 흑연이다. 여기서 리튬 티탄 산화물이 보다 바람직스럽고, 전술한 흑연은 천연흑연 또는 인공흑연이 모두 가능하다.To more clearly describe the present invention, the positive electrode material of the lithium-iron battery is a lithium-iron compound, and the lithium-iron compound is preferably lithium iron phosphate. The positive electrode material of the lithium-manganese battery is a lithium-manganese compound, and the negative electrode material of the lithium-manganese battery is lithium titanium oxide (LITHIUM TITANIUM OXIDE) or graphite. Lithium titanium oxide is more preferable here, and the above-mentioned graphite can be natural graphite or artificial graphite.

더욱 자세하게 본 발명을 설명하자면, 본 발명의 복합식 전동전지 모듈은 리튬-철 전지 모듈과 리튬-망간 전지 모듈을 병력적으로 연결시키는 구조를 통하여 아연 전지 모듈을 대체한 것인데, 본 발명에 따른 복합식 동력전지 모듈은 방전배율이 우수하고, 전기용량이 높으며, 부피가 작고 가벼운 등의 장점이 있을 뿐만 아니라, 동시에 본 발명의 복합식 동력전지 모듈은 효능 면에서 아연 전지 모듈보다 많은 우수한 점을 구비한다.To describe the present invention in more detail, the composite electric battery module of the present invention is to replace the zinc battery module through a structure that connects the lithium-iron battery module and the lithium-manganese battery module, the combined power according to the present invention The battery module has the advantages of excellent discharge ratio, high capacitance, small volume and light, etc., and at the same time, the composite power battery module of the present invention has many advantages in terms of efficacy compared to the zinc battery module.

단일의 리튬-철 전지 모듈이 아연 전지 모듈을 대체할 경우 우수한 안전성을 구비할 수는 있지만, 상기 리튬-철 전지의 제작은 쉽지 않고, 상대적으로 제작비용이 많이 들어가게 된다. 또한 단일의 리튬-망간 전지 모듈이 아연 전지 모듈을 대체한 경우라면, 제작비용이 리튬-철 전지에 비해 상대적으로 저렴하면서도 리튬-철 전지의 각 특성을 구비하고, 리튬-철 전지의 빠른 방전 특성을 능가할 수 있지만, 안전성이 리튬-철 전지에 비해 훨씬 떨어지게 된다. 이러한 사항을 참조하여, 본 발명에 따른 복합식 전동전지 모듈은 절충의 방식을 채택하고 있는데, 리튬-철 전지 모듈과 리튬-망간 전지 모듈을 병력적으로 연결시키는 구조를 통하여 아연 전지 모듈, 단일의 리튬-철 전지 모듈 또는 단일의 리튬-망간 전지 모듈을 대체함으로써, 본 발명의 복합식 동력전지 모듈은 방전배율이 우수하고, 전기용량이 높으며, 부피가 작고 중량이 가벼운 등의 장점이 있을 뿐만 아니라, 이와 동시에 단일의 리튬-철 전지 모듈에 비하여 제작비용이 적게 들고, 단일의 리튬-망간 전지 모듈에 비하여 안전성이 높은 각종 특성을 구비한다. 그 밖에, 일반 소비자들이 동력전기 모듈을 구매하고자 할 때 대부분은 성능이 우수하고, 안전성이 확보되며 가격이 저렴한 상품을 선호하는데, 본 발명의 복합식 동력전지 모듈은 전술한 각종 항목의 장점을 모두 구비함으로써, 동력전지 시장에서 막강한 경쟁력을 구비할 것이다.Although a single lithium-iron battery module may have excellent safety when replacing the zinc battery module, the fabrication of the lithium-iron battery is not easy and relatively expensive manufacturing costs. In addition, if a single lithium-manganese battery module replaces the zinc battery module, the manufacturing cost is relatively inexpensive compared to the lithium-iron battery, but has each characteristic of the lithium-iron battery, and the fast discharge characteristics of the lithium-iron battery It can outperform, but the safety is much lower than lithium-iron battery. With reference to these matters, the hybrid electric battery module according to the present invention adopts a compromise method. A zinc battery module and a single lithium battery are connected through a structure in which a lithium iron battery module and a lithium manganese battery module are connected in parallel. By replacing the iron battery module or a single lithium-manganese battery module, the composite power battery module of the present invention has the advantages of excellent discharge ratio, high electric capacity, small volume and light weight, and the like. At the same time, the manufacturing cost is lower than that of a single lithium-iron battery module, and various safety features are higher than that of a single lithium-manganese battery module. In addition, when a general consumer wants to purchase a power electric module, most of them prefer a product having excellent performance, safety, and low cost. The hybrid power battery module of the present invention has all the advantages of the aforementioned items. By doing so, it will have a strong competitiveness in the power battery market.

또한, 일반적으로 동력전지 모듈이 결합된 전자제품은 모두 일정한 전압을 갖게 되는데, 아연 전지는 그 전압 하강이 커서, 종종 동력전지 모듈로 인해 전자제품의 전압 부족 현상이 발생하게 된다. 따라서, 본 발명에 따른 복합식 동력전지 모듈 중 리튬-망간 전지 모듈이 음극 재료로 리튬 티탄 산화물을 사용할 경우, 상기 리튬-망간 전지 모듈의 전압 하강폭이 작게 되고, 이에 따라 전자제품의 전압 부족 현상이 발생하지 않게 된다. 이와 같이 본 발명의 복합식 동력전지 모듈은 아연전지 모듈의 전압 하강으로 인한 문제점을 개선하였다.Also, in general, all electronic products in which a power battery module is combined have a constant voltage, and zinc batteries have a large voltage drop, and often a power shortage of the electronic product occurs due to the power battery module. Therefore, when the lithium-manganese battery module of the composite power battery module according to the present invention uses lithium titanium oxide as a negative electrode material, the voltage drop width of the lithium-manganese battery module is reduced, and thus the voltage shortage phenomenon of the electronic product is reduced. It does not occur. As described above, the hybrid power battery module of the present invention improves the problems caused by the voltage drop of the zinc battery module.

10 : 리튬-철 전지 20 : 리튬-망간 전지10: lithium-iron battery 20: lithium-manganese battery

Claims (6)

리튬-철 전지(lithium-ion battery) 모듈과 리튬-망간 전지(lithium-mangan battery) 모듈을 포함하여 구성되되,
상기 리튬-철 전지 모듈은 적어도 하나 이상의 리튬-철 전지가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지는 양극과 음극을 구비한 것이고, 상기 리튬-망간 전지 모듈은 적어도 하나 이상의 리튬-망간 전지가 직렬형식으로 전기적으로 연결되어 있으며, 상기 리튬-철 전지는 양극과 음극을 구비한 것이고,
상기 리튬-철 전지 모듈과 상기 리튬-망간 전지 모듈은 병렬형식으로 전기적으로 연결된 것을 특징으로 하는, 복합식 동력전지 모듈.
Lithium-ion battery module and lithium-mangan battery (lithium-mangan battery) module comprises a,
The lithium-iron battery module has at least one lithium-iron battery electrically connected in series, the lithium-iron battery has a positive electrode and a negative electrode, and the lithium-manganese battery module has at least one lithium- Manganese cells are electrically connected in series, and the lithium-iron battery has a positive electrode and a negative electrode,
The lithium-iron battery module and the lithium-manganese battery module is characterized in that the electrically connected in parallel form, a hybrid power battery module.
청구항 1에 있어서, 상기 리튬-망간 전지의 음극 재료는 리튬 티탄 산화물(LITHIUM TITANIUM OXIDE)인, 복합식 동력전지 모듈.The composite power cell module as set forth in claim 1, wherein the negative electrode material of the lithium-manganese battery is lithium titanium oxide (LITHIUM TITANIUM OXIDE). 청구항 1에 있어서, 상기 리튬-망간 전지의 음극 재료는 흑연인, 복합식 동력전지 모듈. The composite power cell module as set forth in claim 1, wherein the negative electrode material of the lithium-manganese battery is graphite. 청구항 3에 있어서, 상기 음극 재료인 흑연은 천연흑연인, 복합식 동력전지 모듈. The composite power cell module as set forth in claim 3, wherein graphite, which is the negative electrode material, is natural graphite. 청구항 3에 있어서, 상기 음극 재료인 흑연은 인공흑연인, 복합식 동력전지 모듈. The composite power battery module according to claim 3, wherein the negative electrode graphite is artificial graphite. 청구항 1 내지 청구항 5 중 어느 하나의 항에 있어서, 상기 리튬-철 전지의 양극 재료는 인산철리튬인, 복합식 동력전지 모듈. The composite power battery module according to any one of claims 1 to 5, wherein the positive electrode material of the lithium iron battery is lithium iron phosphate.
KR1020110089411A 2011-04-15 2011-09-05 Battery module KR20130026056A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW100113112A TW201242155A (en) 2011-04-15 2011-04-15 Combined cell module
CN2011100952059A CN102738497A (en) 2011-04-15 2011-04-15 Combined power battery module
KR1020110089411A KR20130026056A (en) 2011-04-15 2011-09-05 Battery module
JP2011192235A JP2013054903A (en) 2011-04-15 2011-09-05 Composite power battery module
EP11180981A EP2568527A1 (en) 2011-04-15 2011-09-12 Hybrid battery module

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
TW100113112A TW201242155A (en) 2011-04-15 2011-04-15 Combined cell module
CN2011100952059A CN102738497A (en) 2011-04-15 2011-04-15 Combined power battery module
KR1020110089411A KR20130026056A (en) 2011-04-15 2011-09-05 Battery module
JP2011192235A JP2013054903A (en) 2011-04-15 2011-09-05 Composite power battery module
EP11180981A EP2568527A1 (en) 2011-04-15 2011-09-12 Hybrid battery module

Publications (1)

Publication Number Publication Date
KR20130026056A true KR20130026056A (en) 2013-03-13

Family

ID=70460513

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110089411A KR20130026056A (en) 2011-04-15 2011-09-05 Battery module

Country Status (5)

Country Link
EP (1) EP2568527A1 (en)
JP (1) JP2013054903A (en)
KR (1) KR20130026056A (en)
CN (1) CN102738497A (en)
TW (1) TW201242155A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6066255B2 (en) * 2011-09-30 2017-01-25 株式会社Gsユアサ Electricity storage element
KR101787796B1 (en) 2013-05-03 2017-10-18 삼성전자주식회사 Wireless power transmitter, wireless power receiver and method for controlling each thereof
CN117461186A (en) * 2022-01-04 2024-01-26 宁德时代新能源科技股份有限公司 Hybrid serial battery module, battery pack and electricity utilization device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082147B2 (en) * 2002-09-19 2008-04-30 日産自動車株式会社 Assembled battery
JP5217076B2 (en) * 2005-02-04 2013-06-19 Tdk株式会社 Lithium ion battery
JP5085235B2 (en) * 2006-09-15 2012-11-28 株式会社東芝 Power supply system and electric vehicle
US8381849B2 (en) * 2007-03-30 2013-02-26 The Regents Of The University Of Michigan Vehicle hybrid energy system
CN101743675B (en) * 2007-03-30 2014-07-09 密执安州立大学董事会 Vehicle hybrid energy system

Also Published As

Publication number Publication date
CN102738497A (en) 2012-10-17
EP2568527A1 (en) 2013-03-13
TW201242155A (en) 2012-10-16
JP2013054903A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
Cericola et al. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits
Zhao et al. Engineering of sodium-ion batteries: Opportunities and challenges
CN106848259A (en) A kind of continuous conduction original position C/Ag, Zr/ZrF4Compound zirconium fluoride anode material for lithium-ion batteries and preparation method thereof
Stenzel et al. Database development and evaluation for techno-economic assessments of electrochemical energy storage systems
CN101114723A (en) Charging battery pack for electric vehicle and method of production
CN104891570A (en) Liquid phase synthetic Zr<4+> doped bismuth fluoride lithium-ion battery positive electrode material and preparation method thereof
CN108140868A (en) Accumulator group
CN101958416A (en) Method for improving low-temperature performance of lithium iron phosphate anodic material for lithium batteries and lithium batteries
CN105428642A (en) Method for producing energy storage lithium ion battery by using lithium-rich manganese cathode material
CN104795538B (en) A kind of oxygen-containing fluorination bismuth anode material for lithium-ion batteries of synthesis in solid state and preparation method thereof
KR20220138006A (en) Electrochemical and electronic devices
KR20130026056A (en) Battery module
CN104150542B (en) A Cu2+, co2+, ag+doped iron fluoride composite anode material and its preparation method
CN104176785B (en) A kind of Cu2+,Co2+,Ce4+,Ag+Doping ferric flouride composite positive pole and preparation method
CN103187583B (en) Hybrid battery power supply system with self-regulation capability and manufacturing method thereof
CN104157836A (en) Cu<2+>, Co<2+>, Zr<4+> and Ag+ doped ferric fluoride composite anode material and preparation method
CN201804941U (en) Part capable of repeatedly charging and discharging lithium battery
JPWO2018135668A1 (en) Lithium-ion battery pack
CN104150543B (en) A kind of Cu 2+, Ce 4+, Ag +doping ferric fluoride composite positive pole and preparation method
CN103500830B (en) A kind of nitrogen doped silicon carbide assisted Solid-state one-step method ferric flouride lithium electricity positive electrode and preparation method
Turgunboev et al. Energy Storage Systems in Electric Vehicles
Kumar et al. Battery-supercapacitor hybrid systems: An introduction
Rachid et al. Battery technologies
CN104882602B (en) A kind of synthesis in solid state Al3+,Cu2+Adulterate cubic structure fluorination bismuth anode material for lithium-ion batteries and preparation method thereof
Abraham et al. Energy storage devices: batteries and supercapacitors

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination