KR20130022275A - Visible ray reaction type photocatalyst and preparation method thereof - Google Patents

Visible ray reaction type photocatalyst and preparation method thereof Download PDF

Info

Publication number
KR20130022275A
KR20130022275A KR1020110085302A KR20110085302A KR20130022275A KR 20130022275 A KR20130022275 A KR 20130022275A KR 1020110085302 A KR1020110085302 A KR 1020110085302A KR 20110085302 A KR20110085302 A KR 20110085302A KR 20130022275 A KR20130022275 A KR 20130022275A
Authority
KR
South Korea
Prior art keywords
titanium
titanium dioxide
indium
vanadium
photocatalyst
Prior art date
Application number
KR1020110085302A
Other languages
Korean (ko)
Other versions
KR101326314B1 (en
Inventor
김태오
조은희
Original Assignee
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금오공과대학교 산학협력단 filed Critical 금오공과대학교 산학협력단
Priority to KR1020110085302A priority Critical patent/KR101326314B1/en
Publication of KR20130022275A publication Critical patent/KR20130022275A/en
Application granted granted Critical
Publication of KR101326314B1 publication Critical patent/KR101326314B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A visible light sensitive titanium dioxide photocatalyst and a manufacturing method thereof are provided to be sensitive to visible rays, and to have a small and regular particle size by containing indium and vanadium. CONSTITUTION: A visible light sensitive titanium dioxide photocatalyst includes indium and vanadium. The combination ratio of titanium, indium, and vanadium is 10-60 parts by weight:1-3 parts by weight:0.5-1.5 parts by weight. A manufacturing method of the visible light sensitive titanium dioxide photocatalyst comprises the following steps: Indium and vanadium are mixed to manufacture an aqueous solution. Titanium and polyethylene glycol are mixed to manufacture a mixed solution. The aqueous solution and the mixed solution are mixed to obtain a reacting solution. Titanium in the reacting solution is oxidized through a thermal process to obtain titanium dioxide. [Reference numerals] (AA) TTIP(0.1M) isopropyl alcohol; (BB) Stirring for 60 minutes; (CC) Poly(ethylene glycol) 20,000(0.01M); (DD) Stirring for 30 minutes; (EE) NH_4VO_3(0.05M), InCl_3(0.01M), and distilled water; (FF) Stirring at 150°C for 4 hours; (GG) Mixing for 60 minutes; (HH) Injecting into an electric furnace; (II) Calcining at 500°C for 4 hours; (JJ) Poly(ethylene glycol)/InVO_4-TiO_2 powder

Description

가시광 감응형 이산화티탄 광촉매 및 그 제조방법{Visible ray reaction type photocatalyst and preparation method thereof}Visible ray reaction type photocatalyst and preparation method

본 발명은 이산화티탄을 포함하는 광촉매의 제조방법, 특히 가시광 감응형 InVO4 이산화티탄 광촉매 및 그 제조방법에 관한 것이다.
The present invention relates to a method for producing a photocatalyst comprising titanium dioxide, in particular a visible light-sensitive InVO4 titanium dioxide photocatalyst and a method for producing the photocatalyst.

고활성 환경소재를 이용한 유해물질의 흡착/광화학반응에 의한 유해물질을 분해시키는 기술의 연구가 계속적으로 진행되고 있다. 이중 광촉매를 이용하여 산업화로 인해 발생되는 난분해성 유해물질을 분해 또는 정화하는 연구가 활발하게 진행되고 있고, 그 적용범위도 급속히 확대되고 있다. 그리고 이러한 광촉매로서 주로 상업용 이산화티탄(TiO2)이 사용된다. 그리하여 이러한 이산화티탄(TiO2)은 오폐수 또는 난분해성 유기물을 포함한 폐수의 수질정화, 배기가스 및 실내 공기정화, 조명기구, 위생도기, 페인트 등의 항균제 및 악취제거제로 사용되며, 또한 도료, 잉크, 제지, 법랑 및 도자기 안료, 산화티탄자기, 글라스(glass), 시멘트, 용접봉, 티탄연와 등에 널리 사용되어 왔다. 또한 이에 그치지 않고 최근에는 고기능성 전자세라믹스 재료로서 MLCC, 콘덴서, 압전체, 써미스터, 센서, 광촉매 등에 사용되고 있다. 이러한 이산화티탄은 화학적으로 안정하고, 인체에 무해하며 값이 저렴하기 때문에 많이 활용되고 있는 것이다.Research on the technology of decomposing harmful substances by adsorption / photochemical reaction of harmful substances using highly active environmental materials is continuously conducted. The research is being actively conducted to decompose or purify the hardly decomposable harmful substances caused by industrialization by using a photocatalyst, and its application range is rapidly expanding. And as such a photocatalyst, commercial titanium dioxide (TiO2) is mainly used. Thus, such titanium dioxide (TiO2) is used as an antibacterial and odor removing agent for water purification of wastewater including wastewater or hardly decomposable organic matter, exhaust gas and indoor air purification, lighting equipment, sanitary ware, paint, etc. It has been widely used in ceramic, ceramic and porcelain pigments, titanium oxide magnetic glass, glass, cement, welding rod, titanium lead and so on. In addition, the present invention is not only limited to this, but also recently, it is used as an MLCC, a capacitor, a piezoelectric material, a thermistor, a sensor, a photocatalyst, and the like as a highly functional electronic ceramic material. Such titanium dioxide is widely used because it is chemically stable, harmless to the human body, and inexpensive.

구체적으로 살펴보면, 이산화티탄(TiO2)은 티타늄을 공기 중에 노출시키면 쉽게 산소와 반응하여 산화되어, 피막형태의 이산화티탄이 형성되게 된다. 이러한 이산화티탄의 성질은 광촉매로 쓰이기에는 더없이 좋은 조건을 보유하고 있다. 즉, 빛을 흡수하여 다른 물질들은 산화시키는 산화력이 매우 크며, 음폐력이 커서 산이나 염기 혹은 수용액 등 거의 모든 용매에 녹지 않는다. 또한 생물학적인 반응을 하지 않아 환경 및 인체에 무해하다. 특히 매우 안정한 물질이다. Specifically, when titanium dioxide (TiO 2) is exposed to air, titanium dioxide (TiO 2) is easily reacted with oxygen and oxidized to form titanium dioxide in a coating form. This property of titanium dioxide has a very good condition to be used as a photocatalyst. In other words, it absorbs light and oxidizes other substances, and the oxidizing power is very large. It is also harmless to the environment and human body because it does not react biologically. It is a particularly stable substance.

다만, 이러한 광촉매로 널리 쓰이는 이산화티탄의 띠간격은 3.0~3.2 eV이므로 이 띠간격을 극복하기 위해서는 388nm보다 짧은 자외선(u.v: ultraviolet wave)영역의 빛이 필요하다. 그러나 태양광선은 대부분 가시광선(visible light) 영역이며 자외선 영역은 5%미만에 불과하다. 따라서 태양에너지를 효과적으로 이용하기 위해서는 태양광선의 대부분을 차지하는 가시광선 영역의 빛을 흡수할 수 있어야 하는데, 이산화티탄은 이러한 가시광선 영역의 빛에 대하여는 반응하지 않는 문제점을 가지고 있다. However, since the band gap of titanium dioxide, which is widely used as such a photocatalyst, is 3.0-3.2 eV, ultraviolet (u.v) light region shorter than 388 nm is required to overcome this band gap. However, the sunlight is mostly visible light and the ultraviolet region is less than 5%. Therefore, in order to effectively utilize the solar energy, it is necessary to absorb light in the visible ray region occupying most of the sun ray, and titanium dioxide has a problem that it does not react to light in the visible ray region.

따라서, 이산화티탄 광촉매가 가시광선 영역의 빛을 흡수할 수 있게 하려는 시도가 이루어지고 있다. 그리하여 각종 물질을 도핑시켜 가시광선 영역에서도 빛에 감응하는 광촉매를 제조하기 위한 연구가 활발하나, 이러한 경우 입자 크기가 불규칙해지는 문제점이 있다.Thus, attempts have been made to allow titanium dioxide photocatalyst to absorb light in the visible light range. Thus, research for producing a photocatalyst which is sensitive to light even in a visible light region by doping various materials is actively performed, but in this case, the particle size becomes irregular.

또한 고상 이산화티탄 광촉매는 루타일(rutile), 아나타제(anatase), 브루카이트Solid titanium dioxide photocatalysts also include rutile, anatase, and brookite

(brookite) 등 3개의 결정 구조를 갖는데, 광촉매 특성은 아나타제상을 많이 포함할수록, 또 사용 조건에서 루타일상으로의 전이가 적을수록 유리한 것으로 알려져 있다. 이러한 아나타제상에서 루타일상으로의 전이는 열처리 과정에서 600℃에 이르게 되면 이뤄지게 된다. 그러므로 열처리 과정에서 아나타제상에서 루타일상으로 전이가 따르는 문제점이 있다.
It has three crystal structures, such as (brookite), and it is known that photocatalytic properties are advantageous as the anatase phase is contained more and the transition to the rutile phase is less in use conditions. This transition from the anatase phase to the rutile phase is achieved when the temperature reaches 600 ° C in the heat treatment process. Therefore, there is a problem that the transition from the anatase phase to the rutile phase in the heat treatment process.

상기와 같은 종래기술의 문제점을 해결하기 위하여 본 발명은 가시광선에도 감응하는 금속화합물 도핑 이산화티탄 광촉매의 제조방법을 제공하고자 한다. 또한 In order to solve the problems of the prior art as described above, the present invention is to provide a method for producing a metal compound-doped titanium dioxide photocatalyst that is also sensitive to visible light. Also

일반적인 이산화티탄 광촉매보다 자외선에서도 그 활성이 우수한 이산화티탄 광촉매를 제공하고자 한다. 또한 가시광선에 감응하면서도 동시에 입자 크기가 작고 고른 가시광 감응형 이산화티탄 광촉매 및 그 제조방법을 제공하고자 한다. 또한 열적 안정성이 우수한 가시광 감응형 이산화티탄 광촉매 및 그 제조방법을 제공하고자 한다.
It is intended to provide a titanium dioxide photocatalyst having excellent activity even in ultraviolet light than a general titanium dioxide photocatalyst. The present invention also provides a visible light sensitive titanium dioxide photocatalyst and a method for producing the same, which are sensitive to visible light and have a small particle size. In addition, to provide a visible light sensitive titanium dioxide photocatalyst having excellent thermal stability and a method of manufacturing the same.

위와 같은 과제를 해결하기 위한 본 발명의 한 특징에 따른 이산화티탄 광촉매는 인듐 및 바나듐을 포함한다. 또한 상기 티타늄, 인듐 및 바나듐의 배합비는 10~60중량부:1~3중량부:0.5~1.5중량부인 것을 특징으로 한다.Titanium dioxide photocatalyst according to one feature of the present invention for solving the above problems includes indium and vanadium. In addition, the compounding ratio of the titanium, indium and vanadium is characterized in that 10 to 60 parts by weight: 1 to 3 parts by weight: 0.5 to 1.5 parts by weight.

본 발명의 또 다른 특징에 따른 이산화티탄 광촉매의 제조방법은 인듐과 바나듐을 혼합하여 수용액을 제조하는 단계와 티타늄과 폴리에틸렌글리콜을 혼합하여 혼합용액을 제조하는 단계와 상기 수용액과 상기 혼합용액을 혼합하여 반응 용액을 수득하는 단계와 상기 반응용액 내 상기 티타늄을 열처리를 통해 산화시켜 이산화티탄을 수득하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of preparing a titanium dioxide photocatalyst by mixing indium and vanadium to prepare an aqueous solution, mixing titanium and polyethylene glycol to prepare a mixed solution, and mixing the aqueous solution and the mixed solution. Obtaining a reaction solution and oxidizing the titanium in the reaction solution through heat treatment to obtain titanium dioxide.

또한 상기 인듐은 인듐트리클로라이드(Indium trichloride) 또는 인듐(Ⅲ) 옥사이드(Indium(Ⅲ) oxide)인 것을 포함한다.Indium may also include indium trichloride or indium (III) oxide.

또한 상기 바나듐은 암모늄메타바나데이트(Ammonium metavanadate), 바나듐 디아세틸아세톤 (Vanadium diacethylacetone) 또는 바나듐(Ⅴ) 옥사이드 (Vanadium(Ⅴ) oxide)로 이루어지는 군 중에서 하나 또는 둘 이상이 선택되어 사용되는 것을 포함한다.In addition, the vanadium includes one or two or more selected from the group consisting of ammonium metavanadate, vanadium diacethylacetone or vanadium (V) oxide. .

또한 상기 티타늄은 티타늄 이소프로폭사이드(TTIP, Titanium(Ⅳ) isopropoxide), 티타늄설페이트 (Titanylsulfate), 티타늄 테트라부톡사이드 (Titanium tetrabutoxide )로 이루어지는 군 중에서 하나 또는 둘 이상이 선택되어 사용되는 것을 포함한다.In addition, the titanium includes one or more selected from the group consisting of titanium isopropoxide (TTIP, Titanium (IV) isopropoxide), titanium sulfate (Titanylsulfate), titanium tetrabutoxide (Titanium tetrabutoxide).

또한 상기 티타늄은 동일한 부피에서 몰(M)농도를 기준으로 하여 0.05몰(M )내지 0.2몰(M)로 혼합되며, 상기 폴리에틸렌글리콜은 0.0025몰(M) 내지 0.01몰(M)에서 수득한 후 혼합되는 것을 특징으로 한다.In addition, the titanium is mixed in the same volume of 0.05 mol (M) to 0.2 mol (M) based on the molar (M) concentration, the polyethylene glycol is obtained from 0.0025 mol (M) to 0.01 mol (M) after It is characterized by being mixed.

또한 상기 열처리의 온도는 5℃/min의 속도로 500℃ 내지 600℃까지 상승시키는 것을 특징으로 한다.In addition, the temperature of the heat treatment is characterized in that to increase to 500 ℃ to 600 ℃ at a rate of 5 ℃ / min.

또한 상기 산화에 걸리는 시간은 상기 제 5항에 따른 열처리 온도까지 온도를 상승시킨 후 2시간 내지 4시간 동안 유지하는 것을 특징으로 한다.In addition, the time taken for the oxidation is characterized in that it is maintained for 2 to 4 hours after the temperature is raised to the heat treatment temperature according to claim 5.

또한 상기 인듐과 바나듐은 동일한 부피에서 몰농도를 기준으로 하여 1몰(M) 내지 3몰(M):0.5몰(M) 내지 1.5몰(M)에서 수득한 후 혼합되는 것을 특징으로 한다.
In addition, the indium and vanadium are characterized in that the mixture is obtained from 1 mol (M) to 3 mol (M): 0.5 mol (M) to 1.5 mol (M) based on the molar concentration in the same volume.

본 발명의 가시광 감응형 InVO4-이산화티탄 광촉매의 제조방법에 따라 광촉매를 제조하게 되면 가시광선에서도 감응하는 이산화티탄 광촉매를 제공하게 된다. 또한 자외선 영역에서도 일반적인 이산화티탄 광촉매에 비해 광분해율이 두 배 이상 향상된 InVO4-이산화티탄 광촉매가 제조된다. 또한 본 발명에 따른 이산화티탄 광촉매는 가시광선에 감응함과 동시에 입자 크기가 작고 고른 가시광 감응형 InVO4-이산화티탄 광촉매를 제공하게 된다. 마지막으로 본 발명의 이산화티탄 광촉매는 열적 안정성이 우수한 이산화티탄 광촉매를 제공할 수 있다.
When the photocatalyst is prepared according to the method for preparing the visible light-sensitive InVO4-titanium dioxide photocatalyst of the present invention, it provides a titanium dioxide photocatalyst that is also sensitive to visible light. In addition, in the ultraviolet region, an InVO4-titanium dioxide photocatalyst having a photodegradation rate more than twice that of a conventional titanium dioxide photocatalyst is prepared. In addition, the titanium dioxide photocatalyst according to the present invention provides a visible light-sensitized InVO4-titanium dioxide photocatalyst having a small particle size and an even response to visible light. Finally, the titanium dioxide photocatalyst of the present invention can provide a titanium dioxide photocatalyst having excellent thermal stability.

도 1은 본 발명에 따른 단계별 공정을 나타낸 그림이다.
도 2는 본 발명에 따라 폴리에틸렌글리콜의 첨가량 및 첨가 유무에 따른 이산화티탄 광촉매의 결정성을 나타낸 사진이다.
도 3은 X선 회절 분석기로 측정한 루타일상에서 아나타제상으로의 전이율을 보여주는 그래프이다.
도 4는 분광광도계를 사용하여 파장영역에 따른 반응 및 흡광도를 측정한 그래프이다.
도 5는 메틸렌블루를 사용하여 자외선 및 가시광선에서 어느 정도 반응하는지를 측정한 그래프이다.
1 is a diagram showing a step-by-step process according to the present invention.
2 is a photograph showing the crystallinity of the titanium dioxide photocatalyst according to the amount and the presence of polyethylene glycol in accordance with the present invention.
3 is a graph showing the transfer rate from the rutile phase to the anatase phase measured by an X-ray diffraction analyzer.
Figure 4 is a graph measuring the reaction and absorbance according to the wavelength region using a spectrophotometer.
Figure 5 is a graph measuring how much the reaction in ultraviolet and visible light using methylene blue.

이에 본 발명자들은 상기 종래기술들의 문제점을 극복하기 위하여 예의 연구 노력한 결과, 티타늄과 폴리에틸렌글리콜 혼합용액에 인듐(Indium, In) 전구물질과 바나듐(Vanadium, V) 전구물질을 혼합한 수용액을 혼합하여 이산화티탄광촉매를 제조하게 되면 가시광선에 감응할 뿐만 아니라 자외선에서도 그 효율이 우수하고, 또한 입자 크기가 작고 고르며, 열적 안정성이 우수한 이산화티탄 광촉매가 제조됨을 확인하였다.
Accordingly, the present inventors have diligently researched to overcome the problems of the prior arts, and as a result, a mixture of titanium and polyethylene glycol mixed solution with an indium (In) precursor and a vanadium (Vanadium, V) precursor is mixed with a dioxide solution. When the titanium photocatalyst was prepared, it was confirmed that a titanium dioxide photocatalyst was prepared that not only responds to visible light but also has excellent efficiency in ultraviolet light, and has a small and even particle size and excellent thermal stability.

즉, 본 발명은 증류수를 용매로 하여 인듐 전구물질과 바나듐 전구물질을 혼합한 수용액을 제조하고, 별도로 이소프로필알코올을 용매로 하여 티타늄과 폴리에틸렌글리콜을 혼합한 혼합용액을 만든다. 그리고 상기 티타늄과 폴리에틸렌글리콜을 혼합한 혼합용액에 인듐 전구물질과 바나듐 전구물질을 혼합한 수용액을 투입한다. 그리고 이러한 혼합용액의 일정량을 전기로에 투입한다. 그리고 여기에 산소를 투입한 후 서서히 온도를 증가시키며 열처리하여 산화시키는 방법으로 본 발명 목적의 가시광 감응형 광촉매를 제조하게 된다. That is, the present invention prepares an aqueous solution in which an indium precursor and a vanadium precursor are mixed using distilled water as a solvent, and separately prepares a mixed solution of titanium and polyethylene glycol using isopropyl alcohol as a solvent. Then, an aqueous solution of indium precursor and vanadium precursor is added to the mixed solution of titanium and polyethylene glycol. And a certain amount of such a mixed solution is put into an electric furnace. Then, after adding oxygen to the method, the visible light-sensitive photocatalyst of the present invention is manufactured by oxidizing by gradually increasing the temperature and heat treatment.

이때, 상기 인듐 전구물질은 인듐트리클로라이드(Indium trichloride) 또는 인듐(Ⅲ) 옥사이드(Indium(Ⅲ) oxide) 인 것이 바람직하며, 상기 바나듐 전구물질은 암모늄메타바나데이트(Ammonium metavanadate), 바나듐 디아세틸아세톤 (Vanadium diacethylacetone) 또는 바나듐(Ⅴ) 옥사이드 (Vanadium(Ⅴ) oxide)로 이루어지는 군 중에서 하나 또는 둘 이상을 선택하여 사용하는 것이 바람직하다. 또한 상기 티타늄은 티타늄 이소프로폭사이드(TTIP, Titanium(Ⅳ) isopropoxide), 티타늄설페이트 (Titanylsulfate), 티타늄 테트라부톡사이드 (Titanium tetrabutoxide )로 이루어지는 군 중에서 하나 또는 둘 이상을 선택하여 사용하는 것이 바람직하다. 그리고 상기 인듐과 바나듐의 농도 비율은 각각의 동일한 부피의 몰(M)농도를 기준으로 하여 바람직하게는 1M~3M:0.5M~1.5M의 농도 비율의 용액에서 수득한 후 혼합하며, 바람직하게는 분말의 형태로 수득하는 것을 포함한다. 상기 인듐 및 바나듐이 이산화티탄 광촉매에 코팅됨으로 인해 빛의 흡광도 및 열적 안정성을 증가시키게 된다. In this case, the indium precursor is preferably indium trichloride or indium (III) oxide, and the vanadium precursor is ammonium metavanadate or vanadium diacetylacetone. (Vanadium diacethylacetone) or vanadium (V) oxide (Vanadium (V) oxide) It is preferable to use one or two or more selected from the group consisting of. In addition, the titanium is preferably used one or more selected from the group consisting of titanium isopropoxide (TTIP, Titanium (IV) isopropoxide), titanium sulfate (Titanylsulfate), titanium tetrabutoxide (Titanium tetrabutoxide). And the concentration ratio of the indium and vanadium is preferably obtained after mixing in a solution of the concentration ratio of 1M ~ 3M: 0.5M ~ 1.5M based on the same mol (M) concentration of each, preferably mixed To obtain in the form of a powder. The indium and vanadium are coated on the titanium dioxide photocatalyst to increase light absorbance and thermal stability.

또한 상기 티타늄은 바람직하게는 동일한 부피의 몰 농도를 기준으로하여 0.05M 내지 0.2M 혼합한다. In addition, the titanium is preferably mixed with 0.05M to 0.2M based on the molar concentration of the same volume.

또한 입자 크기가 30 내지 50nm의 직경을 가진 작고 균일하게 제조된 구형의 가시광 감응형 InVO4-이산화티탄 광촉매를 제조하기 위해 폴리에틸렌글리콜(Polyethylen glycol, PEG)을 0.0025M 내지 0.01M의 농도에서 수득한 후 투입하는 것을 포함하며, 바람직하게는 0.01M 농도에서 분말의 형태로 수득한 후 투입한다. 또한 상기 폴리에틸렌글리콜의 투입량을 증가시킬수록 빛의 흡광도가 증가한다.In addition, polyethylene glycol (PEG) was obtained at a concentration of 0.0025M to 0.01M to prepare a small, uniformly produced spherical visible light-sensitive InVO4-titanium dioxide photocatalyst having a particle size of 30 to 50 nm. It is added, and preferably obtained after obtaining in the form of a powder at a concentration of 0.01M. In addition, the absorbance of light increases as the amount of polyethylene glycol is increased.

또한 상기 인듐 전구물질과 바나듐 전구물질의 수용액을 혼합시킬 때 바람직하게는 교반기에 4시간 동안 교반하여 혼합한다. 또한 티타늄- 폴리에틸렌글리콜 혼합용액과 인듐 전구물질- 바나듐 전구물질을 혼합한 수용액을 혼합시킬 때 바람직하게는 교반기에 1시간 동안 교반하여 혼합한다.In addition, when mixing the aqueous solution of the indium precursor and vanadium precursor is preferably mixed by stirring for 4 hours in a stirrer. In addition, when mixing an aqueous solution in which the titanium- polyethylene glycol mixed solution and the indium precursor- vanadium precursor are mixed, it is preferably stirred and mixed for 1 hour.

상기 열처리는 5℃/min의 속도로 500~600℃까지 증가시킨다. 그 후 2시간 ~4시간 동안 유지한 후 산화시켜 가시광 감응형 InVO4-이산화티탄 광촉매를 제조한다.The heat treatment is increased to 500 ~ 600 ℃ at a rate of 5 ℃ / min. Thereafter, the mixture is maintained for 2 hours to 4 hours and then oxidized to produce a visible light-sensitive InVO4-titanium dioxide photocatalyst.

상기 티타늄, 인듐 및 바나듐을 혼합할 때 최종 투입되는 티타늄, 인듐 및 바나듐의 질량을 기준으로 한 배합비는 바람직하게는 10~60중량부:1~3중량부:0.5~1.5중량부인 것을 특징으로 한다.
When the titanium, indium and vanadium are mixed, the mixing ratio based on the mass of titanium, indium and vanadium, which is finally added, is preferably 10 to 60 parts by weight: 1 to 3 parts by weight: 0.5 to 1.5 parts by weight. .

이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

실시예Example

용매인 이소프로필알코올(IPA, Isopropyl alcohol, Daejung chemical, 99%)에 0.1 M의 티타늄 이소프로폭사이드 (TTIP, Titanium(Ⅳ) isopropoxide, Junsei Chemical, 98%) 2.8423g(부피:3ml)과, 0.01M 용액에서 건조하여 수득한 폴리에틸렌글리콜(Fluka, M.W. = 20,000)의 분말시료 2g을 주입하였다. 그 후 0.01M 용액을 건조하여 수득한 인듐클로라이드(Indium tricloride, Aldrich Chemicals, 98%)의 분말시료 0.0553g과, 0.005M 용액을 건조하여 수득한 암모늄메타바나데이트(Ammonium metavanadate, NH4VO3, Aldrich Chemicals, 99%)의 분말시료 0.0585g을 증류수에 혼합하여 150℃에서 4시간 동안 자석 교반기(corning stir)로 교반시켰다. 2.8423 g (volume: 3 ml) of 0.1 M titanium isopropoxide (TTIP, Titanium (IV) isopropoxide, Junsei Chemical, 98%) in isopropyl alcohol (IPA, Isopropyl alcohol, Daejung chemical, 99%), 2 g of a powder sample of polyethylene glycol (Fluka, MW = 20,000) obtained by drying in a 0.01 M solution was injected. Thereafter, 0.0553 g of a powder sample of indium tricloride (Aldrich Chemicals, 98%) obtained by drying the 0.01 M solution, and ammonium metavanadate (Ammonium metavanadate, NH 4 VO 3, Aldrich Chemicals, 99%) of 0.0585 g of a powder sample was mixed with distilled water and stirred at 150 ° C. for 4 hours using a magnetic stirrer (corning stir).

그 후 상기 제조된 티타늄이소프로폭사이드 및 폴리에틸렌글리콜 혼합용액과 인듐클로라이드 및 암모늄메타바나데이트 혼합용액을 혼합하여 다시 자석 교반기로 약 1시간 정도 혼합하였다.  Thereafter, the prepared titanium isopropoxide and polyethylene glycol mixed solution and the indium chloride and ammonium metavanadate mixed solution were mixed and mixed for about 1 hour using a magnetic stirrer.

그 후 상기 두 가지 혼합용액을 혼합하여 제조된 혼합물을 알루미나 재질의 도가니에 일정량씩 옮겨 담고, 전기로(Digital program furnace, CEM, US/MAS-7000, Daihan Science)에 넣었다. 산소를 공급하면서 5 ℃/min의 속도로 600 ℃까지 승온 시킨 다음 약 4시간 동안 산화시켜 가시광에 감응하는 광촉매를 제조하였다. 상기의 방법으로 가시광에 감응하는 광촉매를 제조하는 단계를 개략적으로 나타낸 모식도가 도 1에 나타나 있다.
Thereafter, the mixture prepared by mixing the two mixed solutions was transferred to an alumina crucible by a predetermined amount and placed in an electric furnace (Digital program furnace, CEM, US / MAS-7000, Daihan Science). While supplying oxygen, the temperature was raised to 600 ° C. at a rate of 5 ° C./min, and then oxidized for about 4 hours to prepare a photocatalyst sensitive to visible light. A schematic diagram schematically illustrating a step of preparing a photocatalyst sensitive to visible light by the above method is shown in FIG. 1.

비교예Comparative example

비교예Comparative example 1 One

어떠한 물질로도 도핑되지 않은 순수한 이산화티탄 광촉매로서, 티타늄 이소프로폭사이드(TTIP)를 사용하였다.
Titanium isopropoxide (TTIP) was used as a pure titanium dioxide photocatalyst that was not doped with any material.

비교예Comparative example 2 2

티타늄 혼합용액의 제조시 폴리에틸렌글리콜을 첨가하지 아니한 것을 제외하고는 본 발명의 실시예와 동일한 가시광 감응형 InVO4-이산화티탄 광촉매를 제조하였다.
The same visible light-sensitized InVO4-titanium dioxide photocatalyst was prepared as in the embodiment of the present invention except that polyethylene glycol was not added in the preparation of the titanium mixed solution.

비교예Comparative example 3 3

티타늄 혼합용액의 제조시 0.0025M의 용액에서 건조하여 수득한 폴리에틸렌글리콜의 분말시료 0.5g을 첨가한 것을 제외하고는 본 발명의 실시예와 동일한 가시광 감응형 InVO4-이산화티탄 광촉매를 제조하였다.
The same visible light-sensitized InVO4-titanium dioxide photocatalyst was prepared as in the embodiment of the present invention, except that 0.5 g of a powder sample of polyethylene glycol obtained by drying in a solution of 0.0025 M was added when preparing the titanium mixed solution.

실험예Experimental Example

실험예Experimental Example 1 One

본 발명에 따라 제조한 광촉매의 결정성 및 결정의 크기를 확인하기 위하여 전계방출형주사전자현미경(FE-SEM, JSM-6701F, JEOL)를 사용하여 본 발명에 따라 제조된 광촉매의 결정성을 확인하였다.In order to confirm the crystallinity and crystal size of the photocatalyst prepared according to the present invention, the crystallinity of the photocatalyst prepared according to the present invention was confirmed using a field emission scanning electron microscope (FE-SEM, JSM-6701F, JEOL). It was.

도 2a 내지 도 2d는 폴리에틸렌글리콜의 첨가량을 변화시켜서 제조한 광촉매 입자들을 나타낸 사진이다. 폴리에틸렌글리콜은 비교예 2에 의해 폴리에틸렌글리콜을 첨가하지 않은 경우, 비교예 3에 의한 0.0025M을 첨가한 경우 및 실시예에 의한 0.01M을 첨가한 경우로 각각 첨가량을 변화시켜 제조하였으며, 0.0025M과 0.01M을 첨가하여 제조한 비교예 3(도 2c) 및 실시예(도 2d)의 경우에는 30~50nm의 작고 균일하게 제조된 가시광 감응형 InVO4-이산화티탄 광촉매가 제조됨을 확인할 수 있었으나, 폴리에틸렌글리콜을 첨가하지 않고 광촉매를 제조하는 비교예 2와 같은 경우(도 2b)에는 50~200nm의 비교적 직경이 큰 형태로 성장한 가시광 감응형 InVO4-이산화티탄 광촉매가 제조됨을 확인할 수 있었다. 그러므로 작고 균일한 결정성을 가진 광촉매를 제조하기 위해서는 폴리에틸렌글리콜을 첨가하는 것이 바람직하며, 그 첨가량을 증가시키는 것이 더욱 바람직함을 알 수 있었다.
2A to 2D are photographs showing photocatalyst particles prepared by varying the amount of polyethylene glycol added. Polyethyleneglycol was prepared by varying the amount of polyethyleneglycol in Comparative Example 2, when 0.0025M was added according to Comparative Example 3 and 0.01M was added according to Example, respectively, and 0.0025M and In Comparative Example 3 (FIG. 2C) and Example (FIG. 2D) prepared by adding 0.01 M, small and uniformly prepared visible light-sensitive InVO4-titanium dioxide photocatalysts of 30 to 50 nm were prepared, but polyethylene glycol In the same case as in Comparative Example 2 (FIG. 2B) for preparing a photocatalyst without addition of the catalyst, visible light-sensitive InVO4-titanium dioxide photocatalysts grown in a relatively large diameter of 50 to 200 nm were prepared. Therefore, in order to prepare a photocatalyst having small and uniform crystallinity, it is preferable to add polyethylene glycol, and it is more preferable to increase the addition amount.

실험예Experimental Example 2 2

본 발명에 따라 제조된 광촉매의 결정구조를 확인하기 위하여 40Kv와 300mA에서 작동하는 상온에서 X선 회절 분석기(XRD, X-ray diffractometer, X-MAX/2000-PC, Rigaku/SWXD)를 사용하였다. 시료는 8°/min의 주사율로 20° 내지 80° (2θ)의 영역에서 측정하였다. 도 3a 내지 도 3d의 그래프에서 어떠한 물질도 도핑되지 않은 순수한 이산화티탄광촉매인 비교예 1(도 3a), PEG의 첨가량을 변화시켜서 제조한 비교예 2(0M, 도 3b), 비교예 3(0.0025M, 도 3c) 및 본 발명에 따른 실시예(0.01M, 도 3d)의 광촉매 입자들의 XRD 결과를 나타냈다. 본 발명의 실시예에 따라 제조된 광촉매의 상(phase)은 InVO4을 도핑함에 따라 루타일상보다 아나타제 상의 비율이 더 높았다. 이는 본 발명에 따른 이산화티탄 광촉매는 InVO4가 도핑 됨에 따라 열적 안정성이 증가되어 아나타제상에서 루타일상으로 상전이를 막을 수 있게 된 것으로 보인다. 또한 폴리에틸렌글리콜의 첨가량을 점점 증가시킴에 따라 이러한 전이를 막는 효과가 상승하는 것으로 보인다. 그러므로 본 발명의 실시예에 따라 제공된 이산화티탄 광촉매는 폴리에틸렌글리콜 및 InVO4의 도핑으로 열적 안정성이 증가된 이산화티탄 광촉매를 제공한다.
In order to confirm the crystal structure of the photocatalyst prepared according to the present invention, an X-ray diffractometer (XRD, X-ray diffractometer, X-MAX / 2000-PC, Rigaku / SWXD) was used at room temperature operating at 40 Kv and 300 mA. Samples were measured in the region of 20 ° to 80 ° (2θ) at a scanning rate of 8 ° / min. 3A to 3D, Comparative Example 1 (FIG. 3A), which is a pure titanium dioxide photocatalyst without any material doped, Comparative Example 2 (0M, FIG. 3B) prepared by varying the amount of PEG added, and Comparative Example 3 (0.0025) M, FIG. 3c) and the XRD results of the photocatalyst particles of the example (0.01M, FIG. 3d) according to the present invention are shown. The phase of the photocatalyst prepared according to the embodiment of the present invention had a higher proportion of anatase phases than rutile phases as the InVO 4 was doped. The titanium dioxide photocatalyst according to the present invention seems to be able to prevent the phase transition from the anatase phase to the rutile phase by increasing the thermal stability as InVO4 is doped. In addition, as the amount of polyethylene glycol is gradually increased, the effect of preventing this transition appears to increase. Therefore, the titanium dioxide photocatalyst provided according to the embodiment of the present invention provides a titanium dioxide photocatalyst with increased thermal stability by doping of polyethylene glycol and InVO4.

실험예Experimental Example 3 3

본 발명에 따라 제조된 광촉매의 자외선 및 가시광선 영역에서의 흡광도를 측정하기 위하여 광 다이오드 어레이(PDA, photo diode array) 방식의 자외선-가시광선 분광광도계(UV-Vis spectrophotometer, NEOSYS-2000, Sinco)를 사용하여 흡광도를 측정하였다.UV-Vis spectrophotometer (NEOSYS-2000, Sinco) of photo diode array (PDA) method to measure the absorbance in the ultraviolet and visible region of the photocatalyst prepared according to the present invention Absorbance was measured using.

도 4a 내지 도 4d의 그래프는 본 실험에 따른 자외선 및 가시광선 영역에서의 흡광도를 나타낸 그래프이다. 즉, X축은 자외선과 가시광선 영역인 200~800nm의 파장을 나타낸 것이고, Y축은 각 파장에 따른 흡광도를 나타낸 것이다. 비교예 1에 따른 이산화티탄 광촉매는 빛을 흡수하는 파장 영역이 가장 낮아 자외선 영역에서만 감응하는 것임을 확인할 수 있었다(도 4a). 반면에 본 발명의 실시예에 따라 제조된 광촉매는 인듐-바나듐(InVO4)과 폴리에틸렌글리콜을 첨가함에 따라 비교예 1에 의한 이산화티탄 광촉매보다 빛을 흡수하는 영역이 증가하여 자외선 영역뿐 아니라 가시광선 영역에서도 빛을 흡수하여 감응하는 것을 확인할 수 있었다(도 4d). 또한 비교예 2(도 4b), 비교예 3(도 4c) 및 본 발명에 따른 실시예(도 4d)의 경우를 비교하면 폴리에틸렌글리콜을 첨가하지 않는 경우보다 첨가하는 경우의 흡광도가 증가하며, 그 첨가량을 증가시킬수록 흡광도 또한 증가함을 확인할 수 있었다.
4A to 4D are graphs showing absorbance in the ultraviolet and visible region according to the present experiment. In other words, the X-axis shows the wavelength of 200 ~ 800nm of the ultraviolet and visible light region, the Y-axis shows the absorbance according to each wavelength. The titanium dioxide photocatalyst according to Comparative Example 1 was found to be sensitive only in the ultraviolet region because the wavelength region that absorbs light is the lowest (Fig. 4a). On the other hand, in the photocatalyst prepared according to the embodiment of the present invention, as the indium-vanadium (InVO4) and polyethylene glycol are added, the light absorbing region is increased than the titanium dioxide photocatalyst according to Comparative Example 1, so that not only the ultraviolet region but also the visible region It was also confirmed that the light absorbs and responds to (Fig. 4d). In addition, compared with the case of Comparative Example 2 (FIG. 4B), Comparative Example 3 (FIG. 4C) and Example (FIG. 4D) according to the present invention, the absorbance increases when the polyethylene glycol is not added, As the amount added increased, the absorbance also increased.

실험예Experimental Example 4 4

본 발명의 실시예, 비교예 1, 비교예 2에 따라 제조된 이산화티탄 광촉매 분말을 이용하여 메틸렌블루 분해 실험을 진행하였다. 도 5는 비교예 1 및 비교예 2에 의한 이산화티탄 광촉매와 본 발명의 실시예에 따른 이산화티탄 광촉매의 메틸렌블루 분해율을 나타낸 그래프이다. 구체적으로는 도 5a는 자외선 램프에서의 분해율을 나타낸 그래프이고, 도 5b는 일반 형광 램프에서의 메틸렌블루 분해율을 나타낸 그래프이다. 두 램프 모두 빛의 조사시 시간이 경과함에 따라 메틸렌블루의 분해가 진행되다가 3시간 이후로는 안정화되었다. 자외선 램프에서는 비교예 1, 비교예 2, 실시예에 의한 각각의 광촉매의 분해율이 50.8%, 80.9%, 95.5%의 분해율을 각각 나타냈고, 일반 형광 램프에서는 15.2%, 43.0%, 48.5%의 분해율을 나타냈다.The methylene blue decomposition experiment was conducted using titanium dioxide photocatalyst powder prepared according to Examples, Comparative Example 1 and Comparative Example 2 of the present invention. 5 is a graph showing the methylene blue decomposition rate of the titanium dioxide photocatalyst according to Comparative Example 1 and Comparative Example 2 and the titanium dioxide photocatalyst according to the embodiment of the present invention. Specifically, Figure 5a is a graph showing the decomposition rate in the ultraviolet lamp, Figure 5b is a graph showing the methylene blue decomposition rate in a general fluorescent lamp. Both lamps proceeded with decomposition of methylene blue as time passed during light irradiation and stabilized after 3 hours. In the ultraviolet lamp, the decomposition rate of each photocatalyst according to Comparative Example 1, Comparative Example 2, and Example was 50.8%, 80.9%, and 95.5%, respectively, and in general fluorescent lamps, the decomposition rate was 15.2%, 43.0%, and 48.5%. Indicated.

본 실험에 의해 본 발명의 실시예에 의해 제조된 이산화티탄 광촉매는 비교예 1에 의한 이산화티탄 광촉매에 비해 자외선램프에서는 약 2배, 일반 형광램프에서는 약2.5배 이상 높게 메틸렌블루를 분해할 수 있음을 확인할 수 있었다. 또한 본 발명에 따른 실시예와 비교예 2를 비교하면 폴리에틸렌글리콜을 첨가하는 경우의 메틸렌블루 분해율이 높아짐을 확인할 수 있었다. 그러므로 본 실험에 의해 본 발명의 실시예에 따라 제조된 가시광 감응형 InVO4-이산화티탄 광촉매는 비교예 1에 따른 어떤 물질도 도핑되지 않은 광촉매에 비해 자외선에서도 그 광분해 효율이 우수하며, 동시에 가시광선 영역에서도 광분해 효율이 우수한 광촉매 임을 확인할 수 있었다.
According to the present experiment, the titanium dioxide photocatalyst prepared according to the embodiment of the present invention can decompose methylene blue about 2 times higher in ultraviolet lamps and about 2.5 times higher in general fluorescent lamps than the titanium dioxide photocatalyst according to Comparative Example 1. Could confirm. In addition, when comparing the Example according to the present invention and Comparative Example 2, it was confirmed that the decomposition rate of methylene blue when the polyethylene glycol is added. Therefore, the visible light-sensitized InVO4-titanium dioxide photocatalyst prepared according to the embodiment of the present invention by the present experiment is superior in the photolysis efficiency even in ultraviolet light compared to the photocatalyst which is not doped with any material according to Comparative Example 1, and at the same time Also, it was confirmed that the photocatalyst was excellent in photodegradation efficiency.

상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니고, 본 발명의 기술 사상 범위 내에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 첨부된 특허 청구 범위에 속하는 것은 당연하다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. It is natural.

Claims (10)

인듐 및 바나듐을 포함하는 이산화티탄 광촉매.
Titanium dioxide photocatalyst comprising indium and vanadium.
제 1항에 있어서,
상기 티타튬, 인듐 및 바나듐의 배합비는 10~60중량부:1~3중량부:0.5~1.5중량부인 것을 특징으로 하는 이산화티탄 광촉매.
The method of claim 1,
Titanium, indium and vanadium compounding ratio of 10 to 60 parts by weight: 1-3 parts by weight: titanium dioxide photocatalyst, characterized in that.
인듐과 바나듐을 혼합하여 수용액을 제조하는 단계;
티타늄과 폴리에틸렌글리콜을 혼합하여 혼합용액을 제조하는 단계;
상기 수용액과 상기 혼합용액을 혼합하여 반응 용액을 수득하는 단계; 및
상기 반응 용액 내 상기 티타늄을 열처리를 통해 산화시켜 이산화티탄을 수득하는 단계;
를 포함하는 이산화티탄 광촉매의 제조방법.
Preparing an aqueous solution by mixing indium and vanadium;
Preparing a mixed solution by mixing titanium and polyethylene glycol;
Mixing the aqueous solution and the mixed solution to obtain a reaction solution; And
Oxidizing the titanium in the reaction solution through heat treatment to obtain titanium dioxide;
Titanium dioxide photocatalyst production method comprising a.
제 3항에 있어서,
상기 인듐은 인듐트리클로라이드(Indium trichloride) 또는 인듐(Ⅲ) 옥사이드(Indium(Ⅲ) oxide)인 것을 포함하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The indium is indium trichloride (Indium trichloride) or indium (III) oxide (Indium (III) oxide) comprising a method for producing a titanium dioxide photocatalyst comprising.
제 3항에 있어서,
상기 바나듐은 암모늄메타바나데이트(Ammonium metavanadate), 바나듐 디아세틸아세톤 (Vanadium diacethylacetone) 또는 바나듐(Ⅴ) 옥사이드 (Vanadium(Ⅴ) oxide)로 이루어지는 군 중에서 하나 또는 둘 이상이 선택되어 사용되는 것을 포함하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The vanadium dioxide, including one or two selected from the group consisting of ammonium metavanadate, vanadium diacetylacetone or vanadium (V) oxide. Method for producing titanium photocatalyst.
제 3항에 있어서,
상기 티타늄은 티타늄 이소프로폭사이드(TTIP, Titanium(Ⅳ) isopropoxide), 티타늄설페이트 (Titanylsulfate), 티타늄 테트라부톡사이드 (Titanium tetrabutoxide )로 이루어지는 군 중에서 하나 또는 둘 이상이 선택되어 사용되는 것을 포함하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The titanium is titanium dioxide containing one or more selected from the group consisting of titanium isopropoxide (TTIP, Titanium (IV) isopropoxide), titanium sulfate (Titanylsulfate), titanium tetrabutoxide (Titanium tetrabutoxide) Method for producing a photocatalyst.
제 3항에 있어서,
상기 티타늄은 동일한 부피에서 몰(M)농도를 기준으로 하여 0.05몰(M )내지 0.2몰(M)로 혼합되며, 상기 폴리에틸렌글리콜은 0.0025몰(M) 내지 0.01몰(M)에서 수득한 후 혼합되는 것을 특징으로 하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The titanium is mixed in the same volume of 0.05 mol (M) to 0.2 mol (M) based on the molar (M) concentration, the polyethylene glycol is obtained after mixing at 0.0025 mol (M) to 0.01 mol (M) Method for producing a titanium dioxide photocatalyst, characterized in that.
제 3항에 있어서,
상기 열처리의 온도는 5℃/min의 속도로 500℃ 내지 600℃까지 상승시키는 것을 특징으로 하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The temperature of the heat treatment is a method for producing a titanium dioxide photocatalyst, characterized in that to increase to 500 ℃ to 600 ℃ at a rate of 5 ℃ / min.
제 3항에 있어서,
상기 열처리는 그 유지 시간을 상기 제 8항에 따른 열처리 온도까지 온도를 상승시킨 후 2시간 내지 4시간 동안 유지하는 것을 특징으로 하는 이산화티탄 광촉매의 제조방법.
The method of claim 3, wherein
The heat treatment is a method for producing a titanium dioxide photocatalyst, characterized in that the holding time is maintained for 2 to 4 hours after the temperature is raised to the heat treatment temperature according to claim 8.
제 3항에 있어서,
상기 인듐과 바나듐은 동일한 부피에서 몰농도를 기준으로 하여 1몰(M) 내지 3몰(M):0.5몰(M) 내지 1.5몰(M)에서 수득한 후 혼합되는 것을 특징으로 하는 이산화티탄 광촉매의 제조방법.

The method of claim 3, wherein
The indium and vanadium are obtained in 1 mol (M) to 3 mol (M): 0.5 mol (M) to 1.5 mol (M) based on the molar concentration in the same volume and then mixed with titanium dioxide photocatalyst Manufacturing method.

KR1020110085302A 2011-08-25 2011-08-25 Visible ray reaction type photocatalyst and preparation method thereof KR101326314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110085302A KR101326314B1 (en) 2011-08-25 2011-08-25 Visible ray reaction type photocatalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110085302A KR101326314B1 (en) 2011-08-25 2011-08-25 Visible ray reaction type photocatalyst and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20130022275A true KR20130022275A (en) 2013-03-06
KR101326314B1 KR101326314B1 (en) 2013-11-11

Family

ID=48174979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110085302A KR101326314B1 (en) 2011-08-25 2011-08-25 Visible ray reaction type photocatalyst and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101326314B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019749A1 (en) * 2021-08-18 2023-02-23 台州学院 Oxidation type photocatalyst and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101808034B1 (en) 2015-08-28 2017-12-13 강원대학교산학협력단 Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100840899B1 (en) * 2006-08-11 2008-06-24 오쿠야마 키쿠오 Manufacturing methods of photo-catalytic titanium oxide with addition of polymer
JP2009078264A (en) 2007-09-03 2009-04-16 Tetsuto Nakajima Visible light-responsive photocatalyst and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023019749A1 (en) * 2021-08-18 2023-02-23 台州学院 Oxidation type photocatalyst and preparation method therefor
CN115888689A (en) * 2021-08-18 2023-04-04 台州学院 Oxidation type photocatalyst and preparation method thereof
CN115888689B (en) * 2021-08-18 2024-04-05 台州学院 Oxidized photocatalyst and preparation method thereof

Also Published As

Publication number Publication date
KR101326314B1 (en) 2013-11-11

Similar Documents

Publication Publication Date Title
Zaleska Doped-TiO2: a review
Pan et al. Preparation of highly ordered cubic mesoporous WO3/TiO2 films and their photocatalytic properties
He et al. Photocatalytic degradation of methyl orange over nitrogen–fluorine codoped TiO2 nanobelts prepared by solvothermal synthesis
Li et al. Photocatalytic degradation of rhodamine B over Pb3Nb4O13/fumed SiO2 composite under visible light irradiation
Nolan et al. A systematic study of the effect of silver on the chelation of formic acid to a titanium precursor and the resulting effect on the anatase to rutile transformation of TiO2
Iketani et al. Sol–gel-derived VχTi1− χO2 films and their photocatalytic activities under visible light irradiation
US8431621B2 (en) Method for the preparation of aqueous dispersions of TiO2 in the form of nanoparticles, and dispersions obtainable with this method
CN101422725B (en) Preparation method and use of visible light responsive nitrogen-doped titanium dioxide nano-tube
Tobaldi et al. Titanium dioxide modified with transition metals and rare earth elements: Phase composition, optical properties, and photocatalytic activity
ES2725153T3 (en) Photocatalytic powder production method comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
JPWO2006064799A1 (en) Composite metal oxide photocatalyst with visible light response
KR20090083239A (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
Leonard et al. Interactions between Zn2+ or ZnO with TiO2 to produce an efficient photocatalytic, superhydrophilic and aesthetic glass
US20120322648A1 (en) Visible light sensitive photocatalyst, method of producing the same, and electrochemical water decomposition cell, water decomposition system, and organic material decomposition system each including the same
KR100913784B1 (en) Visible light photocatalyst with heterojunction of titania and iron titanates, and preparation method thereof
CN1775349B (en) Wolfram oxide modified visible light activity nano titanium oxide photocatalyst and its method
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
CN102962103A (en) Preparation method of conductive polymer polypyrrole modified TiO2 and application thereof
TWI272250B (en) Visible light-activated photocatalyst and method for producing the same
Hsu et al. Microwave-assisted hydrothermal synthesis of TiO2 mesoporous beads having C and/or N doping for use in high efficiency all-plastic flexible dye-sensitized solar cells
KR101326314B1 (en) Visible ray reaction type photocatalyst and preparation method thereof
KR100917131B1 (en) Preparation of TiO2 Photocatalyst to utilize spectrum of visible ray
Huang et al. Preparation and characterization of visible-light-active nitrogen-doped TiO_2 photocatalyst
KR101400633B1 (en) Visible ray reaction type Zirconium TiO2/SiO2 photocatalyst and preparation method thereof
KR101808034B1 (en) Manufacturing method of visible light-responsive photocatalyst and photocatalyst thereof method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161010

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee